Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / i915 / i915_perf.c
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26
27
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197
198 #include "gem/i915_gem_context.h"
199 #include "gem/i915_gem_pm.h"
200 #include "gt/intel_lrc_reg.h"
201
202 #include "i915_drv.h"
203 #include "i915_perf.h"
204 #include "oa/i915_oa_hsw.h"
205 #include "oa/i915_oa_bdw.h"
206 #include "oa/i915_oa_chv.h"
207 #include "oa/i915_oa_sklgt2.h"
208 #include "oa/i915_oa_sklgt3.h"
209 #include "oa/i915_oa_sklgt4.h"
210 #include "oa/i915_oa_bxt.h"
211 #include "oa/i915_oa_kblgt2.h"
212 #include "oa/i915_oa_kblgt3.h"
213 #include "oa/i915_oa_glk.h"
214 #include "oa/i915_oa_cflgt2.h"
215 #include "oa/i915_oa_cflgt3.h"
216 #include "oa/i915_oa_cnl.h"
217 #include "oa/i915_oa_icl.h"
218
219 /* HW requires this to be a power of two, between 128k and 16M, though driver
220  * is currently generally designed assuming the largest 16M size is used such
221  * that the overflow cases are unlikely in normal operation.
222  */
223 #define OA_BUFFER_SIZE          SZ_16M
224
225 #define OA_TAKEN(tail, head)    ((tail - head) & (OA_BUFFER_SIZE - 1))
226
227 /**
228  * DOC: OA Tail Pointer Race
229  *
230  * There's a HW race condition between OA unit tail pointer register updates and
231  * writes to memory whereby the tail pointer can sometimes get ahead of what's
232  * been written out to the OA buffer so far (in terms of what's visible to the
233  * CPU).
234  *
235  * Although this can be observed explicitly while copying reports to userspace
236  * by checking for a zeroed report-id field in tail reports, we want to account
237  * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
238  * read() attempts.
239  *
240  * In effect we define a tail pointer for reading that lags the real tail
241  * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
242  * time for the corresponding reports to become visible to the CPU.
243  *
244  * To manage this we actually track two tail pointers:
245  *  1) An 'aging' tail with an associated timestamp that is tracked until we
246  *     can trust the corresponding data is visible to the CPU; at which point
247  *     it is considered 'aged'.
248  *  2) An 'aged' tail that can be used for read()ing.
249  *
250  * The two separate pointers let us decouple read()s from tail pointer aging.
251  *
252  * The tail pointers are checked and updated at a limited rate within a hrtimer
253  * callback (the same callback that is used for delivering EPOLLIN events)
254  *
255  * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
256  * indicates that an updated tail pointer is needed.
257  *
258  * Most of the implementation details for this workaround are in
259  * oa_buffer_check_unlocked() and _append_oa_reports()
260  *
261  * Note for posterity: previously the driver used to define an effective tail
262  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
263  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
264  * This was flawed considering that the OA unit may also automatically generate
265  * non-periodic reports (such as on context switch) or the OA unit may be
266  * enabled without any periodic sampling.
267  */
268 #define OA_TAIL_MARGIN_NSEC     100000ULL
269 #define INVALID_TAIL_PTR        0xffffffff
270
271 /* frequency for checking whether the OA unit has written new reports to the
272  * circular OA buffer...
273  */
274 #define POLL_FREQUENCY 200
275 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
276
277 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
278 static u32 i915_perf_stream_paranoid = true;
279
280 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
281  * of the 64bit timestamp bits to trigger reports from) but there's currently
282  * no known use case for sampling as infrequently as once per 47 thousand years.
283  *
284  * Since the timestamps included in OA reports are only 32bits it seems
285  * reasonable to limit the OA exponent where it's still possible to account for
286  * overflow in OA report timestamps.
287  */
288 #define OA_EXPONENT_MAX 31
289
290 #define INVALID_CTX_ID 0xffffffff
291
292 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
293 #define OAREPORT_REASON_MASK           0x3f
294 #define OAREPORT_REASON_SHIFT          19
295 #define OAREPORT_REASON_TIMER          (1<<0)
296 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
297 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
298
299
300 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
301  *
302  * The highest sampling frequency we can theoretically program the OA unit
303  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
304  *
305  * Initialized just before we register the sysctl parameter.
306  */
307 static int oa_sample_rate_hard_limit;
308
309 /* Theoretically we can program the OA unit to sample every 160ns but don't
310  * allow that by default unless root...
311  *
312  * The default threshold of 100000Hz is based on perf's similar
313  * kernel.perf_event_max_sample_rate sysctl parameter.
314  */
315 static u32 i915_oa_max_sample_rate = 100000;
316
317 /* XXX: beware if future OA HW adds new report formats that the current
318  * code assumes all reports have a power-of-two size and ~(size - 1) can
319  * be used as a mask to align the OA tail pointer.
320  */
321 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
322         [I915_OA_FORMAT_A13]        = { 0, 64 },
323         [I915_OA_FORMAT_A29]        = { 1, 128 },
324         [I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
325         /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
326         [I915_OA_FORMAT_B4_C8]      = { 4, 64 },
327         [I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
328         [I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
329         [I915_OA_FORMAT_C4_B8]      = { 7, 64 },
330 };
331
332 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
333         [I915_OA_FORMAT_A12]                = { 0, 64 },
334         [I915_OA_FORMAT_A12_B8_C8]          = { 2, 128 },
335         [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
336         [I915_OA_FORMAT_C4_B8]              = { 7, 64 },
337 };
338
339 #define SAMPLE_OA_REPORT      (1<<0)
340
341 /**
342  * struct perf_open_properties - for validated properties given to open a stream
343  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
344  * @single_context: Whether a single or all gpu contexts should be monitored
345  * @ctx_handle: A gem ctx handle for use with @single_context
346  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
347  * @oa_format: An OA unit HW report format
348  * @oa_periodic: Whether to enable periodic OA unit sampling
349  * @oa_period_exponent: The OA unit sampling period is derived from this
350  *
351  * As read_properties_unlocked() enumerates and validates the properties given
352  * to open a stream of metrics the configuration is built up in the structure
353  * which starts out zero initialized.
354  */
355 struct perf_open_properties {
356         u32 sample_flags;
357
358         u64 single_context:1;
359         u64 ctx_handle;
360
361         /* OA sampling state */
362         int metrics_set;
363         int oa_format;
364         bool oa_periodic;
365         int oa_period_exponent;
366 };
367
368 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
369
370 static void free_oa_config(struct drm_i915_private *dev_priv,
371                            struct i915_oa_config *oa_config)
372 {
373         if (!PTR_ERR(oa_config->flex_regs))
374                 kfree(oa_config->flex_regs);
375         if (!PTR_ERR(oa_config->b_counter_regs))
376                 kfree(oa_config->b_counter_regs);
377         if (!PTR_ERR(oa_config->mux_regs))
378                 kfree(oa_config->mux_regs);
379         kfree(oa_config);
380 }
381
382 static void put_oa_config(struct drm_i915_private *dev_priv,
383                           struct i915_oa_config *oa_config)
384 {
385         if (!atomic_dec_and_test(&oa_config->ref_count))
386                 return;
387
388         free_oa_config(dev_priv, oa_config);
389 }
390
391 static int get_oa_config(struct drm_i915_private *dev_priv,
392                          int metrics_set,
393                          struct i915_oa_config **out_config)
394 {
395         int ret;
396
397         if (metrics_set == 1) {
398                 *out_config = &dev_priv->perf.test_config;
399                 atomic_inc(&dev_priv->perf.test_config.ref_count);
400                 return 0;
401         }
402
403         ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
404         if (ret)
405                 return ret;
406
407         *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
408         if (!*out_config)
409                 ret = -EINVAL;
410         else
411                 atomic_inc(&(*out_config)->ref_count);
412
413         mutex_unlock(&dev_priv->perf.metrics_lock);
414
415         return ret;
416 }
417
418 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
419 {
420         struct drm_i915_private *dev_priv = stream->dev_priv;
421
422         return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
423 }
424
425 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
426 {
427         struct drm_i915_private *dev_priv = stream->dev_priv;
428         u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
429
430         return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
431 }
432
433 /**
434  * oa_buffer_check_unlocked - check for data and update tail ptr state
435  * @stream: i915 stream instance
436  *
437  * This is either called via fops (for blocking reads in user ctx) or the poll
438  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
439  * if there is data available for userspace to read.
440  *
441  * This function is central to providing a workaround for the OA unit tail
442  * pointer having a race with respect to what data is visible to the CPU.
443  * It is responsible for reading tail pointers from the hardware and giving
444  * the pointers time to 'age' before they are made available for reading.
445  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
446  *
447  * Besides returning true when there is data available to read() this function
448  * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
449  * and .aged_tail_idx state used for reading.
450  *
451  * Note: It's safe to read OA config state here unlocked, assuming that this is
452  * only called while the stream is enabled, while the global OA configuration
453  * can't be modified.
454  *
455  * Returns: %true if the OA buffer contains data, else %false
456  */
457 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
458 {
459         struct drm_i915_private *dev_priv = stream->dev_priv;
460         int report_size = stream->oa_buffer.format_size;
461         unsigned long flags;
462         unsigned int aged_idx;
463         u32 head, hw_tail, aged_tail, aging_tail;
464         u64 now;
465
466         /* We have to consider the (unlikely) possibility that read() errors
467          * could result in an OA buffer reset which might reset the head,
468          * tails[] and aged_tail state.
469          */
470         spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
471
472         /* NB: The head we observe here might effectively be a little out of
473          * date (between head and tails[aged_idx].offset if there is currently
474          * a read() in progress.
475          */
476         head = stream->oa_buffer.head;
477
478         aged_idx = stream->oa_buffer.aged_tail_idx;
479         aged_tail = stream->oa_buffer.tails[aged_idx].offset;
480         aging_tail = stream->oa_buffer.tails[!aged_idx].offset;
481
482         hw_tail = dev_priv->perf.ops.oa_hw_tail_read(stream);
483
484         /* The tail pointer increases in 64 byte increments,
485          * not in report_size steps...
486          */
487         hw_tail &= ~(report_size - 1);
488
489         now = ktime_get_mono_fast_ns();
490
491         /* Update the aged tail
492          *
493          * Flip the tail pointer available for read()s once the aging tail is
494          * old enough to trust that the corresponding data will be visible to
495          * the CPU...
496          *
497          * Do this before updating the aging pointer in case we may be able to
498          * immediately start aging a new pointer too (if new data has become
499          * available) without needing to wait for a later hrtimer callback.
500          */
501         if (aging_tail != INVALID_TAIL_PTR &&
502             ((now - stream->oa_buffer.aging_timestamp) >
503              OA_TAIL_MARGIN_NSEC)) {
504
505                 aged_idx ^= 1;
506                 stream->oa_buffer.aged_tail_idx = aged_idx;
507
508                 aged_tail = aging_tail;
509
510                 /* Mark that we need a new pointer to start aging... */
511                 stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
512                 aging_tail = INVALID_TAIL_PTR;
513         }
514
515         /* Update the aging tail
516          *
517          * We throttle aging tail updates until we have a new tail that
518          * represents >= one report more data than is already available for
519          * reading. This ensures there will be enough data for a successful
520          * read once this new pointer has aged and ensures we will give the new
521          * pointer time to age.
522          */
523         if (aging_tail == INVALID_TAIL_PTR &&
524             (aged_tail == INVALID_TAIL_PTR ||
525              OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
526                 struct i915_vma *vma = stream->oa_buffer.vma;
527                 u32 gtt_offset = i915_ggtt_offset(vma);
528
529                 /* Be paranoid and do a bounds check on the pointer read back
530                  * from hardware, just in case some spurious hardware condition
531                  * could put the tail out of bounds...
532                  */
533                 if (hw_tail >= gtt_offset &&
534                     hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
535                         stream->oa_buffer.tails[!aged_idx].offset =
536                                 aging_tail = hw_tail;
537                         stream->oa_buffer.aging_timestamp = now;
538                 } else {
539                         DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
540                                   hw_tail);
541                 }
542         }
543
544         spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
545
546         return aged_tail == INVALID_TAIL_PTR ?
547                 false : OA_TAKEN(aged_tail, head) >= report_size;
548 }
549
550 /**
551  * append_oa_status - Appends a status record to a userspace read() buffer.
552  * @stream: An i915-perf stream opened for OA metrics
553  * @buf: destination buffer given by userspace
554  * @count: the number of bytes userspace wants to read
555  * @offset: (inout): the current position for writing into @buf
556  * @type: The kind of status to report to userspace
557  *
558  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
559  * into the userspace read() buffer.
560  *
561  * The @buf @offset will only be updated on success.
562  *
563  * Returns: 0 on success, negative error code on failure.
564  */
565 static int append_oa_status(struct i915_perf_stream *stream,
566                             char __user *buf,
567                             size_t count,
568                             size_t *offset,
569                             enum drm_i915_perf_record_type type)
570 {
571         struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
572
573         if ((count - *offset) < header.size)
574                 return -ENOSPC;
575
576         if (copy_to_user(buf + *offset, &header, sizeof(header)))
577                 return -EFAULT;
578
579         (*offset) += header.size;
580
581         return 0;
582 }
583
584 /**
585  * append_oa_sample - Copies single OA report into userspace read() buffer.
586  * @stream: An i915-perf stream opened for OA metrics
587  * @buf: destination buffer given by userspace
588  * @count: the number of bytes userspace wants to read
589  * @offset: (inout): the current position for writing into @buf
590  * @report: A single OA report to (optionally) include as part of the sample
591  *
592  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
593  * properties when opening a stream, tracked as `stream->sample_flags`. This
594  * function copies the requested components of a single sample to the given
595  * read() @buf.
596  *
597  * The @buf @offset will only be updated on success.
598  *
599  * Returns: 0 on success, negative error code on failure.
600  */
601 static int append_oa_sample(struct i915_perf_stream *stream,
602                             char __user *buf,
603                             size_t count,
604                             size_t *offset,
605                             const u8 *report)
606 {
607         int report_size = stream->oa_buffer.format_size;
608         struct drm_i915_perf_record_header header;
609         u32 sample_flags = stream->sample_flags;
610
611         header.type = DRM_I915_PERF_RECORD_SAMPLE;
612         header.pad = 0;
613         header.size = stream->sample_size;
614
615         if ((count - *offset) < header.size)
616                 return -ENOSPC;
617
618         buf += *offset;
619         if (copy_to_user(buf, &header, sizeof(header)))
620                 return -EFAULT;
621         buf += sizeof(header);
622
623         if (sample_flags & SAMPLE_OA_REPORT) {
624                 if (copy_to_user(buf, report, report_size))
625                         return -EFAULT;
626         }
627
628         (*offset) += header.size;
629
630         return 0;
631 }
632
633 /**
634  * Copies all buffered OA reports into userspace read() buffer.
