Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / amd / powerplay / smumgr / iceland_smumgr.c
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Author: Huang Rui <ray.huang@amd.com>
23  *
24  */
25 #include "pp_debug.h"
26 #include <linux/types.h>
27 #include <linux/kernel.h>
28 #include <linux/pci.h>
29 #include <linux/slab.h>
30 #include <linux/gfp.h>
31
32 #include "smumgr.h"
33 #include "iceland_smumgr.h"
34
35 #include "ppsmc.h"
36
37 #include "cgs_common.h"
38
39 #include "smu7_dyn_defaults.h"
40 #include "smu7_hwmgr.h"
41 #include "hardwaremanager.h"
42 #include "ppatomctrl.h"
43 #include "atombios.h"
44 #include "pppcielanes.h"
45 #include "pp_endian.h"
46 #include "processpptables.h"
47
48
49 #include "smu/smu_7_1_1_d.h"
50 #include "smu/smu_7_1_1_sh_mask.h"
51 #include "smu71_discrete.h"
52
53 #include "smu_ucode_xfer_vi.h"
54 #include "gmc/gmc_8_1_d.h"
55 #include "gmc/gmc_8_1_sh_mask.h"
56 #include "bif/bif_5_0_d.h"
57 #include "bif/bif_5_0_sh_mask.h"
58 #include "dce/dce_10_0_d.h"
59 #include "dce/dce_10_0_sh_mask.h"
60
61
62 #define ICELAND_SMC_SIZE               0x20000
63
64 #define POWERTUNE_DEFAULT_SET_MAX    1
65 #define MC_CG_ARB_FREQ_F1           0x0b
66 #define VDDC_VDDCI_DELTA            200
67
68 #define DEVICE_ID_VI_ICELAND_M_6900     0x6900
69 #define DEVICE_ID_VI_ICELAND_M_6901     0x6901
70 #define DEVICE_ID_VI_ICELAND_M_6902     0x6902
71 #define DEVICE_ID_VI_ICELAND_M_6903     0x6903
72
73 static const struct iceland_pt_defaults defaults_iceland = {
74         /*
75          * sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc,
76          * TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT
77          */
78         1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
79         { 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
80         { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
81 };
82
83 /* 35W - XT, XTL */
84 static const struct iceland_pt_defaults defaults_icelandxt = {
85         /*
86          * sviLoadLIneEn, SviLoadLineVddC,
87          * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
88          * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
89          * BAPM_TEMP_GRADIENT
90          */
91         1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
92         { 0xA7,  0x0, 0x0, 0xB5,  0x0, 0x0, 0x9F,  0x0, 0x0, 0xD6,  0x0, 0x0, 0xD7,  0x0, 0x0},
93         { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
94 };
95
96 /* 25W - PRO, LE */
97 static const struct iceland_pt_defaults defaults_icelandpro = {
98         /*
99          * sviLoadLIneEn, SviLoadLineVddC,
100          * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
101          * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
102          * BAPM_TEMP_GRADIENT
103          */
104         1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
105         { 0xB7,  0x0, 0x0, 0xC3,  0x0, 0x0, 0xB5,  0x0, 0x0, 0xEA,  0x0, 0x0, 0xE6,  0x0, 0x0},
106         { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
107 };
108
109 static int iceland_start_smc(struct pp_hwmgr *hwmgr)
110 {
111         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
112                                   SMC_SYSCON_RESET_CNTL, rst_reg, 0);
113
114         return 0;
115 }
116
117 static void iceland_reset_smc(struct pp_hwmgr *hwmgr)
118 {
119         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
120                                   SMC_SYSCON_RESET_CNTL,
121                                   rst_reg, 1);
122 }
123
124
125 static void iceland_stop_smc_clock(struct pp_hwmgr *hwmgr)
126 {
127         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
128                                   SMC_SYSCON_CLOCK_CNTL_0,
129                                   ck_disable, 1);
130 }
131
132 static void iceland_start_smc_clock(struct pp_hwmgr *hwmgr)
133 {
134         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
135                                   SMC_SYSCON_CLOCK_CNTL_0,
136                                   ck_disable, 0);
137 }
138
139 static int iceland_smu_start_smc(struct pp_hwmgr *hwmgr)
140 {
141         /* set smc instruct start point at 0x0 */
142         smu7_program_jump_on_start(hwmgr);
143
144         /* enable smc clock */
145         iceland_start_smc_clock(hwmgr);
146
147         /* de-assert reset */
148         iceland_start_smc(hwmgr);
149
150         PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
151                                  INTERRUPTS_ENABLED, 1);
152
153         return 0;
154 }
155
156
157 static int iceland_upload_smc_firmware_data(struct pp_hwmgr *hwmgr,
158                                         uint32_t length, const uint8_t *src,
159                                         uint32_t limit, uint32_t start_addr)
160 {
161         uint32_t byte_count = length;
162         uint32_t data;
163
164         PP_ASSERT_WITH_CODE((limit >= byte_count), "SMC address is beyond the SMC RAM area.", return -EINVAL);
165
166         cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
167         PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
168
169         while (byte_count >= 4) {
170                 data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
171                 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
172                 src += 4;
173                 byte_count -= 4;
174         }
175
176         PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
177
178         PP_ASSERT_WITH_CODE((0 == byte_count), "SMC size must be divisible by 4.", return -EINVAL);
179
180         return 0;
181 }
182
183
184 static int iceland_smu_upload_firmware_image(struct pp_hwmgr *hwmgr)
185 {
186         uint32_t val;
187         struct cgs_firmware_info info = {0};
188
189         if (hwmgr == NULL || hwmgr->device == NULL)
190                 return -EINVAL;
191
192         /* load SMC firmware */
193         cgs_get_firmware_info(hwmgr->device,
194                 smu7_convert_fw_type_to_cgs(UCODE_ID_SMU), &info);
195
196         if (info.image_size & 3) {
197                 pr_err("[ powerplay ] SMC ucode is not 4 bytes aligned\n");
198                 return -EINVAL;
199         }
200
201         if (info.image_size > ICELAND_SMC_SIZE) {
202                 pr_err("[ powerplay ] SMC address is beyond the SMC RAM area\n");
203                 return -EINVAL;
204         }
205         hwmgr->smu_version = info.version;
206         /* wait for smc boot up */
207         PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
208                                          RCU_UC_EVENTS, boot_seq_done, 0);
209
210         /* clear firmware interrupt enable flag */
211         val = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
212                                     ixSMC_SYSCON_MISC_CNTL);
213         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
214                                ixSMC_SYSCON_MISC_CNTL, val | 1);
215
216         /* stop smc clock */
217         iceland_stop_smc_clock(hwmgr);
218
219         /* reset smc */
220         iceland_reset_smc(hwmgr);
221         iceland_upload_smc_firmware_data(hwmgr, info.image_size,
222                                 (uint8_t *)info.kptr, ICELAND_SMC_SIZE,
223                                 info.ucode_start_address);
224
225         return 0;
226 }
227
228 static int iceland_request_smu_load_specific_fw(struct pp_hwmgr *hwmgr,
229                                                 uint32_t firmwareType)
230 {
231         return 0;
232 }
233
234 static int iceland_start_smu(struct pp_hwmgr *hwmgr)
235 {
236         struct iceland_smumgr *priv = hwmgr->smu_backend;
237         int result;
238
239         if (!smu7_is_smc_ram_running(hwmgr)) {
240                 result = iceland_smu_upload_firmware_image(hwmgr);
241                 if (result)
242                         return result;
243
244                 iceland_smu_start_smc(hwmgr);
245         }
246
247         /* Setup SoftRegsStart here to visit the register UcodeLoadStatus
248          * to check fw loading state
249          */
250         smu7_read_smc_sram_dword(hwmgr,
251                         SMU71_FIRMWARE_HEADER_LOCATION +
252                         offsetof(SMU71_Firmware_Header, SoftRegisters),
253                         &(priv->smu7_data.soft_regs_start), 0x40000);
254
255         result = smu7_request_smu_load_fw(hwmgr);
256
257         return result;
258 }
259
260 static int iceland_smu_init(struct pp_hwmgr *hwmgr)
261 {
262         struct iceland_smumgr *iceland_priv = NULL;
263
264         iceland_priv = kzalloc(sizeof(struct iceland_smumgr), GFP_KERNEL);
265
266         if (iceland_priv == NULL)
267                 return -ENOMEM;
268
269         hwmgr->smu_backend = iceland_priv;
270
271         if (smu7_init(hwmgr)) {
272                 kfree(iceland_priv);
273                 return -EINVAL;
274         }
275
276         return 0;
277 }
278
279
280 static void iceland_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
281 {
282         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
283         struct amdgpu_device *adev = hwmgr->adev;
284         uint32_t dev_id;
285
286         dev_id = adev->pdev->device;
287
288         switch (dev_id) {
289         case DEVICE_ID_VI_ICELAND_M_6900:
290         case DEVICE_ID_VI_ICELAND_M_6903:
291                 smu_data->power_tune_defaults = &defaults_icelandxt;
292                 break;
293
294         case DEVICE_ID_VI_ICELAND_M_6901:
295         case DEVICE_ID_VI_ICELAND_M_6902:
296                 smu_data->power_tune_defaults = &defaults_icelandpro;
297                 break;
298         default:
299                 smu_data->power_tune_defaults = &defaults_iceland;
300                 pr_warn("Unknown V.I. Device ID.\n");
301                 break;
302         }
303         return;
304 }
305
306 static int iceland_populate_svi_load_line(struct pp_hwmgr *hwmgr)
307 {
308         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
309         const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
310
311         smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
312         smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
313         smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
314         smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
315
316         return 0;
317 }
318
319 static int iceland_populate_tdc_limit(struct pp_hwmgr *hwmgr)
320 {
321         uint16_t tdc_limit;
322         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
323         const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
324
325         tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
326         smu_data->power_tune_table.TDC_VDDC_PkgLimit =
327                         CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
328         smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
329                         defaults->tdc_vddc_throttle_release_limit_perc;
330         smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
331
332         return 0;
333 }
334
335 static int iceland_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
336 {
337         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
338         const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
339         uint32_t temp;
340
341         if (smu7_read_smc_sram_dword(hwmgr,
342                         fuse_table_offset +
343                         offsetof(SMU71_Discrete_PmFuses, TdcWaterfallCtl),
344                         (uint32_t *)&temp, SMC_RAM_END))
345                 PP_ASSERT_WITH_CODE(false,
346                                 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
347                                 return -EINVAL);
348         else
349                 smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
350
351         return 0;
352 }
353
354 static int iceland_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
355 {
356         return 0;
357 }
358
359 static int iceland_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
360 {
361         int i;
362         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
363
364         /* Currently not used. Set all to zero. */
365         for (i = 0; i < 8; i++)
366                 smu_data->power_tune_table.GnbLPML[i] = 0;
367
368         return 0;
369 }
370
371 static int iceland_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
372 {
373         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
374         uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
375         uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
376         struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
377
378         HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
379         LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
380
381         smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
382                         CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
383         smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
384                         CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
385
386         return 0;
387 }
388
389 static int iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
390 {
391         int i;
392         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
393         uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
394         uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
395
396         PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
397                             "The CAC Leakage table does not exist!", return -EINVAL);
398         PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
399                             "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
400         PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
401                             "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
402
403         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
404                 for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
405                         lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
406                         hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
407                 }
408         } else {
409                 PP_ASSERT_WITH_CODE(false, "Iceland should always support EVV", return -EINVAL);
410         }
411
412         return 0;
413 }
414
415 static int iceland_populate_vddc_vid(struct pp_hwmgr *hwmgr)
416 {
417         int i;
418         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
419         uint8_t *vid = smu_data->power_tune_table.VddCVid;
420         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
421
422         PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
423                 "There should never be more than 8 entries for VddcVid!!!",
424                 return -EINVAL);
425
