Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / i915 / display / intel_hdcp.c
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  *
5  * Authors:
6  * Sean Paul <seanpaul@chromium.org>
7  */
8
9 #include <linux/component.h>
10 #include <linux/i2c.h>
11 #include <linux/random.h>
12
13 #include <drm/drm_hdcp.h>
14 #include <drm/i915_component.h>
15
16 #include "i915_reg.h"
17 #include "intel_drv.h"
18 #include "intel_hdcp.h"
19 #include "intel_sideband.h"
20
21 #define KEY_LOAD_TRIES  5
22 #define ENCRYPT_STATUS_CHANGE_TIMEOUT_MS        50
23 #define HDCP2_LC_RETRY_CNT                      3
24
25 static
26 bool intel_hdcp_is_ksv_valid(u8 *ksv)
27 {
28         int i, ones = 0;
29         /* KSV has 20 1's and 20 0's */
30         for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
31                 ones += hweight8(ksv[i]);
32         if (ones != 20)
33                 return false;
34
35         return true;
36 }
37
38 static
39 int intel_hdcp_read_valid_bksv(struct intel_digital_port *intel_dig_port,
40                                const struct intel_hdcp_shim *shim, u8 *bksv)
41 {
42         int ret, i, tries = 2;
43
44         /* HDCP spec states that we must retry the bksv if it is invalid */
45         for (i = 0; i < tries; i++) {
46                 ret = shim->read_bksv(intel_dig_port, bksv);
47                 if (ret)
48                         return ret;
49                 if (intel_hdcp_is_ksv_valid(bksv))
50                         break;
51         }
52         if (i == tries) {
53                 DRM_DEBUG_KMS("Bksv is invalid\n");
54                 return -ENODEV;
55         }
56
57         return 0;
58 }
59
60 /* Is HDCP1.4 capable on Platform and Sink */
61 bool intel_hdcp_capable(struct intel_connector *connector)
62 {
63         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
64         const struct intel_hdcp_shim *shim = connector->hdcp.shim;
65         bool capable = false;
66         u8 bksv[5];
67
68         if (!shim)
69                 return capable;
70
71         if (shim->hdcp_capable) {
72                 shim->hdcp_capable(intel_dig_port, &capable);
73         } else {
74                 if (!intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv))
75                         capable = true;
76         }
77
78         return capable;
79 }
80
81 /* Is HDCP2.2 capable on Platform and Sink */
82 bool intel_hdcp2_capable(struct intel_connector *connector)
83 {
84         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
85         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
86         struct intel_hdcp *hdcp = &connector->hdcp;
87         bool capable = false;
88
89         /* I915 support for HDCP2.2 */
90         if (!hdcp->hdcp2_supported)
91                 return false;
92
93         /* MEI interface is solid */
94         mutex_lock(&dev_priv->hdcp_comp_mutex);
95         if (!dev_priv->hdcp_comp_added ||  !dev_priv->hdcp_master) {
96                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
97                 return false;
98         }
99         mutex_unlock(&dev_priv->hdcp_comp_mutex);
100
101         /* Sink's capability for HDCP2.2 */
102         hdcp->shim->hdcp_2_2_capable(intel_dig_port, &capable);
103
104         return capable;
105 }
106
107 static inline bool intel_hdcp_in_use(struct intel_connector *connector)
108 {
109         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
110         enum port port = connector->encoder->port;
111         u32 reg;
112
113         reg = I915_READ(PORT_HDCP_STATUS(port));
114         return reg & HDCP_STATUS_ENC;
115 }
116
117 static inline bool intel_hdcp2_in_use(struct intel_connector *connector)
118 {
119         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
120         enum port port = connector->encoder->port;
121         u32 reg;
122
123         reg = I915_READ(HDCP2_STATUS_DDI(port));
124         return reg & LINK_ENCRYPTION_STATUS;
125 }
126
127 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *intel_dig_port,
128                                     const struct intel_hdcp_shim *shim)
129 {
130         int ret, read_ret;
131         bool ksv_ready;
132
133         /* Poll for ksv list ready (spec says max time allowed is 5s) */
134         ret = __wait_for(read_ret = shim->read_ksv_ready(intel_dig_port,
135                                                          &ksv_ready),
136                          read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
137                          100 * 1000);
138         if (ret)
139                 return ret;
140         if (read_ret)
141                 return read_ret;
142         if (!ksv_ready)
143                 return -ETIMEDOUT;
144
145         return 0;
146 }
147
148 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
149 {
150         struct i915_power_domains *power_domains = &dev_priv->power_domains;
151         struct i915_power_well *power_well;
152         enum i915_power_well_id id;
153         bool enabled = false;
154
155         /*
156          * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
157          * On all BXT+, SW can load the keys only when the PW#1 is turned on.
158          */
159         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
160                 id = HSW_DISP_PW_GLOBAL;
161         else
162                 id = SKL_DISP_PW_1;
163
164         mutex_lock(&power_domains->lock);
165
166         /* PG1 (power well #1) needs to be enabled */
167         for_each_power_well(dev_priv, power_well) {
168                 if (power_well->desc->id == id) {
169                         enabled = power_well->desc->ops->is_enabled(dev_priv,
170                                                                     power_well);
171                         break;
172                 }
173         }
174         mutex_unlock(&power_domains->lock);
175
176         /*
177          * Another req for hdcp key loadability is enabled state of pll for
178          * cdclk. Without active crtc we wont land here. So we are assuming that
179          * cdclk is already on.
180          */
181
182         return enabled;
183 }
184
185 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
186 {
187         I915_WRITE(HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
188         I915_WRITE(HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS |
189                    HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
190 }
191
192 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
193 {
194         int ret;
195         u32 val;
196
197         val = I915_READ(HDCP_KEY_STATUS);
198         if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
199                 return 0;
200
201         /*
202          * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
203          * out of reset. So if Key is not already loaded, its an error state.
204          */
205         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
206                 if (!(I915_READ(HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
207                         return -ENXIO;
208
209         /*
210          * Initiate loading the HDCP key from fuses.
211          *
212          * BXT+ platforms, HDCP key needs to be loaded by SW. Only Gen 9
213          * platforms except BXT and GLK, differ in the key load trigger process
214          * from other platforms. So GEN9_BC uses the GT Driver Mailbox i/f.
215          */
216         if (IS_GEN9_BC(dev_priv)) {
217                 ret = sandybridge_pcode_write(dev_priv,
218                                               SKL_PCODE_LOAD_HDCP_KEYS, 1);
219                 if (ret) {
220                         DRM_ERROR("Failed to initiate HDCP key load (%d)\n",
221                                   ret);
222                         return ret;
223                 }
224         } else {
225                 I915_WRITE(HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
226         }
227
228         /* Wait for the keys to load (500us) */
229         ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
230                                         HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
231                                         10, 1, &val);
232         if (ret)
233                 return ret;
234         else if (!(val & HDCP_KEY_LOAD_STATUS))
235                 return -ENXIO;
236
237         /* Send Aksv over to PCH display for use in authentication */
238         I915_WRITE(HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
239
240         return 0;
241 }
242
243 /* Returns updated SHA-1 index */
244 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
245 {
246         I915_WRITE(HDCP_SHA_TEXT, sha_text);
247         if (intel_wait_for_register(&dev_priv->uncore, HDCP_REP_CTL,
248                                     HDCP_SHA1_READY, HDCP_SHA1_READY, 1)) {
249                 DRM_ERROR("Timed out waiting for SHA1 ready\n");
250                 return -ETIMEDOUT;
251         }
252         return 0;
253 }
254
255 static
256 u32 intel_hdcp_get_repeater_ctl(struct intel_digital_port *intel_dig_port)
257 {
258         enum port port = intel_dig_port->base.port;
259         switch (port) {
260         case PORT_A:
261                 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
262         case PORT_B:
263                 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
264         case PORT_C:
265                 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
266         case PORT_D:
267                 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
268         case PORT_E:
269                 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
270         default:
271                 break;
272         }
273         DRM_ERROR("Unknown port %d\n", port);
274         return -EINVAL;
275 }
276
277 static
278 int intel_hdcp_validate_v_prime(struct intel_digital_port *intel_dig_port,
279                                 const struct intel_hdcp_shim *shim,
280                                 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
281 {
282         struct drm_i915_private *dev_priv;
283         u32 vprime, sha_text, sha_leftovers, rep_ctl;
284         int ret, i, j, sha_idx;
285
286         dev_priv = intel_dig_port->base.base.dev->dev_private;
287
288         /* Process V' values from the receiver */
289         for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
290                 ret = shim->read_v_prime_part(intel_dig_port, i, &vprime);
291                 if (ret)
292                         return ret;
293                 I915_WRITE(HDCP_SHA_V_PRIME(i), vprime);
294         }
295
296         /*
297          * We need to write the concatenation of all device KSVs, BINFO (DP) ||
298          * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
299          * stream is written via the HDCP_SHA_TEXT register in 32-bit
300          * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
301          * index will keep track of our progress through the 64 bytes as well as
302          * helping us work the 40-bit KSVs through our 32-bit register.