635  * @stream: An i915-perf stream opened for OA metrics
636  * @buf: destination buffer given by userspace
637  * @count: the number of bytes userspace wants to read
638  * @offset: (inout): the current position for writing into @buf
639  *
640  * Notably any error condition resulting in a short read (-%ENOSPC or
641  * -%EFAULT) will be returned even though one or more records may
642  * have been successfully copied. In this case it's up to the caller
643  * to decide if the error should be squashed before returning to
644  * userspace.
645  *
646  * Note: reports are consumed from the head, and appended to the
647  * tail, so the tail chases the head?... If you think that's mad
648  * and back-to-front you're not alone, but this follows the
649  * Gen PRM naming convention.
650  *
651  * Returns: 0 on success, negative error code on failure.
652  */
653 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
654                                   char __user *buf,
655                                   size_t count,
656                                   size_t *offset)
657 {
658         struct drm_i915_private *dev_priv = stream->dev_priv;
659         int report_size = stream->oa_buffer.format_size;
660         u8 *oa_buf_base = stream->oa_buffer.vaddr;
661         u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
662         u32 mask = (OA_BUFFER_SIZE - 1);
663         size_t start_offset = *offset;
664         unsigned long flags;
665         unsigned int aged_tail_idx;
666         u32 head, tail;
667         u32 taken;
668         int ret = 0;
669
670         if (WARN_ON(!stream->enabled))
671                 return -EIO;
672
673         spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
674
675         head = stream->oa_buffer.head;
676         aged_tail_idx = stream->oa_buffer.aged_tail_idx;
677         tail = stream->oa_buffer.tails[aged_tail_idx].offset;
678
679         spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
680
681         /*
682          * An invalid tail pointer here means we're still waiting for the poll
683          * hrtimer callback to give us a pointer
684          */
685         if (tail == INVALID_TAIL_PTR)
686                 return -EAGAIN;
687
688         /*
689          * NB: oa_buffer.head/tail include the gtt_offset which we don't want
690          * while indexing relative to oa_buf_base.
691          */
692         head -= gtt_offset;
693         tail -= gtt_offset;
694
695         /*
696          * An out of bounds or misaligned head or tail pointer implies a driver
697          * bug since we validate + align the tail pointers we read from the
698          * hardware and we are in full control of the head pointer which should
699          * only be incremented by multiples of the report size (notably also
700          * all a power of two).
701          */
702         if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
703                       tail > OA_BUFFER_SIZE || tail % report_size,
704                       "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
705                       head, tail))
706                 return -EIO;
707
708
709         for (/* none */;
710              (taken = OA_TAKEN(tail, head));
711              head = (head + report_size) & mask) {
712                 u8 *report = oa_buf_base + head;
713                 u32 *report32 = (void *)report;
714                 u32 ctx_id;
715                 u32 reason;
716
717                 /*
718                  * All the report sizes factor neatly into the buffer
719                  * size so we never expect to see a report split
720                  * between the beginning and end of the buffer.
721                  *
722                  * Given the initial alignment check a misalignment
723                  * here would imply a driver bug that would result
724                  * in an overrun.
725                  */
726                 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
727                         DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
728                         break;
729                 }
730
731                 /*
732                  * The reason field includes flags identifying what
733                  * triggered this specific report (mostly timer
734                  * triggered or e.g. due to a context switch).
735                  *
736                  * This field is never expected to be zero so we can
737                  * check that the report isn't invalid before copying
738                  * it to userspace...
739                  */
740                 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
741                           OAREPORT_REASON_MASK);
742                 if (reason == 0) {
743                         if (__ratelimit(&dev_priv->perf.spurious_report_rs))
744                                 DRM_NOTE("Skipping spurious, invalid OA report\n");
745                         continue;
746                 }
747
748                 ctx_id = report32[2] & stream->specific_ctx_id_mask;
749
750                 /*
751                  * Squash whatever is in the CTX_ID field if it's marked as
752                  * invalid to be sure we avoid false-positive, single-context
753                  * filtering below...
754                  *
755                  * Note: that we don't clear the valid_ctx_bit so userspace can
756                  * understand that the ID has been squashed by the kernel.
757                  */
758                 if (!(report32[0] & dev_priv->perf.gen8_valid_ctx_bit))
759                         ctx_id = report32[2] = INVALID_CTX_ID;
760
761                 /*
762                  * NB: For Gen 8 the OA unit no longer supports clock gating
763                  * off for a specific context and the kernel can't securely
764                  * stop the counters from updating as system-wide / global
765                  * values.
766                  *
767                  * Automatic reports now include a context ID so reports can be
768                  * filtered on the cpu but it's not worth trying to
769                  * automatically subtract/hide counter progress for other
770                  * contexts while filtering since we can't stop userspace
771                  * issuing MI_REPORT_PERF_COUNT commands which would still
772                  * provide a side-band view of the real values.
773                  *
774                  * To allow userspace (such as Mesa/GL_INTEL_performance_query)
775                  * to normalize counters for a single filtered context then it
776                  * needs be forwarded bookend context-switch reports so that it
777                  * can track switches in between MI_REPORT_PERF_COUNT commands
778                  * and can itself subtract/ignore the progress of counters
779                  * associated with other contexts. Note that the hardware
780                  * automatically triggers reports when switching to a new
781                  * context which are tagged with the ID of the newly active
782                  * context. To avoid the complexity (and likely fragility) of
783                  * reading ahead while parsing reports to try and minimize
784                  * forwarding redundant context switch reports (i.e. between
785                  * other, unrelated contexts) we simply elect to forward them
786                  * all.
787                  *
788                  * We don't rely solely on the reason field to identify context
789                  * switches since it's not-uncommon for periodic samples to
790                  * identify a switch before any 'context switch' report.
791                  */
792                 if (!dev_priv->perf.exclusive_stream->ctx ||
793                     stream->specific_ctx_id == ctx_id ||
794                     stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
795                     reason & OAREPORT_REASON_CTX_SWITCH) {
796
797                         /*
798                          * While filtering for a single context we avoid
799                          * leaking the IDs of other contexts.
800                          */
801                         if (dev_priv->perf.exclusive_stream->ctx &&
802                             stream->specific_ctx_id != ctx_id) {
803                                 report32[2] = INVALID_CTX_ID;
804                         }
805
806                         ret = append_oa_sample(stream, buf, count, offset,
807                                                report);
808                         if (ret)
809                                 break;
810
811                         stream->oa_buffer.last_ctx_id = ctx_id;
812                 }
813
814                 /*
815                  * The above reason field sanity check is based on
816                  * the assumption that the OA buffer is initially
817                  * zeroed and we reset the field after copying so the
818                  * check is still meaningful once old reports start
819                  * being overwritten.
820                  */
821                 report32[0] = 0;
822         }
823
824         if (start_offset != *offset) {
825                 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
826
827                 /*
828                  * We removed the gtt_offset for the copy loop above, indexing
829                  * relative to oa_buf_base so put back here...
830                  */
831                 head += gtt_offset;
832
833                 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
834                 stream->oa_buffer.head = head;
835
836                 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
837         }
838
839         return ret;
840 }
841
842 /**
843  * gen8_oa_read - copy status records then buffered OA reports
844  * @stream: An i915-perf stream opened for OA metrics
845  * @buf: destination buffer given by userspace
846  * @count: the number of bytes userspace wants to read
847  * @offset: (inout): the current position for writing into @buf
848  *
849  * Checks OA unit status registers and if necessary appends corresponding
850  * status records for userspace (such as for a buffer full condition) and then
851  * initiate appending any buffered OA reports.
852  *
853  * Updates @offset according to the number of bytes successfully copied into
854  * the userspace buffer.
855  *
856  * NB: some data may be successfully copied to the userspace buffer
857  * even if an error is returned, and this is reflected in the
858  * updated @offset.
859  *
860  * Returns: zero on success or a negative error code
861  */
862 static int gen8_oa_read(struct i915_perf_stream *stream,
863                         char __user *buf,
864                         size_t count,
865                         size_t *offset)
866 {
867         struct drm_i915_private *dev_priv = stream->dev_priv;
868         u32 oastatus;
869         int ret;
870
871         if (WARN_ON(!stream->oa_buffer.vaddr))
872                 return -EIO;
873
874         oastatus = I915_READ(GEN8_OASTATUS);
875
876         /*
877          * We treat OABUFFER_OVERFLOW as a significant error:
878          *
879          * Although theoretically we could handle this more gracefully
880          * sometimes, some Gens don't correctly suppress certain
881          * automatically triggered reports in this condition and so we
882          * have to assume that old reports are now being trampled
883          * over.
884          *
885          * Considering how we don't currently give userspace control
886          * over the OA buffer size and always configure a large 16MB
887          * buffer, then a buffer overflow does anyway likely indicate
888          * that something has gone quite badly wrong.
889          */
890         if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
891                 ret = append_oa_status(stream, buf, count, offset,
892                                        DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
893                 if (ret)
894                         return ret;
895
896                 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
897                           stream->period_exponent);
898
899                 dev_priv->perf.ops.oa_disable(stream);
900                 dev_priv->perf.ops.oa_enable(stream);
901
902                 /*
903                  * Note: .oa_enable() is expected to re-init the oabuffer and
904                  * reset GEN8_OASTATUS for us
905                  */
906                 oastatus = I915_READ(GEN8_OASTATUS);
907         }
908
909         if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
910                 ret = append_oa_status(stream, buf, count, offset,
911                                        DRM_I915_PERF_RECORD_OA_REPORT_LOST);
912                 if (ret)
913                         return ret;
914                 I915_WRITE(GEN8_OASTATUS,
915                            oastatus & ~GEN8_OASTATUS_REPORT_LOST);
916         }
917
918         return gen8_append_oa_reports(stream, buf, count, offset);
919 }
920
921 /**
922  * Copies all buffered OA reports into userspace read() buffer.
923  * @stream: An i915-perf stream opened for OA metrics
924  * @buf: destination buffer given by userspace
925  * @count: the number of bytes userspace wants to read
926  * @offset: (inout): the current position for writing into @buf
927  *
928  * Notably any error condition resulting in a short read (-%ENOSPC or
929  * -%EFAULT) will be returned even though one or more records may
930  * have been successfully copied. In this case it's up to the caller
931  * to decide if the error should be squashed before returning to
932  * userspace.
933  *
934  * Note: reports are consumed from the head, and appended to the
935  * tail, so the tail chases the head?... If you think that's mad
936  * and back-to-front you're not alone, but this follows the
937  * Gen PRM naming convention.
938  *
939  * Returns: 0 on success, negative error code on failure.
940  */
941 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
942                                   char __user *buf,
943                                   size_t count,
944                                   size_t *offset)
945 {
946         struct drm_i915_private *dev_priv = stream->dev_priv;
947         int report_size = stream->oa_buffer.format_size;
948         u8 *oa_buf_base = stream->oa_buffer.vaddr;
949         u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
950         u32 mask = (OA_BUFFER_SIZE - 1);
951         size_t start_offset = *offset;
952         unsigned long flags;
953         unsigned int aged_tail_idx;
954         u32 head, tail;
955         u32 taken;
956         int ret = 0;
957
958         if (WARN_ON(!stream->enabled))
959                 return -EIO;
960
961         spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
962
963         head = stream->oa_buffer.head;
964         aged_tail_idx = stream->oa_buffer.aged_tail_idx;
965         tail = stream->oa_buffer.tails[aged_tail_idx].offset;
966
967         spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
968
969         /* An invalid tail pointer here means we're still waiting for the poll
970          * hrtimer callback to give us a pointer
971          */
972         if (tail == INVALID_TAIL_PTR)
973                 return -EAGAIN;
974
975         /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
976          * while indexing relative to oa_buf_base.
977          */
978         head -= gtt_offset;
979         tail -= gtt_offset;
980
981         /* An out of bounds or misaligned head or tail pointer implies a driver
982          * bug since we validate + align the tail pointers we read from the
983          * hardware and we are in full control of the head pointer which should
984          * only be incremented by multiples of the report size (notably also
985          * all a power of two).
986          */
987         if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
988                       tail > OA_BUFFER_SIZE || tail % report_size,
989                       "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
990                       head, tail))
991                 return -EIO;
992
993
994         for (/* none */;
995              (taken = OA_TAKEN(tail, head));
996              head = (head + report_size) & mask) {
997                 u8 *report = oa_buf_base + head;
998                 u32 *report32 = (void *)report;
999
1000                 /* All the report sizes factor neatly into the buffer
1001                  * size so we never expect to see a report split
1002                  * between the beginning and end of the buffer.
1003                  *
1004                  * Given the initial alignment check a misalignment
1005                  * here would imply a driver bug that would result
1006                  * in an overrun.
1007                  */
1008                 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1009                         DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1010                         break;
1011                 }
1012
1013                 /* The report-ID field for periodic samples includes
1014                  * some undocumented flags related to what triggered
1015                  * the report and is never expected to be zero so we
1016                  * can check that the report isn't invalid before
1017                  * copying it to userspace...
1018                  */
1019                 if (report32[0] == 0) {
1020                         if (__ratelimit(&dev_priv->perf.spurious_report_rs))
1021                                 DRM_NOTE("Skipping spurious, invalid OA report\n");
1022                         continue;
1023                 }
1024
1025                 ret = append_oa_sample(stream, buf, count, offset, report);
1026                 if (ret)
1027                         break;
1028
1029                 /* The above report-id field sanity check is based on
1030                  * the assumption that the OA buffer is initially
1031                  * zeroed and we reset the field after copying so the
1032                  * check is still meaningful once old reports start
1033                  * being overwritten.
1034                  */
1035                 report32[0] = 0;
1036         }
1037
1038         if (start_offset != *offset) {
1039                 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1040
1041                 /* We removed the gtt_offset for the copy loop above, indexing
1042                  * relative to oa_buf_base so put back here...
1043                  */
1044                 head += gtt_offset;
1045
1046                 I915_WRITE(GEN7_OASTATUS2,
1047                            ((head & GEN7_OASTATUS2_HEAD_MASK) |
1048                             GEN7_OASTATUS2_MEM_SELECT_GGTT));
1049                 stream->oa_buffer.head = head;
1050
1051                 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1052         }
1053
1054         return ret;
1055 }
1056
1057 /**
1058  * gen7_oa_read - copy status records then buffered OA reports
1059  * @stream: An i915-perf stream opened for OA metrics
1060  * @buf: destination buffer given by userspace
1061  * @count: the number of bytes userspace wants to read
1062  * @offset: (inout): the current position for writing into @buf
1063  *
1064  * Checks Gen 7 specific OA unit status registers and if necessary appends
1065  * corresponding status records for userspace (such as for a buffer full
1066  * condition) and then initiate appending any buffered OA reports.
1067  *
1068  * Updates @offset according to the number of bytes successfully copied into
1069  * the userspace buffer.