426         for (i = 0; i < (int)data->vddc_voltage_table.count; i++) {
427                 vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
428         }
429
430         return 0;
431 }
432
433
434
435 static int iceland_populate_pm_fuses(struct pp_hwmgr *hwmgr)
436 {
437         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
438         uint32_t pm_fuse_table_offset;
439
440         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
441                         PHM_PlatformCaps_PowerContainment)) {
442                 if (smu7_read_smc_sram_dword(hwmgr,
443                                 SMU71_FIRMWARE_HEADER_LOCATION +
444                                 offsetof(SMU71_Firmware_Header, PmFuseTable),
445                                 &pm_fuse_table_offset, SMC_RAM_END))
446                         PP_ASSERT_WITH_CODE(false,
447                                         "Attempt to get pm_fuse_table_offset Failed!",
448                                         return -EINVAL);
449
450                 /* DW0 - DW3 */
451                 if (iceland_populate_bapm_vddc_vid_sidd(hwmgr))
452                         PP_ASSERT_WITH_CODE(false,
453                                         "Attempt to populate bapm vddc vid Failed!",
454                                         return -EINVAL);
455
456                 /* DW4 - DW5 */
457                 if (iceland_populate_vddc_vid(hwmgr))
458                         PP_ASSERT_WITH_CODE(false,
459                                         "Attempt to populate vddc vid Failed!",
460                                         return -EINVAL);
461
462                 /* DW6 */
463                 if (iceland_populate_svi_load_line(hwmgr))
464                         PP_ASSERT_WITH_CODE(false,
465                                         "Attempt to populate SviLoadLine Failed!",
466                                         return -EINVAL);
467                 /* DW7 */
468                 if (iceland_populate_tdc_limit(hwmgr))
469                         PP_ASSERT_WITH_CODE(false,
470                                         "Attempt to populate TDCLimit Failed!", return -EINVAL);
471                 /* DW8 */
472                 if (iceland_populate_dw8(hwmgr, pm_fuse_table_offset))
473                         PP_ASSERT_WITH_CODE(false,
474                                         "Attempt to populate TdcWaterfallCtl, "
475                                         "LPMLTemperature Min and Max Failed!",
476                                         return -EINVAL);
477
478                 /* DW9-DW12 */
479                 if (0 != iceland_populate_temperature_scaler(hwmgr))
480                         PP_ASSERT_WITH_CODE(false,
481                                         "Attempt to populate LPMLTemperatureScaler Failed!",
482                                         return -EINVAL);
483
484                 /* DW13-DW16 */
485                 if (iceland_populate_gnb_lpml(hwmgr))
486                         PP_ASSERT_WITH_CODE(false,
487                                         "Attempt to populate GnbLPML Failed!",
488                                         return -EINVAL);
489
490                 /* DW18 */
491                 if (iceland_populate_bapm_vddc_base_leakage_sidd(hwmgr))
492                         PP_ASSERT_WITH_CODE(false,
493                                         "Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!",
494                                         return -EINVAL);
495
496                 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
497                                 (uint8_t *)&smu_data->power_tune_table,
498                                 sizeof(struct SMU71_Discrete_PmFuses), SMC_RAM_END))
499                         PP_ASSERT_WITH_CODE(false,
500                                         "Attempt to download PmFuseTable Failed!",
501                                         return -EINVAL);
502         }
503         return 0;
504 }
505
506 static int iceland_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
507         struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
508         uint32_t clock, uint32_t *vol)
509 {
510         uint32_t i = 0;
511
512         /* clock - voltage dependency table is empty table */
513         if (allowed_clock_voltage_table->count == 0)
514                 return -EINVAL;
515
516         for (i = 0; i < allowed_clock_voltage_table->count; i++) {
517                 /* find first sclk bigger than request */
518                 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
519                         *vol = allowed_clock_voltage_table->entries[i].v;
520                         return 0;
521                 }
522         }
523
524         /* sclk is bigger than max sclk in the dependence table */
525         *vol = allowed_clock_voltage_table->entries[i - 1].v;
526
527         return 0;
528 }
529
530 static int iceland_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
531                 pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
532                 uint16_t *lo)
533 {
534         uint16_t v_index;
535         bool vol_found = false;
536         *hi = tab->value * VOLTAGE_SCALE;
537         *lo = tab->value * VOLTAGE_SCALE;
538
539         /* SCLK/VDDC Dependency Table has to exist. */
540         PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
541                         "The SCLK/VDDC Dependency Table does not exist.",
542                         return -EINVAL);
543
544         if (NULL == hwmgr->dyn_state.cac_leakage_table) {
545                 pr_warn("CAC Leakage Table does not exist, using vddc.\n");
546                 return 0;
547         }
548
549         /*
550          * Since voltage in the sclk/vddc dependency table is not
551          * necessarily in ascending order because of ELB voltage
552          * patching, loop through entire list to find exact voltage.
553          */
554         for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
555                 if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
556                         vol_found = true;
557                         if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
558                                 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
559                                 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
560                         } else {
561                                 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
562                                 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
563                                 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
564                         }
565                         break;
566                 }
567         }
568
569         /*
570          * If voltage is not found in the first pass, loop again to
571          * find the best match, equal or higher value.
572          */
573         if (!vol_found) {
574                 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
575                         if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
576                                 vol_found = true;
577                                 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
578                                         *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
579                                         *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
580                                 } else {
581                                         pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
582                                         *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
583                                         *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
584                                 }
585                                 break;
586                         }
587                 }
588
589                 if (!vol_found)
590                         pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
591         }
592
593         return 0;
594 }
595
596 static int iceland_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
597                 pp_atomctrl_voltage_table_entry *tab,
598                 SMU71_Discrete_VoltageLevel *smc_voltage_tab)
599 {
600         int result;
601
602         result = iceland_get_std_voltage_value_sidd(hwmgr, tab,
603                         &smc_voltage_tab->StdVoltageHiSidd,
604                         &smc_voltage_tab->StdVoltageLoSidd);
605         if (0 != result) {
606                 smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
607                 smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
608         }
609
610         smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
611         CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
612         CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
613
614         return 0;
615 }
616
617 static int iceland_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
618                         SMU71_Discrete_DpmTable *table)
619 {
620         unsigned int count;
621         int result;
622         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
623
624         table->VddcLevelCount = data->vddc_voltage_table.count;
625         for (count = 0; count < table->VddcLevelCount; count++) {
626                 result = iceland_populate_smc_voltage_table(hwmgr,
627                                 &(data->vddc_voltage_table.entries[count]),
628                                 &(table->VddcLevel[count]));
629                 PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
630
631                 /* GPIO voltage control */
632                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control)
633                         table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low;
634                 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
635                         table->VddcLevel[count].Smio = 0;
636         }
637
638         CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
639
640         return 0;
641 }
642
643 static int iceland_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
644                         SMU71_Discrete_DpmTable *table)
645 {
646         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
647         uint32_t count;
648         int result;
649
650         table->VddciLevelCount = data->vddci_voltage_table.count;
651
652         for (count = 0; count < table->VddciLevelCount; count++) {
653                 result = iceland_populate_smc_voltage_table(hwmgr,
654                                 &(data->vddci_voltage_table.entries[count]),
655                                 &(table->VddciLevel[count]));
656                 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
657                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
658                         table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low;
659                 else
660                         table->VddciLevel[count].Smio |= 0;
661         }
662
663         CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
664
665         return 0;
666 }
667
668 static int iceland_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
669                         SMU71_Discrete_DpmTable *table)
670 {
671         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
672         uint32_t count;
673         int result;
674
675         table->MvddLevelCount = data->mvdd_voltage_table.count;
676
677         for (count = 0; count < table->VddciLevelCount; count++) {
678                 result = iceland_populate_smc_voltage_table(hwmgr,
679                                 &(data->mvdd_voltage_table.entries[count]),
680                                 &table->MvddLevel[count]);
681                 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
682                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control)
683                         table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low;
684                 else
685                         table->MvddLevel[count].Smio |= 0;
686         }
687
688         CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
689
690         return 0;
691 }
692
693
694 static int iceland_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
695         SMU71_Discrete_DpmTable *table)
696 {
697         int result;
698
699         result = iceland_populate_smc_vddc_table(hwmgr, table);
700         PP_ASSERT_WITH_CODE(0 == result,
701                         "can not populate VDDC voltage table to SMC", return -EINVAL);
702
703         result = iceland_populate_smc_vdd_ci_table(hwmgr, table);
704         PP_ASSERT_WITH_CODE(0 == result,
705                         "can not populate VDDCI voltage table to SMC", return -EINVAL);
706
707         result = iceland_populate_smc_mvdd_table(hwmgr, table);
708         PP_ASSERT_WITH_CODE(0 == result,
709                         "can not populate MVDD voltage table to SMC", return -EINVAL);
710
711         return 0;
712 }
713
714 static int iceland_populate_ulv_level(struct pp_hwmgr *hwmgr,
715                 struct SMU71_Discrete_Ulv *state)
716 {
717         uint32_t voltage_response_time, ulv_voltage;
718         int result;
719         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
720
721         state->CcPwrDynRm = 0;
722         state->CcPwrDynRm1 = 0;
723
724         result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
725         PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
726
727         if (ulv_voltage == 0) {
728                 data->ulv_supported = false;
729                 return 0;
730         }
731
732         if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
733                 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
734                 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
735                         state->VddcOffset = 0;
736                 else
737                         /* used in SMIO Mode. not implemented for now. this is backup only for CI. */
738                         state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
739         } else {
740                 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
741                 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
742                         state->VddcOffsetVid = 0;
743                 else  /* used in SVI2 Mode */
744                         state->VddcOffsetVid = (uint8_t)(
745                                         (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
746                                                 * VOLTAGE_VID_OFFSET_SCALE2
747                                                 / VOLTAGE_VID_OFFSET_SCALE1);
748         }
749         state->VddcPhase = 1;
750
751         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
