Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / amd / powerplay / hwmgr / ppatomctrl.c
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "pp_debug.h"
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include "atom.h"
28 #include "ppatomctrl.h"
29 #include "atombios.h"
30 #include "cgs_common.h"
31 #include "ppevvmath.h"
32
33 #define MEM_ID_MASK           0xff000000
34 #define MEM_ID_SHIFT          24
35 #define CLOCK_RANGE_MASK      0x00ffffff
36 #define CLOCK_RANGE_SHIFT     0
37 #define LOW_NIBBLE_MASK       0xf
38 #define DATA_EQU_PREV         0
39 #define DATA_FROM_TABLE       4
40
41 union voltage_object_info {
42         struct _ATOM_VOLTAGE_OBJECT_INFO v1;
43         struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
44         struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
45 };
46
47 static int atomctrl_retrieve_ac_timing(
48                 uint8_t index,
49                 ATOM_INIT_REG_BLOCK *reg_block,
50                 pp_atomctrl_mc_reg_table *table)
51 {
52         uint32_t i, j;
53         uint8_t tmem_id;
54         ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
55                 ((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
56
57         uint8_t num_ranges = 0;
58
59         while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
60                         num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
61                 tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
62
63                 if (index == tmem_id) {
64                         table->mc_reg_table_entry[num_ranges].mclk_max =
65                                 (uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
66                                                 CLOCK_RANGE_SHIFT);
67
68                         for (i = 0, j = 1; i < table->last; i++) {
69                                 if ((table->mc_reg_address[i].uc_pre_reg_data &
70                                                         LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
71                                         table->mc_reg_table_entry[num_ranges].mc_data[i] =
72                                                 (uint32_t)*((uint32_t *)reg_data + j);
73                                         j++;
74                                 } else if ((table->mc_reg_address[i].uc_pre_reg_data &
75                                                         LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
76                                         table->mc_reg_table_entry[num_ranges].mc_data[i] =
77                                                 table->mc_reg_table_entry[num_ranges].mc_data[i-1];
78                                 }
79                         }
80                         num_ranges++;
81                 }
82
83                 reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
84                         ((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
85         }
86
87         PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
88                         "Invalid VramInfo table.", return -1);
89         table->num_entries = num_ranges;
90
91         return 0;
92 }
93
94 /**
95  * Get memory clock AC timing registers index from VBIOS table
96  * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
97  * @param    reg_block the address ATOM_INIT_REG_BLOCK
98  * @param    table the address of MCRegTable
99  * @return   0
100  */
101 static int atomctrl_set_mc_reg_address_table(
102                 ATOM_INIT_REG_BLOCK *reg_block,
103                 pp_atomctrl_mc_reg_table *table)
104 {
105         uint8_t i = 0;
106         uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
107                         / sizeof(ATOM_INIT_REG_INDEX_FORMAT));
108         ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
109
110         num_entries--;        /* subtract 1 data end mark entry */
111
112         PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
113                         "Invalid VramInfo table.", return -1);
114
115         /* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
116         while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
117                         (i < num_entries)) {
118                 table->mc_reg_address[i].s1 =
119                         (uint16_t)(le16_to_cpu(format->usRegIndex));
120                 table->mc_reg_address[i].uc_pre_reg_data =
121                         format->ucPreRegDataLength;
122
123                 i++;
124                 format = (ATOM_INIT_REG_INDEX_FORMAT *)
125                         ((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
126         }
127
128         table->last = i;
129         return 0;
130 }
131
132 int atomctrl_initialize_mc_reg_table(
133                 struct pp_hwmgr *hwmgr,
134                 uint8_t module_index,
135                 pp_atomctrl_mc_reg_table *table)
136 {
137         ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
138         ATOM_INIT_REG_BLOCK *reg_block;
139         int result = 0;
140         u8 frev, crev;
141         u16 size;
142
143         vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
144                 smu_atom_get_data_table(hwmgr->adev,
145                                 GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
146
147         if (module_index >= vram_info->ucNumOfVRAMModule) {
148                 pr_err("Invalid VramInfo table.");
149                 result = -1;
150         } else if (vram_info->sHeader.ucTableFormatRevision < 2) {
151                 pr_err("Invalid VramInfo table.");
152                 result = -1;
153         }
154
155         if (0 == result) {
156                 reg_block = (ATOM_INIT_REG_BLOCK *)
157                         ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
158                 result = atomctrl_set_mc_reg_address_table(reg_block, table);
159         }
160
161         if (0 == result) {
162                 result = atomctrl_retrieve_ac_timing(module_index,
163                                         reg_block, table);
164         }
165
166         return result;
167 }
168
169 /**
170  * Set DRAM timings based on engine clock and memory clock.
