Linux-libre 5.7.3-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35
36 #include <linux/kthread.h>
37
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
41
42 #include "i915_drv.h"
43 #include "i915_gem_gtt.h"
44 #include "gvt.h"
45
46 #define RING_CTX_OFF(x) \
47         offsetof(struct execlist_ring_context, x)
48
49 static void set_context_pdp_root_pointer(
50                 struct execlist_ring_context *ring_context,
51                 u32 pdp[8])
52 {
53         int i;
54
55         for (i = 0; i < 8; i++)
56                 ring_context->pdps[i].val = pdp[7 - i];
57 }
58
59 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
60 {
61         struct drm_i915_gem_object *ctx_obj =
62                 workload->req->context->state->obj;
63         struct execlist_ring_context *shadow_ring_context;
64         struct page *page;
65
66         if (WARN_ON(!workload->shadow_mm))
67                 return;
68
69         if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
70                 return;
71
72         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
73         shadow_ring_context = kmap(page);
74         set_context_pdp_root_pointer(shadow_ring_context,
75                         (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
76         kunmap(page);
77 }
78
79 /*
80  * when populating shadow ctx from guest, we should not overrride oa related
81  * registers, so that they will not be overlapped by guest oa configs. Thus
82  * made it possible to capture oa data from host for both host and guests.
83  */
84 static void sr_oa_regs(struct intel_vgpu_workload *workload,
85                 u32 *reg_state, bool save)
86 {
87         struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
88         u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
89         u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
90         int i = 0;
91         u32 flex_mmio[] = {
92                 i915_mmio_reg_offset(EU_PERF_CNTL0),
93                 i915_mmio_reg_offset(EU_PERF_CNTL1),
94                 i915_mmio_reg_offset(EU_PERF_CNTL2),
95                 i915_mmio_reg_offset(EU_PERF_CNTL3),
96                 i915_mmio_reg_offset(EU_PERF_CNTL4),
97                 i915_mmio_reg_offset(EU_PERF_CNTL5),
98                 i915_mmio_reg_offset(EU_PERF_CNTL6),
99         };
100
101         if (workload->engine->id != RCS0)
102                 return;
103
104         if (save) {
105                 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
106
107                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
108                         u32 state_offset = ctx_flexeu0 + i * 2;
109
110                         workload->flex_mmio[i] = reg_state[state_offset + 1];
111                 }
112         } else {
113                 reg_state[ctx_oactxctrl] =
114                         i915_mmio_reg_offset(GEN8_OACTXCONTROL);
115                 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
116
117                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
118                         u32 state_offset = ctx_flexeu0 + i * 2;
119                         u32 mmio = flex_mmio[i];
120
121                         reg_state[state_offset] = mmio;
122                         reg_state[state_offset + 1] = workload->flex_mmio[i];
123                 }
124         }
125 }
126
127 static int populate_shadow_context(struct intel_vgpu_workload *workload)
128 {
129         struct intel_vgpu *vgpu = workload->vgpu;
130         struct intel_gvt *gvt = vgpu->gvt;
131         struct drm_i915_gem_object *ctx_obj =
132                 workload->req->context->state->obj;
133         struct execlist_ring_context *shadow_ring_context;
134         struct page *page;
135         void *dst;
136         unsigned long context_gpa, context_page_num;
137         int i;
138
139         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
140         shadow_ring_context = kmap(page);
141
142         sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
143 #define COPY_REG(name) \
144         intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145                 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
146 #define COPY_REG_MASKED(name) {\
147                 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
148                                               + RING_CTX_OFF(name.val),\
149                                               &shadow_ring_context->name.val, 4);\
150                 shadow_ring_context->name.val |= 0xffff << 16;\
151         }
152
153         COPY_REG_MASKED(ctx_ctrl);
154         COPY_REG(ctx_timestamp);
155
156         if (workload->engine->id == RCS0) {
157                 COPY_REG(bb_per_ctx_ptr);
158                 COPY_REG(rcs_indirect_ctx);
159                 COPY_REG(rcs_indirect_ctx_offset);
160         }
161 #undef COPY_REG
162 #undef COPY_REG_MASKED
163
164         intel_gvt_hypervisor_read_gpa(vgpu,
165                         workload->ring_context_gpa +
166                         sizeof(*shadow_ring_context),
167                         (void *)shadow_ring_context +
168                         sizeof(*shadow_ring_context),
169                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
170
171         sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
172         kunmap(page);
173
174         if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
175                 return 0;
176
177         gvt_dbg_sched("ring %s workload lrca %x",
178                       workload->engine->name,
179                       workload->ctx_desc.lrca);
180
181         context_page_num = workload->engine->context_size;
182         context_page_num = context_page_num >> PAGE_SHIFT;
183
184         if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
185                 context_page_num = 19;
186
187         i = 2;
188         while (i < context_page_num) {
189                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
190                                 (u32)((workload->ctx_desc.lrca + i) <<
191                                 I915_GTT_PAGE_SHIFT));
192                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
193                         gvt_vgpu_err("Invalid guest context descriptor\n");
194                         return -EFAULT;
195                 }
196
197                 page = i915_gem_object_get_page(ctx_obj, i);
198                 dst = kmap(page);
199                 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
200                                 I915_GTT_PAGE_SIZE);
201                 kunmap(page);
202                 i++;
203         }
204         return 0;
205 }
206
207 static inline bool is_gvt_request(struct i915_request *rq)
208 {
209         return intel_context_force_single_submission(rq->context);
210 }
211
212 static void save_ring_hw_state(struct intel_vgpu *vgpu,
213                                const struct intel_engine_cs *engine)
214 {
215         struct intel_uncore *uncore = engine->uncore;
216         i915_reg_t reg;
217
218         reg = RING_INSTDONE(engine->mmio_base);
219         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
220                 intel_uncore_read(uncore, reg);
221
222         reg = RING_ACTHD(engine->mmio_base);
223         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
224                 intel_uncore_read(uncore, reg);
225
226         reg = RING_ACTHD_UDW(engine->mmio_base);
227         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
228                 intel_uncore_read(uncore, reg);
229 }
230
231 static int shadow_context_status_change(struct notifier_block *nb,
232                 unsigned long action, void *data)
233 {
