Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / i915 / gt / intel_engine.h
1 /* SPDX-License-Identifier: MIT */
2 #ifndef _INTEL_RINGBUFFER_H_
3 #define _INTEL_RINGBUFFER_H_
4
5 #include <drm/drm_util.h>
6
7 #include <linux/hashtable.h>
8 #include <linux/irq_work.h>
9 #include <linux/random.h>
10 #include <linux/seqlock.h>
11
12 #include "i915_gem_batch_pool.h"
13 #include "i915_pmu.h"
14 #include "i915_reg.h"
15 #include "i915_request.h"
16 #include "i915_selftest.h"
17 #include "i915_timeline.h"
18 #include "intel_engine_types.h"
19 #include "intel_gpu_commands.h"
20 #include "intel_workarounds.h"
21
22 struct drm_printer;
23
24 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
25  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
26  * to give some inclination as to some of the magic values used in the various
27  * workarounds!
28  */
29 #define CACHELINE_BYTES 64
30 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(u32))
31
32 /*
33  * The register defines to be used with the following macros need to accept a
34  * base param, e.g:
35  *
36  * REG_FOO(base) _MMIO((base) + <relative offset>)
37  * ENGINE_READ(engine, REG_FOO);
38  *
39  * register arrays are to be defined and accessed as follows:
40  *
41  * REG_BAR(base, i) _MMIO((base) + <relative offset> + (i) * <shift>)
42  * ENGINE_READ_IDX(engine, REG_BAR, i)
43  */
44
45 #define __ENGINE_REG_OP(op__, engine__, ...) \
46         intel_uncore_##op__((engine__)->uncore, __VA_ARGS__)
47
48 #define __ENGINE_READ_OP(op__, engine__, reg__) \
49         __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base))
50
51 #define ENGINE_READ16(...)      __ENGINE_READ_OP(read16, __VA_ARGS__)
52 #define ENGINE_READ(...)        __ENGINE_READ_OP(read, __VA_ARGS__)
53 #define ENGINE_READ_FW(...)     __ENGINE_READ_OP(read_fw, __VA_ARGS__)
54 #define ENGINE_POSTING_READ(...) __ENGINE_READ_OP(posting_read, __VA_ARGS__)
55 #define ENGINE_POSTING_READ16(...) __ENGINE_READ_OP(posting_read16, __VA_ARGS__)
56
57 #define ENGINE_READ64(engine__, lower_reg__, upper_reg__) \
58         __ENGINE_REG_OP(read64_2x32, (engine__), \
59                         lower_reg__((engine__)->mmio_base), \
60                         upper_reg__((engine__)->mmio_base))
61
62 #define ENGINE_READ_IDX(engine__, reg__, idx__) \
63         __ENGINE_REG_OP(read, (engine__), reg__((engine__)->mmio_base, (idx__)))
64
65 #define __ENGINE_WRITE_OP(op__, engine__, reg__, val__) \
66         __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base), (val__))
67
68 #define ENGINE_WRITE16(...)     __ENGINE_WRITE_OP(write16, __VA_ARGS__)
69 #define ENGINE_WRITE(...)       __ENGINE_WRITE_OP(write, __VA_ARGS__)
70 #define ENGINE_WRITE_FW(...)    __ENGINE_WRITE_OP(write_fw, __VA_ARGS__)
71
72 #define GEN6_RING_FAULT_REG_READ(engine__) \
73         intel_uncore_read((engine__)->uncore, RING_FAULT_REG(engine__))
74
75 #define GEN6_RING_FAULT_REG_POSTING_READ(engine__) \
76         intel_uncore_posting_read((engine__)->uncore, RING_FAULT_REG(engine__))
77
78 #define GEN6_RING_FAULT_REG_RMW(engine__, clear__, set__) \
79 ({ \
80         u32 __val; \
81 \
82         __val = intel_uncore_read((engine__)->uncore, \
83                                   RING_FAULT_REG(engine__)); \
84         __val &= ~(clear__); \
85         __val |= (set__); \
86         intel_uncore_write((engine__)->uncore, RING_FAULT_REG(engine__), \
87                            __val); \
88 })
89
90 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
91  * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
92  */
93 enum intel_engine_hangcheck_action {
94         ENGINE_IDLE = 0,
95         ENGINE_WAIT,
96         ENGINE_ACTIVE_SEQNO,