752         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
753         CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
754
755         return 0;
756 }
757
758 static int iceland_populate_ulv_state(struct pp_hwmgr *hwmgr,
759                  SMU71_Discrete_Ulv *ulv_level)
760 {
761         return iceland_populate_ulv_level(hwmgr, ulv_level);
762 }
763
764 static int iceland_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table)
765 {
766         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
767         struct smu7_dpm_table *dpm_table = &data->dpm_table;
768         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
769         uint32_t i;
770
771         /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
772         for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
773                 table->LinkLevel[i].PcieGenSpeed  =
774                         (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
775                 table->LinkLevel[i].PcieLaneCount =
776                         (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
777                 table->LinkLevel[i].EnabledForActivity =
778                         1;
779                 table->LinkLevel[i].SPC =
780                         (uint8_t)(data->pcie_spc_cap & 0xff);
781                 table->LinkLevel[i].DownThreshold =
782                         PP_HOST_TO_SMC_UL(5);
783                 table->LinkLevel[i].UpThreshold =
784                         PP_HOST_TO_SMC_UL(30);
785         }
786
787         smu_data->smc_state_table.LinkLevelCount =
788                 (uint8_t)dpm_table->pcie_speed_table.count;
789         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
790                 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
791
792         return 0;
793 }
794
795 static int iceland_calculate_sclk_params(struct pp_hwmgr *hwmgr,
796                 uint32_t engine_clock, SMU71_Discrete_GraphicsLevel *sclk)
797 {
798         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
799         pp_atomctrl_clock_dividers_vi dividers;
800         uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
801         uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
802         uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
803         uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
804         uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
805         uint32_t    reference_clock;
806         uint32_t reference_divider;
807         uint32_t fbdiv;
808         int result;
809
810         /* get the engine clock dividers for this clock value*/
811         result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock,  &dividers);
812
813         PP_ASSERT_WITH_CODE(result == 0,
814                 "Error retrieving Engine Clock dividers from VBIOS.", return result);
815
816         /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
817         reference_clock = atomctrl_get_reference_clock(hwmgr);
818
819         reference_divider = 1 + dividers.uc_pll_ref_div;
820
821         /* low 14 bits is fraction and high 12 bits is divider*/
822         fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
823
824         /* SPLL_FUNC_CNTL setup*/
825         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
826                 CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
827         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
828                 CG_SPLL_FUNC_CNTL, SPLL_PDIV_A,  dividers.uc_pll_post_div);
829
830         /* SPLL_FUNC_CNTL_3 setup*/
831         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
832                 CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
833
834         /* set to use fractional accumulation*/
835         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
836                 CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
837
838         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
839                         PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
840                 pp_atomctrl_internal_ss_info ss_info;
841
842                 uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
843                 if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
844                         /*
845                         * ss_info.speed_spectrum_percentage -- in unit of 0.01%
846                         * ss_info.speed_spectrum_rate -- in unit of khz
847                         */
848                         /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
849                         uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
850
851                         /* clkv = 2 * D * fbdiv / NS */
852                         uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
853
854                         cg_spll_spread_spectrum =
855                                 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
856                         cg_spll_spread_spectrum =
857                                 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
858                         cg_spll_spread_spectrum_2 =
859                                 PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
860                 }
861         }
862
863         sclk->SclkFrequency        = engine_clock;
864         sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
865         sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
866         sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
867         sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
868         sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
869
870         return 0;
871 }
872
873 static int iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
874                                 const struct phm_phase_shedding_limits_table *pl,
875                                         uint32_t sclk, uint32_t *p_shed)
876 {
877         unsigned int i;
878
879         /* use the minimum phase shedding */
880         *p_shed = 1;
881
882         for (i = 0; i < pl->count; i++) {
883                 if (sclk < pl->entries[i].Sclk) {
884                         *p_shed = i;
885                         break;
886                 }
887         }
888         return 0;
889 }
890
891 static int iceland_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
892                                                 uint32_t engine_clock,
893                                 SMU71_Discrete_GraphicsLevel *graphic_level)
894 {
895         int result;
896         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
897
898         result = iceland_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
899
900         /* populate graphics levels*/
901         result = iceland_get_dependency_volt_by_clk(hwmgr,
902                 hwmgr->dyn_state.vddc_dependency_on_sclk, engine_clock,
903                 &graphic_level->MinVddc);
904         PP_ASSERT_WITH_CODE((0 == result),
905                 "can not find VDDC voltage value for VDDC engine clock dependency table", return result);
906
907         /* SCLK frequency in units of 10KHz*/
908         graphic_level->SclkFrequency = engine_clock;
909         graphic_level->MinVddcPhases = 1;
910
911         if (data->vddc_phase_shed_control)
912                 iceland_populate_phase_value_based_on_sclk(hwmgr,
913                                 hwmgr->dyn_state.vddc_phase_shed_limits_table,
914                                 engine_clock,
915                                 &graphic_level->MinVddcPhases);
916
917         /* Indicates maximum activity level for this performance level. 50% for now*/
918         graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity;
919
920         graphic_level->CcPwrDynRm = 0;
921         graphic_level->CcPwrDynRm1 = 0;
922         /* this level can be used if activity is high enough.*/
923         graphic_level->EnabledForActivity = 0;
924         /* this level can be used for throttling.*/
925         graphic_level->EnabledForThrottle = 1;
926         graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst;
927         graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst;
928         graphic_level->VoltageDownHyst = 0;
929         graphic_level->PowerThrottle = 0;
930
931         data->display_timing.min_clock_in_sr =
932                         hwmgr->display_config->min_core_set_clock_in_sr;
933
934         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
935                         PHM_PlatformCaps_SclkDeepSleep))
936                 graphic_level->DeepSleepDivId =
937                                 smu7_get_sleep_divider_id_from_clock(engine_clock,
938                                                 data->display_timing.min_clock_in_sr);
939
940         /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
941         graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
942
943         if (0 == result) {
944                 graphic_level->MinVddc = PP_HOST_TO_SMC_UL(graphic_level->MinVddc * VOLTAGE_SCALE);
945                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);
946                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
947                 CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
948                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
949                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
950                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
951                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
952                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
953                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
954         }
955
956         return result;
957 }
958
959 static int iceland_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
960 {
961         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
962         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
963         struct smu7_dpm_table *dpm_table = &data->dpm_table;
964         uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start +
965                                 offsetof(SMU71_Discrete_DpmTable, GraphicsLevel);
966
967         uint32_t level_array_size = sizeof(SMU71_Discrete_GraphicsLevel) *
968                                                 SMU71_MAX_LEVELS_GRAPHICS;
969
970         SMU71_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
971
972         uint32_t i;
973         uint8_t highest_pcie_level_enabled = 0;
974         uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
975         uint8_t count = 0;
976         int result = 0;
977
978         memset(levels, 0x00, level_array_size);
979
980         for (i = 0; i < dpm_table->sclk_table.count; i++) {
981                 result = iceland_populate_single_graphic_level(hwmgr,
982                                         dpm_table->sclk_table.dpm_levels[i].value,
983                                         &(smu_data->smc_state_table.GraphicsLevel[i]));
984                 if (result != 0)
985                         return result;
986
987                 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
988                 if (i > 1)
989                         smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
990         }
991
992         /* Only enable level 0 for now. */
993         smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
994
995         /* set highest level watermark to high */
996         if (dpm_table->sclk_table.count > 1)
997                 smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
998                         PPSMC_DISPLAY_WATERMARK_HIGH;
999
1000         smu_data->smc_state_table.GraphicsDpmLevelCount =
1001                 (uint8_t)dpm_table->sclk_table.count;
1002         data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1003                 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1004
1005         while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1006                                 (1 << (highest_pcie_level_enabled + 1))) != 0) {
1007                 highest_pcie_level_enabled++;
1008         }
1009
1010         while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1011                 (1 << lowest_pcie_level_enabled)) == 0) {
1012                 lowest_pcie_level_enabled++;
1013         }
1014
1015         while ((count < highest_pcie_level_enabled) &&
1016                         ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1017                                 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) {
1018                 count++;
1019         }
1020
1021         mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
1022                 (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
1023
1024
1025         /* set pcieDpmLevel to highest_pcie_level_enabled*/
1026         for (i = 2; i < dpm_table->sclk_table.count; i++) {
1027                 smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
1028         }
1029
1030         /* set pcieDpmLevel to lowest_pcie_level_enabled*/
1031         smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
1032
1033         /* set pcieDpmLevel to mid_pcie_level_enabled*/
1034         smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
1035
1036         /* level count will send to smc once at init smc table and never change*/
1037         result = smu7_copy_bytes_to_smc(hwmgr, level_array_adress,
1038                                 (uint8_t *)levels, (uint32_t)level_array_size,
1039                                                                 SMC_RAM_END);
1040
1041         return result;
1042 }
1043
1044 static int iceland_calculate_mclk_params(
1045                 struct pp_hwmgr *hwmgr,
1046                 uint32_t memory_clock,
1047                 SMU71_Discrete_MemoryLevel *mclk,
1048                 bool strobe_mode,
1049                 bool dllStateOn
1050                 )
1051 {
1052         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1053
1054         uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
1055         uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1056         uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1057         uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1058         uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1059         uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1060         uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1061         uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
1062         uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
1063
1064         pp_atomctrl_memory_clock_param mpll_param;
1065         int result;
1066
1067         result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1068                                 memory_clock, &mpll_param, strobe_mode);
1069         PP_ASSERT_WITH_CODE(0 == result,