1070  *
1071  * Returns: zero on success or a negative error code
1072  */
1073 static int gen7_oa_read(struct i915_perf_stream *stream,
1074                         char __user *buf,
1075                         size_t count,
1076                         size_t *offset)
1077 {
1078         struct drm_i915_private *dev_priv = stream->dev_priv;
1079         u32 oastatus1;
1080         int ret;
1081
1082         if (WARN_ON(!stream->oa_buffer.vaddr))
1083                 return -EIO;
1084
1085         oastatus1 = I915_READ(GEN7_OASTATUS1);
1086
1087         /* XXX: On Haswell we don't have a safe way to clear oastatus1
1088          * bits while the OA unit is enabled (while the tail pointer
1089          * may be updated asynchronously) so we ignore status bits
1090          * that have already been reported to userspace.
1091          */
1092         oastatus1 &= ~dev_priv->perf.gen7_latched_oastatus1;
1093
1094         /* We treat OABUFFER_OVERFLOW as a significant error:
1095          *
1096          * - The status can be interpreted to mean that the buffer is
1097          *   currently full (with a higher precedence than OA_TAKEN()
1098          *   which will start to report a near-empty buffer after an
1099          *   overflow) but it's awkward that we can't clear the status
1100          *   on Haswell, so without a reset we won't be able to catch
1101          *   the state again.
1102          *
1103          * - Since it also implies the HW has started overwriting old
1104          *   reports it may also affect our sanity checks for invalid
1105          *   reports when copying to userspace that assume new reports
1106          *   are being written to cleared memory.
1107          *
1108          * - In the future we may want to introduce a flight recorder
1109          *   mode where the driver will automatically maintain a safe
1110          *   guard band between head/tail, avoiding this overflow
1111          *   condition, but we avoid the added driver complexity for
1112          *   now.
1113          */
1114         if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1115                 ret = append_oa_status(stream, buf, count, offset,
1116                                        DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1117                 if (ret)
1118                         return ret;
1119
1120                 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1121                           stream->period_exponent);
1122
1123                 dev_priv->perf.ops.oa_disable(stream);
1124                 dev_priv->perf.ops.oa_enable(stream);
1125
1126                 oastatus1 = I915_READ(GEN7_OASTATUS1);
1127         }
1128
1129         if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1130                 ret = append_oa_status(stream, buf, count, offset,
1131                                        DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1132                 if (ret)
1133                         return ret;
1134                 dev_priv->perf.gen7_latched_oastatus1 |=
1135                         GEN7_OASTATUS1_REPORT_LOST;
1136         }
1137
1138         return gen7_append_oa_reports(stream, buf, count, offset);
1139 }
1140
1141 /**
1142  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1143  * @stream: An i915-perf stream opened for OA metrics
1144  *
1145  * Called when userspace tries to read() from a blocking stream FD opened
1146  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1147  * OA buffer and wakes us.
1148  *
1149  * Note: it's acceptable to have this return with some false positives
1150  * since any subsequent read handling will return -EAGAIN if there isn't
1151  * really data ready for userspace yet.
1152  *
1153  * Returns: zero on success or a negative error code
1154  */
1155 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1156 {
1157         /* We would wait indefinitely if periodic sampling is not enabled */
1158         if (!stream->periodic)
1159                 return -EIO;
1160
1161         return wait_event_interruptible(stream->poll_wq,
1162                                         oa_buffer_check_unlocked(stream));
1163 }
1164
1165 /**
1166  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1167  * @stream: An i915-perf stream opened for OA metrics
1168  * @file: An i915 perf stream file
1169  * @wait: poll() state table
1170  *
1171  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1172  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1173  * when it sees data ready to read in the circular OA buffer.
1174  */
1175 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1176                               struct file *file,
1177                               poll_table *wait)
1178 {
1179         poll_wait(file, &stream->poll_wq, wait);
1180 }
1181
1182 /**
1183  * i915_oa_read - just calls through to &i915_oa_ops->read
1184  * @stream: An i915-perf stream opened for OA metrics
1185  * @buf: destination buffer given by userspace
1186  * @count: the number of bytes userspace wants to read
1187  * @offset: (inout): the current position for writing into @buf
1188  *
1189  * Updates @offset according to the number of bytes successfully copied into
1190  * the userspace buffer.
1191  *
1192  * Returns: zero on success or a negative error code
1193  */
1194 static int i915_oa_read(struct i915_perf_stream *stream,
1195                         char __user *buf,
1196                         size_t count,
1197                         size_t *offset)
1198 {
1199         struct drm_i915_private *dev_priv = stream->dev_priv;
1200
1201         return dev_priv->perf.ops.read(stream, buf, count, offset);
1202 }
1203
1204 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1205 {
1206         struct i915_gem_engines_iter it;
1207         struct drm_i915_private *i915 = stream->dev_priv;
1208         struct i915_gem_context *ctx = stream->ctx;
1209         struct intel_context *ce;
1210         int err;
1211
1212         err = i915_mutex_lock_interruptible(&i915->drm);
1213         if (err)
1214                 return ERR_PTR(err);
1215
1216         for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1217                 if (ce->engine->class != RENDER_CLASS)
1218                         continue;
1219
1220                 /*
1221                  * As the ID is the gtt offset of the context's vma we
1222                  * pin the vma to ensure the ID remains fixed.
1223                  */
1224                 err = intel_context_pin(ce);
1225                 if (err == 0) {
1226                         stream->pinned_ctx = ce;
1227                         break;
1228                 }
1229         }
1230         i915_gem_context_unlock_engines(ctx);
1231
1232         mutex_unlock(&i915->drm.struct_mutex);
1233         if (err)
1234                 return ERR_PTR(err);
1235
1236         return stream->pinned_ctx;
1237 }
1238
1239 /**
1240  * oa_get_render_ctx_id - determine and hold ctx hw id
1241  * @stream: An i915-perf stream opened for OA metrics
1242  *
1243  * Determine the render context hw id, and ensure it remains fixed for the
1244  * lifetime of the stream. This ensures that we don't have to worry about
1245  * updating the context ID in OACONTROL on the fly.
1246  *
1247  * Returns: zero on success or a negative error code
1248  */
1249 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1250 {
1251         struct drm_i915_private *i915 = stream->dev_priv;
1252         struct intel_context *ce;
1253
1254         ce = oa_pin_context(stream);
1255         if (IS_ERR(ce))
1256                 return PTR_ERR(ce);
1257
1258         switch (INTEL_GEN(i915)) {
1259         case 7: {
1260                 /*
1261                  * On Haswell we don't do any post processing of the reports
1262                  * and don't need to use the mask.
1263                  */
1264                 stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1265                 stream->specific_ctx_id_mask = 0;
1266                 break;
1267         }
1268
1269         case 8:
1270         case 9:
1271         case 10:
1272                 if (USES_GUC_SUBMISSION(i915)) {
1273                         /*
1274                          * When using GuC, the context descriptor we write in
1275                          * i915 is read by GuC and rewritten before it's
1276                          * actually written into the hardware. The LRCA is
1277                          * what is put into the context id field of the
1278                          * context descriptor by GuC. Because it's aligned to
1279                          * a page, the lower 12bits are always at 0 and
1280                          * dropped by GuC. They won't be part of the context
1281                          * ID in the OA reports, so squash those lower bits.
1282                          */
1283                         stream->specific_ctx_id =
1284                                 lower_32_bits(ce->lrc_desc) >> 12;
1285
1286                         /*
1287                          * GuC uses the top bit to signal proxy submission, so
1288                          * ignore that bit.
1289                          */
1290                         stream->specific_ctx_id_mask =
1291                                 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1292                 } else {
1293                         stream->specific_ctx_id_mask =
1294                                 (1U << GEN8_CTX_ID_WIDTH) - 1;
1295                         stream->specific_ctx_id =
1296                                 upper_32_bits(ce->lrc_desc);
1297                         stream->specific_ctx_id &=
1298                                 stream->specific_ctx_id_mask;
1299                 }
1300                 break;
1301
1302         case 11: {
1303                 stream->specific_ctx_id_mask =
1304                         ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32) |
1305                         ((1U << GEN11_ENGINE_INSTANCE_WIDTH) - 1) << (GEN11_ENGINE_INSTANCE_SHIFT - 32) |
1306                         ((1 << GEN11_ENGINE_CLASS_WIDTH) - 1) << (GEN11_ENGINE_CLASS_SHIFT - 32);
1307                 stream->specific_ctx_id = upper_32_bits(ce->lrc_desc);
1308                 stream->specific_ctx_id &=
1309                         stream->specific_ctx_id_mask;
1310                 break;
1311         }
1312
1313         default:
1314                 MISSING_CASE(INTEL_GEN(i915));
1315         }
1316
1317         DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1318                          stream->specific_ctx_id,
1319                          stream->specific_ctx_id_mask);
1320
1321         return 0;
1322 }
1323
1324 /**
1325  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1326  * @stream: An i915-perf stream opened for OA metrics
1327  *
1328  * In case anything needed doing to ensure the context HW ID would remain valid
1329  * for the lifetime of the stream, then that can be undone here.
1330  */
1331 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1332 {
1333         struct drm_i915_private *dev_priv = stream->dev_priv;
1334         struct intel_context *ce;
1335
1336         stream->specific_ctx_id = INVALID_CTX_ID;
1337         stream->specific_ctx_id_mask = 0;
1338
1339         ce = fetch_and_zero(&stream->pinned_ctx);
1340         if (ce) {
1341                 mutex_lock(&dev_priv->drm.struct_mutex);
1342                 intel_context_unpin(ce);
1343                 mutex_unlock(&dev_priv->drm.struct_mutex);
1344         }
1345 }
1346
1347 static void
1348 free_oa_buffer(struct i915_perf_stream *stream)
1349 {
1350         struct drm_i915_private *i915 = stream->dev_priv;
1351
1352         mutex_lock(&i915->drm.struct_mutex);
1353
1354         i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1355                                    I915_VMA_RELEASE_MAP);
1356
1357         mutex_unlock(&i915->drm.struct_mutex);
1358
1359         stream->oa_buffer.vaddr = NULL;
1360 }
1361
1362 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1363 {
1364         struct drm_i915_private *dev_priv = stream->dev_priv;
1365
1366         BUG_ON(stream != dev_priv->perf.exclusive_stream);
1367
1368         /*
1369          * Unset exclusive_stream first, it will be checked while disabling
1370          * the metric set on gen8+.
1371          */
1372         mutex_lock(&dev_priv->drm.struct_mutex);
1373         dev_priv->perf.exclusive_stream = NULL;
1374         dev_priv->perf.ops.disable_metric_set(stream);
1375         mutex_unlock(&dev_priv->drm.struct_mutex);
1376
1377         free_oa_buffer(stream);
1378
1379         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1380         intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref);
1381
1382         if (stream->ctx)
1383                 oa_put_render_ctx_id(stream);
1384
1385         put_oa_config(dev_priv, stream->oa_config);
1386
1387         if (dev_priv->perf.spurious_report_rs.missed) {
1388                 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1389                          dev_priv->perf.spurious_report_rs.missed);
1390         }
1391 }
1392
1393 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1394 {
1395         struct drm_i915_private *dev_priv = stream->dev_priv;
1396         u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1397         unsigned long flags;
1398
1399         spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1400
1401         /* Pre-DevBDW: OABUFFER must be set with counters off,
1402          * before OASTATUS1, but after OASTATUS2
1403          */
1404         I915_WRITE(GEN7_OASTATUS2,
1405                    gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); /* head */
1406         stream->oa_buffer.head = gtt_offset;
1407
1408         I915_WRITE(GEN7_OABUFFER, gtt_offset);
1409
1410         I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1411
1412         /* Mark that we need updated tail pointers to read from... */
1413         stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1414         stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1415
1416         spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1417
1418         /* On Haswell we have to track which OASTATUS1 flags we've
1419          * already seen since they can't be cleared while periodic
1420          * sampling is enabled.
1421          */
1422         dev_priv->perf.gen7_latched_oastatus1 = 0;
1423
1424         /* NB: although the OA buffer will initially be allocated
1425          * zeroed via shmfs (and so this memset is redundant when
1426          * first allocating), we may re-init the OA buffer, either
1427          * when re-enabling a stream or in error/reset paths.
1428          *
1429          * The reason we clear the buffer for each re-init is for the
1430          * sanity check in gen7_append_oa_reports() that looks at the
1431          * report-id field to make sure it's non-zero which relies on
1432          * the assumption that new reports are being written to zeroed
1433          * memory...
1434          */
1435         memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1436
1437         /* Maybe make ->pollin per-stream state if we support multiple
1438          * concurrent streams in the future.
1439          */
1440         stream->pollin = false;
1441 }
1442
1443 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1444 {
1445         struct drm_i915_private *dev_priv = stream->dev_priv;
1446         u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1447         unsigned long flags;
1448
1449         spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1450
1451         I915_WRITE(GEN8_OASTATUS, 0);
1452         I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1453         stream->oa_buffer.head = gtt_offset;
1454
1455         I915_WRITE(GEN8_OABUFFER_UDW, 0);
1456
1457         /*
1458          * PRM says:
1459          *
1460          *  "This MMIO must be set before the OATAILPTR
1461          *  register and after the OAHEADPTR register. This is
1462          *  to enable proper functionality of the overflow
1463          *  bit."
1464          */
1465         I915_WRITE(GEN8_OABUFFER, gtt_offset |
1466                    OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1467         I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1468
1469         /* Mark that we need updated tail pointers to read from... */
1470         stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1471         stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1472
1473         /*
1474          * Reset state used to recognise context switches, affecting which
1475          * reports we will forward to userspace while filtering for a single
1476          * context.
1477          */
1478         stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1479
1480         spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1481
1482         /*
1483          * NB: although the OA buffer will initially be allocated
1484          * zeroed via shmfs (and so this memset is redundant when
1485          * first allocating), we may re-init the OA buffer, either
1486          * when re-enabling a stream or in error/reset paths.
1487          *
1488          * The reason we clear the buffer for each re-init is for the
1489          * sanity check in gen8_append_oa_reports() that looks at the
1490          * reason field to make sure it's non-zero which relies on
1491          * the assumption that new reports are being written to zeroed
1492          * memory...
1493          */
1494         memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1495
1496         /*
1497          * Maybe make ->pollin per-stream state if we support multiple
1498          * concurrent streams in the future.