171  */
172 int atomctrl_set_engine_dram_timings_rv770(
173                 struct pp_hwmgr *hwmgr,
174                 uint32_t engine_clock,
175                 uint32_t memory_clock)
176 {
177         struct amdgpu_device *adev = hwmgr->adev;
178
179         SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
180
181         /* They are both in 10KHz Units. */
182         engine_clock_parameters.ulTargetEngineClock =
183                 cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
184                             ((COMPUTE_ENGINE_PLL_PARAM << 24)));
185
186         /* in 10 khz units.*/
187         engine_clock_parameters.sReserved.ulClock =
188                 cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
189
190         return amdgpu_atom_execute_table(adev->mode_info.atom_context,
191                         GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
192                         (uint32_t *)&engine_clock_parameters);
193 }
194
195 /**
196  * Private Function to get the PowerPlay Table Address.
197  * WARNING: The tabled returned by this function is in
198  * dynamically allocated memory.
199  * The caller has to release if by calling kfree.
200  */
201 static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
202 {
203         int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
204         u8 frev, crev;
205         u16 size;
206         union voltage_object_info *voltage_info;
207
208         voltage_info = (union voltage_object_info *)
209                 smu_atom_get_data_table(device, index,
210                         &size, &frev, &crev);
211
212         if (voltage_info != NULL)
213                 return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
214         else
215                 return NULL;
216 }
217
218 static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
219                 const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
220                 uint8_t voltage_type, uint8_t voltage_mode)
221 {
222         unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
223         unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
224         uint8_t *start = (uint8_t *)voltage_object_info_table;
225
226         while (offset < size) {
227                 const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
228                         (const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
229
230                 if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
231                         voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
232                         return voltage_object;
233
234                 offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
235         }
236
237         return NULL;
238 }
239
240 /** atomctrl_get_memory_pll_dividers_si().
241  *
242  * @param hwmgr                 input parameter: pointer to HwMgr
243  * @param clock_value             input parameter: memory clock
244  * @param dividers                 output parameter: memory PLL dividers
245  * @param strobe_mode            input parameter: 1 for strobe mode,  0 for performance mode
246  */
247 int atomctrl_get_memory_pll_dividers_si(
248                 struct pp_hwmgr *hwmgr,
249                 uint32_t clock_value,
250                 pp_atomctrl_memory_clock_param *mpll_param,
251                 bool strobe_mode)
252 {
253         struct amdgpu_device *adev = hwmgr->adev;
254         COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
255         int result;
256
257         mpll_parameters.ulClock = cpu_to_le32(clock_value);
258         mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
259
260         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
261                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
262                 (uint32_t *)&mpll_parameters);
263
264         if (0 == result) {
265                 mpll_param->mpll_fb_divider.clk_frac =
266                         le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
267                 mpll_param->mpll_fb_divider.cl_kf =
268                         le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
269                 mpll_param->mpll_post_divider =
270                         (uint32_t)mpll_parameters.ucPostDiv;
271                 mpll_param->vco_mode =
272                         (uint32_t)(mpll_parameters.ucPllCntlFlag &
273                                         MPLL_CNTL_FLAG_VCO_MODE_MASK);
274                 mpll_param->yclk_sel =
275                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
276                                                 MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
277                 mpll_param->qdr =
278                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
279                                                 MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
280                 mpll_param->half_rate =
281                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
282                                                 MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
283                 mpll_param->dll_speed =
284                         (uint32_t)(mpll_parameters.ucDllSpeed);
285                 mpll_param->bw_ctrl =
286                         (uint32_t)(mpll_parameters.ucBWCntl);
287         }
288
289         return result;
290 }
291
292 /** atomctrl_get_memory_pll_dividers_vi().