97         ENGINE_ACTIVE_HEAD,
98         ENGINE_ACTIVE_SUBUNITS,
99         ENGINE_WAIT_KICK,
100         ENGINE_DEAD,
101 };
102
103 static inline const char *
104 hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
105 {
106         switch (a) {
107         case ENGINE_IDLE:
108                 return "idle";
109         case ENGINE_WAIT:
110                 return "wait";
111         case ENGINE_ACTIVE_SEQNO:
112                 return "active seqno";
113         case ENGINE_ACTIVE_HEAD:
114                 return "active head";
115         case ENGINE_ACTIVE_SUBUNITS:
116                 return "active subunits";
117         case ENGINE_WAIT_KICK:
118                 return "wait kick";
119         case ENGINE_DEAD:
120                 return "dead";
121         }
122
123         return "unknown";
124 }
125
126 void intel_engines_set_scheduler_caps(struct drm_i915_private *i915);
127
128 static inline void
129 execlists_set_active(struct intel_engine_execlists *execlists,
130                      unsigned int bit)
131 {
132         __set_bit(bit, (unsigned long *)&execlists->active);
133 }
134
135 static inline bool
136 execlists_set_active_once(struct intel_engine_execlists *execlists,
137                           unsigned int bit)
138 {
139         return !__test_and_set_bit(bit, (unsigned long *)&execlists->active);
140 }
141
142 static inline void
143 execlists_clear_active(struct intel_engine_execlists *execlists,
144                        unsigned int bit)
145 {
146         __clear_bit(bit, (unsigned long *)&execlists->active);
147 }
148
149 static inline void
150 execlists_clear_all_active(struct intel_engine_execlists *execlists)
151 {
152         execlists->active = 0;
153 }
154
155 static inline bool
156 execlists_is_active(const struct intel_engine_execlists *execlists,
157                     unsigned int bit)
158 {
159         return test_bit(bit, (unsigned long *)&execlists->active);
160 }
161
162 void execlists_user_begin(struct intel_engine_execlists *execlists,
163                           const struct execlist_port *port);
164 void execlists_user_end(struct intel_engine_execlists *execlists);
165
166 void
167 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists);
168
169 struct i915_request *
170 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);
171
172 static inline unsigned int
173 execlists_num_ports(const struct intel_engine_execlists * const execlists)
174 {
175         return execlists->port_mask + 1;
176 }
177
178 static inline struct execlist_port *
179 execlists_port_complete(struct intel_engine_execlists * const execlists,
180                         struct execlist_port * const port)
181 {
182         const unsigned int m = execlists->port_mask;
183
184         GEM_BUG_ON(port_index(port, execlists) != 0);
185         GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
186
187         memmove(port, port + 1, m * sizeof(struct execlist_port));
188         memset(port + m, 0, sizeof(struct execlist_port));
189
190         return port;
191 }
192
193 static inline u32
194 intel_read_status_page(const struct intel_engine_cs *engine, int reg)
195 {
196         /* Ensure that the compiler doesn't optimize away the load. */
197         return READ_ONCE(engine->status_page.addr[reg]);
198 }
199
200 static inline void
201 intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
202 {
203         /* Writing into the status page should be done sparingly. Since
204          * we do when we are uncertain of the device state, we take a bit
205          * of extra paranoia to try and ensure that the HWS takes the value
206          * we give and that it doesn't end up trapped inside the CPU!