234         struct i915_request *rq = data;
235         struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
236                                 shadow_ctx_notifier_block[rq->engine->id]);
237         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
238         enum intel_engine_id ring_id = rq->engine->id;
239         struct intel_vgpu_workload *workload;
240         unsigned long flags;
241
242         if (!is_gvt_request(rq)) {
243                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
244                 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
245                     scheduler->engine_owner[ring_id]) {
246                         /* Switch ring from vGPU to host. */
247                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
248                                               NULL, rq->engine);
249                         scheduler->engine_owner[ring_id] = NULL;
250                 }
251                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
252
253                 return NOTIFY_OK;
254         }
255
256         workload = scheduler->current_workload[ring_id];
257         if (unlikely(!workload))
258                 return NOTIFY_OK;
259
260         switch (action) {
261         case INTEL_CONTEXT_SCHEDULE_IN:
262                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
263                 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
264                         /* Switch ring from host to vGPU or vGPU to vGPU. */
265                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
266                                               workload->vgpu, rq->engine);
267                         scheduler->engine_owner[ring_id] = workload->vgpu;
268                 } else
269                         gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
270                                       ring_id, workload->vgpu->id);
271                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
272                 atomic_set(&workload->shadow_ctx_active, 1);
273                 break;
274         case INTEL_CONTEXT_SCHEDULE_OUT:
275                 save_ring_hw_state(workload->vgpu, rq->engine);
276                 atomic_set(&workload->shadow_ctx_active, 0);
277                 break;
278         case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
279                 save_ring_hw_state(workload->vgpu, rq->engine);
280                 break;
281         default:
282                 WARN_ON(1);
283                 return NOTIFY_OK;
284         }
285         wake_up(&workload->shadow_ctx_status_wq);
286         return NOTIFY_OK;
287 }
288
289 static void
290 shadow_context_descriptor_update(struct intel_context *ce,
291                                  struct intel_vgpu_workload *workload)
292 {
293         u64 desc = ce->lrc.desc;
294
295         /*
296          * Update bits 0-11 of the context descriptor which includes flags
297          * like GEN8_CTX_* cached in desc_template
298          */
299         desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
300         desc |= (u64)workload->ctx_desc.addressing_mode <<
301                 GEN8_CTX_ADDRESSING_MODE_SHIFT;
302
303         ce->lrc.desc = desc;
304 }
305
306 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
307 {
308         struct intel_vgpu *vgpu = workload->vgpu;
309         struct i915_request *req = workload->req;
310         void *shadow_ring_buffer_va;
311         u32 *cs;
312         int err;
313
314         if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context))
315                 intel_vgpu_restore_inhibit_context(vgpu, req);
316
317         /*
318          * To track whether a request has started on HW, we can emit a
319          * breadcrumb at the beginning of the request and check its
320          * timeline's HWSP to see if the breadcrumb has advanced past the
321          * start of this request. Actually, the request must have the
322          * init_breadcrumb if its timeline set has_init_bread_crumb, or the
323          * scheduler might get a wrong state of it during reset. Since the
324          * requests from gvt always set the has_init_breadcrumb flag, here
325          * need to do the emit_init_breadcrumb for all the requests.
326          */
327         if (req->engine->emit_init_breadcrumb) {
328                 err = req->engine->emit_init_breadcrumb(req);
329                 if (err) {
330                         gvt_vgpu_err("fail to emit init breadcrumb\n");
331                         return err;
332                 }
333         }
334
335         /* allocate shadow ring buffer */
336         cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
337         if (IS_ERR(cs)) {
338                 gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
339                         workload->rb_len);
340                 return PTR_ERR(cs);
341         }
342
343         shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
344
345         /* get shadow ring buffer va */
346         workload->shadow_ring_buffer_va = cs;
347
348         memcpy(cs, shadow_ring_buffer_va,
349                         workload->rb_len);
350
351         cs += workload->rb_len / sizeof(u32);
352         intel_ring_advance(workload->req, cs);
353
354         return 0;
355 }
356
357 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
358 {
359         if (!wa_ctx->indirect_ctx.obj)
360                 return;
361
362         i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
363         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
364
365         wa_ctx->indirect_ctx.obj = NULL;
366         wa_ctx->indirect_ctx.shadow_va = NULL;
367 }
368
369 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
370                                           struct intel_context *ce)
371 {
372         struct intel_vgpu_mm *mm = workload->shadow_mm;
373         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
374         int i = 0;
375
376         if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
377                 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
378         } else {
379                 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
380                         struct i915_page_directory * const pd =
381                                 i915_pd_entry(ppgtt->pd, i);
382                         /* skip now as current i915 ppgtt alloc won't allocate
383                            top level pdp for non 4-level table, won't impact
384                            shadow ppgtt. */
385                         if (!pd)
386                                 break;
387                         px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
388                 }
389         }
390 }
391
392 static int
393 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
394 {
395         struct intel_vgpu *vgpu = workload->vgpu;
396         struct intel_vgpu_submission *s = &vgpu->submission;
397         struct i915_request *rq;
398
399         if (workload->req)
400                 return 0;
401
402         rq = i915_request_create(s->shadow[workload->engine->id]);
403         if (IS_ERR(rq)) {
404                 gvt_vgpu_err("fail to allocate gem request\n");
405                 return PTR_ERR(rq);
406         }
407
408         workload->req = i915_request_get(rq);
409         return 0;
410 }
411
412 /**
413  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
414  * shadow it as well, include ringbuffer,wa_ctx and ctx.
415  * @workload: an abstract entity for each execlist submission.
416  *
417  * This function is called before the workload submitting to i915, to make
418  * sure the content of the workload is valid.