1499          */
1500         stream->pollin = false;
1501 }
1502
1503 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1504 {
1505         struct drm_i915_gem_object *bo;
1506         struct drm_i915_private *dev_priv = stream->dev_priv;
1507         struct i915_vma *vma;
1508         int ret;
1509
1510         if (WARN_ON(stream->oa_buffer.vma))
1511                 return -ENODEV;
1512
1513         ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1514         if (ret)
1515                 return ret;
1516
1517         BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1518         BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1519
1520         bo = i915_gem_object_create_shmem(dev_priv, OA_BUFFER_SIZE);
1521         if (IS_ERR(bo)) {
1522                 DRM_ERROR("Failed to allocate OA buffer\n");
1523                 ret = PTR_ERR(bo);
1524                 goto unlock;
1525         }
1526
1527         i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1528
1529         /* PreHSW required 512K alignment, HSW requires 16M */
1530         vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1531         if (IS_ERR(vma)) {
1532                 ret = PTR_ERR(vma);
1533                 goto err_unref;
1534         }
1535         stream->oa_buffer.vma = vma;
1536
1537         stream->oa_buffer.vaddr =
1538                 i915_gem_object_pin_map(bo, I915_MAP_WB);
1539         if (IS_ERR(stream->oa_buffer.vaddr)) {
1540                 ret = PTR_ERR(stream->oa_buffer.vaddr);
1541                 goto err_unpin;
1542         }
1543
1544         DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1545                          i915_ggtt_offset(stream->oa_buffer.vma),
1546                          stream->oa_buffer.vaddr);
1547
1548         goto unlock;
1549
1550 err_unpin:
1551         __i915_vma_unpin(vma);
1552
1553 err_unref:
1554         i915_gem_object_put(bo);
1555
1556         stream->oa_buffer.vaddr = NULL;
1557         stream->oa_buffer.vma = NULL;
1558
1559 unlock:
1560         mutex_unlock(&dev_priv->drm.struct_mutex);
1561         return ret;
1562 }
1563
1564 static void config_oa_regs(struct drm_i915_private *dev_priv,
1565                            const struct i915_oa_reg *regs,
1566                            u32 n_regs)
1567 {
1568         u32 i;
1569
1570         for (i = 0; i < n_regs; i++) {
1571                 const struct i915_oa_reg *reg = regs + i;
1572
1573                 I915_WRITE(reg->addr, reg->value);
1574         }
1575 }
1576
1577 static void delay_after_mux(void)
1578 {
1579         /*
1580          * It apparently takes a fairly long time for a new MUX
1581          * configuration to be be applied after these register writes.
1582          * This delay duration was derived empirically based on the
1583          * render_basic config but hopefully it covers the maximum
1584          * configuration latency.
1585          *
1586          * As a fallback, the checks in _append_oa_reports() to skip
1587          * invalid OA reports do also seem to work to discard reports
1588          * generated before this config has completed - albeit not
1589          * silently.
1590          *
1591          * Unfortunately this is essentially a magic number, since we
1592          * don't currently know of a reliable mechanism for predicting
1593          * how long the MUX config will take to apply and besides
1594          * seeing invalid reports we don't know of a reliable way to
1595          * explicitly check that the MUX config has landed.
1596          *
1597          * It's even possible we've miss characterized the underlying
1598          * problem - it just seems like the simplest explanation why
1599          * a delay at this location would mitigate any invalid reports.
1600          */
1601         usleep_range(15000, 20000);
1602 }
1603
1604 static int hsw_enable_metric_set(struct i915_perf_stream *stream)
1605 {
1606         struct drm_i915_private *dev_priv = stream->dev_priv;
1607         const struct i915_oa_config *oa_config = stream->oa_config;
1608
1609         /*
1610          * PRM:
1611          *
1612          * OA unit is using “crclk” for its functionality. When trunk
1613          * level clock gating takes place, OA clock would be gated,
1614          * unable to count the events from non-render clock domain.
1615          * Render clock gating must be disabled when OA is enabled to
1616          * count the events from non-render domain. Unit level clock
1617          * gating for RCS should also be disabled.
1618          */
1619         I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1620                                     ~GEN7_DOP_CLOCK_GATE_ENABLE));
1621         I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1622                                   GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1623
1624         config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1625         delay_after_mux();
1626
1627         config_oa_regs(dev_priv, oa_config->b_counter_regs,
1628                        oa_config->b_counter_regs_len);
1629
1630         return 0;
1631 }
1632
1633 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
1634 {
1635         struct drm_i915_private *dev_priv = stream->dev_priv;
1636
1637         I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1638                                   ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1639         I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1640                                     GEN7_DOP_CLOCK_GATE_ENABLE));
1641
1642         I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1643                                       ~GT_NOA_ENABLE));
1644 }
1645
1646 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
1647                               i915_reg_t reg)
1648 {
1649         u32 mmio = i915_mmio_reg_offset(reg);
1650         int i;
1651
1652         /*
1653          * This arbitrary default will select the 'EU FPU0 Pipeline
1654          * Active' event. In the future it's anticipated that there
1655          * will be an explicit 'No Event' we can select, but not yet...
1656          */
1657         if (!oa_config)
1658                 return 0;
1659
1660         for (i = 0; i < oa_config->flex_regs_len; i++) {
1661                 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
1662                         return oa_config->flex_regs[i].value;
1663         }
1664
1665         return 0;
1666 }
1667 /*
1668  * NB: It must always remain pointer safe to run this even if the OA unit
1669  * has been disabled.
1670  *
1671  * It's fine to put out-of-date values into these per-context registers
1672  * in the case that the OA unit has been disabled.
1673  */
1674 static void
1675 gen8_update_reg_state_unlocked(struct i915_perf_stream *stream,
1676                                struct intel_context *ce,
1677                                u32 *reg_state,
1678                                const struct i915_oa_config *oa_config)
1679 {
1680         struct drm_i915_private *i915 = ce->engine->i915;
1681         u32 ctx_oactxctrl = i915->perf.ctx_oactxctrl_offset;
1682         u32 ctx_flexeu0 = i915->perf.ctx_flexeu0_offset;
1683         /* The MMIO offsets for Flex EU registers aren't contiguous */
1684         i915_reg_t flex_regs[] = {
1685                 EU_PERF_CNTL0,
1686                 EU_PERF_CNTL1,
1687                 EU_PERF_CNTL2,
1688                 EU_PERF_CNTL3,
1689                 EU_PERF_CNTL4,
1690                 EU_PERF_CNTL5,
1691                 EU_PERF_CNTL6,
1692         };
1693         int i;
1694
1695         CTX_REG(reg_state, ctx_oactxctrl, GEN8_OACTXCONTROL,
1696                 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1697                 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1698                 GEN8_OA_COUNTER_RESUME);
1699
1700         for (i = 0; i < ARRAY_SIZE(flex_regs); i++) {
1701                 CTX_REG(reg_state, ctx_flexeu0 + i * 2, flex_regs[i],
1702                         oa_config_flex_reg(oa_config, flex_regs[i]));
1703         }
1704
1705         CTX_REG(reg_state,
1706                 CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1707                 intel_sseu_make_rpcs(i915, &ce->sseu));
1708 }
1709
1710 struct flex {
1711         i915_reg_t reg;
1712         u32 offset;
1713         u32 value;
1714 };
1715
1716 static int
1717 gen8_store_flex(struct i915_request *rq,
1718                 struct intel_context *ce,
1719                 const struct flex *flex, unsigned int count)
1720 {
1721         u32 offset;
1722         u32 *cs;
1723
1724         cs = intel_ring_begin(rq, 4 * count);
1725         if (IS_ERR(cs))
1726                 return PTR_ERR(cs);
1727
1728         offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
1729         do {
1730                 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1731                 *cs++ = offset + (flex->offset + 1) * sizeof(u32);
1732                 *cs++ = 0;
1733                 *cs++ = flex->value;
1734         } while (flex++, --count);
1735
1736         intel_ring_advance(rq, cs);
1737
1738         return 0;
1739 }
1740
1741 static int
1742 gen8_load_flex(struct i915_request *rq,
1743                struct intel_context *ce,
1744                const struct flex *flex, unsigned int count)
1745 {
1746         u32 *cs;
1747
1748         GEM_BUG_ON(!count || count > 63);
1749
1750         cs = intel_ring_begin(rq, 2 * count + 2);
1751         if (IS_ERR(cs))
1752                 return PTR_ERR(cs);
1753
1754         *cs++ = MI_LOAD_REGISTER_IMM(count);
1755         do {
1756                 *cs++ = i915_mmio_reg_offset(flex->reg);
1757                 *cs++ = flex->value;
1758         } while (flex++, --count);
1759         *cs++ = MI_NOOP;
1760
1761         intel_ring_advance(rq, cs);
1762
1763         return 0;
1764 }
1765
1766 static int gen8_modify_context(struct intel_context *ce,
1767                                const struct flex *flex, unsigned int count)
1768 {
1769         struct i915_request *rq;
1770         int err;
1771
1772         lockdep_assert_held(&ce->pin_mutex);
1773
1774         rq = i915_request_create(ce->engine->kernel_context);
1775         if (IS_ERR(rq))
1776                 return PTR_ERR(rq);
1777
1778         /* Serialise with the remote context */
1779         err = intel_context_prepare_remote_request(ce, rq);
1780         if (err == 0)
1781                 err = gen8_store_flex(rq, ce, flex, count);
1782
1783         i915_request_add(rq);
1784         return err;
1785 }
1786
1787 static int gen8_modify_self(struct intel_context *ce,
1788                             const struct flex *flex, unsigned int count)
1789 {
1790         struct i915_request *rq;
1791         int err;
1792
1793         rq = i915_request_create(ce);
1794         if (IS_ERR(rq))
1795                 return PTR_ERR(rq);
1796
1797         err = gen8_load_flex(rq, ce, flex, count);
1798
1799         i915_request_add(rq);
1800         return err;
1801 }
1802
1803 static int gen8_configure_context(struct i915_gem_context *ctx,
1804                                   struct flex *flex, unsigned int count)
1805 {
1806         struct i915_gem_engines_iter it;
1807         struct intel_context *ce;
1808         int err = 0;
1809
1810         for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1811                 GEM_BUG_ON(ce == ce->engine->kernel_context);
1812
1813                 if (ce->engine->class != RENDER_CLASS)
1814                         continue;
1815
1816                 err = intel_context_lock_pinned(ce);
1817                 if (err)
1818                         break;
1819
1820                 flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu);
1821
1822                 /* Otherwise OA settings will be set upon first use */
1823                 if (intel_context_is_pinned(ce))
1824                         err = gen8_modify_context(ce, flex, count);
1825
1826                 intel_context_unlock_pinned(ce);
1827                 if (err)
1828                         break;
1829         }
1830         i915_gem_context_unlock_engines(ctx);
1831
1832         return err;
1833 }
1834
1835 /*
1836  * Manages updating the per-context aspects of the OA stream
1837  * configuration across all contexts.
1838  *
1839  * The awkward consideration here is that OACTXCONTROL controls the
1840  * exponent for periodic sampling which is primarily used for system
1841  * wide profiling where we'd like a consistent sampling period even in
1842  * the face of context switches.
1843  *
1844  * Our approach of updating the register state context (as opposed to
1845  * say using a workaround batch buffer) ensures that the hardware
1846  * won't automatically reload an out-of-date timer exponent even
1847  * transiently before a WA BB could be parsed.
1848  *
1849  * This function needs to:
1850  * - Ensure the currently running context's per-context OA state is
1851  *   updated
1852  * - Ensure that all existing contexts will have the correct per-context
1853  *   OA state if they are scheduled for use.
1854  * - Ensure any new contexts will be initialized with the correct
1855  *   per-context OA state.
1856  *
1857  * Note: it's only the RCS/Render context that has any OA state.
1858  */
1859 static int gen8_configure_all_contexts(struct i915_perf_stream *stream,
1860                                        const struct i915_oa_config *oa_config)
1861 {
1862         struct drm_i915_private *i915 = stream->dev_priv;
1863         /* The MMIO offsets for Flex EU registers aren't contiguous */
1864         const u32 ctx_flexeu0 = i915->perf.ctx_flexeu0_offset;
1865 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N))
1866         struct flex regs[] = {
1867                 {
1868                         GEN8_R_PWR_CLK_STATE,
1869                         CTX_R_PWR_CLK_STATE,
1870                 },
1871                 {
1872                         GEN8_OACTXCONTROL,
1873                         i915->perf.ctx_oactxctrl_offset,
1874                         ((stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1875                          (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1876                          GEN8_OA_COUNTER_RESUME)
1877                 },
1878                 { EU_PERF_CNTL0, ctx_flexeuN(0) },
1879                 { EU_PERF_CNTL1, ctx_flexeuN(1) },
1880                 { EU_PERF_CNTL2, ctx_flexeuN(2) },
1881                 { EU_PERF_CNTL3, ctx_flexeuN(3) },
1882                 { EU_PERF_CNTL4, ctx_flexeuN(4) },
1883                 { EU_PERF_CNTL5, ctx_flexeuN(5) },
1884                 { EU_PERF_CNTL6, ctx_flexeuN(6) },
1885         };
1886 #undef ctx_flexeuN
1887         struct intel_engine_cs *engine;
1888         struct i915_gem_context *ctx;
1889         int i;
1890
1891         for (i = 2; i < ARRAY_SIZE(regs); i++)
1892                 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
1893
1894         lockdep_assert_held(&i915->drm.struct_mutex);
1895
1896         /*
1897          * The OA register config is setup through the context image. This image
1898          * might be written to by the GPU on context switch (in particular on
1899          * lite-restore). This means we can't safely update a context's image,
1900          * if this context is scheduled/submitted to run on the GPU.
1901          *
1902          * We could emit the OA register config through the batch buffer but
1903          * this might leave small interval of time where the OA unit is
1904          * configured at an invalid sampling period.
1905          *
1906          * Note that since we emit all requests from a single ring, there
1907          * is still an implicit global barrier here that may cause a high
1908          * priority context to wait for an otherwise independent low priority
1909          * context. Contexts idle at the time of reconfiguration are not
1910          * trapped behind the barrier.
1911          */
1912         list_for_each_entry(ctx, &i915->contexts.list, link) {
1913                 int err;
1914
1915                 if (ctx == i915->kernel_context)
1916                         continue;
1917
1918                 err = gen8_configure_context(ctx, regs, ARRAY_SIZE(regs));
1919                 if (err)
1920                         return err;
1921         }
1922
1923         /*
1924          * After updating all other contexts, we need to modify ourselves.
1925          * If we don't modify the kernel_context, we do not get events while
1926          * idle.
1927          */
1928         for_each_uabi_engine(engine, i915) {
1929                 struct intel_context *ce = engine->kernel_context;
1930                 int err;
1931
1932                 if (engine->class != RENDER_CLASS)
1933                         continue;
1934
1935                 regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu);
1936
1937                 err = gen8_modify_self(ce, regs, ARRAY_SIZE(regs));
1938                 if (err)
1939                         return err;
1940         }
1941
1942         return 0;
1943 }
1944
1945 static int gen8_enable_metric_set(struct i915_perf_stream *stream)
1946 {
1947         struct drm_i915_private *dev_priv = stream->dev_priv;
1948         const struct i915_oa_config *oa_config = stream->oa_config;
1949         int ret;
1950
1951         /*
1952          * We disable slice/unslice clock ratio change reports on SKL since
1953          * they are too noisy. The HW generates a lot of redundant reports
1954          * where the ratio hasn't really changed causing a lot of redundant
1955          * work to processes and increasing the chances we'll hit buffer
1956          * overruns.
1957          *
1958          * Although we don't currently use the 'disable overrun' OABUFFER
1959          * feature it's worth noting that clock ratio reports have to be
1960          * disabled before considering to use that feature since the HW doesn't
1961          * correctly block these reports.
1962          *
1963          * Currently none of the high-level metrics we have depend on knowing
1964          * this ratio to normalize.