293  *
294  * @param hwmgr                 input parameter: pointer to HwMgr
295  * @param clock_value             input parameter: memory clock
296  * @param dividers               output parameter: memory PLL dividers
297  */
298 int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
299                 uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
300 {
301         struct amdgpu_device *adev = hwmgr->adev;
302         COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
303         int result;
304
305         mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
306
307         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
308                         GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
309                         (uint32_t *)&mpll_parameters);
310
311         if (!result)
312                 mpll_param->mpll_post_divider =
313                                 (uint32_t)mpll_parameters.ulClock.ucPostDiv;
314
315         return result;
316 }
317
318 int atomctrl_get_memory_pll_dividers_ai(struct pp_hwmgr *hwmgr,
319                                         uint32_t clock_value,
320                                         pp_atomctrl_memory_clock_param_ai *mpll_param)
321 {
322         struct amdgpu_device *adev = hwmgr->adev;
323         COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_3 mpll_parameters = {{0}, 0, 0};
324         int result;
325
326         mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
327
328         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
329                         GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
330                         (uint32_t *)&mpll_parameters);
331
332         /* VEGAM's mpll takes sometime to finish computing */
333         udelay(10);
334
335         if (!result) {
336                 mpll_param->ulMclk_fcw_int =
337                         le16_to_cpu(mpll_parameters.usMclk_fcw_int);
338                 mpll_param->ulMclk_fcw_frac =
339                         le16_to_cpu(mpll_parameters.usMclk_fcw_frac);
340                 mpll_param->ulClock =
341                         le32_to_cpu(mpll_parameters.ulClock.ulClock);
342                 mpll_param->ulPostDiv = mpll_parameters.ulClock.ucPostDiv;
343         }
344
345         return result;
346 }
347
348 int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
349                                           uint32_t clock_value,
350                                           pp_atomctrl_clock_dividers_kong *dividers)
351 {
352         struct amdgpu_device *adev = hwmgr->adev;
353         COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
354         int result;
355
356         pll_parameters.ulClock = cpu_to_le32(clock_value);
357
358         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
359                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
360                 (uint32_t *)&pll_parameters);
361
362         if (0 == result) {
363                 dividers->pll_post_divider = pll_parameters.ucPostDiv;
364                 dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
365         }
366
367         return result;
368 }
369
370 int atomctrl_get_engine_pll_dividers_vi(
371                 struct pp_hwmgr *hwmgr,
372                 uint32_t clock_value,
373                 pp_atomctrl_clock_dividers_vi *dividers)
374 {
375         struct amdgpu_device *adev = hwmgr->adev;
376         COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
377         int result;
378
379         pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
380         pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
381
382         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
383                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
384                 (uint32_t *)&pll_patameters);
385
386         if (0 == result) {
387                 dividers->pll_post_divider =
388                         pll_patameters.ulClock.ucPostDiv;
389                 dividers->real_clock =
390                         le32_to_cpu(pll_patameters.ulClock.ulClock);
391
392                 dividers->ul_fb_div.ul_fb_div_frac =
393                         le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
394                 dividers->ul_fb_div.ul_fb_div =
395                         le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
396
397                 dividers->uc_pll_ref_div =
398                         pll_patameters.ucPllRefDiv;
399                 dividers->uc_pll_post_div =
400                         pll_patameters.ucPllPostDiv;
401                 dividers->uc_pll_cntl_flag =
402                         pll_patameters.ucPllCntlFlag;
403         }
404
405         return result;
406 }
407
408 int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
409                 uint32_t clock_value,
410                 pp_atomctrl_clock_dividers_ai *dividers)
411 {
412         struct amdgpu_device *adev = hwmgr->adev;
413         COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
414         int result;
415
416         pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
417         pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
418
419         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
420                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
421                 (uint32_t *)&pll_patameters);
422
423         if (0 == result) {
424                 dividers->usSclk_fcw_frac     = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
425                 dividers->usSclk_fcw_int      = le16_to_cpu(pll_patameters.usSclk_fcw_int);
426                 dividers->ucSclkPostDiv       = pll_patameters.ucSclkPostDiv;
427                 dividers->ucSclkVcoMode       = pll_patameters.ucSclkVcoMode;
428                 dividers->ucSclkPllRange      = pll_patameters.ucSclkPllRange;
429                 dividers->ucSscEnable         = pll_patameters.ucSscEnable;
430                 dividers->usSsc_fcw1_frac     = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
431                 dividers->usSsc_fcw1_int      = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
432                 dividers->usPcc_fcw_int       = le16_to_cpu(pll_patameters.usPcc_fcw_int);
433                 dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
434                 dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
435         }