1070                 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1071
1072         /* MPLL_FUNC_CNTL setup*/
1073         mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1074
1075         /* MPLL_FUNC_CNTL_1 setup*/
1076         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1077                                                         MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1078         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1079                                                         MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1080         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1081                                                         MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1082
1083         /* MPLL_AD_FUNC_CNTL setup*/
1084         mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1085                                                         MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1086
1087         if (data->is_memory_gddr5) {
1088                 /* MPLL_DQ_FUNC_CNTL setup*/
1089                 mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1090                                                                 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1091                 mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1092                                                                 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1093         }
1094
1095         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1096                         PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1097                 /*
1098                  ************************************
1099                  Fref = Reference Frequency
1100                  NF = Feedback divider ratio
1101                  NR = Reference divider ratio
1102                  Fnom = Nominal VCO output frequency = Fref * NF / NR
1103                  Fs = Spreading Rate
1104                  D = Percentage down-spread / 2
1105                  Fint = Reference input frequency to PFD = Fref / NR
1106                  NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
1107                  CLKS = NS - 1 = ISS_STEP_NUM[11:0]
1108                  NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
1109                  CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
1110                  *************************************
1111                  */
1112                 pp_atomctrl_internal_ss_info ss_info;
1113                 uint32_t freq_nom;
1114                 uint32_t tmp;
1115                 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1116
1117                 /* for GDDR5 for all modes and DDR3 */
1118                 if (1 == mpll_param.qdr)
1119                         freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1120                 else
1121                         freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1122
1123                 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
1124                 tmp = (freq_nom / reference_clock);
1125                 tmp = tmp * tmp;
1126
1127                 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1128                         /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
1129                         /* ss.Info.speed_spectrum_rate -- in unit of khz */
1130                         /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
1131                         /*     = reference_clock * 5 / speed_spectrum_rate */
1132                         uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1133
1134                         /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
1135                         /*     = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
1136                         uint32_t clkv =
1137                                 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1138                                                         ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1139
1140                         mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1141                         mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1142                 }
1143         }
1144
1145         /* MCLK_PWRMGT_CNTL setup */
1146         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1147                 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1148         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1149                 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1150         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1151                 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1152
1153
1154         /* Save the result data to outpupt memory level structure */
1155         mclk->MclkFrequency   = memory_clock;
1156         mclk->MpllFuncCntl    = mpll_func_cntl;
1157         mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
1158         mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
1159         mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
1160         mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
1161         mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
1162         mclk->DllCntl         = dll_cntl;
1163         mclk->MpllSs1         = mpll_ss1;
1164         mclk->MpllSs2         = mpll_ss2;
1165
1166         return 0;
1167 }
1168
1169 static uint8_t iceland_get_mclk_frequency_ratio(uint32_t memory_clock,
1170                 bool strobe_mode)
1171 {
1172         uint8_t mc_para_index;
1173
1174         if (strobe_mode) {
1175                 if (memory_clock < 12500) {
1176                         mc_para_index = 0x00;
1177                 } else if (memory_clock > 47500) {
1178                         mc_para_index = 0x0f;
1179                 } else {
1180                         mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1181                 }
1182         } else {
1183                 if (memory_clock < 65000) {
1184                         mc_para_index = 0x00;
1185                 } else if (memory_clock > 135000) {
1186                         mc_para_index = 0x0f;
1187                 } else {
1188                         mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1189                 }
1190         }
1191
1192         return mc_para_index;
1193 }
1194
1195 static uint8_t iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1196 {
1197         uint8_t mc_para_index;
1198
1199         if (memory_clock < 10000) {
1200                 mc_para_index = 0;
1201         } else if (memory_clock >= 80000) {
1202                 mc_para_index = 0x0f;
1203         } else {
1204                 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1205         }
1206
1207         return mc_para_index;
1208 }
1209
1210 static int iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1211                                         uint32_t memory_clock, uint32_t *p_shed)
1212 {
1213         unsigned int i;
1214
1215         *p_shed = 1;
1216
1217         for (i = 0; i < pl->count; i++) {
1218                 if (memory_clock < pl->entries[i].Mclk) {
1219                         *p_shed = i;
1220                         break;
1221                 }
1222         }
1223
1224         return 0;
1225 }
1226
1227 static int iceland_populate_single_memory_level(
1228                 struct pp_hwmgr *hwmgr,
1229                 uint32_t memory_clock,
1230                 SMU71_Discrete_MemoryLevel *memory_level
1231                 )
1232 {
1233         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1234         int result = 0;
1235         bool dll_state_on;
1236         uint32_t mclk_edc_wr_enable_threshold = 40000;
1237         uint32_t mclk_edc_enable_threshold = 40000;
1238         uint32_t mclk_strobe_mode_threshold = 40000;
1239
1240         if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1241                 result = iceland_get_dependency_volt_by_clk(hwmgr,
1242                         hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1243                 PP_ASSERT_WITH_CODE((0 == result),
1244                         "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1245         }
1246
1247         if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) {
1248                 memory_level->MinVddci = memory_level->MinVddc;
1249         } else if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1250                 result = iceland_get_dependency_volt_by_clk(hwmgr,
1251                                 hwmgr->dyn_state.vddci_dependency_on_mclk,
1252                                 memory_clock,
1253                                 &memory_level->MinVddci);
1254                 PP_ASSERT_WITH_CODE((0 == result),
1255                         "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1256         }
1257
1258         memory_level->MinVddcPhases = 1;
1259
1260         if (data->vddc_phase_shed_control) {
1261                 iceland_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1262                                 memory_clock, &memory_level->MinVddcPhases);
1263         }
1264
1265         memory_level->EnabledForThrottle = 1;
1266         memory_level->EnabledForActivity = 0;
1267         memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1268         memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1269         memory_level->VoltageDownHyst = 0;
1270
1271         /* Indicates maximum activity level for this performance level.*/
1272         memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1273         memory_level->StutterEnable = 0;
1274         memory_level->StrobeEnable = 0;
1275         memory_level->EdcReadEnable = 0;
1276         memory_level->EdcWriteEnable = 0;
1277         memory_level->RttEnable = 0;
1278
1279         /* default set to low watermark. Highest level will be set to high later.*/
1280         memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1281
1282         data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1283         data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1284
1285         /* stutter mode not support on iceland */
1286
1287         /* decide strobe mode*/
1288         memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1289                 (memory_clock <= mclk_strobe_mode_threshold);
1290
1291         /* decide EDC mode and memory clock ratio*/
1292         if (data->is_memory_gddr5) {
1293                 memory_level->StrobeRatio = iceland_get_mclk_frequency_ratio(memory_clock,
1294                                         memory_level->StrobeEnable);
1295
1296                 if ((mclk_edc_enable_threshold != 0) &&
1297                                 (memory_clock > mclk_edc_enable_threshold)) {
1298                         memory_level->EdcReadEnable = 1;
1299                 }
1300
1301                 if ((mclk_edc_wr_enable_threshold != 0) &&
1302                                 (memory_clock > mclk_edc_wr_enable_threshold)) {
1303                         memory_level->EdcWriteEnable = 1;
1304                 }
1305
1306                 if (memory_level->StrobeEnable) {
1307                         if (iceland_get_mclk_frequency_ratio(memory_clock, 1) >=
1308                                         ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1309                                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1310                         else
1311                                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1312                 } else
1313                         dll_state_on = data->dll_default_on;
1314         } else {
1315                 memory_level->StrobeRatio =
1316                         iceland_get_ddr3_mclk_frequency_ratio(memory_clock);
1317                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1318         }
1319
1320         result = iceland_calculate_mclk_params(hwmgr,
1321                 memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1322
1323         if (0 == result) {
1324                 memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1325                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1326                 memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1327                 memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1328                 /* MCLK frequency in units of 10KHz*/
1329                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1330                 /* Indicates maximum activity level for this performance level.*/
1331                 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1332                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1333                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1334                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1335                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1336                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1337                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1338                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1339                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1340                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1341         }
1342
1343         return result;
1344 }
1345
1346 static int iceland_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1347 {
1348         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1349         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1350         struct smu7_dpm_table *dpm_table = &data->dpm_table;
1351         int result;
1352
1353         /* populate MCLK dpm table to SMU7 */
1354         uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + offsetof(SMU71_Discrete_DpmTable, MemoryLevel);
1355         uint32_t level_array_size = sizeof(SMU71_Discrete_MemoryLevel) * SMU71_MAX_LEVELS_MEMORY;
1356         SMU71_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1357         uint32_t i;
1358
1359         memset(levels, 0x00, level_array_size);
1360
1361         for (i = 0; i < dpm_table->mclk_table.count; i++) {
1362                 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1363                         "can not populate memory level as memory clock is zero", return -EINVAL);
1364                 result = iceland_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1365                         &(smu_data->smc_state_table.MemoryLevel[i]));
1366                 if (0 != result) {
1367                         return result;
1368                 }
1369         }
1370
1371         /* Only enable level 0 for now.*/
1372         smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1373
1374         /*
1375         * in order to prevent MC activity from stutter mode to push DPM up.