1965          *
1966          * Note: This register is not power context saved and restored, but
1967          * that's OK considering that we disable RC6 while the OA unit is
1968          * enabled.
1969          *
1970          * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1971          * be read back from automatically triggered reports, as part of the
1972          * RPT_ID field.
1973          */
1974         if (IS_GEN_RANGE(dev_priv, 9, 11)) {
1975                 I915_WRITE(GEN8_OA_DEBUG,
1976                            _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1977                                               GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1978         }
1979
1980         /*
1981          * Update all contexts prior writing the mux configurations as we need
1982          * to make sure all slices/subslices are ON before writing to NOA
1983          * registers.
1984          */
1985         ret = gen8_configure_all_contexts(stream, oa_config);
1986         if (ret)
1987                 return ret;
1988
1989         config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1990         delay_after_mux();
1991
1992         config_oa_regs(dev_priv, oa_config->b_counter_regs,
1993                        oa_config->b_counter_regs_len);
1994
1995         return 0;
1996 }
1997
1998 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
1999 {
2000         struct drm_i915_private *dev_priv = stream->dev_priv;
2001
2002         /* Reset all contexts' slices/subslices configurations. */
2003         gen8_configure_all_contexts(stream, NULL);
2004
2005         I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
2006                                       ~GT_NOA_ENABLE));
2007 }
2008
2009 static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2010 {
2011         struct drm_i915_private *dev_priv = stream->dev_priv;
2012
2013         /* Reset all contexts' slices/subslices configurations. */
2014         gen8_configure_all_contexts(stream, NULL);
2015
2016         /* Make sure we disable noa to save power. */
2017         I915_WRITE(RPM_CONFIG1,
2018                    I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE);
2019 }
2020
2021 static void gen7_oa_enable(struct i915_perf_stream *stream)
2022 {
2023         struct drm_i915_private *dev_priv = stream->dev_priv;
2024         struct i915_gem_context *ctx = stream->ctx;
2025         u32 ctx_id = stream->specific_ctx_id;
2026         bool periodic = stream->periodic;
2027         u32 period_exponent = stream->period_exponent;
2028         u32 report_format = stream->oa_buffer.format;
2029
2030         /*
2031          * Reset buf pointers so we don't forward reports from before now.
2032          *
2033          * Think carefully if considering trying to avoid this, since it
2034          * also ensures status flags and the buffer itself are cleared
2035          * in error paths, and we have checks for invalid reports based
2036          * on the assumption that certain fields are written to zeroed
2037          * memory which this helps maintains.
2038          */
2039         gen7_init_oa_buffer(stream);
2040
2041         I915_WRITE(GEN7_OACONTROL,
2042                    (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2043                    (period_exponent <<
2044                     GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2045                    (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2046                    (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2047                    (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2048                    GEN7_OACONTROL_ENABLE);
2049 }
2050
2051 static void gen8_oa_enable(struct i915_perf_stream *stream)
2052 {
2053         struct drm_i915_private *dev_priv = stream->dev_priv;
2054         u32 report_format = stream->oa_buffer.format;
2055
2056         /*
2057          * Reset buf pointers so we don't forward reports from before now.
2058          *
2059          * Think carefully if considering trying to avoid this, since it
2060          * also ensures status flags and the buffer itself are cleared
2061          * in error paths, and we have checks for invalid reports based
2062          * on the assumption that certain fields are written to zeroed
2063          * memory which this helps maintains.
2064          */
2065         gen8_init_oa_buffer(stream);
2066
2067         /*
2068          * Note: we don't rely on the hardware to perform single context
2069          * filtering and instead filter on the cpu based on the context-id
2070          * field of reports
2071          */
2072         I915_WRITE(GEN8_OACONTROL, (report_format <<
2073                                     GEN8_OA_REPORT_FORMAT_SHIFT) |
2074                                    GEN8_OA_COUNTER_ENABLE);
2075 }
2076
2077 /**
2078  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2079  * @stream: An i915 perf stream opened for OA metrics
2080  *
2081  * [Re]enables hardware periodic sampling according to the period configured
2082  * when opening the stream. This also starts a hrtimer that will periodically
2083  * check for data in the circular OA buffer for notifying userspace (e.g.
2084  * during a read() or poll()).
2085  */
2086 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2087 {
2088         struct drm_i915_private *dev_priv = stream->dev_priv;
2089
2090         dev_priv->perf.ops.oa_enable(stream);
2091
2092         if (stream->periodic)
2093                 hrtimer_start(&stream->poll_check_timer,
2094                               ns_to_ktime(POLL_PERIOD),
2095                               HRTIMER_MODE_REL_PINNED);
2096 }
2097
2098 static void gen7_oa_disable(struct i915_perf_stream *stream)
2099 {
2100         struct intel_uncore *uncore = &stream->dev_priv->uncore;
2101
2102         intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2103         if (intel_wait_for_register(uncore,
2104                                     GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2105                                     50))
2106                 DRM_ERROR("wait for OA to be disabled timed out\n");
2107 }
2108
2109 static void gen8_oa_disable(struct i915_perf_stream *stream)
2110 {
2111         struct intel_uncore *uncore = &stream->dev_priv->uncore;
2112
2113         intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2114         if (intel_wait_for_register(uncore,
2115                                     GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2116                                     50))
2117                 DRM_ERROR("wait for OA to be disabled timed out\n");
2118 }
2119
2120 /**
2121  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2122  * @stream: An i915 perf stream opened for OA metrics
2123  *
2124  * Stops the OA unit from periodically writing counter reports into the
2125  * circular OA buffer. This also stops the hrtimer that periodically checks for
2126  * data in the circular OA buffer, for notifying userspace.
2127  */
2128 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2129 {
2130         struct drm_i915_private *dev_priv = stream->dev_priv;
2131
2132         dev_priv->perf.ops.oa_disable(stream);
2133
2134         if (stream->periodic)
2135                 hrtimer_cancel(&stream->poll_check_timer);
2136 }
2137
2138 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2139         .destroy = i915_oa_stream_destroy,
2140         .enable = i915_oa_stream_enable,
2141         .disable = i915_oa_stream_disable,
2142         .wait_unlocked = i915_oa_wait_unlocked,
2143         .poll_wait = i915_oa_poll_wait,
2144         .read = i915_oa_read,
2145 };
2146
2147 /**
2148  * i915_oa_stream_init - validate combined props for OA stream and init
2149  * @stream: An i915 perf stream
2150  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2151  * @props: The property state that configures stream (individually validated)
2152  *
2153  * While read_properties_unlocked() validates properties in isolation it
2154  * doesn't ensure that the combination necessarily makes sense.
2155  *
2156  * At this point it has been determined that userspace wants a stream of
2157  * OA metrics, but still we need to further validate the combined
2158  * properties are OK.
2159  *
2160  * If the configuration makes sense then we can allocate memory for
2161  * a circular OA buffer and apply the requested metric set configuration.
2162  *
2163  * Returns: zero on success or a negative error code.
2164  */
2165 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2166                                struct drm_i915_perf_open_param *param,
2167                                struct perf_open_properties *props)
2168 {
2169         struct drm_i915_private *dev_priv = stream->dev_priv;
2170         int format_size;
2171         int ret;
2172
2173         /* If the sysfs metrics/ directory wasn't registered for some
2174          * reason then don't let userspace try their luck with config
2175          * IDs
2176          */
2177         if (!dev_priv->perf.metrics_kobj) {
2178                 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2179                 return -EINVAL;
2180         }
2181
2182         if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2183                 DRM_DEBUG("Only OA report sampling supported\n");
2184                 return -EINVAL;
2185         }
2186
2187         if (!dev_priv->perf.ops.enable_metric_set) {
2188                 DRM_DEBUG("OA unit not supported\n");
2189                 return -ENODEV;
2190         }
2191
2192         /* To avoid the complexity of having to accurately filter
2193          * counter reports and marshal to the appropriate client
2194          * we currently only allow exclusive access
2195          */
2196         if (dev_priv->perf.exclusive_stream) {
2197                 DRM_DEBUG("OA unit already in use\n");
2198                 return -EBUSY;
2199         }
2200
2201         if (!props->oa_format) {
2202                 DRM_DEBUG("OA report format not specified\n");
2203                 return -EINVAL;
2204         }
2205
2206         stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2207
2208         format_size = dev_priv->perf.oa_formats[props->oa_format].size;
2209
2210         stream->sample_flags |= SAMPLE_OA_REPORT;
2211         stream->sample_size += format_size;
2212
2213         stream->oa_buffer.format_size = format_size;
2214         if (WARN_ON(stream->oa_buffer.format_size == 0))
2215                 return -EINVAL;
2216
2217         stream->oa_buffer.format =
2218                 dev_priv->perf.oa_formats[props->oa_format].format;
2219
2220         stream->periodic = props->oa_periodic;
2221         if (stream->periodic)
2222                 stream->period_exponent = props->oa_period_exponent;
2223
2224         if (stream->ctx) {
2225                 ret = oa_get_render_ctx_id(stream);
2226                 if (ret) {
2227                         DRM_DEBUG("Invalid context id to filter with\n");
2228                         return ret;
2229                 }
2230         }
2231
2232         ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2233         if (ret) {
2234                 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2235                 goto err_config;
2236         }
2237
2238         /* PRM - observability performance counters:
2239          *
2240          *   OACONTROL, performance counter enable, note:
2241          *
2242          *   "When this bit is set, in order to have coherent counts,
2243          *   RC6 power state and trunk clock gating must be disabled.
2244          *   This can be achieved by programming MMIO registers as
2245          *   0xA094=0 and 0xA090[31]=1"
2246          *
2247          *   In our case we are expecting that taking pm + FORCEWAKE
2248          *   references will effectively disable RC6.
2249          */
2250         stream->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2251         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
2252
2253         ret = alloc_oa_buffer(stream);
2254         if (ret)
2255                 goto err_oa_buf_alloc;
2256
2257         ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2258         if (ret)
2259                 goto err_lock;
2260
2261         stream->ops = &i915_oa_stream_ops;
2262         dev_priv->perf.exclusive_stream = stream;
2263
2264         ret = dev_priv->perf.ops.enable_metric_set(stream);
2265         if (ret) {
2266                 DRM_DEBUG("Unable to enable metric set\n");
2267                 goto err_enable;
2268         }
2269
2270         mutex_unlock(&dev_priv->drm.struct_mutex);
2271
2272         hrtimer_init(&stream->poll_check_timer,
2273                      CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2274         stream->poll_check_timer.function = oa_poll_check_timer_cb;
2275         init_waitqueue_head(&stream->poll_wq);
2276         spin_lock_init(&stream->oa_buffer.ptr_lock);
2277
2278         return 0;
2279
2280 err_enable:
2281         dev_priv->perf.exclusive_stream = NULL;
2282         dev_priv->perf.ops.disable_metric_set(stream);
2283         mutex_unlock(&dev_priv->drm.struct_mutex);
2284
2285 err_lock:
2286         free_oa_buffer(stream);
2287
2288 err_oa_buf_alloc:
2289         put_oa_config(dev_priv, stream->oa_config);
2290
2291         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
2292         intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref);
2293
2294 err_config:
2295         if (stream->ctx)
2296                 oa_put_render_ctx_id(stream);
2297
2298         return ret;
2299 }
2300
2301 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2302                             struct intel_context *ce,
2303                             u32 *regs)
2304 {
2305         struct i915_perf_stream *stream;
2306
2307         if (engine->class != RENDER_CLASS)
2308                 return;
2309
2310         stream = engine->i915->perf.exclusive_stream;
2311         if (stream)
2312                 gen8_update_reg_state_unlocked(stream, ce, regs, stream->oa_config);
2313 }
2314
2315 /**
2316  * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2317  * @stream: An i915 perf stream
2318  * @file: An i915 perf stream file
2319  * @buf: destination buffer given by userspace
2320  * @count: the number of bytes userspace wants to read
2321  * @ppos: (inout) file seek position (unused)
2322  *
2323  * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2324  * ensure that if we've successfully copied any data then reporting that takes
2325  * precedence over any internal error status, so the data isn't lost.
2326  *
2327  * For example ret will be -ENOSPC whenever there is more buffered data than
2328  * can be copied to userspace, but that's only interesting if we weren't able
2329  * to copy some data because it implies the userspace buffer is too small to
2330  * receive a single record (and we never split records).
2331  *
2332  * Another case with ret == -EFAULT is more of a grey area since it would seem
2333  * like bad form for userspace to ask us to overrun its buffer, but the user
2334  * knows best:
2335  *
2336  *   http://yarchive.net/comp/linux/partial_reads_writes.html
2337  *
2338  * Returns: The number of bytes copied or a negative error code on failure.
2339  */
2340 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2341                                      struct file *file,
2342                                      char __user *buf,
2343                                      size_t count,
2344                                      loff_t *ppos)
2345 {
2346         /* Note we keep the offset (aka bytes read) separate from any
2347          * error status so that the final check for whether we return
2348          * the bytes read with a higher precedence than any error (see
2349          * comment below) doesn't need to be handled/duplicated in
2350          * stream->ops->read() implementations.
2351          */
2352         size_t offset = 0;
2353         int ret = stream->ops->read(stream, buf, count, &offset);
2354
2355         return offset ?: (ret ?: -EAGAIN);
2356 }
2357
2358 /**
2359  * i915_perf_read - handles read() FOP for i915 perf stream FDs
2360  * @file: An i915 perf stream file
2361  * @buf: destination buffer given by userspace
2362  * @count: the number of bytes userspace wants to read
2363  * @ppos: (inout) file seek position (unused)
2364  *
2365  * The entry point for handling a read() on a stream file descriptor from
2366  * userspace. Most of the work is left to the i915_perf_read_locked() and
2367  * &i915_perf_stream_ops->read but to save having stream implementations (of
2368  * which we might have multiple later) we handle blocking read here.
2369  *
2370  * We can also consistently treat trying to read from a disabled stream
2371  * as an IO error so implementations can assume the stream is enabled
2372  * while reading.
2373  *
2374  * Returns: The number of bytes copied or a negative error code on failure.
2375  */
2376 static ssize_t i915_perf_read(struct file *file,
2377                               char __user *buf,
2378                               size_t count,
2379                               loff_t *ppos)
2380 {
2381         struct i915_perf_stream *stream = file->private_data;
2382         struct drm_i915_private *dev_priv = stream->dev_priv;
2383         ssize_t ret;
2384
2385         /* To ensure it's handled consistently we simply treat all reads of a
2386          * disabled stream as an error. In particular it might otherwise lead
2387          * to a deadlock for blocking file descriptors...
2388          */
2389         if (!stream->enabled)
2390                 return -EIO;
2391
2392         if (!(file->f_flags & O_NONBLOCK)) {
2393                 /* There's the small chance of false positives from
2394                  * stream->ops->wait_unlocked.