436         return result;
437 }
438
439 int atomctrl_get_dfs_pll_dividers_vi(
440                 struct pp_hwmgr *hwmgr,
441                 uint32_t clock_value,
442                 pp_atomctrl_clock_dividers_vi *dividers)
443 {
444         struct amdgpu_device *adev = hwmgr->adev;
445         COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
446         int result;
447
448         pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
449         pll_patameters.ulClock.ucPostDiv =
450                 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
451
452         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
453                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
454                 (uint32_t *)&pll_patameters);
455
456         if (0 == result) {
457                 dividers->pll_post_divider =
458                         pll_patameters.ulClock.ucPostDiv;
459                 dividers->real_clock =
460                         le32_to_cpu(pll_patameters.ulClock.ulClock);
461
462                 dividers->ul_fb_div.ul_fb_div_frac =
463                         le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
464                 dividers->ul_fb_div.ul_fb_div =
465                         le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
466
467                 dividers->uc_pll_ref_div =
468                         pll_patameters.ucPllRefDiv;
469                 dividers->uc_pll_post_div =
470                         pll_patameters.ucPllPostDiv;
471                 dividers->uc_pll_cntl_flag =
472                         pll_patameters.ucPllCntlFlag;
473         }
474
475         return result;
476 }
477
478 /**
479  * Get the reference clock in 10KHz
480  */
481 uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
482 {
483         ATOM_FIRMWARE_INFO *fw_info;
484         u8 frev, crev;
485         u16 size;
486         uint32_t clock;
487
488         fw_info = (ATOM_FIRMWARE_INFO *)
489                 smu_atom_get_data_table(hwmgr->adev,
490                         GetIndexIntoMasterTable(DATA, FirmwareInfo),
491                         &size, &frev, &crev);
492
493         if (fw_info == NULL)
494                 clock = 2700;
495         else
496                 clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
497
498         return clock;
499 }
500
501 /**
502  * Returns true if the given voltage type is controlled by GPIO pins.
503  * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
504  * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
505  * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
506  */
507 bool atomctrl_is_voltage_controlled_by_gpio_v3(
508                 struct pp_hwmgr *hwmgr,
509                 uint8_t voltage_type,
510                 uint8_t voltage_mode)
511 {
512         ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
513                 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
514         bool ret;
515
516         PP_ASSERT_WITH_CODE((NULL != voltage_info),
517                         "Could not find Voltage Table in BIOS.", return false;);
518
519         ret = (NULL != atomctrl_lookup_voltage_type_v3
520                         (voltage_info, voltage_type, voltage_mode)) ? true : false;
521
522         return ret;
523 }
524
525 int atomctrl_get_voltage_table_v3(
526                 struct pp_hwmgr *hwmgr,
527                 uint8_t voltage_type,
528                 uint8_t voltage_mode,
529                 pp_atomctrl_voltage_table *voltage_table)
530 {
531         ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
532                 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
533         const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
534         unsigned int i;
535
536         PP_ASSERT_WITH_CODE((NULL != voltage_info),
537                         "Could not find Voltage Table in BIOS.", return -1;);
538
539         voltage_object = atomctrl_lookup_voltage_type_v3
540                 (voltage_info, voltage_type, voltage_mode);
541
542         if (voltage_object == NULL)
543                 return -1;
544
545         PP_ASSERT_WITH_CODE(
546                         (voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
547                         PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
548                         "Too many voltage entries!",
549                         return -1;
550                         );
551
552         for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
553                 voltage_table->entries[i].value =
554                         le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
555                 voltage_table->entries[i].smio_low =
556                         le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
557         }
558
559         voltage_table->mask_low    =
560                 le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
561         voltage_table->count      =
562                 voltage_object->asGpioVoltageObj.ucGpioEntryNum;
563         voltage_table->phase_delay =
564                 voltage_object->asGpioVoltageObj.ucPhaseDelay;
565
566         return 0;
567 }
568
569 static bool atomctrl_lookup_gpio_pin(
570                 ATOM_GPIO_PIN_LUT * gpio_lookup_table,
571                 const uint32_t pinId,
572                 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
573 {
574         unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
575         unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
576         uint8_t *start = (uint8_t *)gpio_lookup_table;
577
578         while (offset < size) {
579                 const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
580                         (const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
581
582                 if (pinId == pin_assignment->ucGPIO_ID) {
583                         gpio_pin_assignment->uc_gpio_pin_bit_shift =
584                                 pin_assignment->ucGpioPinBitShift;
585                         gpio_pin_assignment->us_gpio_pin_aindex =
586                                 le16_to_cpu(pin_assignment->usGpioPin_AIndex);
587                         return true;
588                 }
589
590                 offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
591         }
592
593         return false;
594 }
595
596 /**
597  * Private Function to get the PowerPlay Table Address.