1376         * the UVD change complements this by putting the MCLK in a higher state
1377         * by default such that we are not effected by up threshold or and MCLK DPM latency.
1378         */
1379         smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1380         CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1381
1382         smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1383         data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1384         /* set highest level watermark to high*/
1385         smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1386
1387         /* level count will send to smc once at init smc table and never change*/
1388         result = smu7_copy_bytes_to_smc(hwmgr,
1389                 level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size,
1390                 SMC_RAM_END);
1391
1392         return result;
1393 }
1394
1395 static int iceland_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1396                                         SMU71_Discrete_VoltageLevel *voltage)
1397 {
1398         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1399
1400         uint32_t i = 0;
1401
1402         if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1403                 /* find mvdd value which clock is more than request */
1404                 for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1405                         if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1406                                 /* Always round to higher voltage. */
1407                                 voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1408                                 break;
1409                         }
1410                 }
1411
1412                 PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1413                         "MVDD Voltage is outside the supported range.", return -EINVAL);
1414
1415         } else {
1416                 return -EINVAL;
1417         }
1418
1419         return 0;
1420 }
1421
1422 static int iceland_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1423         SMU71_Discrete_DpmTable *table)
1424 {
1425         int result = 0;
1426         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1427         struct pp_atomctrl_clock_dividers_vi dividers;
1428         uint32_t vddc_phase_shed_control = 0;
1429
1430         SMU71_Discrete_VoltageLevel voltage_level;
1431         uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1432         uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1433         uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
1434         uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
1435
1436
1437         /* The ACPI state should not do DPM on DC (or ever).*/
1438         table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1439
1440         if (data->acpi_vddc)
1441                 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1442         else
1443                 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1444
1445         table->ACPILevel.MinVddcPhases = vddc_phase_shed_control ? 0 : 1;
1446         /* assign zero for now*/
1447         table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1448
1449         /* get the engine clock dividers for this clock value*/
1450         result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1451                 table->ACPILevel.SclkFrequency,  &dividers);
1452
1453         PP_ASSERT_WITH_CODE(result == 0,
1454                 "Error retrieving Engine Clock dividers from VBIOS.", return result);
1455
1456         /* divider ID for required SCLK*/
1457         table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1458         table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1459         table->ACPILevel.DeepSleepDivId = 0;
1460
1461         spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1462                                                         CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
1463         spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1464                                                         CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
1465         spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
1466                                                         CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
1467
1468         table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1469         table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1470         table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1471         table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1472         table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1473         table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1474         table->ACPILevel.CcPwrDynRm = 0;
1475         table->ACPILevel.CcPwrDynRm1 = 0;
1476
1477
1478         /* For various features to be enabled/disabled while this level is active.*/
1479         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1480         /* SCLK frequency in units of 10KHz*/
1481         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1482         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1483         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1484         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1485         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1486         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1487         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1488         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1489         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1490
1491         /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1492         table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1493         table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1494
1495         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1496                 table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1497         else {
1498                 if (data->acpi_vddci != 0)
1499                         table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1500                 else
1501                         table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1502         }
1503
1504         if (0 == iceland_populate_mvdd_value(hwmgr, 0, &voltage_level))
1505                 table->MemoryACPILevel.MinMvdd =
1506                         PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1507         else
1508                 table->MemoryACPILevel.MinMvdd = 0;
1509
1510         /* Force reset on DLL*/
1511         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1512                 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1513         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1514                 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1515
1516         /* Disable DLL in ACPIState*/
1517         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1518                 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1519         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1520                 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1521
1522         /* Enable DLL bypass signal*/
1523         dll_cntl            = PHM_SET_FIELD(dll_cntl,
1524                 DLL_CNTL, MRDCK0_BYPASS, 0);
1525         dll_cntl            = PHM_SET_FIELD(dll_cntl,
1526                 DLL_CNTL, MRDCK1_BYPASS, 0);
1527
1528         table->MemoryACPILevel.DllCntl            =
1529                 PP_HOST_TO_SMC_UL(dll_cntl);
1530         table->MemoryACPILevel.MclkPwrmgtCntl     =
1531                 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1532         table->MemoryACPILevel.MpllAdFuncCntl     =
1533                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1534         table->MemoryACPILevel.MpllDqFuncCntl     =
1535                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1536         table->MemoryACPILevel.MpllFuncCntl       =
1537                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1538         table->MemoryACPILevel.MpllFuncCntl_1     =
1539                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1540         table->MemoryACPILevel.MpllFuncCntl_2     =
1541                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1542         table->MemoryACPILevel.MpllSs1            =
1543                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1544         table->MemoryACPILevel.MpllSs2            =
1545                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1546
1547         table->MemoryACPILevel.EnabledForThrottle = 0;
1548         table->MemoryACPILevel.EnabledForActivity = 0;
1549         table->MemoryACPILevel.UpHyst = 0;
1550         table->MemoryACPILevel.DownHyst = 100;
1551         table->MemoryACPILevel.VoltageDownHyst = 0;
1552         /* Indicates maximum activity level for this performance level.*/
1553         table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1554
1555         table->MemoryACPILevel.StutterEnable = 0;
1556         table->MemoryACPILevel.StrobeEnable = 0;
1557         table->MemoryACPILevel.EdcReadEnable = 0;
1558         table->MemoryACPILevel.EdcWriteEnable = 0;
1559         table->MemoryACPILevel.RttEnable = 0;
1560
1561         return result;
1562 }
1563
1564 static int iceland_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1565                                         SMU71_Discrete_DpmTable *table)
1566 {
1567         return 0;
1568 }
1569
1570 static int iceland_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1571                 SMU71_Discrete_DpmTable *table)
1572 {
1573         return 0;
1574 }
1575
1576 static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1577                 SMU71_Discrete_DpmTable *table)
1578 {
1579         return 0;
1580 }
1581
1582 static int iceland_populate_memory_timing_parameters(
1583                 struct pp_hwmgr *hwmgr,
1584                 uint32_t engine_clock,
1585                 uint32_t memory_clock,
1586                 struct SMU71_Discrete_MCArbDramTimingTableEntry *arb_regs
1587                 )
1588 {
1589         uint32_t dramTiming;
1590         uint32_t dramTiming2;
1591         uint32_t burstTime;
1592         int result;
1593
1594         result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1595                                 engine_clock, memory_clock);
1596
1597         PP_ASSERT_WITH_CODE(result == 0,
1598                 "Error calling VBIOS to set DRAM_TIMING.", return result);
1599
1600         dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1601         dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1602         burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1603
1604         arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1605         arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1606         arb_regs->McArbBurstTime = (uint8_t)burstTime;
1607
1608         return 0;
1609 }
1610
1611 static int iceland_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1612 {
1613         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1614         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1615         int result = 0;
1616         SMU71_Discrete_MCArbDramTimingTable  arb_regs;
1617         uint32_t i, j;
1618
1619         memset(&arb_regs, 0x00, sizeof(SMU71_Discrete_MCArbDramTimingTable));
1620
1621         for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1622                 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1623                         result = iceland_populate_memory_timing_parameters
1624                                 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1625                                  data->dpm_table.mclk_table.dpm_levels[j].value,
1626                                  &arb_regs.entries[i][j]);
1627
1628                         if (0 != result) {
1629                                 break;
1630                         }
1631                 }
1632         }
1633
1634         if (0 == result) {
1635                 result = smu7_copy_bytes_to_smc(
1636                                 hwmgr,
1637                                 smu_data->smu7_data.arb_table_start,
1638                                 (uint8_t *)&arb_regs,
1639                                 sizeof(SMU71_Discrete_MCArbDramTimingTable),
1640                                 SMC_RAM_END
1641                                 );
1642         }
1643
1644         return result;
1645 }
1646
1647 static int iceland_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1648                         SMU71_Discrete_DpmTable *table)
1649 {
1650         int result = 0;
1651         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1652         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1653         table->GraphicsBootLevel = 0;
1654         table->MemoryBootLevel = 0;
1655
1656         /* find boot level from dpm table*/
1657         result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1658                         data->vbios_boot_state.sclk_bootup_value,
1659                         (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1660
1661         if (0 != result) {
1662                 smu_data->smc_state_table.GraphicsBootLevel = 0;
1663                 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1664                 result = 0;
1665         }
1666
1667         result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1668                 data->vbios_boot_state.mclk_bootup_value,
1669                 (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1670
1671         if (0 != result) {
1672                 smu_data->smc_state_table.MemoryBootLevel = 0;
1673                 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1674                 result = 0;
1675         }
1676
1677         table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1678         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1679                 table->BootVddci = table->BootVddc;