303          *
304          * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
305          */
306         sha_idx = 0;
307         sha_text = 0;
308         sha_leftovers = 0;
309         rep_ctl = intel_hdcp_get_repeater_ctl(intel_dig_port);
310         I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
311         for (i = 0; i < num_downstream; i++) {
312                 unsigned int sha_empty;
313                 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
314
315                 /* Fill up the empty slots in sha_text and write it out */
316                 sha_empty = sizeof(sha_text) - sha_leftovers;
317                 for (j = 0; j < sha_empty; j++)
318                         sha_text |= ksv[j] << ((sizeof(sha_text) - j - 1) * 8);
319
320                 ret = intel_write_sha_text(dev_priv, sha_text);
321                 if (ret < 0)
322                         return ret;
323
324                 /* Programming guide writes this every 64 bytes */
325                 sha_idx += sizeof(sha_text);
326                 if (!(sha_idx % 64))
327                         I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
328
329                 /* Store the leftover bytes from the ksv in sha_text */
330                 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
331                 sha_text = 0;
332                 for (j = 0; j < sha_leftovers; j++)
333                         sha_text |= ksv[sha_empty + j] <<
334                                         ((sizeof(sha_text) - j - 1) * 8);
335
336                 /*
337                  * If we still have room in sha_text for more data, continue.
338                  * Otherwise, write it out immediately.
339                  */
340                 if (sizeof(sha_text) > sha_leftovers)
341                         continue;
342
343                 ret = intel_write_sha_text(dev_priv, sha_text);
344                 if (ret < 0)
345                         return ret;
346                 sha_leftovers = 0;
347                 sha_text = 0;
348                 sha_idx += sizeof(sha_text);
349         }
350
351         /*
352          * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
353          * bytes are leftover from the last ksv, we might be able to fit them
354          * all in sha_text (first 2 cases), or we might need to split them up
355          * into 2 writes (last 2 cases).
356          */
357         if (sha_leftovers == 0) {
358                 /* Write 16 bits of text, 16 bits of M0 */
359                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
360                 ret = intel_write_sha_text(dev_priv,
361                                            bstatus[0] << 8 | bstatus[1]);
362                 if (ret < 0)
363                         return ret;
364                 sha_idx += sizeof(sha_text);
365
366                 /* Write 32 bits of M0 */
367                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
368                 ret = intel_write_sha_text(dev_priv, 0);
369                 if (ret < 0)
370                         return ret;
371                 sha_idx += sizeof(sha_text);
372
373                 /* Write 16 bits of M0 */
374                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
375                 ret = intel_write_sha_text(dev_priv, 0);
376                 if (ret < 0)
377                         return ret;
378                 sha_idx += sizeof(sha_text);
379
380         } else if (sha_leftovers == 1) {
381                 /* Write 24 bits of text, 8 bits of M0 */
382                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
383                 sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
384                 /* Only 24-bits of data, must be in the LSB */
385                 sha_text = (sha_text & 0xffffff00) >> 8;
386                 ret = intel_write_sha_text(dev_priv, sha_text);
387                 if (ret < 0)
388                         return ret;
389                 sha_idx += sizeof(sha_text);
390
391                 /* Write 32 bits of M0 */
392                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
393                 ret = intel_write_sha_text(dev_priv, 0);
394                 if (ret < 0)
395                         return ret;
396                 sha_idx += sizeof(sha_text);
397
398                 /* Write 24 bits of M0 */
399                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
400                 ret = intel_write_sha_text(dev_priv, 0);
401                 if (ret < 0)
402                         return ret;
403                 sha_idx += sizeof(sha_text);
404
405         } else if (sha_leftovers == 2) {
406                 /* Write 32 bits of text */
407                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
408                 sha_text |= bstatus[0] << 24 | bstatus[1] << 16;
409                 ret = intel_write_sha_text(dev_priv, sha_text);
410                 if (ret < 0)
411                         return ret;
412                 sha_idx += sizeof(sha_text);
413
414                 /* Write 64 bits of M0 */
415                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
416                 for (i = 0; i < 2; i++) {
417                         ret = intel_write_sha_text(dev_priv, 0);
418                         if (ret < 0)
419                                 return ret;
420                         sha_idx += sizeof(sha_text);
421                 }
422         } else if (sha_leftovers == 3) {
423                 /* Write 32 bits of text */
424                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
425                 sha_text |= bstatus[0] << 24;
426                 ret = intel_write_sha_text(dev_priv, sha_text);
427                 if (ret < 0)
428                         return ret;
429                 sha_idx += sizeof(sha_text);
430
431                 /* Write 8 bits of text, 24 bits of M0 */
432                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
433                 ret = intel_write_sha_text(dev_priv, bstatus[1]);
434                 if (ret < 0)
435                         return ret;
436                 sha_idx += sizeof(sha_text);
437
438                 /* Write 32 bits of M0 */
439                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
440                 ret = intel_write_sha_text(dev_priv, 0);
441                 if (ret < 0)
442                         return ret;
443                 sha_idx += sizeof(sha_text);
444
445                 /* Write 8 bits of M0 */
446                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
447                 ret = intel_write_sha_text(dev_priv, 0);
448                 if (ret < 0)
449                         return ret;
450                 sha_idx += sizeof(sha_text);
451         } else {
452                 DRM_DEBUG_KMS("Invalid number of leftovers %d\n",
453                               sha_leftovers);
454                 return -EINVAL;
455         }
456
457         I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
458         /* Fill up to 64-4 bytes with zeros (leave the last write for length) */
459         while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
460                 ret = intel_write_sha_text(dev_priv, 0);
461                 if (ret < 0)
462                         return ret;
463                 sha_idx += sizeof(sha_text);
464         }
465
466         /*
467          * Last write gets the length of the concatenation in bits. That is:
468          *  - 5 bytes per device
469          *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
470          */
471         sha_text = (num_downstream * 5 + 10) * 8;
472         ret = intel_write_sha_text(dev_priv, sha_text);
473         if (ret < 0)
474                 return ret;
475
476         /* Tell the HW we're done with the hash and wait for it to ACK */
477         I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_COMPLETE_HASH);
478         if (intel_wait_for_register(&dev_priv->uncore, HDCP_REP_CTL,
479                                     HDCP_SHA1_COMPLETE,
480                                     HDCP_SHA1_COMPLETE, 1)) {
481                 DRM_ERROR("Timed out waiting for SHA1 complete\n");
482                 return -ETIMEDOUT;
483         }
484         if (!(I915_READ(HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
485                 DRM_DEBUG_KMS("SHA-1 mismatch, HDCP failed\n");
486                 return -ENXIO;
487         }
488
489         return 0;
490 }
491
492 /* Implements Part 2 of the HDCP authorization procedure */
493 static
494 int intel_hdcp_auth_downstream(struct intel_connector *connector)
495 {
496         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
497         const struct intel_hdcp_shim *shim = connector->hdcp.shim;
498         struct drm_device *dev = connector->base.dev;
499         u8 bstatus[2], num_downstream, *ksv_fifo;
500         int ret, i, tries = 3;
501
502         ret = intel_hdcp_poll_ksv_fifo(intel_dig_port, shim);
503         if (ret) {
504                 DRM_DEBUG_KMS("KSV list failed to become ready (%d)\n", ret);
505                 return ret;
506         }
507
508         ret = shim->read_bstatus(intel_dig_port, bstatus);
509         if (ret)
510                 return ret;
511
512         if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
513             DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
514                 DRM_DEBUG_KMS("Max Topology Limit Exceeded\n");
515                 return -EPERM;
516         }
517
518         /*
519          * When repeater reports 0 device count, HDCP1.4 spec allows disabling
520          * the HDCP encryption. That implies that repeater can't have its own
521          * display. As there is no consumption of encrypted content in the
522          * repeater with 0 downstream devices, we are failing the
523          * authentication.