419  */
420 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
421 {
422         struct intel_vgpu *vgpu = workload->vgpu;
423         struct intel_vgpu_submission *s = &vgpu->submission;
424         int ret;
425
426         lockdep_assert_held(&vgpu->vgpu_lock);
427
428         if (workload->shadow)
429                 return 0;
430
431         if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
432                 shadow_context_descriptor_update(s->shadow[workload->engine->id],
433                                                  workload);
434
435         ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
436         if (ret)
437                 return ret;
438
439         if (workload->engine->id == RCS0 &&
440             workload->wa_ctx.indirect_ctx.size) {
441                 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
442                 if (ret)
443                         goto err_shadow;
444         }
445
446         workload->shadow = true;
447         return 0;
448
449 err_shadow:
450         release_shadow_wa_ctx(&workload->wa_ctx);
451         return ret;
452 }
453
454 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
455
456 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
457 {
458         struct intel_gvt *gvt = workload->vgpu->gvt;
459         const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
460         struct intel_vgpu_shadow_bb *bb;
461         int ret;
462
463         list_for_each_entry(bb, &workload->shadow_bb, list) {
464                 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
465                  * is only updated into ring_scan_buffer, not real ring address
466                  * allocated in later copy_workload_to_ring_buffer. pls be noted
467                  * shadow_ring_buffer_va is now pointed to real ring buffer va
468                  * in copy_workload_to_ring_buffer.
469                  */
470
471                 if (bb->bb_offset)
472                         bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
473                                 + bb->bb_offset;
474
475                 if (bb->ppgtt) {
476                         /* for non-priv bb, scan&shadow is only for
477                          * debugging purpose, so the content of shadow bb
478                          * is the same as original bb. Therefore,
479                          * here, rather than switch to shadow bb's gma
480                          * address, we directly use original batch buffer's
481                          * gma address, and send original bb to hardware
482                          * directly
483                          */
484                         if (bb->clflush & CLFLUSH_AFTER) {
485                                 drm_clflush_virt_range(bb->va,
486                                                 bb->obj->base.size);
487                                 bb->clflush &= ~CLFLUSH_AFTER;
488                         }
489                         i915_gem_object_finish_access(bb->obj);
490                         bb->accessing = false;
491
492                 } else {
493                         bb->vma = i915_gem_object_ggtt_pin(bb->obj,
494                                         NULL, 0, 0, 0);
495                         if (IS_ERR(bb->vma)) {
496                                 ret = PTR_ERR(bb->vma);
497                                 goto err;
498                         }
499
500                         /* relocate shadow batch buffer */
501                         bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
502                         if (gmadr_bytes == 8)
503                                 bb->bb_start_cmd_va[2] = 0;
504
505                         /* No one is going to touch shadow bb from now on. */
506                         if (bb->clflush & CLFLUSH_AFTER) {
507                                 drm_clflush_virt_range(bb->va,
508                                                 bb->obj->base.size);
509                                 bb->clflush &= ~CLFLUSH_AFTER;
510                         }
511
512                         ret = i915_gem_object_set_to_gtt_domain(bb->obj,
513                                                                 false);
514                         if (ret)
515                                 goto err;
516
517                         ret = i915_vma_move_to_active(bb->vma,
518                                                       workload->req,
519                                                       0);
520                         if (ret)
521                                 goto err;
522
523                         i915_gem_object_finish_access(bb->obj);
524                         bb->accessing = false;
525                 }
526         }
527         return 0;
528 err:
529         release_shadow_batch_buffer(workload);
530         return ret;
531 }
532
533 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
534 {
535         struct intel_vgpu_workload *workload =
536                 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
537         struct i915_request *rq = workload->req;
538         struct execlist_ring_context *shadow_ring_context =
539                 (struct execlist_ring_context *)rq->context->lrc_reg_state;
540
541         shadow_ring_context->bb_per_ctx_ptr.val =
542                 (shadow_ring_context->bb_per_ctx_ptr.val &
543                 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
544         shadow_ring_context->rcs_indirect_ctx.val =
545                 (shadow_ring_context->rcs_indirect_ctx.val &
546                 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
547 }
548
549 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
550 {
551         struct i915_vma *vma;
552         unsigned char *per_ctx_va =
553                 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
554                 wa_ctx->indirect_ctx.size;
555
556         if (wa_ctx->indirect_ctx.size == 0)
557                 return 0;
558
559         vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
560                                        0, CACHELINE_BYTES, 0);
561         if (IS_ERR(vma))
562                 return PTR_ERR(vma);
563
564         /* FIXME: we are not tracking our pinned VMA leaving it
565          * up to the core to fix up the stray pin_count upon
566          * free.