1680         else
1681                 table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1682
1683         table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1684
1685         return result;
1686 }
1687
1688 static int iceland_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1689                                  SMU71_Discrete_MCRegisters *mc_reg_table)
1690 {
1691         const struct iceland_smumgr *smu_data = (struct iceland_smumgr *)hwmgr->smu_backend;
1692
1693         uint32_t i, j;
1694
1695         for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1696                 if (smu_data->mc_reg_table.validflag & 1<<j) {
1697                         PP_ASSERT_WITH_CODE(i < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1698                                 "Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1699                         mc_reg_table->address[i].s0 =
1700                                 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1701                         mc_reg_table->address[i].s1 =
1702                                 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1703                         i++;
1704                 }
1705         }
1706
1707         mc_reg_table->last = (uint8_t)i;
1708
1709         return 0;
1710 }
1711
1712 /*convert register values from driver to SMC format */
1713 static void iceland_convert_mc_registers(
1714         const struct iceland_mc_reg_entry *entry,
1715         SMU71_Discrete_MCRegisterSet *data,
1716         uint32_t num_entries, uint32_t valid_flag)
1717 {
1718         uint32_t i, j;
1719
1720         for (i = 0, j = 0; j < num_entries; j++) {
1721                 if (valid_flag & 1<<j) {
1722                         data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1723                         i++;
1724                 }
1725         }
1726 }
1727
1728 static int iceland_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr *hwmgr,
1729                 const uint32_t memory_clock,
1730                 SMU71_Discrete_MCRegisterSet *mc_reg_table_data
1731                 )
1732 {
1733         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1734         uint32_t i = 0;
1735
1736         for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1737                 if (memory_clock <=
1738                         smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1739                         break;
1740                 }
1741         }
1742
1743         if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1744                 --i;
1745
1746         iceland_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1747                                 mc_reg_table_data, smu_data->mc_reg_table.last,
1748                                 smu_data->mc_reg_table.validflag);
1749
1750         return 0;
1751 }
1752
1753 static int iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1754                 SMU71_Discrete_MCRegisters *mc_regs)
1755 {
1756         int result = 0;
1757         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1758         int res;
1759         uint32_t i;
1760
1761         for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1762                 res = iceland_convert_mc_reg_table_entry_to_smc(
1763                                 hwmgr,
1764                                 data->dpm_table.mclk_table.dpm_levels[i].value,
1765                                 &mc_regs->data[i]
1766                                 );
1767
1768                 if (0 != res)
1769                         result = res;
1770         }
1771
1772         return result;
1773 }
1774
1775 static int iceland_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1776 {
1777         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1778         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1779         uint32_t address;
1780         int32_t result;
1781
1782         if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1783                 return 0;
1784
1785
1786         memset(&smu_data->mc_regs, 0, sizeof(SMU71_Discrete_MCRegisters));
1787
1788         result = iceland_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1789
1790         if (result != 0)
1791                 return result;
1792
1793
1794         address = smu_data->smu7_data.mc_reg_table_start + (uint32_t)offsetof(SMU71_Discrete_MCRegisters, data[0]);
1795
1796         return  smu7_copy_bytes_to_smc(hwmgr, address,
1797                                  (uint8_t *)&smu_data->mc_regs.data[0],
1798                                 sizeof(SMU71_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1799                                 SMC_RAM_END);
1800 }
1801
1802 static int iceland_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1803 {
1804         int result;
1805         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1806
1807         memset(&smu_data->mc_regs, 0x00, sizeof(SMU71_Discrete_MCRegisters));
1808         result = iceland_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1809         PP_ASSERT_WITH_CODE(0 == result,
1810                 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
1811
1812         result = iceland_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1813         PP_ASSERT_WITH_CODE(0 == result,
1814                 "Failed to initialize MCRegTable for driver state!", return result;);
1815
1816         return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start,
1817                         (uint8_t *)&smu_data->mc_regs, sizeof(SMU71_Discrete_MCRegisters), SMC_RAM_END);
1818 }
1819
1820 static int iceland_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1821 {
1822         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1823         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1824         uint8_t count, level;
1825
1826         count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1827
1828         for (level = 0; level < count; level++) {
1829                 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1830                          >= data->vbios_boot_state.sclk_bootup_value) {
1831                         smu_data->smc_state_table.GraphicsBootLevel = level;
1832                         break;
1833                 }
1834         }
1835
1836         count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1837
1838         for (level = 0; level < count; level++) {
1839                 if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1840                         >= data->vbios_boot_state.mclk_bootup_value) {
1841                         smu_data->smc_state_table.MemoryBootLevel = level;
1842                         break;
1843                 }
1844         }
1845
1846         return 0;
1847 }
1848
1849 static int iceland_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1850 {
1851         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1852         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1853         const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
1854         SMU71_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
1855         struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
1856         struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
1857         const uint16_t *def1, *def2;
1858         int i, j, k;
1859
1860
1861         /*
1862          * TDP number of fraction bits are changed from 8 to 7 for Iceland
1863          * as requested by SMC team
1864          */
1865
1866         dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
1867         dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
1868
1869
1870         dpm_table->DTETjOffset = 0;
1871
1872         dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
1873         dpm_table->GpuTjHyst = 8;
1874
1875         dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
1876
1877         /* The following are for new Iceland Multi-input fan/thermal control */
1878         if (NULL != ppm) {
1879                 dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
1880                 dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
1881         } else {
1882                 dpm_table->PPM_PkgPwrLimit = 0;
1883                 dpm_table->PPM_TemperatureLimit = 0;
1884         }
1885
1886         CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
1887         CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
1888
1889         dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
1890         def1 = defaults->bapmti_r;
1891         def2 = defaults->bapmti_rc;
1892
1893         for (i = 0; i < SMU71_DTE_ITERATIONS; i++) {
1894                 for (j = 0; j < SMU71_DTE_SOURCES; j++) {
1895                         for (k = 0; k < SMU71_DTE_SINKS; k++) {
1896                                 dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
1897                                 dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
1898                                 def1++;
1899                                 def2++;
1900                         }
1901                 }
1902         }
1903
1904         return 0;
1905 }
1906
1907 static int iceland_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1908                                             SMU71_Discrete_DpmTable *tab)
1909 {
1910         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1911
1912         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1913                 tab->SVI2Enable |= VDDC_ON_SVI2;
1914
1915         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1916                 tab->SVI2Enable |= VDDCI_ON_SVI2;
1917         else
1918                 tab->MergedVddci = 1;
1919
1920         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control)
1921                 tab->SVI2Enable |= MVDD_ON_SVI2;
1922
1923         PP_ASSERT_WITH_CODE(tab->SVI2Enable != (VDDC_ON_SVI2 | VDDCI_ON_SVI2 | MVDD_ON_SVI2) &&
1924                 (tab->SVI2Enable & VDDC_ON_SVI2), "SVI2 domain configuration is incorrect!", return -EINVAL);
1925
1926         return 0;
1927 }
1928
1929 static int iceland_init_smc_table(struct pp_hwmgr *hwmgr)
1930 {
1931         int result;
1932         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1933         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1934         SMU71_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1935
1936
1937         iceland_initialize_power_tune_defaults(hwmgr);
1938         memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1939
1940         if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) {
1941                 iceland_populate_smc_voltage_tables(hwmgr, table);
1942         }
1943
1944         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1945                         PHM_PlatformCaps_AutomaticDCTransition))
1946                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1947
1948
1949         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1950                         PHM_PlatformCaps_StepVddc))
1951                 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1952
1953         if (data->is_memory_gddr5)
1954                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1955
1956
1957         if (data->ulv_supported) {
1958                 result = iceland_populate_ulv_state(hwmgr, &(smu_data->ulv_setting));
1959                 PP_ASSERT_WITH_CODE(0 == result,
1960                         "Failed to initialize ULV state!", return result;);
1961
1962                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1963                         ixCG_ULV_PARAMETER, 0x40035);
1964         }
1965
1966         result = iceland_populate_smc_link_level(hwmgr, table);
1967         PP_ASSERT_WITH_CODE(0 == result,
1968                 "Failed to initialize Link Level!", return result;);
1969
1970         result = iceland_populate_all_graphic_levels(hwmgr);
1971         PP_ASSERT_WITH_CODE(0 == result,
1972                 "Failed to initialize Graphics Level!", return result;);
1973
1974         result = iceland_populate_all_memory_levels(hwmgr);
1975         PP_ASSERT_WITH_CODE(0 == result,
1976                 "Failed to initialize Memory Level!", return result;);
1977
1978         result = iceland_populate_smc_acpi_level(hwmgr, table);
1979         PP_ASSERT_WITH_CODE(0 == result,
1980                 "Failed to initialize ACPI Level!", return result;);
1981
1982         result = iceland_populate_smc_vce_level(hwmgr, table);
1983         PP_ASSERT_WITH_CODE(0 == result,
1984                 "Failed to initialize VCE Level!", return result;);
1985
1986         result = iceland_populate_smc_acp_level(hwmgr, table);
1987         PP_ASSERT_WITH_CODE(0 == result,
1988                 "Failed to initialize ACP Level!", return result;);
1989
1990         /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
1991         /* need to populate the  ARB settings for the initial state. */
1992         result = iceland_program_memory_timing_parameters(hwmgr);
1993         PP_ASSERT_WITH_CODE(0 == result,
1994                 "Failed to Write ARB settings for the initial state.", return result;);
1995
1996         result = iceland_populate_smc_uvd_level(hwmgr, table);
1997         PP_ASSERT_WITH_CODE(0 == result,
1998                 "Failed to initialize UVD Level!", return result;);
1999
2000         table->GraphicsBootLevel = 0;
2001         table->MemoryBootLevel = 0;
2002
2003         result = iceland_populate_smc_boot_level(hwmgr, table);
2004         PP_ASSERT_WITH_CODE(0 == result,
2005                 "Failed to initialize Boot Level!", return result;);
2006
2007         result = iceland_populate_smc_initial_state(hwmgr);
2008         PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2009
2010         result = iceland_populate_bapm_parameters_in_dpm_table(hwmgr);
2011         PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2012
2013         table->GraphicsVoltageChangeEnable  = 1;
2014         table->GraphicsThermThrottleEnable  = 1;
2015         table->GraphicsInterval = 1;
2016         table->VoltageInterval  = 1;
2017         table->ThermalInterval  = 1;
2018
2019         table->TemperatureLimitHigh =