524          */
525         num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
526         if (num_downstream == 0)
527                 return -EINVAL;
528
529         ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
530         if (!ksv_fifo)
531                 return -ENOMEM;
532
533         ret = shim->read_ksv_fifo(intel_dig_port, num_downstream, ksv_fifo);
534         if (ret)
535                 goto err;
536
537         if (drm_hdcp_check_ksvs_revoked(dev, ksv_fifo, num_downstream)) {
538                 DRM_ERROR("Revoked Ksv(s) in ksv_fifo\n");
539                 ret = -EPERM;
540                 goto err;
541         }
542
543         /*
544          * When V prime mismatches, DP Spec mandates re-read of
545          * V prime atleast twice.
546          */
547         for (i = 0; i < tries; i++) {
548                 ret = intel_hdcp_validate_v_prime(intel_dig_port, shim,
549                                                   ksv_fifo, num_downstream,
550                                                   bstatus);
551                 if (!ret)
552                         break;
553         }
554
555         if (i == tries) {
556                 DRM_DEBUG_KMS("V Prime validation failed.(%d)\n", ret);
557                 goto err;
558         }
559
560         DRM_DEBUG_KMS("HDCP is enabled (%d downstream devices)\n",
561                       num_downstream);
562         ret = 0;
563 err:
564         kfree(ksv_fifo);
565         return ret;
566 }
567
568 /* Implements Part 1 of the HDCP authorization procedure */
569 static int intel_hdcp_auth(struct intel_connector *connector)
570 {
571         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
572         struct intel_hdcp *hdcp = &connector->hdcp;
573         struct drm_device *dev = connector->base.dev;
574         const struct intel_hdcp_shim *shim = hdcp->shim;
575         struct drm_i915_private *dev_priv;
576         enum port port;
577         unsigned long r0_prime_gen_start;
578         int ret, i, tries = 2;
579         union {
580                 u32 reg[2];
581                 u8 shim[DRM_HDCP_AN_LEN];
582         } an;
583         union {
584                 u32 reg[2];
585                 u8 shim[DRM_HDCP_KSV_LEN];
586         } bksv;
587         union {
588                 u32 reg;
589                 u8 shim[DRM_HDCP_RI_LEN];
590         } ri;
591         bool repeater_present, hdcp_capable;
592
593         dev_priv = intel_dig_port->base.base.dev->dev_private;
594
595         port = intel_dig_port->base.port;
596
597         /*
598          * Detects whether the display is HDCP capable. Although we check for
599          * valid Bksv below, the HDCP over DP spec requires that we check
600          * whether the display supports HDCP before we write An. For HDMI
601          * displays, this is not necessary.
602          */
603         if (shim->hdcp_capable) {
604                 ret = shim->hdcp_capable(intel_dig_port, &hdcp_capable);
605                 if (ret)
606                         return ret;
607                 if (!hdcp_capable) {
608                         DRM_DEBUG_KMS("Panel is not HDCP capable\n");
609                         return -EINVAL;
610                 }
611         }
612
613         /* Initialize An with 2 random values and acquire it */
614         for (i = 0; i < 2; i++)
615                 I915_WRITE(PORT_HDCP_ANINIT(port), get_random_u32());
616         I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_CAPTURE_AN);
617
618         /* Wait for An to be acquired */
619         if (intel_wait_for_register(&dev_priv->uncore, PORT_HDCP_STATUS(port),
620                                     HDCP_STATUS_AN_READY,
621                                     HDCP_STATUS_AN_READY, 1)) {
622                 DRM_ERROR("Timed out waiting for An\n");
623                 return -ETIMEDOUT;
624         }
625
626         an.reg[0] = I915_READ(PORT_HDCP_ANLO(port));
627         an.reg[1] = I915_READ(PORT_HDCP_ANHI(port));
628         ret = shim->write_an_aksv(intel_dig_port, an.shim);
629         if (ret)
630                 return ret;
631
632         r0_prime_gen_start = jiffies;
633
634         memset(&bksv, 0, sizeof(bksv));
635
636         ret = intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv.shim);
637         if (ret < 0)
638                 return ret;
639
640         if (drm_hdcp_check_ksvs_revoked(dev, bksv.shim, 1)) {
641                 DRM_ERROR("BKSV is revoked\n");
642                 return -EPERM;
643         }
644
645         I915_WRITE(PORT_HDCP_BKSVLO(port), bksv.reg[0]);
646         I915_WRITE(PORT_HDCP_BKSVHI(port), bksv.reg[1]);
647
648         ret = shim->repeater_present(intel_dig_port, &repeater_present);
649         if (ret)
650                 return ret;
651         if (repeater_present)
652                 I915_WRITE(HDCP_REP_CTL,
653                            intel_hdcp_get_repeater_ctl(intel_dig_port));
654
655         ret = shim->toggle_signalling(intel_dig_port, true);
656         if (ret)
657                 return ret;
658
659         I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_AUTH_AND_ENC);
660
661         /* Wait for R0 ready */
662         if (wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
663                      (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
664                 DRM_ERROR("Timed out waiting for R0 ready\n");
665                 return -ETIMEDOUT;
666         }
667
668         /*
669          * Wait for R0' to become available. The spec says 100ms from Aksv, but
670          * some monitors can take longer than this. We'll set the timeout at
671          * 300ms just to be sure.
672          *
673          * On DP, there's an R0_READY bit available but no such bit
674          * exists on HDMI. Since the upper-bound is the same, we'll just do
675          * the stupid thing instead of polling on one and not the other.
676          */
677         wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
678
679         tries = 3;
680
681         /*
682          * DP HDCP Spec mandates the two more reattempt to read R0, incase
683          * of R0 mismatch.
684          */
685         for (i = 0; i < tries; i++) {
686                 ri.reg = 0;
687                 ret = shim->read_ri_prime(intel_dig_port, ri.shim);
688                 if (ret)
689                         return ret;
690                 I915_WRITE(PORT_HDCP_RPRIME(port), ri.reg);
691
692                 /* Wait for Ri prime match */
693                 if (!wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
694                     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
695                         break;
696         }
697
698         if (i == tries) {
699                 DRM_DEBUG_KMS("Timed out waiting for Ri prime match (%x)\n",
700                               I915_READ(PORT_HDCP_STATUS(port)));
701                 return -ETIMEDOUT;
702         }
703
704         /* Wait for encryption confirmation */
705         if (intel_wait_for_register(&dev_priv->uncore, PORT_HDCP_STATUS(port),
706                                     HDCP_STATUS_ENC, HDCP_STATUS_ENC,
707                                     ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
708                 DRM_ERROR("Timed out waiting for encryption\n");
709                 return -ETIMEDOUT;
710         }
711
712         /*
713          * XXX: If we have MST-connected devices, we need to enable encryption
714          * on those as well.