2395                  *
2396                  * E.g. with single context filtering since we only wait until
2397                  * oabuffer has >= 1 report we don't immediately know whether
2398                  * any reports really belong to the current context
2399                  */
2400                 do {
2401                         ret = stream->ops->wait_unlocked(stream);
2402                         if (ret)
2403                                 return ret;
2404
2405                         mutex_lock(&dev_priv->perf.lock);
2406                         ret = i915_perf_read_locked(stream, file,
2407                                                     buf, count, ppos);
2408                         mutex_unlock(&dev_priv->perf.lock);
2409                 } while (ret == -EAGAIN);
2410         } else {
2411                 mutex_lock(&dev_priv->perf.lock);
2412                 ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2413                 mutex_unlock(&dev_priv->perf.lock);
2414         }
2415
2416         /* We allow the poll checking to sometimes report false positive EPOLLIN
2417          * events where we might actually report EAGAIN on read() if there's
2418          * not really any data available. In this situation though we don't
2419          * want to enter a busy loop between poll() reporting a EPOLLIN event
2420          * and read() returning -EAGAIN. Clearing the oa.pollin state here
2421          * effectively ensures we back off until the next hrtimer callback
2422          * before reporting another EPOLLIN event.
2423          */
2424         if (ret >= 0 || ret == -EAGAIN) {
2425                 /* Maybe make ->pollin per-stream state if we support multiple
2426                  * concurrent streams in the future.
2427                  */
2428                 stream->pollin = false;
2429         }
2430
2431         return ret;
2432 }
2433
2434 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2435 {
2436         struct i915_perf_stream *stream =
2437                 container_of(hrtimer, typeof(*stream), poll_check_timer);
2438
2439         if (oa_buffer_check_unlocked(stream)) {
2440                 stream->pollin = true;
2441                 wake_up(&stream->poll_wq);
2442         }
2443
2444         hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2445
2446         return HRTIMER_RESTART;
2447 }
2448
2449 /**
2450  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2451  * @dev_priv: i915 device instance
2452  * @stream: An i915 perf stream
2453  * @file: An i915 perf stream file
2454  * @wait: poll() state table
2455  *
2456  * For handling userspace polling on an i915 perf stream, this calls through to
2457  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2458  * will be woken for new stream data.
2459  *
2460  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2461  * with any non-file-operation driver hooks.
2462  *
2463  * Returns: any poll events that are ready without sleeping
2464  */
2465 static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2466                                           struct i915_perf_stream *stream,
2467                                           struct file *file,
2468                                           poll_table *wait)
2469 {
2470         __poll_t events = 0;
2471
2472         stream->ops->poll_wait(stream, file, wait);
2473
2474         /* Note: we don't explicitly check whether there's something to read
2475          * here since this path may be very hot depending on what else
2476          * userspace is polling, or on the timeout in use. We rely solely on
2477          * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2478          * samples to read.
2479          */
2480         if (stream->pollin)
2481                 events |= EPOLLIN;
2482
2483         return events;
2484 }
2485
2486 /**
2487  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2488  * @file: An i915 perf stream file
2489  * @wait: poll() state table
2490  *
2491  * For handling userspace polling on an i915 perf stream, this ensures
2492  * poll_wait() gets called with a wait queue that will be woken for new stream
2493  * data.
2494  *
2495  * Note: Implementation deferred to i915_perf_poll_locked()
2496  *
2497  * Returns: any poll events that are ready without sleeping
2498  */
2499 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
2500 {
2501         struct i915_perf_stream *stream = file->private_data;
2502         struct drm_i915_private *dev_priv = stream->dev_priv;
2503         __poll_t ret;
2504
2505         mutex_lock(&dev_priv->perf.lock);
2506         ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2507         mutex_unlock(&dev_priv->perf.lock);
2508
2509         return ret;
2510 }
2511
2512 /**
2513  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2514  * @stream: A disabled i915 perf stream
2515  *
2516  * [Re]enables the associated capture of data for this stream.
2517  *
2518  * If a stream was previously enabled then there's currently no intention
2519  * to provide userspace any guarantee about the preservation of previously
2520  * buffered data.
2521  */
2522 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2523 {
2524         if (stream->enabled)
2525                 return;
2526
2527         /* Allow stream->ops->enable() to refer to this */
2528         stream->enabled = true;
2529
2530         if (stream->ops->enable)
2531                 stream->ops->enable(stream);
2532 }
2533
2534 /**
2535  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2536  * @stream: An enabled i915 perf stream
2537  *
2538  * Disables the associated capture of data for this stream.
2539  *
2540  * The intention is that disabling an re-enabling a stream will ideally be
2541  * cheaper than destroying and re-opening a stream with the same configuration,
2542  * though there are no formal guarantees about what state or buffered data
2543  * must be retained between disabling and re-enabling a stream.
2544  *
2545  * Note: while a stream is disabled it's considered an error for userspace
2546  * to attempt to read from the stream (-EIO).
2547  */
2548 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2549 {
2550         if (!stream->enabled)
2551                 return;
2552
2553         /* Allow stream->ops->disable() to refer to this */
2554         stream->enabled = false;
2555
2556         if (stream->ops->disable)
2557                 stream->ops->disable(stream);
2558 }
2559
2560 /**
2561  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2562  * @stream: An i915 perf stream
2563  * @cmd: the ioctl request
2564  * @arg: the ioctl data
2565  *
2566  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2567  * with any non-file-operation driver hooks.
2568  *
2569  * Returns: zero on success or a negative error code. Returns -EINVAL for
2570  * an unknown ioctl request.
2571  */
2572 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2573                                    unsigned int cmd,
2574                                    unsigned long arg)
2575 {
2576         switch (cmd) {
2577         case I915_PERF_IOCTL_ENABLE:
2578                 i915_perf_enable_locked(stream);
2579                 return 0;
2580         case I915_PERF_IOCTL_DISABLE:
2581                 i915_perf_disable_locked(stream);
2582                 return 0;
2583         }
2584
2585         return -EINVAL;
2586 }
2587
2588 /**
2589  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2590  * @file: An i915 perf stream file
2591  * @cmd: the ioctl request
2592  * @arg: the ioctl data
2593  *
2594  * Implementation deferred to i915_perf_ioctl_locked().
2595  *
2596  * Returns: zero on success or a negative error code. Returns -EINVAL for
2597  * an unknown ioctl request.
2598  */
2599 static long i915_perf_ioctl(struct file *file,
2600                             unsigned int cmd,
2601                             unsigned long arg)
2602 {
2603         struct i915_perf_stream *stream = file->private_data;
2604         struct drm_i915_private *dev_priv = stream->dev_priv;
2605         long ret;
2606
2607         mutex_lock(&dev_priv->perf.lock);
2608         ret = i915_perf_ioctl_locked(stream, cmd, arg);
2609         mutex_unlock(&dev_priv->perf.lock);
2610
2611         return ret;
2612 }
2613
2614 /**
2615  * i915_perf_destroy_locked - destroy an i915 perf stream
2616  * @stream: An i915 perf stream
2617  *
2618  * Frees all resources associated with the given i915 perf @stream, disabling
2619  * any associated data capture in the process.
2620  *
2621  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2622  * with any non-file-operation driver hooks.
2623  */
2624 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2625 {
2626         if (stream->enabled)
2627                 i915_perf_disable_locked(stream);
2628
2629         if (stream->ops->destroy)
2630                 stream->ops->destroy(stream);
2631
2632         list_del(&stream->link);
2633
2634         if (stream->ctx)
2635                 i915_gem_context_put(stream->ctx);
2636
2637         kfree(stream);
2638 }
2639
2640 /**
2641  * i915_perf_release - handles userspace close() of a stream file
2642  * @inode: anonymous inode associated with file
2643  * @file: An i915 perf stream file
2644  *
2645  * Cleans up any resources associated with an open i915 perf stream file.
2646  *
2647  * NB: close() can't really fail from the userspace point of view.
2648  *
2649  * Returns: zero on success or a negative error code.
2650  */
2651 static int i915_perf_release(struct inode *inode, struct file *file)
2652 {
2653         struct i915_perf_stream *stream = file->private_data;
2654         struct drm_i915_private *dev_priv = stream->dev_priv;
2655
2656         mutex_lock(&dev_priv->perf.lock);
2657         i915_perf_destroy_locked(stream);
2658         mutex_unlock(&dev_priv->perf.lock);
2659
2660         /* Release the reference the perf stream kept on the driver. */
2661         drm_dev_put(&dev_priv->drm);
2662
2663         return 0;
2664 }
2665
2666
2667 static const struct file_operations fops = {
2668         .owner          = THIS_MODULE,
2669         .llseek         = no_llseek,
2670         .release        = i915_perf_release,
2671         .poll           = i915_perf_poll,
2672         .read           = i915_perf_read,
2673         .unlocked_ioctl = i915_perf_ioctl,
2674         /* Our ioctl have no arguments, so it's safe to use the same function
2675          * to handle 32bits compatibility.
2676          */
2677         .compat_ioctl   = i915_perf_ioctl,
2678 };
2679
2680
2681 /**
2682  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2683  * @dev_priv: i915 device instance
2684  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2685  * @props: individually validated u64 property value pairs
2686  * @file: drm file
2687  *
2688  * See i915_perf_ioctl_open() for interface details.
2689  *
2690  * Implements further stream config validation and stream initialization on
2691  * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2692  * taken to serialize with any non-file-operation driver hooks.
2693  *
2694  * Note: at this point the @props have only been validated in isolation and
2695  * it's still necessary to validate that the combination of properties makes
2696  * sense.
2697  *
2698  * In the case where userspace is interested in OA unit metrics then further
2699  * config validation and stream initialization details will be handled by
2700  * i915_oa_stream_init(). The code here should only validate config state that
2701  * will be relevant to all stream types / backends.
2702  *
2703  * Returns: zero on success or a negative error code.
2704  */
2705 static int
2706 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2707                             struct drm_i915_perf_open_param *param,
2708                             struct perf_open_properties *props,
2709                             struct drm_file *file)
2710 {
2711         struct i915_gem_context *specific_ctx = NULL;
2712         struct i915_perf_stream *stream = NULL;
2713         unsigned long f_flags = 0;
2714         bool privileged_op = true;
2715         int stream_fd;
2716         int ret;
2717
2718         if (props->single_context) {
2719                 u32 ctx_handle = props->ctx_handle;
2720                 struct drm_i915_file_private *file_priv = file->driver_priv;
2721
2722                 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2723                 if (!specific_ctx) {
2724                         DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2725                                   ctx_handle);
2726                         ret = -ENOENT;
2727                         goto err;
2728                 }
2729         }
2730
2731         /*
2732          * On Haswell the OA unit supports clock gating off for a specific
2733          * context and in this mode there's no visibility of metrics for the
2734          * rest of the system, which we consider acceptable for a
2735          * non-privileged client.
2736          *
2737          * For Gen8+ the OA unit no longer supports clock gating off for a
2738          * specific context and the kernel can't securely stop the counters
2739          * from updating as system-wide / global values. Even though we can
2740          * filter reports based on the included context ID we can't block
2741          * clients from seeing the raw / global counter values via
2742          * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2743          * enable the OA unit by default.
2744          */
2745         if (IS_HASWELL(dev_priv) && specific_ctx)
2746                 privileged_op = false;
2747
2748         /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2749          * we check a dev.i915.perf_stream_paranoid sysctl option
2750          * to determine if it's ok to access system wide OA counters
2751          * without CAP_SYS_ADMIN privileges.
2752          */
2753         if (privileged_op &&
2754             i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2755                 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2756                 ret = -EACCES;
2757                 goto err_ctx;
2758         }
2759
2760         stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2761         if (!stream) {
2762                 ret = -ENOMEM;
2763                 goto err_ctx;
2764         }
2765
2766         stream->dev_priv = dev_priv;
2767         stream->ctx = specific_ctx;
2768
2769         ret = i915_oa_stream_init(stream, param, props);
2770         if (ret)
2771                 goto err_alloc;
2772
2773         /* we avoid simply assigning stream->sample_flags = props->sample_flags
2774          * to have _stream_init check the combination of sample flags more
2775          * thoroughly, but still this is the expected result at this point.
2776          */
2777         if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2778                 ret = -ENODEV;
2779                 goto err_flags;
2780         }
2781
2782         list_add(&stream->link, &dev_priv->perf.streams);
2783
2784         if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2785                 f_flags |= O_CLOEXEC;
2786         if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2787                 f_flags |= O_NONBLOCK;
2788
2789         stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2790         if (stream_fd < 0) {
2791                 ret = stream_fd;
2792                 goto err_open;
2793         }
2794
2795         if (!(param->flags & I915_PERF_FLAG_DISABLED))
2796                 i915_perf_enable_locked(stream);
2797
2798         /* Take a reference on the driver that will be kept with stream_fd
2799          * until its release.
2800          */
2801         drm_dev_get(&dev_priv->drm);
2802
2803         return stream_fd;
2804
2805 err_open:
2806         list_del(&stream->link);
2807 err_flags:
2808         if (stream->ops->destroy)
2809                 stream->ops->destroy(stream);
2810 err_alloc:
2811         kfree(stream);
2812 err_ctx:
2813         if (specific_ctx)
2814                 i915_gem_context_put(specific_ctx);
2815 err:
2816         return ret;
2817 }
2818
2819 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2820 {
2821         return div64_u64(1000000000ULL * (2ULL << exponent),
2822                          1000ULL * RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz);
2823 }
2824
2825 /**
2826  * read_properties_unlocked - validate + copy userspace stream open properties
2827  * @dev_priv: i915 device instance
2828  * @uprops: The array of u64 key value pairs given by userspace
2829  * @n_props: The number of key value pairs expected in @uprops
2830  * @props: The stream configuration built up while validating properties
2831  *
2832  * Note this function only validates properties in isolation it doesn't
2833  * validate that the combination of properties makes sense or that all
2834  * properties necessary for a particular kind of stream have been set.
2835  *
2836  * Note that there currently aren't any ordering requirements for properties so
2837  * we shouldn't validate or assume anything about ordering here. This doesn't
2838  * rule out defining new properties with ordering requirements in the future.
2839  */
2840 static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2841                                     u64 __user *uprops,
2842                                     u32 n_props,
2843                                     struct perf_open_properties *props)
2844 {
2845         u64 __user *uprop = uprops;
2846         u32 i;
2847
2848         memset(props, 0, sizeof(struct perf_open_properties));
2849
2850         if (!n_props) {
2851                 DRM_DEBUG("No i915 perf properties given\n");
2852                 return -EINVAL;
2853         }
2854
2855         /* Considering that ID = 0 is reserved and assuming that we don't
2856          * (currently) expect any configurations to ever specify duplicate
2857          * values for a particular property ID then the last _PROP_MAX value is
2858          * one greater than the maximum number of properties we expect to get
2859          * from userspace.