598  * WARNING: The tabled returned by this function is in
599  * dynamically allocated memory.
600  * The caller has to release if by calling kfree.
601  */
602 static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
603 {
604         u8 frev, crev;
605         u16 size;
606         void *table_address;
607
608         table_address = (ATOM_GPIO_PIN_LUT *)
609                 smu_atom_get_data_table(device,
610                                 GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
611                                 &size, &frev, &crev);
612
613         PP_ASSERT_WITH_CODE((NULL != table_address),
614                         "Error retrieving BIOS Table Address!", return NULL;);
615
616         return (ATOM_GPIO_PIN_LUT *)table_address;
617 }
618
619 /**
620  * Returns 1 if the given pin id find in lookup table.
621  */
622 bool atomctrl_get_pp_assign_pin(
623                 struct pp_hwmgr *hwmgr,
624                 const uint32_t pinId,
625                 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
626 {
627         bool bRet = false;
628         ATOM_GPIO_PIN_LUT *gpio_lookup_table =
629                 get_gpio_lookup_table(hwmgr->adev);
630
631         PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
632                         "Could not find GPIO lookup Table in BIOS.", return false);
633
634         bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
635                 gpio_pin_assignment);
636
637         return bRet;
638 }
639
640 int atomctrl_calculate_voltage_evv_on_sclk(
641                 struct pp_hwmgr *hwmgr,
642                 uint8_t voltage_type,
643                 uint32_t sclk,
644                 uint16_t virtual_voltage_Id,
645                 uint16_t *voltage,
646                 uint16_t dpm_level,
647                 bool debug)
648 {
649         ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
650         struct amdgpu_device *adev = hwmgr->adev;
651         EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
652         EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
653         EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
654         EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
655         EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
656         EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
657         EFUSE_INPUT_PARAMETER sInput_FuseValues;
658         READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
659
660         uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
661         fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
662         fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
663         fInt fLkg_FT, repeat;
664         fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
665         fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
666         fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
667         fInt fSclk_margin, fSclk, fEVV_V;
668         fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
669         uint32_t ul_FT_Lkg_V0NORM;
670         fInt fLn_MaxDivMin, fMin, fAverage, fRange;
671         fInt fRoots[2];
672         fInt fStepSize = GetScaledFraction(625, 100000);
673
674         int result;
675
676         getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
677                         smu_atom_get_data_table(hwmgr->adev,
678                                         GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
679                                         NULL, NULL, NULL);
680
681         if (!getASICProfilingInfo)
682                 return -1;
683
684         if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
685             (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
686              getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
687                 return -1;
688
689         /*-----------------------------------------------------------
690          *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
691          *-----------------------------------------------------------
692          */
693         fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
694
695         switch (dpm_level) {
696         case 1:
697                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm1));
698                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
699                 break;
700         case 2:
701                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm2));
702                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
703                 break;
704         case 3:
705                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm3));
706                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
707                 break;
708         case 4:
709                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm4));
710                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
711                 break;
712         case 5:
713                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm5));
714                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
715                 break;
716         case 6:
717                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm6));
718                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
719                 break;
720         case 7:
721                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm7));
722                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
723                 break;
724         default:
725                 pr_err("DPM Level not supported\n");
726                 fPowerDPMx = Convert_ULONG_ToFraction(1);
727                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
728         }
729
730         /*-------------------------
731          * DECODING FUSE VALUES
732          * ------------------------
733          */
734         /*Decode RO_Fused*/
735         sRO_fuse = getASICProfilingInfo->sRoFuse;
736
737         sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
738         sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
739         sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
740
741         sOutput_FuseValues.sEfuse = sInput_FuseValues;
742
743         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
744                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
745                         (uint32_t *)&sOutput_FuseValues);
746
747         if (result)
748                 return result;
749
750         /* Finally, the actual fuse value */
751         ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
752         fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
753         fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
754         fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
755
756         sCACm_fuse = getASICProfilingInfo->sCACm;
757
758         sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
759         sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
760         sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
761
762         sOutput_FuseValues.sEfuse = sInput_FuseValues;
763
764         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
765                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
766                         (uint32_t *)&sOutput_FuseValues);
767
768         if (result)
769                 return result;
770
771         ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
772         fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
773         fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
774
775         fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
776
777         sCACb_fuse = getASICProfilingInfo->sCACb;
778
779         sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
780         sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
781         sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
782         sOutput_FuseValues.sEfuse = sInput_FuseValues;
783
784         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
785                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
786                         (uint32_t *)&sOutput_FuseValues);
787
788         if (result)
789                 return result;
790