715          */
716
717         if (repeater_present)
718                 return intel_hdcp_auth_downstream(connector);
719
720         DRM_DEBUG_KMS("HDCP is enabled (no repeater present)\n");
721         return 0;
722 }
723
724 static int _intel_hdcp_disable(struct intel_connector *connector)
725 {
726         struct intel_hdcp *hdcp = &connector->hdcp;
727         struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
728         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
729         enum port port = intel_dig_port->base.port;
730         int ret;
731
732         DRM_DEBUG_KMS("[%s:%d] HDCP is being disabled...\n",
733                       connector->base.name, connector->base.base.id);
734
735         hdcp->hdcp_encrypted = false;
736         I915_WRITE(PORT_HDCP_CONF(port), 0);
737         if (intel_wait_for_register(&dev_priv->uncore,
738                                     PORT_HDCP_STATUS(port), ~0, 0,
739                                     ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
740                 DRM_ERROR("Failed to disable HDCP, timeout clearing status\n");
741                 return -ETIMEDOUT;
742         }
743
744         ret = hdcp->shim->toggle_signalling(intel_dig_port, false);
745         if (ret) {
746                 DRM_ERROR("Failed to disable HDCP signalling\n");
747                 return ret;
748         }
749
750         DRM_DEBUG_KMS("HDCP is disabled\n");
751         return 0;
752 }
753
754 static int _intel_hdcp_enable(struct intel_connector *connector)
755 {
756         struct intel_hdcp *hdcp = &connector->hdcp;
757         struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
758         int i, ret, tries = 3;
759
760         DRM_DEBUG_KMS("[%s:%d] HDCP is being enabled...\n",
761                       connector->base.name, connector->base.base.id);
762
763         if (!hdcp_key_loadable(dev_priv)) {
764                 DRM_ERROR("HDCP key Load is not possible\n");
765                 return -ENXIO;
766         }
767
768         for (i = 0; i < KEY_LOAD_TRIES; i++) {
769                 ret = intel_hdcp_load_keys(dev_priv);
770                 if (!ret)
771                         break;
772                 intel_hdcp_clear_keys(dev_priv);
773         }
774         if (ret) {
775                 DRM_ERROR("Could not load HDCP keys, (%d)\n", ret);
776                 return ret;
777         }
778
779         /* Incase of authentication failures, HDCP spec expects reauth. */
780         for (i = 0; i < tries; i++) {
781                 ret = intel_hdcp_auth(connector);
782                 if (!ret) {
783                         hdcp->hdcp_encrypted = true;
784                         return 0;
785                 }
786
787                 DRM_DEBUG_KMS("HDCP Auth failure (%d)\n", ret);
788
789                 /* Ensuring HDCP encryption and signalling are stopped. */
790                 _intel_hdcp_disable(connector);
791         }
792
793         DRM_DEBUG_KMS("HDCP authentication failed (%d tries/%d)\n", tries, ret);
794         return ret;
795 }
796
797 static inline
798 struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
799 {
800         return container_of(hdcp, struct intel_connector, hdcp);
801 }
802
803 /* Implements Part 3 of the HDCP authorization procedure */
804 static int intel_hdcp_check_link(struct intel_connector *connector)
805 {
806         struct intel_hdcp *hdcp = &connector->hdcp;
807         struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
808         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
809         enum port port = intel_dig_port->base.port;
810         int ret = 0;
811
812         mutex_lock(&hdcp->mutex);
813
814         /* Check_link valid only when HDCP1.4 is enabled */
815         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
816             !hdcp->hdcp_encrypted) {
817                 ret = -EINVAL;
818                 goto out;
819         }
820
821         if (WARN_ON(!intel_hdcp_in_use(connector))) {
822                 DRM_ERROR("%s:%d HDCP link stopped encryption,%x\n",
823                           connector->base.name, connector->base.base.id,
824                           I915_READ(PORT_HDCP_STATUS(port)));
825                 ret = -ENXIO;
826                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
827                 schedule_work(&hdcp->prop_work);
828                 goto out;
829         }
830
831         if (hdcp->shim->check_link(intel_dig_port)) {
832                 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
833                         hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
834                         schedule_work(&hdcp->prop_work);
835                 }
836                 goto out;
837         }
838
839         DRM_DEBUG_KMS("[%s:%d] HDCP link failed, retrying authentication\n",
840                       connector->base.name, connector->base.base.id);
841
842         ret = _intel_hdcp_disable(connector);
843         if (ret) {
844                 DRM_ERROR("Failed to disable hdcp (%d)\n", ret);
845                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
846                 schedule_work(&hdcp->prop_work);
847                 goto out;
848         }
849
850         ret = _intel_hdcp_enable(connector);
851         if (ret) {
852                 DRM_ERROR("Failed to enable hdcp (%d)\n", ret);
853                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
854                 schedule_work(&hdcp->prop_work);
855                 goto out;
856         }
857
858 out:
859         mutex_unlock(&hdcp->mutex);
860         return ret;
861 }
862
863 static void intel_hdcp_prop_work(struct work_struct *work)
864 {
865         struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
866                                                prop_work);
867         struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
868         struct drm_device *dev = connector->base.dev;
869         struct drm_connector_state *state;
870
871         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
872         mutex_lock(&hdcp->mutex);
873
874         /*
875          * This worker is only used to flip between ENABLED/DESIRED. Either of
876          * those to UNDESIRED is handled by core. If value == UNDESIRED,
877          * we're running just after hdcp has been disabled, so just exit
878          */
879         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
880                 state = connector->base.state;
881                 state->content_protection = hdcp->value;
882         }
883
884         mutex_unlock(&hdcp->mutex);
885         drm_modeset_unlock(&dev->mode_config.connection_mutex);
886 }
887
888 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
889 {
890         /* PORT E doesn't have HDCP, and PORT F is disabled */
891         return INTEL_GEN(dev_priv) >= 9 && port < PORT_E;
892 }
893
894 static int
895 hdcp2_prepare_ake_init(struct intel_connector *connector,
896                        struct hdcp2_ake_init *ake_data)
897 {
898         struct hdcp_port_data *data = &connector->hdcp.port_data;
899         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
900         struct i915_hdcp_comp_master *comp;
901         int ret;
902
903         mutex_lock(&dev_priv->hdcp_comp_mutex);
904         comp = dev_priv->hdcp_master;
905
906         if (!comp || !comp->ops) {
907                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
908                 return -EINVAL;
909         }
910
911         ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
912         if (ret)
913                 DRM_DEBUG_KMS("Prepare_ake_init failed. %d\n", ret);
914         mutex_unlock(&dev_priv->hdcp_comp_mutex);
915
916         return ret;
917 }
918
919 static int
920 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
921                                 struct hdcp2_ake_send_cert *rx_cert,
922                                 bool *paired,
923                                 struct hdcp2_ake_no_stored_km *ek_pub_km,
924                                 size_t *msg_sz)
925 {
926         struct hdcp_port_data *data = &connector->hdcp.port_data;
927         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
928         struct i915_hdcp_comp_master *comp;
929         int ret;
930
931         mutex_lock(&dev_priv->hdcp_comp_mutex);
932         comp = dev_priv->hdcp_master;
933
934         if (!comp || !comp->ops) {
935                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
936                 return -EINVAL;
937         }
938
939         ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
940                                                          rx_cert, paired,
941                                                          ek_pub_km, msg_sz);
942         if (ret < 0)
943                 DRM_DEBUG_KMS("Verify rx_cert failed. %d\n", ret);
944         mutex_unlock(&dev_priv->hdcp_comp_mutex);
945
946         return ret;
947 }
948
949 static int hdcp2_verify_hprime(struct intel_connector *connector,
950                                struct hdcp2_ake_send_hprime *rx_hprime)
951 {
952         struct hdcp_port_data *data = &connector->hdcp.port_data;
953         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
954         struct i915_hdcp_comp_master *comp;
955         int ret;
956
957         mutex_lock(&dev_priv->hdcp_comp_mutex);
958         comp = dev_priv->hdcp_master;
959
960         if (!comp || !comp->ops) {
961                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
962                 return -EINVAL;
963         }
964
965         ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