2860          */
2861         if (n_props >= DRM_I915_PERF_PROP_MAX) {
2862                 DRM_DEBUG("More i915 perf properties specified than exist\n");
2863                 return -EINVAL;
2864         }
2865
2866         for (i = 0; i < n_props; i++) {
2867                 u64 oa_period, oa_freq_hz;
2868                 u64 id, value;
2869                 int ret;
2870
2871                 ret = get_user(id, uprop);
2872                 if (ret)
2873                         return ret;
2874
2875                 ret = get_user(value, uprop + 1);
2876                 if (ret)
2877                         return ret;
2878
2879                 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2880                         DRM_DEBUG("Unknown i915 perf property ID\n");
2881                         return -EINVAL;
2882                 }
2883
2884                 switch ((enum drm_i915_perf_property_id)id) {
2885                 case DRM_I915_PERF_PROP_CTX_HANDLE:
2886                         props->single_context = 1;
2887                         props->ctx_handle = value;
2888                         break;
2889                 case DRM_I915_PERF_PROP_SAMPLE_OA:
2890                         if (value)
2891                                 props->sample_flags |= SAMPLE_OA_REPORT;
2892                         break;
2893                 case DRM_I915_PERF_PROP_OA_METRICS_SET:
2894                         if (value == 0) {
2895                                 DRM_DEBUG("Unknown OA metric set ID\n");
2896                                 return -EINVAL;
2897                         }
2898                         props->metrics_set = value;
2899                         break;
2900                 case DRM_I915_PERF_PROP_OA_FORMAT:
2901                         if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2902                                 DRM_DEBUG("Out-of-range OA report format %llu\n",
2903                                           value);
2904                                 return -EINVAL;
2905                         }
2906                         if (!dev_priv->perf.oa_formats[value].size) {
2907                                 DRM_DEBUG("Unsupported OA report format %llu\n",
2908                                           value);
2909                                 return -EINVAL;
2910                         }
2911                         props->oa_format = value;
2912                         break;
2913                 case DRM_I915_PERF_PROP_OA_EXPONENT:
2914                         if (value > OA_EXPONENT_MAX) {
2915                                 DRM_DEBUG("OA timer exponent too high (> %u)\n",
2916                                          OA_EXPONENT_MAX);
2917                                 return -EINVAL;
2918                         }
2919
2920                         /* Theoretically we can program the OA unit to sample
2921                          * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2922                          * for BXT. We don't allow such high sampling
2923                          * frequencies by default unless root.
2924                          */
2925
2926                         BUILD_BUG_ON(sizeof(oa_period) != 8);
2927                         oa_period = oa_exponent_to_ns(dev_priv, value);
2928
2929                         /* This check is primarily to ensure that oa_period <=
2930                          * UINT32_MAX (before passing to do_div which only
2931                          * accepts a u32 denominator), but we can also skip
2932                          * checking anything < 1Hz which implicitly can't be
2933                          * limited via an integer oa_max_sample_rate.
2934                          */
2935                         if (oa_period <= NSEC_PER_SEC) {
2936                                 u64 tmp = NSEC_PER_SEC;
2937                                 do_div(tmp, oa_period);
2938                                 oa_freq_hz = tmp;
2939                         } else
2940                                 oa_freq_hz = 0;
2941
2942                         if (oa_freq_hz > i915_oa_max_sample_rate &&
2943                             !capable(CAP_SYS_ADMIN)) {
2944                                 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2945                                           i915_oa_max_sample_rate);
2946                                 return -EACCES;
2947                         }
2948
2949                         props->oa_periodic = true;
2950                         props->oa_period_exponent = value;
2951                         break;
2952                 case DRM_I915_PERF_PROP_MAX:
2953                         MISSING_CASE(id);
2954                         return -EINVAL;
2955                 }
2956
2957                 uprop += 2;
2958         }
2959
2960         return 0;
2961 }
2962
2963 /**
2964  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2965  * @dev: drm device
2966  * @data: ioctl data copied from userspace (unvalidated)
2967  * @file: drm file
2968  *
2969  * Validates the stream open parameters given by userspace including flags
2970  * and an array of u64 key, value pair properties.
2971  *
2972  * Very little is assumed up front about the nature of the stream being
2973  * opened (for instance we don't assume it's for periodic OA unit metrics). An
2974  * i915-perf stream is expected to be a suitable interface for other forms of
2975  * buffered data written by the GPU besides periodic OA metrics.
2976  *
2977  * Note we copy the properties from userspace outside of the i915 perf
2978  * mutex to avoid an awkward lockdep with mmap_sem.
2979  *
2980  * Most of the implementation details are handled by
2981  * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2982  * mutex for serializing with any non-file-operation driver hooks.
2983  *
2984  * Return: A newly opened i915 Perf stream file descriptor or negative
2985  * error code on failure.
2986  */
2987 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2988                          struct drm_file *file)
2989 {
2990         struct drm_i915_private *dev_priv = dev->dev_private;
2991         struct drm_i915_perf_open_param *param = data;
2992         struct perf_open_properties props;
2993         u32 known_open_flags;
2994         int ret;
2995
2996         if (!dev_priv->perf.initialized) {
2997                 DRM_DEBUG("i915 perf interface not available for this system\n");
2998                 return -ENOTSUPP;
2999         }
3000
3001         known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3002                            I915_PERF_FLAG_FD_NONBLOCK |
3003                            I915_PERF_FLAG_DISABLED;
3004         if (param->flags & ~known_open_flags) {
3005                 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3006                 return -EINVAL;
3007         }
3008
3009         ret = read_properties_unlocked(dev_priv,
3010                                        u64_to_user_ptr(param->properties_ptr),
3011                                        param->num_properties,
3012                                        &props);
3013         if (ret)
3014                 return ret;
3015
3016         mutex_lock(&dev_priv->perf.lock);
3017         ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
3018         mutex_unlock(&dev_priv->perf.lock);
3019
3020         return ret;
3021 }
3022
3023 /**
3024  * i915_perf_register - exposes i915-perf to userspace
3025  * @dev_priv: i915 device instance
3026  *
3027  * In particular OA metric sets are advertised under a sysfs metrics/
3028  * directory allowing userspace to enumerate valid IDs that can be
3029  * used to open an i915-perf stream.
3030  */
3031 void i915_perf_register(struct drm_i915_private *dev_priv)
3032 {
3033         int ret;
3034
3035         if (!dev_priv->perf.initialized)
3036                 return;
3037
3038         /* To be sure we're synchronized with an attempted
3039          * i915_perf_open_ioctl(); considering that we register after
3040          * being exposed to userspace.
3041          */
3042         mutex_lock(&dev_priv->perf.lock);
3043
3044         dev_priv->perf.metrics_kobj =
3045                 kobject_create_and_add("metrics",
3046                                        &dev_priv->drm.primary->kdev->kobj);
3047         if (!dev_priv->perf.metrics_kobj)
3048                 goto exit;
3049
3050         sysfs_attr_init(&dev_priv->perf.test_config.sysfs_metric_id.attr);
3051
3052         if (INTEL_GEN(dev_priv) >= 11) {
3053                 i915_perf_load_test_config_icl(dev_priv);
3054         } else if (IS_CANNONLAKE(dev_priv)) {
3055                 i915_perf_load_test_config_cnl(dev_priv);
3056         } else if (IS_COFFEELAKE(dev_priv)) {
3057                 if (IS_CFL_GT2(dev_priv))
3058                         i915_perf_load_test_config_cflgt2(dev_priv);
3059                 if (IS_CFL_GT3(dev_priv))
3060                         i915_perf_load_test_config_cflgt3(dev_priv);
3061         } else if (IS_GEMINILAKE(dev_priv)) {
3062                 i915_perf_load_test_config_glk(dev_priv);
3063         } else if (IS_KABYLAKE(dev_priv)) {
3064                 if (IS_KBL_GT2(dev_priv))
3065                         i915_perf_load_test_config_kblgt2(dev_priv);
3066                 else if (IS_KBL_GT3(dev_priv))
3067                         i915_perf_load_test_config_kblgt3(dev_priv);
3068         } else if (IS_BROXTON(dev_priv)) {
3069                 i915_perf_load_test_config_bxt(dev_priv);
3070         } else if (IS_SKYLAKE(dev_priv)) {
3071                 if (IS_SKL_GT2(dev_priv))
3072                         i915_perf_load_test_config_sklgt2(dev_priv);
3073                 else if (IS_SKL_GT3(dev_priv))
3074                         i915_perf_load_test_config_sklgt3(dev_priv);
3075                 else if (IS_SKL_GT4(dev_priv))
3076                         i915_perf_load_test_config_sklgt4(dev_priv);
3077         } else if (IS_CHERRYVIEW(dev_priv)) {
3078                 i915_perf_load_test_config_chv(dev_priv);
3079         } else if (IS_BROADWELL(dev_priv)) {
3080                 i915_perf_load_test_config_bdw(dev_priv);
3081         } else if (IS_HASWELL(dev_priv)) {
3082                 i915_perf_load_test_config_hsw(dev_priv);
3083 }
3084
3085         if (dev_priv->perf.test_config.id == 0)
3086                 goto sysfs_error;
3087
3088         ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
3089                                  &dev_priv->perf.test_config.sysfs_metric);
3090         if (ret)
3091                 goto sysfs_error;
3092
3093         atomic_set(&dev_priv->perf.test_config.ref_count, 1);
3094
3095         goto exit;
3096
3097 sysfs_error:
3098         kobject_put(dev_priv->perf.metrics_kobj);
3099         dev_priv->perf.metrics_kobj = NULL;
3100
3101 exit:
3102         mutex_unlock(&dev_priv->perf.lock);
3103 }
3104
3105 /**
3106  * i915_perf_unregister - hide i915-perf from userspace
3107  * @dev_priv: i915 device instance
3108  *
3109  * i915-perf state cleanup is split up into an 'unregister' and
3110  * 'deinit' phase where the interface is first hidden from
3111  * userspace by i915_perf_unregister() before cleaning up
3112  * remaining state in i915_perf_fini().
3113  */
3114 void i915_perf_unregister(struct drm_i915_private *dev_priv)
3115 {
3116         if (!dev_priv->perf.metrics_kobj)
3117                 return;
3118
3119         sysfs_remove_group(dev_priv->perf.metrics_kobj,
3120                            &dev_priv->perf.test_config.sysfs_metric);
3121
3122         kobject_put(dev_priv->perf.metrics_kobj);
3123         dev_priv->perf.metrics_kobj = NULL;
3124 }
3125
3126 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
3127 {
3128         static const i915_reg_t flex_eu_regs[] = {
3129                 EU_PERF_CNTL0,
3130                 EU_PERF_CNTL1,
3131                 EU_PERF_CNTL2,
3132                 EU_PERF_CNTL3,
3133                 EU_PERF_CNTL4,
3134                 EU_PERF_CNTL5,
3135                 EU_PERF_CNTL6,
3136         };
3137         int i;
3138
3139         for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3140                 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3141                         return true;
3142         }
3143         return false;
3144 }
3145
3146 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
3147 {
3148         return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
3149                 addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
3150                 (addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
3151                  addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
3152                 (addr >= i915_mmio_reg_offset(OACEC0_0) &&
3153                  addr <= i915_mmio_reg_offset(OACEC7_1));
3154 }
3155
3156 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3157 {
3158         return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
3159                 (addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
3160                  addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
3161                 (addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
3162                  addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
3163                 (addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
3164                  addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
3165 }
3166
3167 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3168 {
3169         return gen7_is_valid_mux_addr(dev_priv, addr) ||
3170                 addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
3171                 (addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
3172                  addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
3173 }
3174
3175 static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3176 {
3177         return gen8_is_valid_mux_addr(dev_priv, addr) ||
3178                 addr == i915_mmio_reg_offset(GEN10_NOA_WRITE_HIGH) ||
3179                 (addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
3180                  addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
3181 }
3182
3183 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3184 {
3185         return gen7_is_valid_mux_addr(dev_priv, addr) ||
3186                 (addr >= 0x25100 && addr <= 0x2FF90) ||
3187                 (addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
3188                  addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
3189                 addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
3190 }
3191
3192 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3193 {
3194         return gen7_is_valid_mux_addr(dev_priv, addr) ||
3195                 (addr >= 0x182300 && addr <= 0x1823A4);
3196 }
3197
3198 static u32 mask_reg_value(u32 reg, u32 val)
3199 {
3200         /* HALF_SLICE_CHICKEN2 is programmed with a the
3201          * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3202          * programmed by userspace doesn't change this.
3203          */
3204         if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
3205                 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3206
3207         /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3208          * indicated by its name and a bunch of selection fields used by OA
3209          * configs.
3210          */
3211         if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
3212                 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3213
3214         return val;
3215 }
3216
3217 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3218                                          bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3219                                          u32 __user *regs,
3220                                          u32 n_regs)
3221 {
3222         struct i915_oa_reg *oa_regs;
3223         int err;
3224         u32 i;
3225
3226         if (!n_regs)
3227                 return NULL;
3228
3229         if (!access_ok(regs, n_regs * sizeof(u32) * 2))
3230                 return ERR_PTR(-EFAULT);
3231
3232         /* No is_valid function means we're not allowing any register to be programmed. */
3233         GEM_BUG_ON(!is_valid);
3234         if (!is_valid)
3235                 return ERR_PTR(-EINVAL);
3236
3237         oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3238         if (!oa_regs)
3239                 return ERR_PTR(-ENOMEM);
3240
3241         for (i = 0; i < n_regs; i++) {
3242                 u32 addr, value;
3243
3244                 err = get_user(addr, regs);
3245                 if (err)
3246                         goto addr_err;
3247
3248                 if (!is_valid(dev_priv, addr)) {
3249                         DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3250                         err = -EINVAL;
3251                         goto addr_err;
3252                 }
3253
3254                 err = get_user(value, regs + 1);
3255                 if (err)
3256                         goto addr_err;
3257
3258                 oa_regs[i].addr = _MMIO(addr);
3259                 oa_regs[i].value = mask_reg_value(addr, value);
3260
3261                 regs += 2;
3262         }
3263
3264         return oa_regs;
3265
3266 addr_err:
3267         kfree(oa_regs);
3268         return ERR_PTR(err);
3269 }
3270
3271 static ssize_t show_dynamic_id(struct device *dev,
3272                                struct device_attribute *attr,
3273                                char *buf)
3274 {
3275         struct i915_oa_config *oa_config =
3276                 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3277
3278         return sprintf(buf, "%d\n", oa_config->id);
3279 }
3280
3281 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3282                                          struct i915_oa_config *oa_config)
3283 {
3284         sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3285         oa_config->sysfs_metric_id.attr.name = "id";
3286         oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3287         oa_config->sysfs_metric_id.show = show_dynamic_id;
3288         oa_config->sysfs_metric_id.store = NULL;
3289
3290         oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3291         oa_config->attrs[1] = NULL;
3292
3293         oa_config->sysfs_metric.name = oa_config->uuid;
3294         oa_config->sysfs_metric.attrs = oa_config->attrs;
3295
3296         return sysfs_create_group(dev_priv->perf.metrics_kobj,
3297                                   &oa_config->sysfs_metric);
3298 }
3299
3300 /**
3301  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3302  * @dev: drm device
3303  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3304  *        userspace (unvalidated)
3305  * @file: drm file
3306  *
3307  * Validates the submitted OA register to be saved into a new OA config that
3308  * can then be used for programming the OA unit and its NOA network.