567          */
568
569         wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
570
571         wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
572         memset(per_ctx_va, 0, CACHELINE_BYTES);
573
574         update_wa_ctx_2_shadow_ctx(wa_ctx);
575         return 0;
576 }
577
578 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
579 {
580         vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
581                 workload->rb_start;
582 }
583
584 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
585 {
586         struct intel_vgpu_shadow_bb *bb, *pos;
587
588         if (list_empty(&workload->shadow_bb))
589                 return;
590
591         bb = list_first_entry(&workload->shadow_bb,
592                         struct intel_vgpu_shadow_bb, list);
593
594         list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
595                 if (bb->obj) {
596                         if (bb->accessing)
597                                 i915_gem_object_finish_access(bb->obj);
598
599                         if (bb->va && !IS_ERR(bb->va))
600                                 i915_gem_object_unpin_map(bb->obj);
601
602                         if (bb->vma && !IS_ERR(bb->vma)) {
603                                 i915_vma_unpin(bb->vma);
604                                 i915_vma_close(bb->vma);
605                         }
606                         i915_gem_object_put(bb->obj);
607                 }
608                 list_del(&bb->list);
609                 kfree(bb);
610         }
611 }
612
613 static int prepare_workload(struct intel_vgpu_workload *workload)
614 {
615         struct intel_vgpu *vgpu = workload->vgpu;
616         struct intel_vgpu_submission *s = &vgpu->submission;
617         int ret = 0;
618
619         ret = intel_vgpu_pin_mm(workload->shadow_mm);
620         if (ret) {
621                 gvt_vgpu_err("fail to vgpu pin mm\n");
622                 return ret;
623         }
624
625         if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
626             !workload->shadow_mm->ppgtt_mm.shadowed) {
627                 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
628                 return -EINVAL;
629         }
630
631         update_shadow_pdps(workload);
632
633         set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
634
635         ret = intel_vgpu_sync_oos_pages(workload->vgpu);
636         if (ret) {
637                 gvt_vgpu_err("fail to vgpu sync oos pages\n");
638                 goto err_unpin_mm;
639         }
640
641         ret = intel_vgpu_flush_post_shadow(workload->vgpu);
642         if (ret) {
643                 gvt_vgpu_err("fail to flush post shadow\n");
644                 goto err_unpin_mm;
645         }
646
647         ret = copy_workload_to_ring_buffer(workload);
648         if (ret) {
649                 gvt_vgpu_err("fail to generate request\n");
650                 goto err_unpin_mm;
651         }
652
653         ret = prepare_shadow_batch_buffer(workload);
654         if (ret) {
655                 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
656                 goto err_unpin_mm;
657         }
658
659         ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
660         if (ret) {
661                 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
662                 goto err_shadow_batch;
663         }
664
665         if (workload->prepare) {
666                 ret = workload->prepare(workload);
667                 if (ret)
668                         goto err_shadow_wa_ctx;
669         }
670
671         return 0;
672 err_shadow_wa_ctx:
673         release_shadow_wa_ctx(&workload->wa_ctx);
674 err_shadow_batch:
675         release_shadow_batch_buffer(workload);
676 err_unpin_mm:
677         intel_vgpu_unpin_mm(workload->shadow_mm);
678         return ret;
679 }
680
681 static int dispatch_workload(struct intel_vgpu_workload *workload)
682 {
683         struct intel_vgpu *vgpu = workload->vgpu;
684         struct i915_request *rq;
685         int ret;
686
687         gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
688                       workload->engine->name, workload);
689
690         mutex_lock(&vgpu->vgpu_lock);
691
692         ret = intel_gvt_workload_req_alloc(workload);
693         if (ret)
694                 goto err_req;
695
696         ret = intel_gvt_scan_and_shadow_workload(workload);
697         if (ret)
698                 goto out;
699
700         ret = populate_shadow_context(workload);
701         if (ret) {
702                 release_shadow_wa_ctx(&workload->wa_ctx);
703                 goto out;
704         }
705
706         ret = prepare_workload(workload);
707 out:
708         if (ret) {
709                 /* We might still need to add request with
710                  * clean ctx to retire it properly..
711                  */
712                 rq = fetch_and_zero(&workload->req);
713                 i915_request_put(rq);
714         }
715
716         if (!IS_ERR_OR_NULL(workload->req)) {
717                 gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
718                               workload->engine->name, workload->req);
719                 i915_request_add(workload->req);
720                 workload->dispatched = true;
721         }
722 err_req:
723         if (ret)
724                 workload->status = ret;
725         mutex_unlock(&vgpu->vgpu_lock);
726         return ret;
727 }
728
729 static struct intel_vgpu_workload *
730 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
731 {
732         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
733         struct intel_vgpu_workload *workload = NULL;
734
735         mutex_lock(&gvt->sched_lock);
736
737         /*
738          * no current vgpu / will be scheduled out / no workload
739          * bail out
740          */
741         if (!scheduler->current_vgpu) {
742                 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
743                 goto out;
744         }
745
746         if (scheduler->need_reschedule) {
747                 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
748                 goto out;
749         }
750
751         if (!scheduler->current_vgpu->active ||
752             list_empty(workload_q_head(scheduler->current_vgpu, engine)))
753                 goto out;
754
755         /*
756          * still have current workload, maybe the workload disptacher
757          * fail to submit it for some reason, resubmit it.
758          */
759         if (scheduler->current_workload[engine->id]) {
760                 workload = scheduler->current_workload[engine->id];
761                 gvt_dbg_sched("ring %s still have current workload %p\n",
762                               engine->name, workload);
763                 goto out;
764         }
765
766         /*
767          * pick a workload as current workload
768          * once current workload is set, schedule policy routines
769          * will wait the current workload is finished when trying to
770          * schedule out a vgpu.
771          */
772         scheduler->current_workload[engine->id] =
773                 list_first_entry(workload_q_head(scheduler->current_vgpu,
774                                                  engine),
775                                  struct intel_vgpu_workload, list);
776
777         workload = scheduler->current_workload[engine->id];
778
779         gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
780
781         atomic_inc(&workload->vgpu->submission.running_workload_num);
782 out:
783         mutex_unlock(&gvt->sched_lock);
784         return workload;
785 }
786
787 static void update_guest_context(struct intel_vgpu_workload *workload)
788 {
789         struct i915_request *rq = workload->req;
790         struct intel_vgpu *vgpu = workload->vgpu;
791         struct drm_i915_gem_object *ctx_obj = rq->context->state->obj;
792         struct execlist_ring_context *shadow_ring_context;
793         struct page *page;
794         void *src;
795         unsigned long context_gpa, context_page_num;
796         int i;
797         u32 ring_base;
798         u32 head, tail;
799         u16 wrap_count;
800
801         gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
802                       workload->ctx_desc.lrca);
803
804         head = workload->rb_head;
805         tail = workload->rb_tail;
806         wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
807
808         if (tail < head) {
809                 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
810                         wrap_count = 0;
811                 else
812                         wrap_count += 1;
813         }
814
815         head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
816
817         ring_base = rq->engine->mmio_base;
818         vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
819         vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
820
821         context_page_num = rq->engine->context_size;
822         context_page_num = context_page_num >> PAGE_SHIFT;
823
824         if (IS_BROADWELL(rq->i915) && rq->engine->id == RCS0)
825                 context_page_num = 19;
826
827         i = 2;
828
829         while (i < context_page_num) {
830                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
831                                 (u32)((workload->ctx_desc.lrca + i) <<
832                                         I915_GTT_PAGE_SHIFT));
833                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
834                         gvt_vgpu_err("invalid guest context descriptor\n");
835                         return;
836                 }
837
838                 page = i915_gem_object_get_page(ctx_obj, i);
839                 src = kmap(page);
840                 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
841                                 I915_GTT_PAGE_SIZE);
842                 kunmap(page);
843                 i++;
844         }
845
846         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
847                 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
848
849         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
850         shadow_ring_context = kmap(page);
851
852 #define COPY_REG(name) \
853         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
854                 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
855
856         COPY_REG(ctx_ctrl);
857         COPY_REG(ctx_timestamp);
858
859 #undef COPY_REG
860
861         intel_gvt_hypervisor_write_gpa(vgpu,
862                         workload->ring_context_gpa +
863                         sizeof(*shadow_ring_context),
864                         (void *)shadow_ring_context +
865                         sizeof(*shadow_ring_context),
866                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
867
868         kunmap(page);
869 }
870
871 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
872                                 intel_engine_mask_t engine_mask)
873 {
874         struct intel_vgpu_submission *s = &vgpu->submission;
875         struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
876         struct intel_engine_cs *engine;
877         struct intel_vgpu_workload *pos, *n;
878         intel_engine_mask_t tmp;
879
880         /* free the unsubmited workloads in the queues. */
881         for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
882                 list_for_each_entry_safe(pos, n,
883                         &s->workload_q_head[engine->id], list) {
884                         list_del_init(&pos->list);
885                         intel_vgpu_destroy_workload(pos);
886                 }
887                 clear_bit(engine->id, s->shadow_ctx_desc_updated);
888         }
889 }
890
891 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
892 {
893         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
894         struct intel_vgpu_workload *workload =
895                 scheduler->current_workload[ring_id];
896         struct intel_vgpu *vgpu = workload->vgpu;
897         struct intel_vgpu_submission *s = &vgpu->submission;
898         struct i915_request *rq = workload->req;
899         int event;
900
901         mutex_lock(&vgpu->vgpu_lock);
902         mutex_lock(&gvt->sched_lock);
903
904         /* For the workload w/ request, needs to wait for the context
905          * switch to make sure request is completed.