2020                 (data->thermal_temp_setting.temperature_high *
2021                  SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2022         table->TemperatureLimitLow =
2023                 (data->thermal_temp_setting.temperature_low *
2024                 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2025
2026         table->MemoryVoltageChangeEnable  = 1;
2027         table->MemoryInterval  = 1;
2028         table->VoltageResponseTime  = 0;
2029         table->PhaseResponseTime  = 0;
2030         table->MemoryThermThrottleEnable  = 1;
2031         table->PCIeBootLinkLevel = 0;
2032         table->PCIeGenInterval = 1;
2033
2034         result = iceland_populate_smc_svi2_config(hwmgr, table);
2035         PP_ASSERT_WITH_CODE(0 == result,
2036                 "Failed to populate SVI2 setting!", return result);
2037
2038         table->ThermGpio  = 17;
2039         table->SclkStepSize = 0x4000;
2040
2041         CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2042         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2043         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2044         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2045         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2046         CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2047         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2048         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2049         CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2050         CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2051
2052         table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2053         table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2054         table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2055
2056         /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2057         result = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.dpm_table_start +
2058                                                                                 offsetof(SMU71_Discrete_DpmTable, SystemFlags),
2059                                                                                 (uint8_t *)&(table->SystemFlags),
2060                                                                                 sizeof(SMU71_Discrete_DpmTable)-3 * sizeof(SMU71_PIDController),
2061                                                                                 SMC_RAM_END);
2062
2063         PP_ASSERT_WITH_CODE(0 == result,
2064                 "Failed to upload dpm data to SMC memory!", return result;);
2065
2066         /* Upload all ulv setting to SMC memory.(dpm level, dpm level count etc) */
2067         result = smu7_copy_bytes_to_smc(hwmgr,
2068                         smu_data->smu7_data.ulv_setting_starts,
2069                         (uint8_t *)&(smu_data->ulv_setting),
2070                         sizeof(SMU71_Discrete_Ulv),
2071                         SMC_RAM_END);
2072
2073
2074         result = iceland_populate_initial_mc_reg_table(hwmgr);
2075         PP_ASSERT_WITH_CODE((0 == result),
2076                 "Failed to populate initialize MC Reg table!", return result);
2077
2078         result = iceland_populate_pm_fuses(hwmgr);
2079         PP_ASSERT_WITH_CODE(0 == result,
2080                         "Failed to  populate PM fuses to SMC memory!", return result);
2081
2082         return 0;
2083 }
2084
2085 int iceland_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2086 {
2087         struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
2088         SMU71_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2089         uint32_t duty100;
2090         uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2091         uint16_t fdo_min, slope1, slope2;
2092         uint32_t reference_clock;
2093         int res;
2094         uint64_t tmp64;
2095
2096         if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2097                 return 0;
2098
2099         if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2100                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2101                         PHM_PlatformCaps_MicrocodeFanControl);
2102                 return 0;
2103         }
2104
2105         if (0 == smu7_data->fan_table_start) {
2106                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2107                 return 0;
2108         }
2109
2110         duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2111
2112         if (0 == duty100) {
2113                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2114                 return 0;
2115         }
2116
2117         tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2118         do_div(tmp64, 10000);
2119         fdo_min = (uint16_t)tmp64;
2120
2121         t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2122         t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2123
2124         pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2125         pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2126
2127         slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2128         slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2129
2130         fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2131         fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2132         fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2133
2134         fan_table.Slope1 = cpu_to_be16(slope1);
2135         fan_table.Slope2 = cpu_to_be16(slope2);
2136
2137         fan_table.FdoMin = cpu_to_be16(fdo_min);
2138
2139         fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2140
2141         fan_table.HystUp = cpu_to_be16(1);
2142
2143         fan_table.HystSlope = cpu_to_be16(1);
2144
2145         fan_table.TempRespLim = cpu_to_be16(5);
2146
2147         reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2148
2149         fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2150
2151         fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2152
2153         fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2154
2155         /* fan_table.FanControl_GL_Flag = 1; */
2156
2157         res = smu7_copy_bytes_to_smc(hwmgr, smu7_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2158
2159         return 0;
2160 }
2161
2162
2163 static int iceland_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2164 {
2165         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2166
2167         if (data->need_update_smu7_dpm_table &
2168                 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2169                 return iceland_program_memory_timing_parameters(hwmgr);
2170
2171         return 0;
2172 }
2173
2174 static int iceland_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2175 {
2176         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2177         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
2178
2179         int result = 0;
2180         uint32_t low_sclk_interrupt_threshold = 0;
2181
2182         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2183                         PHM_PlatformCaps_SclkThrottleLowNotification)
2184                 && (data->low_sclk_interrupt_threshold != 0)) {
2185                 low_sclk_interrupt_threshold =
2186                                 data->low_sclk_interrupt_threshold;
2187
2188                 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2189
2190                 result = smu7_copy_bytes_to_smc(
2191                                 hwmgr,
2192                                 smu_data->smu7_data.dpm_table_start +
2193                                 offsetof(SMU71_Discrete_DpmTable,
2194                                         LowSclkInterruptThreshold),
2195                                 (uint8_t *)&low_sclk_interrupt_threshold,
2196                                 sizeof(uint32_t),
2197                                 SMC_RAM_END);
2198         }
2199
2200         result = iceland_update_and_upload_mc_reg_table(hwmgr);
2201
2202         PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2203
2204         result = iceland_program_mem_timing_parameters(hwmgr);
2205         PP_ASSERT_WITH_CODE((result == 0),
2206                         "Failed to program memory timing parameters!",
2207                         );
2208
2209         return result;
2210 }
2211
2212 static uint32_t iceland_get_offsetof(uint32_t type, uint32_t member)
2213 {
2214         switch (type) {
2215         case SMU_SoftRegisters:
2216                 switch (member) {
2217                 case HandshakeDisables:
2218                         return offsetof(SMU71_SoftRegisters, HandshakeDisables);
2219                 case VoltageChangeTimeout:
2220                         return offsetof(SMU71_SoftRegisters, VoltageChangeTimeout);
2221                 case AverageGraphicsActivity:
2222                         return offsetof(SMU71_SoftRegisters, AverageGraphicsActivity);
2223                 case AverageMemoryActivity:
2224                         return offsetof(SMU71_SoftRegisters, AverageMemoryActivity);
2225                 case PreVBlankGap:
2226                         return offsetof(SMU71_SoftRegisters, PreVBlankGap);
2227                 case VBlankTimeout:
2228                         return offsetof(SMU71_SoftRegisters, VBlankTimeout);
2229                 case UcodeLoadStatus:
2230                         return offsetof(SMU71_SoftRegisters, UcodeLoadStatus);
2231                 case DRAM_LOG_ADDR_H:
2232                         return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_H);
2233                 case DRAM_LOG_ADDR_L:
2234                         return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_L);
2235                 case DRAM_LOG_PHY_ADDR_H:
2236                         return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2237                 case DRAM_LOG_PHY_ADDR_L:
2238                         return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2239                 case DRAM_LOG_BUFF_SIZE:
2240                         return offsetof(SMU71_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2241                 }
2242                 break;
2243         case SMU_Discrete_DpmTable:
2244                 switch (member) {
2245                 case LowSclkInterruptThreshold:
2246                         return offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold);
2247                 }
2248                 break;
2249         }
2250         pr_warn("can't get the offset of type %x member %x\n", type, member);
2251         return 0;
2252 }
2253
2254 static uint32_t iceland_get_mac_definition(uint32_t value)
2255 {
2256         switch (value) {
2257         case SMU_MAX_LEVELS_GRAPHICS:
2258                 return SMU71_MAX_LEVELS_GRAPHICS;
2259         case SMU_MAX_LEVELS_MEMORY:
2260                 return SMU71_MAX_LEVELS_MEMORY;
2261         case SMU_MAX_LEVELS_LINK:
2262                 return SMU71_MAX_LEVELS_LINK;
2263         case SMU_MAX_ENTRIES_SMIO:
2264                 return SMU71_MAX_ENTRIES_SMIO;
2265         case SMU_MAX_LEVELS_VDDC:
2266                 return SMU71_MAX_LEVELS_VDDC;
2267         case SMU_MAX_LEVELS_VDDCI:
2268                 return SMU71_MAX_LEVELS_VDDCI;
2269         case SMU_MAX_LEVELS_MVDD:
2270                 return SMU71_MAX_LEVELS_MVDD;
2271         }
2272
2273         pr_warn("can't get the mac of %x\n", value);
2274         return 0;
2275 }
2276
2277 static int iceland_process_firmware_header(struct pp_hwmgr *hwmgr)
2278 {
2279         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2280         struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
2281
2282         uint32_t tmp;
2283         int result;
2284         bool error = false;
2285
2286         result = smu7_read_smc_sram_dword(hwmgr,
2287                                 SMU71_FIRMWARE_HEADER_LOCATION +
2288                                 offsetof(SMU71_Firmware_Header, DpmTable),
2289                                 &tmp, SMC_RAM_END);
2290
2291         if (0 == result) {
2292                 smu7_data->dpm_table_start = tmp;
2293         }
2294
2295         error |= (0 != result);
2296
2297         result = smu7_read_smc_sram_dword(hwmgr,
2298                                 SMU71_FIRMWARE_HEADER_LOCATION +
2299                                 offsetof(SMU71_Firmware_Header, SoftRegisters),
2300                                 &tmp, SMC_RAM_END);
2301
2302         if (0 == result) {
2303                 data->soft_regs_start = tmp;
2304                 smu7_data->soft_regs_start = tmp;
2305         }
2306
2307         error |= (0 != result);
2308
2309
2310         result = smu7_read_smc_sram_dword(hwmgr,
2311                                 SMU71_FIRMWARE_HEADER_LOCATION +
2312                                 offsetof(SMU71_Firmware_Header, mcRegisterTable),
2313                                 &tmp, SMC_RAM_END);
2314
2315         if (0 == result) {
2316                 smu7_data->mc_reg_table_start = tmp;
2317         }
2318
2319         result = smu7_read_smc_sram_dword(hwmgr,
2320                                 SMU71_FIRMWARE_HEADER_LOCATION +
2321                                 offsetof(SMU71_Firmware_Header, FanTable),
2322                                 &tmp, SMC_RAM_END);
2323
2324         if (0 == result) {
2325                 smu7_data->fan_table_start = tmp;
2326         }
2327
2328         error |= (0 != result);
2329
2330         result = smu7_read_smc_sram_dword(hwmgr,
2331                                 SMU71_FIRMWARE_HEADER_LOCATION +
2332                                 offsetof(SMU71_Firmware_Header, mcArbDramTimingTable),
2333                                 &tmp, SMC_RAM_END);
2334
2335         if (0 == result) {
2336                 smu7_data->arb_table_start = tmp;
2337         }
2338
2339         error |= (0 != result);
2340
2341
2342         result = smu7_read_smc_sram_dword(hwmgr,
2343                                 SMU71_FIRMWARE_HEADER_LOCATION +
2344                                 offsetof(SMU71_Firmware_Header, Version),
2345                                 &tmp, SMC_RAM_END);
2346
2347         if (0 == result) {
2348                 hwmgr->microcode_version_info.SMC = tmp;