3309  *
3310  * Returns: A new allocated config number to be used with the perf open ioctl
3311  * or a negative error code on failure.
3312  */
3313 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3314                                struct drm_file *file)
3315 {
3316         struct drm_i915_private *dev_priv = dev->dev_private;
3317         struct drm_i915_perf_oa_config *args = data;
3318         struct i915_oa_config *oa_config, *tmp;
3319         int err, id;
3320
3321         if (!dev_priv->perf.initialized) {
3322                 DRM_DEBUG("i915 perf interface not available for this system\n");
3323                 return -ENOTSUPP;
3324         }
3325
3326         if (!dev_priv->perf.metrics_kobj) {
3327                 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3328                 return -EINVAL;
3329         }
3330
3331         if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3332                 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3333                 return -EACCES;
3334         }
3335
3336         if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3337             (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3338             (!args->flex_regs_ptr || !args->n_flex_regs)) {
3339                 DRM_DEBUG("No OA registers given\n");
3340                 return -EINVAL;
3341         }
3342
3343         oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3344         if (!oa_config) {
3345                 DRM_DEBUG("Failed to allocate memory for the OA config\n");
3346                 return -ENOMEM;
3347         }
3348
3349         atomic_set(&oa_config->ref_count, 1);
3350
3351         if (!uuid_is_valid(args->uuid)) {
3352                 DRM_DEBUG("Invalid uuid format for OA config\n");
3353                 err = -EINVAL;
3354                 goto reg_err;
3355         }
3356
3357         /* Last character in oa_config->uuid will be 0 because oa_config is
3358          * kzalloc.
3359          */
3360         memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3361
3362         oa_config->mux_regs_len = args->n_mux_regs;
3363         oa_config->mux_regs =
3364                 alloc_oa_regs(dev_priv,
3365                               dev_priv->perf.ops.is_valid_mux_reg,
3366                               u64_to_user_ptr(args->mux_regs_ptr),
3367                               args->n_mux_regs);
3368
3369         if (IS_ERR(oa_config->mux_regs)) {
3370                 DRM_DEBUG("Failed to create OA config for mux_regs\n");
3371                 err = PTR_ERR(oa_config->mux_regs);
3372                 goto reg_err;
3373         }
3374
3375         oa_config->b_counter_regs_len = args->n_boolean_regs;
3376         oa_config->b_counter_regs =
3377                 alloc_oa_regs(dev_priv,
3378                               dev_priv->perf.ops.is_valid_b_counter_reg,
3379                               u64_to_user_ptr(args->boolean_regs_ptr),
3380                               args->n_boolean_regs);
3381
3382         if (IS_ERR(oa_config->b_counter_regs)) {
3383                 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3384                 err = PTR_ERR(oa_config->b_counter_regs);
3385                 goto reg_err;
3386         }
3387
3388         if (INTEL_GEN(dev_priv) < 8) {
3389                 if (args->n_flex_regs != 0) {
3390                         err = -EINVAL;
3391                         goto reg_err;
3392                 }
3393         } else {
3394                 oa_config->flex_regs_len = args->n_flex_regs;
3395                 oa_config->flex_regs =
3396                         alloc_oa_regs(dev_priv,
3397                                       dev_priv->perf.ops.is_valid_flex_reg,
3398                                       u64_to_user_ptr(args->flex_regs_ptr),
3399                                       args->n_flex_regs);
3400
3401                 if (IS_ERR(oa_config->flex_regs)) {
3402                         DRM_DEBUG("Failed to create OA config for flex_regs\n");
3403                         err = PTR_ERR(oa_config->flex_regs);
3404                         goto reg_err;
3405                 }
3406         }
3407
3408         err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3409         if (err)
3410                 goto reg_err;
3411
3412         /* We shouldn't have too many configs, so this iteration shouldn't be
3413          * too costly.
3414          */
3415         idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3416                 if (!strcmp(tmp->uuid, oa_config->uuid)) {
3417                         DRM_DEBUG("OA config already exists with this uuid\n");
3418                         err = -EADDRINUSE;
3419                         goto sysfs_err;
3420                 }
3421         }
3422
3423         err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3424         if (err) {
3425                 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3426                 goto sysfs_err;
3427         }
3428
3429         /* Config id 0 is invalid, id 1 for kernel stored test config. */
3430         oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3431                                   oa_config, 2,
3432                                   0, GFP_KERNEL);
3433         if (oa_config->id < 0) {
3434                 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3435                 err = oa_config->id;
3436                 goto sysfs_err;
3437         }
3438
3439         mutex_unlock(&dev_priv->perf.metrics_lock);
3440
3441         DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
3442
3443         return oa_config->id;
3444
3445 sysfs_err:
3446         mutex_unlock(&dev_priv->perf.metrics_lock);
3447 reg_err:
3448         put_oa_config(dev_priv, oa_config);
3449         DRM_DEBUG("Failed to add new OA config\n");
3450         return err;
3451 }
3452
3453 /**
3454  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3455  * @dev: drm device
3456  * @data: ioctl data (pointer to u64 integer) copied from userspace
3457  * @file: drm file
3458  *
3459  * Configs can be removed while being used, the will stop appearing in sysfs
3460  * and their content will be freed when the stream using the config is closed.
3461  *
3462  * Returns: 0 on success or a negative error code on failure.
3463  */
3464 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3465                                   struct drm_file *file)
3466 {
3467         struct drm_i915_private *dev_priv = dev->dev_private;
3468         u64 *arg = data;
3469         struct i915_oa_config *oa_config;
3470         int ret;
3471
3472         if (!dev_priv->perf.initialized) {
3473                 DRM_DEBUG("i915 perf interface not available for this system\n");
3474                 return -ENOTSUPP;
3475         }
3476
3477         if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3478                 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3479                 return -EACCES;
3480         }
3481
3482         ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3483         if (ret)
3484                 goto lock_err;
3485
3486         oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3487         if (!oa_config) {
3488                 DRM_DEBUG("Failed to remove unknown OA config\n");
3489                 ret = -ENOENT;
3490                 goto config_err;
3491         }
3492
3493         GEM_BUG_ON(*arg != oa_config->id);
3494
3495         sysfs_remove_group(dev_priv->perf.metrics_kobj,
3496                            &oa_config->sysfs_metric);
3497
3498         idr_remove(&dev_priv->perf.metrics_idr, *arg);
3499
3500         DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
3501
3502         put_oa_config(dev_priv, oa_config);
3503
3504 config_err:
3505         mutex_unlock(&dev_priv->perf.metrics_lock);
3506 lock_err:
3507         return ret;
3508 }
3509
3510 static struct ctl_table oa_table[] = {
3511         {
3512          .procname = "perf_stream_paranoid",
3513          .data = &i915_perf_stream_paranoid,
3514          .maxlen = sizeof(i915_perf_stream_paranoid),
3515          .mode = 0644,
3516          .proc_handler = proc_dointvec_minmax,
3517          .extra1 = SYSCTL_ZERO,
3518          .extra2 = SYSCTL_ONE,
3519          },
3520         {
3521          .procname = "oa_max_sample_rate",
3522          .data = &i915_oa_max_sample_rate,
3523          .maxlen = sizeof(i915_oa_max_sample_rate),
3524          .mode = 0644,
3525          .proc_handler = proc_dointvec_minmax,
3526          .extra1 = SYSCTL_ZERO,
3527          .extra2 = &oa_sample_rate_hard_limit,
3528          },
3529         {}
3530 };
3531
3532 static struct ctl_table i915_root[] = {
3533         {
3534          .procname = "i915",
3535          .maxlen = 0,
3536          .mode = 0555,
3537          .child = oa_table,
3538          },
3539         {}
3540 };
3541
3542 static struct ctl_table dev_root[] = {
3543         {
3544          .procname = "dev",
3545          .maxlen = 0,
3546          .mode = 0555,
3547          .child = i915_root,
3548          },
3549         {}
3550 };
3551
3552 /**
3553  * i915_perf_init - initialize i915-perf state on module load
3554  * @dev_priv: i915 device instance
3555  *
3556  * Initializes i915-perf state without exposing anything to userspace.
3557  *
3558  * Note: i915-perf initialization is split into an 'init' and 'register'
3559  * phase with the i915_perf_register() exposing state to userspace.
3560  */
3561 void i915_perf_init(struct drm_i915_private *dev_priv)
3562 {
3563         if (IS_HASWELL(dev_priv)) {
3564                 dev_priv->perf.ops.is_valid_b_counter_reg =
3565                         gen7_is_valid_b_counter_addr;
3566                 dev_priv->perf.ops.is_valid_mux_reg =
3567                         hsw_is_valid_mux_addr;
3568                 dev_priv->perf.ops.is_valid_flex_reg = NULL;
3569                 dev_priv->perf.ops.enable_metric_set = hsw_enable_metric_set;
3570                 dev_priv->perf.ops.disable_metric_set = hsw_disable_metric_set;
3571                 dev_priv->perf.ops.oa_enable = gen7_oa_enable;
3572                 dev_priv->perf.ops.oa_disable = gen7_oa_disable;
3573                 dev_priv->perf.ops.read = gen7_oa_read;
3574                 dev_priv->perf.ops.oa_hw_tail_read =
3575                         gen7_oa_hw_tail_read;
3576
3577                 dev_priv->perf.oa_formats = hsw_oa_formats;
3578         } else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
3579                 /* Note: that although we could theoretically also support the
3580                  * legacy ringbuffer mode on BDW (and earlier iterations of
3581                  * this driver, before upstreaming did this) it didn't seem
3582                  * worth the complexity to maintain now that BDW+ enable
3583                  * execlist mode by default.
3584                  */
3585                 dev_priv->perf.oa_formats = gen8_plus_oa_formats;
3586
3587                 dev_priv->perf.ops.oa_enable = gen8_oa_enable;
3588                 dev_priv->perf.ops.oa_disable = gen8_oa_disable;
3589                 dev_priv->perf.ops.read = gen8_oa_read;
3590                 dev_priv->perf.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3591
3592                 if (IS_GEN_RANGE(dev_priv, 8, 9)) {
3593                         dev_priv->perf.ops.is_valid_b_counter_reg =
3594                                 gen7_is_valid_b_counter_addr;
3595                         dev_priv->perf.ops.is_valid_mux_reg =
3596                                 gen8_is_valid_mux_addr;
3597                         dev_priv->perf.ops.is_valid_flex_reg =
3598                                 gen8_is_valid_flex_addr;
3599
3600                         if (IS_CHERRYVIEW(dev_priv)) {
3601                                 dev_priv->perf.ops.is_valid_mux_reg =
3602                                         chv_is_valid_mux_addr;
3603                         }
3604
3605                         dev_priv->perf.ops.enable_metric_set = gen8_enable_metric_set;
3606                         dev_priv->perf.ops.disable_metric_set = gen8_disable_metric_set;
3607
3608                         if (IS_GEN(dev_priv, 8)) {
3609                                 dev_priv->perf.ctx_oactxctrl_offset = 0x120;
3610                                 dev_priv->perf.ctx_flexeu0_offset = 0x2ce;
3611
3612                                 dev_priv->perf.gen8_valid_ctx_bit = BIT(25);
3613                         } else {
3614                                 dev_priv->perf.ctx_oactxctrl_offset = 0x128;
3615                                 dev_priv->perf.ctx_flexeu0_offset = 0x3de;
3616
3617                                 dev_priv->perf.gen8_valid_ctx_bit = BIT(16);
3618                         }
3619                 } else if (IS_GEN_RANGE(dev_priv, 10, 11)) {
3620                         dev_priv->perf.ops.is_valid_b_counter_reg =
3621                                 gen7_is_valid_b_counter_addr;
3622                         dev_priv->perf.ops.is_valid_mux_reg =
3623                                 gen10_is_valid_mux_addr;
3624                         dev_priv->perf.ops.is_valid_flex_reg =
3625                                 gen8_is_valid_flex_addr;
3626
3627                         dev_priv->perf.ops.enable_metric_set = gen8_enable_metric_set;
3628                         dev_priv->perf.ops.disable_metric_set = gen10_disable_metric_set;
3629
3630                         if (IS_GEN(dev_priv, 10)) {
3631                                 dev_priv->perf.ctx_oactxctrl_offset = 0x128;
3632                                 dev_priv->perf.ctx_flexeu0_offset = 0x3de;
3633                         } else {
3634                                 dev_priv->perf.ctx_oactxctrl_offset = 0x124;
3635                                 dev_priv->perf.ctx_flexeu0_offset = 0x78e;
3636                         }
3637                         dev_priv->perf.gen8_valid_ctx_bit = BIT(16);
3638                 }
3639         }
3640
3641         if (dev_priv->perf.ops.enable_metric_set) {
3642                 INIT_LIST_HEAD(&dev_priv->perf.streams);
3643                 mutex_init(&dev_priv->perf.lock);
3644
3645                 oa_sample_rate_hard_limit = 1000 *
3646                         (RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz / 2);
3647                 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3648
3649                 mutex_init(&dev_priv->perf.metrics_lock);
3650                 idr_init(&dev_priv->perf.metrics_idr);
3651
3652                 /* We set up some ratelimit state to potentially throttle any
3653                  * _NOTES about spurious, invalid OA reports which we don't
3654                  * forward to userspace.
3655                  *
3656                  * We print a _NOTE about any throttling when closing the
3657                  * stream instead of waiting until driver _fini which no one
3658                  * would ever see.
3659                  *
3660                  * Using the same limiting factors as printk_ratelimit()
3661                  */
3662                 ratelimit_state_init(&dev_priv->perf.spurious_report_rs,
3663                                      5 * HZ, 10);
3664                 /* Since we use a DRM_NOTE for spurious reports it would be
3665                  * inconsistent to let __ratelimit() automatically print a
3666                  * warning for throttling.
3667                  */
3668                 ratelimit_set_flags(&dev_priv->perf.spurious_report_rs,
3669                                     RATELIMIT_MSG_ON_RELEASE);
3670
3671                 dev_priv->perf.initialized = true;
3672         }
3673 }
3674
3675 static int destroy_config(int id, void *p, void *data)
3676 {
3677         struct drm_i915_private *dev_priv = data;
3678         struct i915_oa_config *oa_config = p;
3679
3680         put_oa_config(dev_priv, oa_config);
3681
3682         return 0;
3683 }
3684
3685 /**
3686  * i915_perf_fini - Counter part to i915_perf_init()
3687  * @dev_priv: i915 device instance
3688  */
3689 void i915_perf_fini(struct drm_i915_private *dev_priv)
3690 {
3691         if (!dev_priv->perf.initialized)
3692                 return;
3693
3694         idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3695         idr_destroy(&dev_priv->perf.metrics_idr);
3696
3697         unregister_sysctl_table(dev_priv->perf.sysctl_header);
3698
3699         memset(&dev_priv->perf.ops, 0, sizeof(dev_priv->perf.ops));
3700
3701         dev_priv->perf.initialized = false;
3702 }