906          * For the workload w/o request, directly complete the workload.
907          */
908         if (rq) {
909                 wait_event(workload->shadow_ctx_status_wq,
910                            !atomic_read(&workload->shadow_ctx_active));
911
912                 /* If this request caused GPU hang, req->fence.error will
913                  * be set to -EIO. Use -EIO to set workload status so
914                  * that when this request caused GPU hang, didn't trigger
915                  * context switch interrupt to guest.
916                  */
917                 if (likely(workload->status == -EINPROGRESS)) {
918                         if (workload->req->fence.error == -EIO)
919                                 workload->status = -EIO;
920                         else
921                                 workload->status = 0;
922                 }
923
924                 if (!workload->status &&
925                     !(vgpu->resetting_eng & BIT(ring_id))) {
926                         update_guest_context(workload);
927
928                         for_each_set_bit(event, workload->pending_events,
929                                          INTEL_GVT_EVENT_MAX)
930                                 intel_vgpu_trigger_virtual_event(vgpu, event);
931                 }
932
933                 i915_request_put(fetch_and_zero(&workload->req));
934         }
935
936         gvt_dbg_sched("ring id %d complete workload %p status %d\n",
937                         ring_id, workload, workload->status);
938
939         scheduler->current_workload[ring_id] = NULL;
940
941         list_del_init(&workload->list);
942
943         if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
944                 /* if workload->status is not successful means HW GPU
945                  * has occurred GPU hang or something wrong with i915/GVT,
946                  * and GVT won't inject context switch interrupt to guest.
947                  * So this error is a vGPU hang actually to the guest.
948                  * According to this we should emunlate a vGPU hang. If
949                  * there are pending workloads which are already submitted
950                  * from guest, we should clean them up like HW GPU does.
951                  *
952                  * if it is in middle of engine resetting, the pending
953                  * workloads won't be submitted to HW GPU and will be
954                  * cleaned up during the resetting process later, so doing
955                  * the workload clean up here doesn't have any impact.
956                  **/
957                 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
958         }
959
960         workload->complete(workload);
961
962         atomic_dec(&s->running_workload_num);
963         wake_up(&scheduler->workload_complete_wq);
964
965         if (gvt->scheduler.need_reschedule)
966                 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
967
968         mutex_unlock(&gvt->sched_lock);
969         mutex_unlock(&vgpu->vgpu_lock);
970 }
971
972 static int workload_thread(void *arg)
973 {
974         struct intel_engine_cs *engine = arg;
975         const bool need_force_wake = INTEL_GEN(engine->i915) >= 9;
976         struct intel_gvt *gvt = engine->i915->gvt;
977         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
978         struct intel_vgpu_workload *workload = NULL;
979         struct intel_vgpu *vgpu = NULL;
980         int ret;
981         DEFINE_WAIT_FUNC(wait, woken_wake_function);
982
983         gvt_dbg_core("workload thread for ring %s started\n", engine->name);
984
985         while (!kthread_should_stop()) {
986                 intel_wakeref_t wakeref;
987
988                 add_wait_queue(&scheduler->waitq[engine->id], &wait);
989                 do {
990                         workload = pick_next_workload(gvt, engine);
991                         if (workload)
992                                 break;
993                         wait_woken(&wait, TASK_INTERRUPTIBLE,
994                                    MAX_SCHEDULE_TIMEOUT);
995                 } while (!kthread_should_stop());
996                 remove_wait_queue(&scheduler->waitq[engine->id], &wait);
997
998                 if (!workload)
999                         break;
1000
1001                 gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1002                               engine->name, workload,
1003                               workload->vgpu->id);
1004
1005                 wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1006
1007                 gvt_dbg_sched("ring %s will dispatch workload %p\n",
1008                               engine->name, workload);
1009
1010                 if (need_force_wake)
1011                         intel_uncore_forcewake_get(engine->uncore,
1012                                                    FORCEWAKE_ALL);
1013                 /*
1014                  * Update the vReg of the vGPU which submitted this
1015                  * workload. The vGPU may use these registers for checking
1016                  * the context state. The value comes from GPU commands
1017                  * in this workload.