2349         }
2350
2351         error |= (0 != result);
2352
2353         result = smu7_read_smc_sram_dword(hwmgr,
2354                                 SMU71_FIRMWARE_HEADER_LOCATION +
2355                                 offsetof(SMU71_Firmware_Header, UlvSettings),
2356                                 &tmp, SMC_RAM_END);
2357
2358         if (0 == result) {
2359                 smu7_data->ulv_setting_starts = tmp;
2360         }
2361
2362         error |= (0 != result);
2363
2364         return error ? 1 : 0;
2365 }
2366
2367 /*---------------------------MC----------------------------*/
2368
2369 static uint8_t iceland_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2370 {
2371         return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2372 }
2373
2374 static bool iceland_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2375 {
2376         bool result = true;
2377
2378         switch (in_reg) {
2379         case  mmMC_SEQ_RAS_TIMING:
2380                 *out_reg = mmMC_SEQ_RAS_TIMING_LP;
2381                 break;
2382
2383         case  mmMC_SEQ_DLL_STBY:
2384                 *out_reg = mmMC_SEQ_DLL_STBY_LP;
2385                 break;
2386
2387         case  mmMC_SEQ_G5PDX_CMD0:
2388                 *out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2389                 break;
2390
2391         case  mmMC_SEQ_G5PDX_CMD1:
2392                 *out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2393                 break;
2394
2395         case  mmMC_SEQ_G5PDX_CTRL:
2396                 *out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2397                 break;
2398
2399         case mmMC_SEQ_CAS_TIMING:
2400                 *out_reg = mmMC_SEQ_CAS_TIMING_LP;
2401                 break;
2402
2403         case mmMC_SEQ_MISC_TIMING:
2404                 *out_reg = mmMC_SEQ_MISC_TIMING_LP;
2405                 break;
2406
2407         case mmMC_SEQ_MISC_TIMING2:
2408                 *out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2409                 break;
2410
2411         case mmMC_SEQ_PMG_DVS_CMD:
2412                 *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2413                 break;
2414
2415         case mmMC_SEQ_PMG_DVS_CTL:
2416                 *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2417                 break;
2418
2419         case mmMC_SEQ_RD_CTL_D0:
2420                 *out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2421                 break;
2422
2423         case mmMC_SEQ_RD_CTL_D1:
2424                 *out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2425                 break;
2426
2427         case mmMC_SEQ_WR_CTL_D0:
2428                 *out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2429                 break;
2430
2431         case mmMC_SEQ_WR_CTL_D1:
2432                 *out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2433                 break;
2434
2435         case mmMC_PMG_CMD_EMRS:
2436                 *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2437                 break;
2438
2439         case mmMC_PMG_CMD_MRS:
2440                 *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2441                 break;
2442
2443         case mmMC_PMG_CMD_MRS1:
2444                 *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2445                 break;
2446
2447         case mmMC_SEQ_PMG_TIMING:
2448                 *out_reg = mmMC_SEQ_PMG_TIMING_LP;
2449                 break;
2450
2451         case mmMC_PMG_CMD_MRS2:
2452                 *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2453                 break;
2454
2455         case mmMC_SEQ_WR_CTL_2:
2456                 *out_reg = mmMC_SEQ_WR_CTL_2_LP;
2457                 break;
2458
2459         default:
2460                 result = false;
2461                 break;
2462         }
2463
2464         return result;
2465 }
2466
2467 static int iceland_set_s0_mc_reg_index(struct iceland_mc_reg_table *table)
2468 {
2469         uint32_t i;
2470         uint16_t address;
2471
2472         for (i = 0; i < table->last; i++) {
2473                 table->mc_reg_address[i].s0 =
2474                         iceland_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2475                         ? address : table->mc_reg_address[i].s1;
2476         }
2477         return 0;
2478 }
2479
2480 static int iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2481                                         struct iceland_mc_reg_table *ni_table)
2482 {
2483         uint8_t i, j;
2484
2485         PP_ASSERT_WITH_CODE((table->last <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2486                 "Invalid VramInfo table.", return -EINVAL);
2487         PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2488                 "Invalid VramInfo table.", return -EINVAL);
2489
2490         for (i = 0; i < table->last; i++) {
2491                 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2492         }
2493         ni_table->last = table->last;
2494
2495         for (i = 0; i < table->num_entries; i++) {
2496                 ni_table->mc_reg_table_entry[i].mclk_max =
2497                         table->mc_reg_table_entry[i].mclk_max;
2498                 for (j = 0; j < table->last; j++) {
2499                         ni_table->mc_reg_table_entry[i].mc_data[j] =
2500                                 table->mc_reg_table_entry[i].mc_data[j];
2501                 }
2502         }
2503
2504         ni_table->num_entries = table->num_entries;
2505
2506         return 0;
2507 }
2508
2509 static int iceland_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2510                                         struct iceland_mc_reg_table *table)
2511 {
2512         uint8_t i, j, k;
2513         uint32_t temp_reg;
2514         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2515
2516         for (i = 0, j = table->last; i < table->last; i++) {
2517                 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2518                         "Invalid VramInfo table.", return -EINVAL);
2519
2520                 switch (table->mc_reg_address[i].s1) {
2521
2522                 case mmMC_SEQ_MISC1:
2523                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2524                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2525                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2526                         for (k = 0; k < table->num_entries; k++) {
2527                                 table->mc_reg_table_entry[k].mc_data[j] =
2528                                         ((temp_reg & 0xffff0000)) |
2529                                         ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2530                         }
2531                         j++;
2532
2533                         PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2534                                 "Invalid VramInfo table.", return -EINVAL);
2535                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2536                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2537                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2538                         for (k = 0; k < table->num_entries; k++) {
2539                                 table->mc_reg_table_entry[k].mc_data[j] =
2540                                         (temp_reg & 0xffff0000) |
2541                                         (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2542
2543                                 if (!data->is_memory_gddr5) {
2544                                         table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2545                                 }
2546                         }
2547                         j++;
2548
2549                         if (!data->is_memory_gddr5) {
2550                                 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2551                                         "Invalid VramInfo table.", return -EINVAL);
2552                                 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2553                                 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2554                                 for (k = 0; k < table->num_entries; k++) {
2555                                         table->mc_reg_table_entry[k].mc_data[j] =
2556                                                 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2557                                 }
2558                                 j++;
2559                         }
2560
2561                         break;
2562
2563                 case mmMC_SEQ_RESERVE_M:
2564                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2565                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2566                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2567                         for (k = 0; k < table->num_entries; k++) {
2568                                 table->mc_reg_table_entry[k].mc_data[j] =
2569                                         (temp_reg & 0xffff0000) |
2570                                         (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2571                         }
2572                         j++;
2573                         break;
2574
2575                 default:
2576                         break;
2577                 }
2578
2579         }
2580
2581         table->last = j;
2582
2583         return 0;
2584 }
2585
2586 static int iceland_set_valid_flag(struct iceland_mc_reg_table *table)
2587 {
2588         uint8_t i, j;
2589         for (i = 0; i < table->last; i++) {
2590                 for (j = 1; j < table->num_entries; j++) {
2591                         if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2592                                 table->mc_reg_table_entry[j].mc_data[i]) {
2593                                 table->validflag |= (1<<i);
2594                                 break;
2595                         }
2596                 }
2597         }
2598
2599         return 0;
2600 }
2601
2602 static int iceland_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2603 {
2604         int result;
2605         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
2606         pp_atomctrl_mc_reg_table *table;
2607         struct iceland_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2608         uint8_t module_index = iceland_get_memory_modile_index(hwmgr);
2609
2610         table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2611
2612         if (NULL == table)
2613                 return -ENOMEM;
2614
2615         /* Program additional LP registers that are no longer programmed by VBIOS */
2616         cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2617         cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2618         cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2619         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2620         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2621         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2622         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2623         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2624         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2625         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2626         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2627         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2628         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2629         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2630         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2631         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2632         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2633         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2634         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2635         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2636
2637         result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2638
2639         if (0 == result)
2640                 result = iceland_copy_vbios_smc_reg_table(table, ni_table);
2641
2642         if (0 == result) {
2643                 iceland_set_s0_mc_reg_index(ni_table);
2644                 result = iceland_set_mc_special_registers(hwmgr, ni_table);
2645         }
2646
2647         if (0 == result)
2648                 iceland_set_valid_flag(ni_table);
2649
2650         kfree(table);
2651
2652         return result;
2653 }
2654
2655 static bool iceland_is_dpm_running(struct pp_hwmgr *hwmgr)
2656 {
2657         return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2658                         CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2659                         ? true : false;
2660 }
2661
2662 const struct pp_smumgr_func iceland_smu_funcs = {
2663         .name = "iceland_smu",
2664         .smu_init = &iceland_smu_init,
2665         .smu_fini = &smu7_smu_fini,
2666         .start_smu = &iceland_start_smu,
2667         .check_fw_load_finish = &smu7_check_fw_load_finish,
2668         .request_smu_load_fw = &smu7_request_smu_load_fw,
2669         .request_smu_load_specific_fw = &iceland_request_smu_load_specific_fw,
2670         .send_msg_to_smc = &smu7_send_msg_to_smc,
2671         .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
2672         .download_pptable_settings = NULL,
2673         .upload_pptable_settings = NULL,
2674         .get_offsetof = iceland_get_offsetof,
2675         .process_firmware_header = iceland_process_firmware_header,
2676         .init_smc_table = iceland_init_smc_table,
2677         .update_sclk_threshold = iceland_update_sclk_threshold,
2678         .thermal_setup_fan_table = iceland_thermal_setup_fan_table,
2679         .populate_all_graphic_levels = iceland_populate_all_graphic_levels,
2680         .populate_all_memory_levels = iceland_populate_all_memory_levels,
2681         .get_mac_definition = iceland_get_mac_definition,
2682         .initialize_mc_reg_table = iceland_initialize_mc_reg_table,
2683         .is_dpm_running = iceland_is_dpm_running,
2684 };
2685