207          */
208         if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
209                 mb();
210                 clflush(&engine->status_page.addr[reg]);
211                 engine->status_page.addr[reg] = value;
212                 clflush(&engine->status_page.addr[reg]);
213                 mb();
214         } else {
215                 WRITE_ONCE(engine->status_page.addr[reg], value);
216         }
217 }
218
219 /*
220  * Reads a dword out of the status page, which is written to from the command
221  * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
222  * MI_STORE_DATA_IMM.
223  *
224  * The following dwords have a reserved meaning:
225  * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
226  * 0x04: ring 0 head pointer
227  * 0x05: ring 1 head pointer (915-class)
228  * 0x06: ring 2 head pointer (915-class)
229  * 0x10-0x1b: Context status DWords (GM45)
230  * 0x1f: Last written status offset. (GM45)
231  * 0x20-0x2f: Reserved (Gen6+)
232  *
233  * The area from dword 0x30 to 0x3ff is available for driver usage.
234  */
235 #define I915_GEM_HWS_PREEMPT            0x32
236 #define I915_GEM_HWS_PREEMPT_ADDR       (I915_GEM_HWS_PREEMPT * sizeof(u32))
237 #define I915_GEM_HWS_SEQNO              0x40
238 #define I915_GEM_HWS_SEQNO_ADDR         (I915_GEM_HWS_SEQNO * sizeof(u32))
239 #define I915_GEM_HWS_SCRATCH            0x80
240 #define I915_GEM_HWS_SCRATCH_ADDR       (I915_GEM_HWS_SCRATCH * sizeof(u32))
241
242 #define I915_HWS_CSB_BUF0_INDEX         0x10
243 #define I915_HWS_CSB_WRITE_INDEX        0x1f
244 #define CNL_HWS_CSB_WRITE_INDEX         0x2f
245
246 struct intel_ring *
247 intel_engine_create_ring(struct intel_engine_cs *engine,
248                          struct i915_timeline *timeline,
249                          int size);
250 int intel_ring_pin(struct intel_ring *ring);
251 void intel_ring_reset(struct intel_ring *ring, u32 tail);
252 unsigned int intel_ring_update_space(struct intel_ring *ring);
253 void intel_ring_unpin(struct intel_ring *ring);
254 void intel_ring_free(struct kref *ref);
255
256 static inline struct intel_ring *intel_ring_get(struct intel_ring *ring)
257 {
258         kref_get(&ring->ref);
259         return ring;
260 }
261
262 static inline void intel_ring_put(struct intel_ring *ring)
263 {
264         kref_put(&ring->ref, intel_ring_free);
265 }
266
267 void intel_engine_stop(struct intel_engine_cs *engine);
268 void intel_engine_cleanup(struct intel_engine_cs *engine);
269
270 int __must_check intel_ring_cacheline_align(struct i915_request *rq);
271
272 u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n);
273
274 static inline void intel_ring_advance(struct i915_request *rq, u32 *cs)
275 {
276         /* Dummy function.
277          *
278          * This serves as a placeholder in the code so that the reader
279          * can compare against the preceding intel_ring_begin() and
280          * check that the number of dwords emitted matches the space
281          * reserved for the command packet (i.e. the value passed to
282          * intel_ring_begin()).
283          */
284         GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs);
285 }
286
287 static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
288 {
289         return pos & (ring->size - 1);
290 }
291
292 static inline bool
293 intel_ring_offset_valid(const struct intel_ring *ring,
294                         unsigned int pos)
295 {
296         if (pos & -ring->size) /* must be strictly within the ring */
297                 return false;
298
299         if (!IS_ALIGNED(pos, 8)) /* must be qword aligned */
300                 return false;
301
302         return true;
303 }
304
305 static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr)
306 {
307         /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
308         u32 offset = addr - rq->ring->vaddr;
309         GEM_BUG_ON(offset > rq->ring->size);
310         return intel_ring_wrap(rq->ring, offset);
311 }
312
313 static inline void
314 assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
315 {
316         GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
317
318         /*
319          * "Ring Buffer Use"
320          *      Gen2 BSpec "1. Programming Environment" / 1.4.4.6
321          *      Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
322          *      Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
323          * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
324          * same cacheline, the Head Pointer must not be greater than the Tail
325          * Pointer."