1018                  */
1019                 update_vreg_in_ctx(workload);
1020
1021                 ret = dispatch_workload(workload);
1022
1023                 if (ret) {
1024                         vgpu = workload->vgpu;
1025                         gvt_vgpu_err("fail to dispatch workload, skip\n");
1026                         goto complete;
1027                 }
1028
1029                 gvt_dbg_sched("ring %s wait workload %p\n",
1030                               engine->name, workload);
1031                 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1032
1033 complete:
1034                 gvt_dbg_sched("will complete workload %p, status: %d\n",
1035                               workload, workload->status);
1036
1037                 complete_current_workload(gvt, engine->id);
1038
1039                 if (need_force_wake)
1040                         intel_uncore_forcewake_put(engine->uncore,
1041                                                    FORCEWAKE_ALL);
1042
1043                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1044                 if (ret && (vgpu_is_vm_unhealthy(ret)))
1045                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1046         }
1047         return 0;
1048 }
1049
1050 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1051 {
1052         struct intel_vgpu_submission *s = &vgpu->submission;
1053         struct intel_gvt *gvt = vgpu->gvt;
1054         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1055
1056         if (atomic_read(&s->running_workload_num)) {
1057                 gvt_dbg_sched("wait vgpu idle\n");
1058
1059                 wait_event(scheduler->workload_complete_wq,
1060                                 !atomic_read(&s->running_workload_num));
1061         }
1062 }
1063
1064 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1065 {
1066         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1067         struct intel_engine_cs *engine;
1068         enum intel_engine_id i;
1069
1070         gvt_dbg_core("clean workload scheduler\n");
1071
1072         for_each_engine(engine, gvt->gt, i) {
1073                 atomic_notifier_chain_unregister(
1074                                         &engine->context_status_notifier,
1075                                         &gvt->shadow_ctx_notifier_block[i]);
1076                 kthread_stop(scheduler->thread[i]);
1077         }
1078 }
1079
1080 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1081 {
1082         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1083         struct intel_engine_cs *engine;
1084         enum intel_engine_id i;
1085         int ret;
1086
1087         gvt_dbg_core("init workload scheduler\n");
1088
1089         init_waitqueue_head(&scheduler->workload_complete_wq);
1090
1091         for_each_engine(engine, gvt->gt, i) {
1092                 init_waitqueue_head(&scheduler->waitq[i]);
1093
1094                 scheduler->thread[i] = kthread_run(workload_thread, engine,
1095                                                    "gvt:%s", engine->name);
1096                 if (IS_ERR(scheduler->thread[i])) {
1097                         gvt_err("fail to create workload thread\n");
1098                         ret = PTR_ERR(scheduler->thread[i]);
1099                         goto err;
1100                 }
1101
1102                 gvt->shadow_ctx_notifier_block[i].notifier_call =
1103                                         shadow_context_status_change;
1104                 atomic_notifier_chain_register(&engine->context_status_notifier,
1105                                         &gvt->shadow_ctx_notifier_block[i]);
1106         }
1107
1108         return 0;
1109
1110 err:
1111         intel_gvt_clean_workload_scheduler(gvt);
1112         return ret;
1113 }
1114
1115 static void
1116 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1117                                 struct i915_ppgtt *ppgtt)
1118 {
1119         int i;
1120
1121         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1122                 px_dma(ppgtt->pd) = s->i915_context_pml4;
1123         } else {
1124                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1125                         struct i915_page_directory * const pd =
1126                                 i915_pd_entry(ppgtt->pd, i);
1127
1128                         px_dma(pd) = s->i915_context_pdps[i];
1129                 }
1130         }
1131 }
1132
1133 /**
1134  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1135  * @vgpu: a vGPU
1136  *
1137  * This function is called when a vGPU is being destroyed.
1138  *
1139  */
1140 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1141 {
1142         struct intel_vgpu_submission *s = &vgpu->submission;
1143         struct intel_engine_cs *engine;
1144         enum intel_engine_id id;
1145
1146         intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1147
1148         i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1149         for_each_engine(engine, vgpu->gvt->gt, id)
1150                 intel_context_unpin(s->shadow[id]);
1151
1152         kmem_cache_destroy(s->workloads);
1153 }
1154
1155
1156 /**
1157  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1158  * @vgpu: a vGPU
1159  * @engine_mask: engines expected to be reset
1160  *
1161  * This function is called when a vGPU is being destroyed.
1162  *
1163  */
1164 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1165                                  intel_engine_mask_t engine_mask)
1166 {
1167         struct intel_vgpu_submission *s = &vgpu->submission;
1168
1169         if (!s->active)
1170                 return;
1171
1172         intel_vgpu_clean_workloads(vgpu, engine_mask);
1173         s->ops->reset(vgpu, engine_mask);
1174 }
1175
1176 static void
1177 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1178                              struct i915_ppgtt *ppgtt)
1179 {
1180         int i;
1181
1182         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1183                 s->i915_context_pml4 = px_dma(ppgtt->pd);
1184         } else {
1185                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1186                         struct i915_page_directory * const pd =
1187                                 i915_pd_entry(ppgtt->pd, i);
1188
1189                         s->i915_context_pdps[i] = px_dma(pd);
1190                 }
1191         }
1192 }
1193
1194 /**
1195  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1196  * @vgpu: a vGPU
1197  *
1198  * This function is called when a vGPU is being created.
1199  *
1200  * Returns:
1201  * Zero on success, negative error code if failed.