966         if (ret < 0)
967                 DRM_DEBUG_KMS("Verify hprime failed. %d\n", ret);
968         mutex_unlock(&dev_priv->hdcp_comp_mutex);
969
970         return ret;
971 }
972
973 static int
974 hdcp2_store_pairing_info(struct intel_connector *connector,
975                          struct hdcp2_ake_send_pairing_info *pairing_info)
976 {
977         struct hdcp_port_data *data = &connector->hdcp.port_data;
978         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
979         struct i915_hdcp_comp_master *comp;
980         int ret;
981
982         mutex_lock(&dev_priv->hdcp_comp_mutex);
983         comp = dev_priv->hdcp_master;
984
985         if (!comp || !comp->ops) {
986                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
987                 return -EINVAL;
988         }
989
990         ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
991         if (ret < 0)
992                 DRM_DEBUG_KMS("Store pairing info failed. %d\n", ret);
993         mutex_unlock(&dev_priv->hdcp_comp_mutex);
994
995         return ret;
996 }
997
998 static int
999 hdcp2_prepare_lc_init(struct intel_connector *connector,
1000                       struct hdcp2_lc_init *lc_init)
1001 {
1002         struct hdcp_port_data *data = &connector->hdcp.port_data;
1003         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1004         struct i915_hdcp_comp_master *comp;
1005         int ret;
1006
1007         mutex_lock(&dev_priv->hdcp_comp_mutex);
1008         comp = dev_priv->hdcp_master;
1009
1010         if (!comp || !comp->ops) {
1011                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1012                 return -EINVAL;
1013         }
1014
1015         ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
1016         if (ret < 0)
1017                 DRM_DEBUG_KMS("Prepare lc_init failed. %d\n", ret);
1018         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1019
1020         return ret;
1021 }
1022
1023 static int
1024 hdcp2_verify_lprime(struct intel_connector *connector,
1025                     struct hdcp2_lc_send_lprime *rx_lprime)
1026 {
1027         struct hdcp_port_data *data = &connector->hdcp.port_data;
1028         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1029         struct i915_hdcp_comp_master *comp;
1030         int ret;
1031
1032         mutex_lock(&dev_priv->hdcp_comp_mutex);
1033         comp = dev_priv->hdcp_master;
1034
1035         if (!comp || !comp->ops) {
1036                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1037                 return -EINVAL;
1038         }
1039
1040         ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
1041         if (ret < 0)
1042                 DRM_DEBUG_KMS("Verify L_Prime failed. %d\n", ret);
1043         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1044
1045         return ret;
1046 }
1047
1048 static int hdcp2_prepare_skey(struct intel_connector *connector,
1049                               struct hdcp2_ske_send_eks *ske_data)
1050 {
1051         struct hdcp_port_data *data = &connector->hdcp.port_data;
1052         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1053         struct i915_hdcp_comp_master *comp;
1054         int ret;
1055
1056         mutex_lock(&dev_priv->hdcp_comp_mutex);
1057         comp = dev_priv->hdcp_master;
1058
1059         if (!comp || !comp->ops) {
1060                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1061                 return -EINVAL;
1062         }
1063
1064         ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
1065         if (ret < 0)
1066                 DRM_DEBUG_KMS("Get session key failed. %d\n", ret);
1067         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1068
1069         return ret;
1070 }
1071
1072 static int
1073 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1074                                       struct hdcp2_rep_send_receiverid_list
1075                                                                 *rep_topology,
1076                                       struct hdcp2_rep_send_ack *rep_send_ack)
1077 {
1078         struct hdcp_port_data *data = &connector->hdcp.port_data;
1079         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1080         struct i915_hdcp_comp_master *comp;
1081         int ret;
1082
1083         mutex_lock(&dev_priv->hdcp_comp_mutex);
1084         comp = dev_priv->hdcp_master;
1085
1086         if (!comp || !comp->ops) {
1087                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1088                 return -EINVAL;
1089         }
1090
1091         ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
1092                                                          rep_topology,
1093                                                          rep_send_ack);
1094         if (ret < 0)
1095                 DRM_DEBUG_KMS("Verify rep topology failed. %d\n", ret);
1096         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1097
1098         return ret;
1099 }
1100
1101 static int
1102 hdcp2_verify_mprime(struct intel_connector *connector,
1103                     struct hdcp2_rep_stream_ready *stream_ready)
1104 {
1105         struct hdcp_port_data *data = &connector->hdcp.port_data;
1106         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1107         struct i915_hdcp_comp_master *comp;
1108         int ret;
1109
1110         mutex_lock(&dev_priv->hdcp_comp_mutex);
1111         comp = dev_priv->hdcp_master;
1112
1113         if (!comp || !comp->ops) {
1114                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1115                 return -EINVAL;
1116         }
1117
1118         ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
1119         if (ret < 0)
1120                 DRM_DEBUG_KMS("Verify mprime failed. %d\n", ret);
1121         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1122
1123         return ret;
1124 }
1125
1126 static int hdcp2_authenticate_port(struct intel_connector *connector)
1127 {
1128         struct hdcp_port_data *data = &connector->hdcp.port_data;
1129         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1130         struct i915_hdcp_comp_master *comp;
1131         int ret;
1132
1133         mutex_lock(&dev_priv->hdcp_comp_mutex);
1134         comp = dev_priv->hdcp_master;
1135
1136         if (!comp || !comp->ops) {
1137                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1138                 return -EINVAL;
1139         }
1140
1141         ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
1142         if (ret < 0)
1143                 DRM_DEBUG_KMS("Enable hdcp auth failed. %d\n", ret);
1144         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1145
1146         return ret;
1147 }
1148
1149 static int hdcp2_close_mei_session(struct intel_connector *connector)
1150 {
1151         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1152         struct i915_hdcp_comp_master *comp;
1153         int ret;
1154
1155         mutex_lock(&dev_priv->hdcp_comp_mutex);
1156         comp = dev_priv->hdcp_master;
1157
1158         if (!comp || !comp->ops) {
1159                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1160                 return -EINVAL;
1161         }
1162
1163         ret = comp->ops->close_hdcp_session(comp->mei_dev,
1164                                              &connector->hdcp.port_data);
1165         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1166
1167         return ret;
1168 }
1169
1170 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1171 {
1172         return hdcp2_close_mei_session(connector);
1173 }
1174
1175 /* Authentication flow starts from here */
1176 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1177 {
1178         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1179         struct intel_hdcp *hdcp = &connector->hdcp;
1180         struct drm_device *dev = connector->base.dev;
1181         union {
1182                 struct hdcp2_ake_init ake_init;
1183                 struct hdcp2_ake_send_cert send_cert;
1184                 struct hdcp2_ake_no_stored_km no_stored_km;
1185                 struct hdcp2_ake_send_hprime send_hprime;
1186                 struct hdcp2_ake_send_pairing_info pairing_info;
1187         } msgs;
1188         const struct intel_hdcp_shim *shim = hdcp->shim;
1189         size_t size;
1190         int ret;
1191
1192         /* Init for seq_num */
1193         hdcp->seq_num_v = 0;
1194         hdcp->seq_num_m = 0;
1195
1196         ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1197         if (ret < 0)
1198                 return ret;
1199
1200         ret = shim->write_2_2_msg(intel_dig_port, &msgs.ake_init,
1201                                   sizeof(msgs.ake_init));
1202         if (ret < 0)
1203                 return ret;
1204
1205         ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_AKE_SEND_CERT,
1206                                  &msgs.send_cert, sizeof(msgs.send_cert));
1207         if (ret < 0)
1208                 return ret;
1209
1210         if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL)
1211                 return -EINVAL;
1212
1213         hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1214
1215         if (drm_hdcp_check_ksvs_revoked(dev, msgs.send_cert.cert_rx.receiver_id,
1216                                         1)) {
1217                 DRM_ERROR("Receiver ID is revoked\n");
1218                 return -EPERM;
1219         }
1220
1221         /*
1222          * Here msgs.no_stored_km will hold msgs corresponding to the km
1223          * stored also.