326          *
327          * We use ring->head as the last known location of the actual RING_HEAD,
328          * it may have advanced but in the worst case it is equally the same
329          * as ring->head and so we should never program RING_TAIL to advance
330          * into the same cacheline as ring->head.
331          */
332 #define cacheline(a) round_down(a, CACHELINE_BYTES)
333         GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
334                    tail < ring->head);
335 #undef cacheline
336 }
337
338 static inline unsigned int
339 intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
340 {
341         /* Whilst writes to the tail are strictly order, there is no
342          * serialisation between readers and the writers. The tail may be
343          * read by i915_request_retire() just as it is being updated
344          * by execlists, as although the breadcrumb is complete, the context
345          * switch hasn't been seen.
346          */
347         assert_ring_tail_valid(ring, tail);
348         ring->tail = tail;
349         return tail;
350 }
351
352 static inline unsigned int
353 __intel_ring_space(unsigned int head, unsigned int tail, unsigned int size)
354 {
355         /*
356          * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
357          * same cacheline, the Head Pointer must not be greater than the Tail
358          * Pointer."
359          */
360         GEM_BUG_ON(!is_power_of_2(size));
361         return (head - tail - CACHELINE_BYTES) & (size - 1);
362 }
363
364 int intel_engines_init_mmio(struct drm_i915_private *i915);
365 int intel_engines_setup(struct drm_i915_private *i915);
366 int intel_engines_init(struct drm_i915_private *i915);
367 void intel_engines_cleanup(struct drm_i915_private *i915);
368
369 int intel_engine_init_common(struct intel_engine_cs *engine);
370 void intel_engine_cleanup_common(struct intel_engine_cs *engine);
371
372 int intel_ring_submission_setup(struct intel_engine_cs *engine);
373 int intel_ring_submission_init(struct intel_engine_cs *engine);
374
375 int intel_engine_stop_cs(struct intel_engine_cs *engine);
376 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine);
377
378 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask);
379
380 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
381 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
382
383 void intel_engine_get_instdone(struct intel_engine_cs *engine,
384                                struct intel_instdone *instdone);
385
386 void intel_engine_init_execlists(struct intel_engine_cs *engine);
387
388 void intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
389 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
390
391 void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine);
392 void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine);
393
394 void intel_engine_signal_breadcrumbs(struct intel_engine_cs *engine);
395 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
396
397 static inline void
398 intel_engine_queue_breadcrumbs(struct intel_engine_cs *engine)
399 {
400         irq_work_queue(&engine->breadcrumbs.irq_work);
401 }
402
403 void intel_engine_breadcrumbs_irq(struct intel_engine_cs *engine);
404
405 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
406 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
407
408 void intel_engine_print_breadcrumbs(struct intel_engine_cs *engine,
409                                     struct drm_printer *p);
410
411 static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
412 {
413         memset(batch, 0, 6 * sizeof(u32));
414
415         batch[0] = GFX_OP_PIPE_CONTROL(6);
416         batch[1] = flags;
417         batch[2] = offset;
418
419         return batch + 6;
420 }
421
422 static inline u32 *
423 gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset, u32 flags)
424 {
425         /* We're using qword write, offset should be aligned to 8 bytes. */
426         GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
427
428         /* w/a for post sync ops following a GPGPU operation we
429          * need a prior CS_STALL, which is emitted by the flush
430          * following the batch.