1202  *
1203  */
1204 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1205 {
1206         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1207         struct intel_vgpu_submission *s = &vgpu->submission;
1208         struct intel_engine_cs *engine;
1209         struct i915_ppgtt *ppgtt;
1210         enum intel_engine_id i;
1211         int ret;
1212
1213         ppgtt = i915_ppgtt_create(&i915->gt);
1214         if (IS_ERR(ppgtt))
1215                 return PTR_ERR(ppgtt);
1216
1217         i915_context_ppgtt_root_save(s, ppgtt);
1218
1219         for_each_engine(engine, vgpu->gvt->gt, i) {
1220                 struct intel_context *ce;
1221
1222                 INIT_LIST_HEAD(&s->workload_q_head[i]);
1223                 s->shadow[i] = ERR_PTR(-EINVAL);
1224
1225                 ce = intel_context_create(engine);
1226                 if (IS_ERR(ce)) {
1227                         ret = PTR_ERR(ce);
1228                         goto out_shadow_ctx;
1229                 }
1230
1231                 i915_vm_put(ce->vm);
1232                 ce->vm = i915_vm_get(&ppgtt->vm);
1233                 intel_context_set_single_submission(ce);
1234
1235                 /* Max ring buffer size */
1236                 if (!intel_uc_wants_guc_submission(&engine->gt->uc)) {
1237                         const unsigned int ring_size = 512 * SZ_4K;
1238
1239                         ce->ring = __intel_context_ring_size(ring_size);
1240                 }
1241
1242                 ret = intel_context_pin(ce);
1243                 intel_context_put(ce);
1244                 if (ret)
1245                         goto out_shadow_ctx;
1246
1247                 s->shadow[i] = ce;
1248         }
1249
1250         bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1251
1252         s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1253                                                   sizeof(struct intel_vgpu_workload), 0,
1254                                                   SLAB_HWCACHE_ALIGN,
1255                                                   offsetof(struct intel_vgpu_workload, rb_tail),
1256                                                   sizeof_field(struct intel_vgpu_workload, rb_tail),
1257                                                   NULL);
1258
1259         if (!s->workloads) {
1260                 ret = -ENOMEM;
1261                 goto out_shadow_ctx;
1262         }
1263
1264         atomic_set(&s->running_workload_num, 0);
1265         bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1266
1267         i915_vm_put(&ppgtt->vm);
1268         return 0;
1269
1270 out_shadow_ctx:
1271         i915_context_ppgtt_root_restore(s, ppgtt);
1272         for_each_engine(engine, vgpu->gvt->gt, i) {
1273                 if (IS_ERR(s->shadow[i]))
1274                         break;
1275
1276                 intel_context_unpin(s->shadow[i]);
1277                 intel_context_put(s->shadow[i]);
1278         }
1279         i915_vm_put(&ppgtt->vm);
1280         return ret;
1281 }
1282
1283 /**
1284  * intel_vgpu_select_submission_ops - select virtual submission interface
1285  * @vgpu: a vGPU
1286  * @engine_mask: either ALL_ENGINES or target engine mask
1287  * @interface: expected vGPU virtual submission interface
1288  *
1289  * This function is called when guest configures submission interface.
1290  *
1291  * Returns:
1292  * Zero on success, negative error code if failed.
1293  *
1294  */
1295 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1296                                      intel_engine_mask_t engine_mask,
1297                                      unsigned int interface)
1298 {
1299         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1300         struct intel_vgpu_submission *s = &vgpu->submission;
1301         const struct intel_vgpu_submission_ops *ops[] = {
1302                 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1303                         &intel_vgpu_execlist_submission_ops,
1304         };
1305         int ret;
1306
1307         if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1308                 return -EINVAL;
1309
1310         if (drm_WARN_ON(&i915->drm,
1311                         interface == 0 && engine_mask != ALL_ENGINES))
1312                 return -EINVAL;
1313
1314         if (s->active)
1315                 s->ops->clean(vgpu, engine_mask);
1316
1317         if (interface == 0) {
1318                 s->ops = NULL;
1319                 s->virtual_submission_interface = 0;
1320                 s->active = false;
1321                 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1322                 return 0;
1323         }
1324
1325         ret = ops[interface]->init(vgpu, engine_mask);
1326         if (ret)
1327                 return ret;
1328
1329         s->ops = ops[interface];
1330         s->virtual_submission_interface = interface;
1331         s->active = true;
1332
1333         gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1334                         vgpu->id, s->ops->name);
1335
1336         return 0;
1337 }
1338
1339 /**
1340  * intel_vgpu_destroy_workload - destroy a vGPU workload
1341  * @workload: workload to destroy
1342  *
1343  * This function is called when destroy a vGPU workload.
1344  *
1345  */
1346 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1347 {
1348         struct intel_vgpu_submission *s = &workload->vgpu->submission;
1349
1350         release_shadow_batch_buffer(workload);
1351         release_shadow_wa_ctx(&workload->wa_ctx);
1352
1353         if (workload->shadow_mm)
1354                 intel_vgpu_mm_put(workload->shadow_mm);
1355
1356         kmem_cache_free(s->workloads, workload);
1357 }
1358
1359 static struct intel_vgpu_workload *
1360 alloc_workload(struct intel_vgpu *vgpu)
1361 {
1362         struct intel_vgpu_submission *s = &vgpu->submission;
1363         struct intel_vgpu_workload *workload;
1364
1365         workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1366         if (!workload)
1367                 return ERR_PTR(-ENOMEM);
1368
1369         INIT_LIST_HEAD(&workload->list);
1370         INIT_LIST_HEAD(&workload->shadow_bb);
1371
1372         init_waitqueue_head(&workload->shadow_ctx_status_wq);
1373         atomic_set(&workload->shadow_ctx_active, 0);
1374
1375         workload->status = -EINPROGRESS;
1376         workload->vgpu = vgpu;
1377
1378         return workload;
1379 }
1380
1381 #define RING_CTX_OFF(x) \
1382         offsetof(struct execlist_ring_context, x)
1383
1384 static void read_guest_pdps(struct intel_vgpu *vgpu,
1385                 u64 ring_context_gpa, u32 pdp[8])
1386 {
1387         u64 gpa;
1388         int i;
1389
1390         gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1391
1392         for (i = 0; i < 8; i++)
1393                 intel_gvt_hypervisor_read_gpa(vgpu,
1394                                 gpa + i * 8, &pdp[7 - i], 4);
1395 }
1396
1397 static int prepare_mm(struct intel_vgpu_workload *workload)
1398 {
1399         struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1400         struct intel_vgpu_mm *mm;
1401         struct intel_vgpu *vgpu = workload->vgpu;
1402         enum intel_gvt_gtt_type root_entry_type;
1403         u64 pdps[GVT_RING_CTX_NR_PDPS];
1404
1405         switch (desc->addressing_mode) {
1406         case 1: /* legacy 32-bit */
1407                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1408                 break;
1409         case 3: /* legacy 64-bit */
1410                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1411                 break;
1412         default:
1413                 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1414                 return -EINVAL;
1415         }
1416
1417         read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1418
1419         mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1420         if (IS_ERR(mm))
1421                 return PTR_ERR(mm);
1422
1423         workload->shadow_mm = mm;
1424         return 0;
1425 }
1426
1427 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1428                 ((a)->lrca == (b)->lrca))
1429
1430 /**
1431  * intel_vgpu_create_workload - create a vGPU workload
1432  * @vgpu: a vGPU
1433  * @engine: the engine
1434  * @desc: a guest context descriptor
1435  *
1436  * This function is called when creating a vGPU workload.