1224          */
1225         ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1226                                               &hdcp->is_paired,
1227                                               &msgs.no_stored_km, &size);
1228         if (ret < 0)
1229                 return ret;
1230
1231         ret = shim->write_2_2_msg(intel_dig_port, &msgs.no_stored_km, size);
1232         if (ret < 0)
1233                 return ret;
1234
1235         ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1236                                  &msgs.send_hprime, sizeof(msgs.send_hprime));
1237         if (ret < 0)
1238                 return ret;
1239
1240         ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1241         if (ret < 0)
1242                 return ret;
1243
1244         if (!hdcp->is_paired) {
1245                 /* Pairing is required */
1246                 ret = shim->read_2_2_msg(intel_dig_port,
1247                                          HDCP_2_2_AKE_SEND_PAIRING_INFO,
1248                                          &msgs.pairing_info,
1249                                          sizeof(msgs.pairing_info));
1250                 if (ret < 0)
1251                         return ret;
1252
1253                 ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1254                 if (ret < 0)
1255                         return ret;
1256                 hdcp->is_paired = true;
1257         }
1258
1259         return 0;
1260 }
1261
1262 static int hdcp2_locality_check(struct intel_connector *connector)
1263 {
1264         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1265         struct intel_hdcp *hdcp = &connector->hdcp;
1266         union {
1267                 struct hdcp2_lc_init lc_init;
1268                 struct hdcp2_lc_send_lprime send_lprime;
1269         } msgs;
1270         const struct intel_hdcp_shim *shim = hdcp->shim;
1271         int tries = HDCP2_LC_RETRY_CNT, ret, i;
1272
1273         for (i = 0; i < tries; i++) {
1274                 ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1275                 if (ret < 0)
1276                         continue;
1277
1278                 ret = shim->write_2_2_msg(intel_dig_port, &msgs.lc_init,
1279                                       sizeof(msgs.lc_init));
1280                 if (ret < 0)
1281                         continue;
1282
1283                 ret = shim->read_2_2_msg(intel_dig_port,
1284                                          HDCP_2_2_LC_SEND_LPRIME,
1285                                          &msgs.send_lprime,
1286                                          sizeof(msgs.send_lprime));
1287                 if (ret < 0)
1288                         continue;
1289
1290                 ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1291                 if (!ret)
1292                         break;
1293         }
1294
1295         return ret;
1296 }
1297
1298 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1299 {
1300         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1301         struct intel_hdcp *hdcp = &connector->hdcp;
1302         struct hdcp2_ske_send_eks send_eks;
1303         int ret;
1304
1305         ret = hdcp2_prepare_skey(connector, &send_eks);
1306         if (ret < 0)
1307                 return ret;
1308
1309         ret = hdcp->shim->write_2_2_msg(intel_dig_port, &send_eks,
1310                                         sizeof(send_eks));
1311         if (ret < 0)
1312                 return ret;
1313
1314         return 0;
1315 }
1316
1317 static
1318 int hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1319 {
1320         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1321         struct intel_hdcp *hdcp = &connector->hdcp;
1322         union {
1323                 struct hdcp2_rep_stream_manage stream_manage;
1324                 struct hdcp2_rep_stream_ready stream_ready;
1325         } msgs;
1326         const struct intel_hdcp_shim *shim = hdcp->shim;
1327         int ret;
1328
1329         /* Prepare RepeaterAuth_Stream_Manage msg */
1330         msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1331         drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1332
1333         /* K no of streams is fixed as 1. Stored as big-endian. */
1334         msgs.stream_manage.k = cpu_to_be16(1);
1335
1336         /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
1337         msgs.stream_manage.streams[0].stream_id = 0;
1338         msgs.stream_manage.streams[0].stream_type = hdcp->content_type;
1339
1340         /* Send it to Repeater */
1341         ret = shim->write_2_2_msg(intel_dig_port, &msgs.stream_manage,
1342                                   sizeof(msgs.stream_manage));
1343         if (ret < 0)
1344                 return ret;
1345
1346         ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_REP_STREAM_READY,
1347                                  &msgs.stream_ready, sizeof(msgs.stream_ready));
1348         if (ret < 0)
1349                 return ret;
1350
1351         hdcp->port_data.seq_num_m = hdcp->seq_num_m;
1352         hdcp->port_data.streams[0].stream_type = hdcp->content_type;
1353
1354         ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1355         if (ret < 0)
1356                 return ret;
1357
1358         hdcp->seq_num_m++;
1359
1360         if (hdcp->seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1361                 DRM_DEBUG_KMS("seq_num_m roll over.\n");
1362                 return -1;
1363         }
1364
1365         return 0;
1366 }
1367
1368 static
1369 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1370 {
1371         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1372         struct intel_hdcp *hdcp = &connector->hdcp;
1373         struct drm_device *dev = connector->base.dev;
1374         union {
1375                 struct hdcp2_rep_send_receiverid_list recvid_list;
1376                 struct hdcp2_rep_send_ack rep_ack;
1377         } msgs;
1378         const struct intel_hdcp_shim *shim = hdcp->shim;
1379         u32 seq_num_v, device_cnt;
1380         u8 *rx_info;
1381         int ret;
1382
1383         ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1384                                  &msgs.recvid_list, sizeof(msgs.recvid_list));
1385         if (ret < 0)
1386                 return ret;
1387
1388         rx_info = msgs.recvid_list.rx_info;
1389
1390         if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1391             HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1392                 DRM_DEBUG_KMS("Topology Max Size Exceeded\n");
1393                 return -EINVAL;
1394         }
1395
1396         /* Converting and Storing the seq_num_v to local variable as DWORD */
1397         seq_num_v =
1398                 drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1399
1400         if (seq_num_v < hdcp->seq_num_v) {
1401                 /* Roll over of the seq_num_v from repeater. Reauthenticate. */
1402                 DRM_DEBUG_KMS("Seq_num_v roll over.\n");
1403                 return -EINVAL;
1404         }
1405
1406         device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1407                       HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1408         if (drm_hdcp_check_ksvs_revoked(dev, msgs.recvid_list.receiver_ids,
1409                                         device_cnt)) {
1410                 DRM_ERROR("Revoked receiver ID(s) is in list\n");
1411                 return -EPERM;
1412         }
1413
1414         ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1415                                                     &msgs.recvid_list,
1416                                                     &msgs.rep_ack);
1417         if (ret < 0)
1418                 return ret;
1419
1420         hdcp->seq_num_v = seq_num_v;
1421         ret = shim->write_2_2_msg(intel_dig_port, &msgs.rep_ack,
1422                                   sizeof(msgs.rep_ack));
1423         if (ret < 0)
1424                 return ret;
1425
1426         return 0;
1427 }
1428
1429 static int hdcp2_authenticate_repeater(struct intel_connector *connector)
1430 {
1431         int ret;
1432
1433         ret = hdcp2_authenticate_repeater_topology(connector);
1434         if (ret < 0)
1435                 return ret;
1436
1437         return hdcp2_propagate_stream_management_info(connector);
1438 }
1439
1440 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1441 {
1442         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1443         struct intel_hdcp *hdcp = &connector->hdcp;
1444         const struct intel_hdcp_shim *shim = hdcp->shim;
1445         int ret;
1446
1447         ret = hdcp2_authentication_key_exchange(connector);
1448         if (ret < 0) {
1449                 DRM_DEBUG_KMS("AKE Failed. Err : %d\n", ret);
1450                 return ret;
1451         }
1452
1453         ret = hdcp2_locality_check(connector);
1454         if (ret < 0) {
1455                 DRM_DEBUG_KMS("Locality Check failed. Err : %d\n", ret);
1456                 return ret;
1457         }
1458
1459         ret = hdcp2_session_key_exchange(connector);
1460         if (ret < 0) {
1461                 DRM_DEBUG_KMS("SKE Failed. Err : %d\n", ret);
1462                 return ret;
1463         }
1464
1465         if (shim->config_stream_type) {
1466                 ret = shim->config_stream_type(intel_dig_port,
1467                                                hdcp->is_repeater,
1468                                                hdcp->content_type);
1469                 if (ret < 0)
1470                         return ret;
1471         }
1472
1473         if (hdcp->is_repeater) {
1474                 ret = hdcp2_authenticate_repeater(connector);
1475                 if (ret < 0) {
1476                         DRM_DEBUG_KMS("Repeater Auth Failed. Err: %d\n", ret);