431          */
432         *cs++ = GFX_OP_PIPE_CONTROL(6);
433         *cs++ = flags | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_GLOBAL_GTT_IVB;
434         *cs++ = gtt_offset;
435         *cs++ = 0;
436         *cs++ = value;
437         /* We're thrashing one dword of HWS. */
438         *cs++ = 0;
439
440         return cs;
441 }
442
443 static inline u32 *
444 gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset, u32 flags)
445 {
446         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
447         GEM_BUG_ON(gtt_offset & (1 << 5));
448         /* Offset should be aligned to 8 bytes for both (QW/DW) write types */
449         GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
450
451         *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW | flags;
452         *cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
453         *cs++ = 0;
454         *cs++ = value;
455
456         return cs;
457 }
458
459 static inline void intel_engine_reset(struct intel_engine_cs *engine,
460                                       bool stalled)
461 {
462         if (engine->reset.reset)
463                 engine->reset.reset(engine, stalled);
464         engine->serial++; /* contexts lost */
465 }
466
467 bool intel_engine_is_idle(struct intel_engine_cs *engine);
468 bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
469
470 void intel_engines_reset_default_submission(struct drm_i915_private *i915);
471 unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915);
472
473 bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
474
475 __printf(3, 4)
476 void intel_engine_dump(struct intel_engine_cs *engine,
477                        struct drm_printer *m,
478                        const char *header, ...);
479
480 struct intel_engine_cs *
481 intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance);
482
483 static inline void intel_engine_context_in(struct intel_engine_cs *engine)
484 {
485         unsigned long flags;
486
487         if (READ_ONCE(engine->stats.enabled) == 0)
488                 return;
489
490         write_seqlock_irqsave(&engine->stats.lock, flags);
491
492         if (engine->stats.enabled > 0) {
493                 if (engine->stats.active++ == 0)
494                         engine->stats.start = ktime_get();
495                 GEM_BUG_ON(engine->stats.active == 0);
496         }
497
498         write_sequnlock_irqrestore(&engine->stats.lock, flags);
499 }
500
501 static inline void intel_engine_context_out(struct intel_engine_cs *engine)
502 {
503         unsigned long flags;
504
505         if (READ_ONCE(engine->stats.enabled) == 0)
506                 return;
507
508         write_seqlock_irqsave(&engine->stats.lock, flags);
509
510         if (engine->stats.enabled > 0) {
511                 ktime_t last;
512
513                 if (engine->stats.active && --engine->stats.active == 0) {
514                         /*
515                          * Decrement the active context count and in case GPU
516                          * is now idle add up to the running total.
517                          */
518                         last = ktime_sub(ktime_get(), engine->stats.start);
519
520                         engine->stats.total = ktime_add(engine->stats.total,
521                                                         last);
522                 } else if (engine->stats.active == 0) {
523                         /*
524                          * After turning on engine stats, context out might be
525                          * the first event in which case we account from the
526                          * time stats gathering was turned on.
527                          */
528                         last = ktime_sub(ktime_get(), engine->stats.enabled_at);
529
530                         engine->stats.total = ktime_add(engine->stats.total,
531                                                         last);
532                 }
533         }
534
535         write_sequnlock_irqrestore(&engine->stats.lock, flags);
536 }
537
538 int intel_enable_engine_stats(struct intel_engine_cs *engine);
539 void intel_disable_engine_stats(struct intel_engine_cs *engine);
540
541 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine);
542
543 struct i915_request *
544 intel_engine_find_active_request(struct intel_engine_cs *engine);
545
546 u32 intel_engine_context_size(struct drm_i915_private *i915, u8 class);
547
548 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
549
550 static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
551 {
552         if (!execlists->preempt_hang.inject_hang)
553                 return false;
554
555         complete(&execlists->preempt_hang.completion);
556         return true;
557 }
558
559 #else
560
561 static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
562 {
563         return false;
564 }
565
566 #endif
567
568 void intel_engine_init_active(struct intel_engine_cs *engine,
569                               unsigned int subclass);
570 #define ENGINE_PHYSICAL 0
571 #define ENGINE_MOCK     1
572 #define ENGINE_VIRTUAL  2
573
574 #endif /* _INTEL_RINGBUFFER_H_ */