1437  *
1438  * Returns:
1439  * struct intel_vgpu_workload * on success, negative error code in
1440  * pointer if failed.
1441  *
1442  */
1443 struct intel_vgpu_workload *
1444 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1445                            const struct intel_engine_cs *engine,
1446                            struct execlist_ctx_descriptor_format *desc)
1447 {
1448         struct intel_vgpu_submission *s = &vgpu->submission;
1449         struct list_head *q = workload_q_head(vgpu, engine);
1450         struct intel_vgpu_workload *last_workload = NULL;
1451         struct intel_vgpu_workload *workload = NULL;
1452         u64 ring_context_gpa;
1453         u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1454         u32 guest_head;
1455         int ret;
1456
1457         ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1458                         (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1459         if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1460                 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1461                 return ERR_PTR(-EINVAL);
1462         }
1463
1464         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1465                         RING_CTX_OFF(ring_header.val), &head, 4);
1466
1467         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1468                         RING_CTX_OFF(ring_tail.val), &tail, 4);
1469
1470         guest_head = head;
1471
1472         head &= RB_HEAD_OFF_MASK;
1473         tail &= RB_TAIL_OFF_MASK;
1474
1475         list_for_each_entry_reverse(last_workload, q, list) {
1476
1477                 if (same_context(&last_workload->ctx_desc, desc)) {
1478                         gvt_dbg_el("ring %s cur workload == last\n",
1479                                    engine->name);
1480                         gvt_dbg_el("ctx head %x real head %lx\n", head,
1481                                    last_workload->rb_tail);
1482                         /*
1483                          * cannot use guest context head pointer here,
1484                          * as it might not be updated at this time
1485                          */
1486                         head = last_workload->rb_tail;
1487                         break;
1488                 }
1489         }
1490
1491         gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1492
1493         /* record some ring buffer register values for scan and shadow */
1494         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1495                         RING_CTX_OFF(rb_start.val), &start, 4);
1496         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1497                         RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1498         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1499                         RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1500
1501         if (!intel_gvt_ggtt_validate_range(vgpu, start,
1502                                 _RING_CTL_BUF_SIZE(ctl))) {
1503                 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1504                 return ERR_PTR(-EINVAL);
1505         }
1506
1507         workload = alloc_workload(vgpu);
1508         if (IS_ERR(workload))
1509                 return workload;
1510
1511         workload->engine = engine;
1512         workload->ctx_desc = *desc;
1513         workload->ring_context_gpa = ring_context_gpa;
1514         workload->rb_head = head;
1515         workload->guest_rb_head = guest_head;
1516         workload->rb_tail = tail;
1517         workload->rb_start = start;
1518         workload->rb_ctl = ctl;
1519
1520         if (engine->id == RCS0) {
1521                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1522                         RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1523                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1524                         RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1525
1526                 workload->wa_ctx.indirect_ctx.guest_gma =
1527                         indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1528                 workload->wa_ctx.indirect_ctx.size =
1529                         (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1530                         CACHELINE_BYTES;
1531
1532                 if (workload->wa_ctx.indirect_ctx.size != 0) {
1533                         if (!intel_gvt_ggtt_validate_range(vgpu,
1534                                 workload->wa_ctx.indirect_ctx.guest_gma,
1535                                 workload->wa_ctx.indirect_ctx.size)) {
1536                                 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1537                                     workload->wa_ctx.indirect_ctx.guest_gma);
1538                                 kmem_cache_free(s->workloads, workload);
1539                                 return ERR_PTR(-EINVAL);
1540                         }
1541                 }
1542
1543                 workload->wa_ctx.per_ctx.guest_gma =
1544                         per_ctx & PER_CTX_ADDR_MASK;
1545                 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1546                 if (workload->wa_ctx.per_ctx.valid) {
1547                         if (!intel_gvt_ggtt_validate_range(vgpu,
1548                                 workload->wa_ctx.per_ctx.guest_gma,
1549                                 CACHELINE_BYTES)) {
1550                                 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1551                                         workload->wa_ctx.per_ctx.guest_gma);
1552                                 kmem_cache_free(s->workloads, workload);
1553                                 return ERR_PTR(-EINVAL);
1554                         }
1555                 }
1556         }
1557
1558         gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1559                    workload, engine->name, head, tail, start, ctl);
1560
1561         ret = prepare_mm(workload);
1562         if (ret) {
1563                 kmem_cache_free(s->workloads, workload);
1564                 return ERR_PTR(ret);
1565         }
1566
1567         /* Only scan and shadow the first workload in the queue
1568          * as there is only one pre-allocated buf-obj for shadow.
1569          */
1570         if (list_empty(q)) {
1571                 intel_wakeref_t wakeref;
1572
1573                 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1574                         ret = intel_gvt_scan_and_shadow_workload(workload);
1575         }
1576
1577         if (ret) {
1578                 if (vgpu_is_vm_unhealthy(ret))
1579                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1580                 intel_vgpu_destroy_workload(workload);
1581                 return ERR_PTR(ret);
1582         }
1583
1584         return workload;
1585 }
1586
1587 /**
1588  * intel_vgpu_queue_workload - Qeue a vGPU workload
1589  * @workload: the workload to queue in
1590  */
1591 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1592 {
1593         list_add_tail(&workload->list,
1594                       workload_q_head(workload->vgpu, workload->engine));
1595         intel_gvt_kick_schedule(workload->vgpu->gvt);
1596         wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1597 }