1477                         return ret;
1478                 }
1479         }
1480
1481         hdcp->port_data.streams[0].stream_type = hdcp->content_type;
1482         ret = hdcp2_authenticate_port(connector);
1483         if (ret < 0)
1484                 return ret;
1485
1486         return ret;
1487 }
1488
1489 static int hdcp2_enable_encryption(struct intel_connector *connector)
1490 {
1491         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1492         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1493         struct intel_hdcp *hdcp = &connector->hdcp;
1494         enum port port = connector->encoder->port;
1495         int ret;
1496
1497         WARN_ON(I915_READ(HDCP2_STATUS_DDI(port)) & LINK_ENCRYPTION_STATUS);
1498
1499         if (hdcp->shim->toggle_signalling) {
1500                 ret = hdcp->shim->toggle_signalling(intel_dig_port, true);
1501                 if (ret) {
1502                         DRM_ERROR("Failed to enable HDCP signalling. %d\n",
1503                                   ret);
1504                         return ret;
1505                 }
1506         }
1507
1508         if (I915_READ(HDCP2_STATUS_DDI(port)) & LINK_AUTH_STATUS) {
1509                 /* Link is Authenticated. Now set for Encryption */
1510                 I915_WRITE(HDCP2_CTL_DDI(port),
1511                            I915_READ(HDCP2_CTL_DDI(port)) |
1512                            CTL_LINK_ENCRYPTION_REQ);
1513         }
1514
1515         ret = intel_wait_for_register(&dev_priv->uncore, HDCP2_STATUS_DDI(port),
1516                                       LINK_ENCRYPTION_STATUS,
1517                                       LINK_ENCRYPTION_STATUS,
1518                                       ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1519
1520         return ret;
1521 }
1522
1523 static int hdcp2_disable_encryption(struct intel_connector *connector)
1524 {
1525         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1526         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1527         struct intel_hdcp *hdcp = &connector->hdcp;
1528         enum port port = connector->encoder->port;
1529         int ret;
1530
1531         WARN_ON(!(I915_READ(HDCP2_STATUS_DDI(port)) & LINK_ENCRYPTION_STATUS));
1532
1533         I915_WRITE(HDCP2_CTL_DDI(port),
1534                    I915_READ(HDCP2_CTL_DDI(port)) & ~CTL_LINK_ENCRYPTION_REQ);
1535
1536         ret = intel_wait_for_register(&dev_priv->uncore, HDCP2_STATUS_DDI(port),
1537                                       LINK_ENCRYPTION_STATUS, 0x0,
1538                                       ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1539         if (ret == -ETIMEDOUT)
1540                 DRM_DEBUG_KMS("Disable Encryption Timedout");
1541
1542         if (hdcp->shim->toggle_signalling) {
1543                 ret = hdcp->shim->toggle_signalling(intel_dig_port, false);
1544                 if (ret) {
1545                         DRM_ERROR("Failed to disable HDCP signalling. %d\n",
1546                                   ret);
1547                         return ret;
1548                 }
1549         }
1550
1551         return ret;
1552 }
1553
1554 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1555 {
1556         int ret, i, tries = 3;
1557
1558         for (i = 0; i < tries; i++) {
1559                 ret = hdcp2_authenticate_sink(connector);
1560                 if (!ret)
1561                         break;
1562
1563                 /* Clearing the mei hdcp session */
1564                 DRM_DEBUG_KMS("HDCP2.2 Auth %d of %d Failed.(%d)\n",
1565                               i + 1, tries, ret);
1566                 if (hdcp2_deauthenticate_port(connector) < 0)
1567                         DRM_DEBUG_KMS("Port deauth failed.\n");
1568         }
1569
1570         if (i != tries) {
1571                 /*
1572                  * Ensuring the required 200mSec min time interval between
1573                  * Session Key Exchange and encryption.
1574                  */
1575                 msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1576                 ret = hdcp2_enable_encryption(connector);
1577                 if (ret < 0) {
1578                         DRM_DEBUG_KMS("Encryption Enable Failed.(%d)\n", ret);
1579                         if (hdcp2_deauthenticate_port(connector) < 0)
1580                                 DRM_DEBUG_KMS("Port deauth failed.\n");
1581                 }
1582         }
1583
1584         return ret;
1585 }
1586
1587 static int _intel_hdcp2_enable(struct intel_connector *connector)
1588 {
1589         struct intel_hdcp *hdcp = &connector->hdcp;
1590         int ret;
1591
1592         DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1593                       connector->base.name, connector->base.base.id,
1594                       hdcp->content_type);
1595
1596         ret = hdcp2_authenticate_and_encrypt(connector);
1597         if (ret) {
1598                 DRM_DEBUG_KMS("HDCP2 Type%d  Enabling Failed. (%d)\n",
1599                               hdcp->content_type, ret);
1600                 return ret;
1601         }
1602
1603         DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is enabled. Type %d\n",
1604                       connector->base.name, connector->base.base.id,
1605                       hdcp->content_type);
1606
1607         hdcp->hdcp2_encrypted = true;
1608         return 0;
1609 }
1610
1611 static int _intel_hdcp2_disable(struct intel_connector *connector)
1612 {
1613         int ret;
1614
1615         DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is being Disabled\n",
1616                       connector->base.name, connector->base.base.id);
1617
1618         ret = hdcp2_disable_encryption(connector);
1619
1620         if (hdcp2_deauthenticate_port(connector) < 0)
1621                 DRM_DEBUG_KMS("Port deauth failed.\n");
1622
1623         connector->hdcp.hdcp2_encrypted = false;
1624
1625         return ret;
1626 }
1627
1628 /* Implements the Link Integrity Check for HDCP2.2 */
1629 static int intel_hdcp2_check_link(struct intel_connector *connector)
1630 {
1631         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1632         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1633         struct intel_hdcp *hdcp = &connector->hdcp;
1634         enum port port = connector->encoder->port;
1635         int ret = 0;
1636
1637         mutex_lock(&hdcp->mutex);
1638
1639         /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
1640         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1641             !hdcp->hdcp2_encrypted) {
1642                 ret = -EINVAL;
1643                 goto out;
1644         }
1645
1646         if (WARN_ON(!intel_hdcp2_in_use(connector))) {
1647                 DRM_ERROR("HDCP2.2 link stopped the encryption, %x\n",
1648                           I915_READ(HDCP2_STATUS_DDI(port)));
1649                 ret = -ENXIO;
1650                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1651                 schedule_work(&hdcp->prop_work);
1652                 goto out;
1653         }
1654
1655         ret = hdcp->shim->check_2_2_link(intel_dig_port);
1656         if (ret == HDCP_LINK_PROTECTED) {
1657                 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1658                         hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1659                         schedule_work(&hdcp->prop_work);
1660                 }
1661                 goto out;
1662         }
1663
1664         if (ret == HDCP_TOPOLOGY_CHANGE) {
1665                 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1666                         goto out;
1667
1668                 DRM_DEBUG_KMS("HDCP2.2 Downstream topology change\n");
1669                 ret = hdcp2_authenticate_repeater_topology(connector);
1670                 if (!ret) {
1671                         hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1672                         schedule_work(&hdcp->prop_work);
1673                         goto out;
1674                 }
1675                 DRM_DEBUG_KMS("[%s:%d] Repeater topology auth failed.(%d)\n",
1676                               connector->base.name, connector->base.base.id,
1677                               ret);
1678         } else {
1679                 DRM_DEBUG_KMS("[%s:%d] HDCP2.2 link failed, retrying auth\n",
1680                               connector->base.name, connector->base.base.id);
1681         }
1682
1683         ret = _intel_hdcp2_disable(connector);
1684         if (ret) {
1685                 DRM_ERROR("[%s:%d] Failed to disable hdcp2.2 (%d)\n",
1686                           connector->base.name, connector->base.base.id, ret);
1687                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1688                 schedule_work(&hdcp->prop_work);
1689                 goto out;
1690         }
1691
1692         ret = _intel_hdcp2_enable(connector);
1693         if (ret) {
1694                 DRM_DEBUG_KMS("[%s:%d] Failed to enable hdcp2.2 (%d)\n",
1695                               connector->base.name, connector->base.base.id,
1696                               ret);
1697                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1698                 schedule_work(&hdcp->prop_work);
1699                 goto out;
1700         }
1701
1702 out:
1703         mutex_unlock(&hdcp->mutex);
1704         return ret;
1705 }
1706
1707 static void intel_hdcp_check_work(struct work_struct *work)
1708 {
1709         struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
1710                                                struct intel_hdcp,
1711                                                check_work);
1712         struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1713
1714         if (!intel_hdcp2_check_link(connector))
1715                 schedule_delayed_work(&hdcp->check_work,
1716                                       DRM_HDCP2_CHECK_PERIOD_MS);
1717         else if (!intel_hdcp_check_link(connector))
1718                 schedule_delayed_work(&hdcp->check_work,
1719                                       DRM_HDCP_CHECK_PERIOD_MS);
1720 }
1721
1722 static int i915_hdcp_component_bind(struct device *i915_kdev,
1723                                     struct device *mei_kdev, void *data)
1724 {
1725         struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1726
1727         DRM_DEBUG("I915 HDCP comp bind\n");
1728         mutex_lock(&dev_priv->hdcp_comp_mutex);
1729         dev_priv->hdcp_master = (struct i915_hdcp_comp_master *)data;
1730         dev_priv->hdcp_master->mei_dev = mei_kdev;
1731         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1732
1733         return 0;
1734 }
1735
1736 static void i915_hdcp_component_unbind(struct device *i915_kdev,
1737                                        struct device *mei_kdev, void *data)
1738 {
1739         struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1740
1741         DRM_DEBUG("I915 HDCP comp unbind\n");
1742         mutex_lock(&dev_priv->hdcp_comp_mutex);
1743         dev_priv->hdcp_master = NULL;
1744         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1745 }
1746
1747 static const struct component_ops i915_hdcp_component_ops = {
1748         .bind   = i915_hdcp_component_bind,
1749         .unbind = i915_hdcp_component_unbind,
1750 };
1751
1752 static inline int initialize_hdcp_port_data(struct intel_connector *connector)
1753 {
1754         struct intel_hdcp *hdcp = &connector->hdcp;
1755         struct hdcp_port_data *data = &hdcp->port_data;
1756
1757         data->port = connector->encoder->port;
1758         data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
1759         data->protocol = (u8)hdcp->shim->protocol;
1760
1761         data->k = 1;
1762         if (!data->streams)
1763                 data->streams = kcalloc(data->k,
1764                                         sizeof(struct hdcp2_streamid_type),
1765                                         GFP_KERNEL);
1766         if (!data->streams) {
1767                 DRM_ERROR("Out of Memory\n");
1768                 return -ENOMEM;
1769         }
1770
1771         data->streams[0].stream_id = 0;
1772         data->streams[0].stream_type = hdcp->content_type;
1773
1774         return 0;
1775 }
1776
1777 static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
1778 {
1779         if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
1780                 return false;
1781
1782         return (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv) ||
1783                 IS_KABYLAKE(dev_priv));
1784 }
1785
1786 void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
1787 {
1788         int ret;
1789
1790         if (!is_hdcp2_supported(dev_priv))
1791                 return;
1792
1793         mutex_lock(&dev_priv->hdcp_comp_mutex);
1794         WARN_ON(dev_priv->hdcp_comp_added);
1795
1796         dev_priv->hdcp_comp_added = true;
1797         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1798         ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
1799                                   I915_COMPONENT_HDCP);
1800         if (ret < 0) {
1801                 DRM_DEBUG_KMS("Failed at component add(%d)\n", ret);
1802                 mutex_lock(&dev_priv->hdcp_comp_mutex);
1803                 dev_priv->hdcp_comp_added = false;
1804                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1805                 return;
1806         }
1807 }
1808
1809 static void intel_hdcp2_init(struct intel_connector *connector)
1810 {
1811         struct intel_hdcp *hdcp = &connector->hdcp;
1812         int ret;
1813
1814         ret = initialize_hdcp_port_data(connector);
1815         if (ret) {
1816                 DRM_DEBUG_KMS("Mei hdcp data init failed\n");
1817                 return;
1818         }
1819
1820         hdcp->hdcp2_supported = true;
1821 }
1822
1823 int intel_hdcp_init(struct intel_connector *connector,
1824                     const struct intel_hdcp_shim *shim)
1825 {
1826         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1827         struct intel_hdcp *hdcp = &connector->hdcp;
1828         int ret;
1829
1830         if (!shim)
1831                 return -EINVAL;
1832
1833         ret = drm_connector_attach_content_protection_property(&connector->base);
1834         if (ret)
1835                 return ret;
1836
1837         hdcp->shim = shim;
1838         mutex_init(&hdcp->mutex);
1839         INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
1840         INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
1841
1842         if (is_hdcp2_supported(dev_priv))
1843                 intel_hdcp2_init(connector);
1844         init_waitqueue_head(&hdcp->cp_irq_queue);
1845
1846         return 0;
1847 }
1848
1849 int intel_hdcp_enable(struct intel_connector *connector)
1850 {
1851         struct intel_hdcp *hdcp = &connector->hdcp;
1852         unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
1853         int ret = -EINVAL;
1854
1855         if (!hdcp->shim)
1856                 return -ENOENT;
1857
1858         mutex_lock(&hdcp->mutex);
1859         WARN_ON(hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
1860
1861         /*
1862          * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
1863          * is capable of HDCP2.2, it is preferred to use HDCP2.2.
1864          */
1865         if (intel_hdcp2_capable(connector)) {
1866                 ret = _intel_hdcp2_enable(connector);
1867                 if (!ret)
1868                         check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
1869         }
1870
1871         /* When HDCP2.2 fails, HDCP1.4 will be attempted */
1872         if (ret && intel_hdcp_capable(connector)) {
1873                 ret = _intel_hdcp_enable(connector);
1874         }
1875
1876         if (!ret) {
1877                 schedule_delayed_work(&hdcp->check_work, check_link_interval);
1878                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1879                 schedule_work(&hdcp->prop_work);
1880         }
1881
1882         mutex_unlock(&hdcp->mutex);
1883         return ret;
1884 }
1885
1886 int intel_hdcp_disable(struct intel_connector *connector)
1887 {
1888         struct intel_hdcp *hdcp = &connector->hdcp;
1889         int ret = 0;
1890
1891         if (!hdcp->shim)
1892                 return -ENOENT;
1893
1894         mutex_lock(&hdcp->mutex);
1895
1896         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1897                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_UNDESIRED;
1898                 if (hdcp->hdcp2_encrypted)
1899                         ret = _intel_hdcp2_disable(connector);
1900                 else if (hdcp->hdcp_encrypted)
1901                         ret = _intel_hdcp_disable(connector);
1902         }
1903
1904         mutex_unlock(&hdcp->mutex);
1905         cancel_delayed_work_sync(&hdcp->check_work);
1906         return ret;
1907 }
1908
1909 void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
1910 {
1911         mutex_lock(&dev_priv->hdcp_comp_mutex);
1912         if (!dev_priv->hdcp_comp_added) {
1913                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1914                 return;
1915         }
1916
1917         dev_priv->hdcp_comp_added = false;
1918         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1919
1920         component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
1921 }
1922
1923 void intel_hdcp_cleanup(struct intel_connector *connector)
1924 {
1925         if (!connector->hdcp.shim)
1926                 return;
1927
1928         mutex_lock(&connector->hdcp.mutex);
1929         kfree(connector->hdcp.port_data.streams);
1930         mutex_unlock(&connector->hdcp.mutex);
1931 }
1932
1933 void intel_hdcp_atomic_check(struct drm_connector *connector,
1934                              struct drm_connector_state *old_state,
1935                              struct drm_connector_state *new_state)
1936 {
1937         u64 old_cp = old_state->content_protection;
1938         u64 new_cp = new_state->content_protection;
1939         struct drm_crtc_state *crtc_state;
1940
1941         if (!new_state->crtc) {
1942                 /*
1943                  * If the connector is being disabled with CP enabled, mark it
1944                  * desired so it's re-enabled when the connector is brought back
1945                  */
1946                 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
1947                         new_state->content_protection =
1948                                 DRM_MODE_CONTENT_PROTECTION_DESIRED;
1949                 return;
1950         }
1951
1952         /*
1953          * Nothing to do if the state didn't change, or HDCP was activated since
1954          * the last commit
1955          */
1956         if (old_cp == new_cp ||
1957             (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
1958              new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED))
1959                 return;
1960
1961         crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
1962                                                    new_state->crtc);
1963         crtc_state->mode_changed = true;
1964 }
1965
1966 /* Handles the CP_IRQ raised from the DP HDCP sink */
1967 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
1968 {
1969         struct intel_hdcp *hdcp = &connector->hdcp;
1970
1971         if (!hdcp->shim)
1972                 return;
1973
1974         atomic_inc(&connector->hdcp.cp_irq_count);
1975         wake_up_all(&connector->hdcp.cp_irq_queue);
1976
1977         schedule_delayed_work(&hdcp->check_work, 0);
1978 }