791         ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
792         fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
793         fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
794
795         fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
796
797         sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
798
799         sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
800         sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
801         sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
802
803         sOutput_FuseValues.sEfuse = sInput_FuseValues;
804
805         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
806                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
807                         (uint32_t *)&sOutput_FuseValues);
808
809         if (result)
810                 return result;
811
812         ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
813         fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
814         fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
815
816         fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
817                         fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
818
819         sKv_m_fuse = getASICProfilingInfo->sKv_m;
820
821         sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
822         sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
823         sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
824
825         sOutput_FuseValues.sEfuse = sInput_FuseValues;
826
827         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
828                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
829                         (uint32_t *)&sOutput_FuseValues);
830         if (result)
831                 return result;
832
833         ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
834         fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
835         fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
836         fRange = fMultiply(fRange, ConvertToFraction(-1));
837
838         fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
839                         fAverage, fRange, sKv_m_fuse.ucEfuseLength);
840
841         sKv_b_fuse = getASICProfilingInfo->sKv_b;
842
843         sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
844         sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
845         sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
846         sOutput_FuseValues.sEfuse = sInput_FuseValues;
847
848         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
849                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
850                         (uint32_t *)&sOutput_FuseValues);
851
852         if (result)
853                 return result;
854
855         ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
856         fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
857         fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
858
859         fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
860                         fAverage, fRange, sKv_b_fuse.ucEfuseLength);
861
862         /* Decoding the Leakage - No special struct container */
863         /*
864          * usLkgEuseIndex=56
865          * ucLkgEfuseBitLSB=6
866          * ucLkgEfuseLength=10
867          * ulLkgEncodeLn_MaxDivMin=69077
868          * ulLkgEncodeMax=1000000
869          * ulLkgEncodeMin=1000
870          * ulEfuseLogisticAlpha=13
871          */
872
873         sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
874         sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
875         sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
876
877         sOutput_FuseValues.sEfuse = sInput_FuseValues;
878
879         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
880                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
881                         (uint32_t *)&sOutput_FuseValues);
882
883         if (result)
884                 return result;
885
886         ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
887         fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
888         fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
889
890         fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
891                         fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
892         fLkg_FT = fFT_Lkg_V0NORM;
893
894         /*-------------------------------------------
895          * PART 2 - Grabbing all required values
896          *-------------------------------------------
897          */
898         fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
899                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
900         fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
901                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
902         fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
903                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
904         fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
905                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
906         fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
907                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
908         fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
909                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
910         fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
911                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
912         fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
913                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
914
915         fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
916         fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
917         fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
918
919         fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
920
921         fMargin_FMAX_mean = GetScaledFraction(
922                 le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
923         fMargin_Plat_mean = GetScaledFraction(
924                 le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
925         fMargin_FMAX_sigma = GetScaledFraction(
926                 le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
927         fMargin_Plat_sigma = GetScaledFraction(
928                 le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
929
930         fMargin_DC_sigma = GetScaledFraction(
931                 le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
932         fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
933
934         fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
935         fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
936         fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
937         fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
938         fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
939
940         fSclk = GetScaledFraction(sclk, 100);
941
942         fV_max = fDivide(GetScaledFraction(
943                                  le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
944         fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
945         fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
946         fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
947         fV_FT = fDivide(GetScaledFraction(
948                                 le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
949         fV_min = fDivide(GetScaledFraction(
950                                  le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
951
952         /*-----------------------
953          * PART 3
954          *-----------------------
955          */
956
957         fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
958         fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
959         fC_Term = fAdd(fMargin_RO_c,
960                         fAdd(fMultiply(fSM_A0, fLkg_FT),
961                         fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
962                         fAdd(fMultiply(fSM_A3, fSclk),
963                         fSubtract(fSM_A7, fRO_fused)))));
964
965         fVDDC_base = fSubtract(fRO_fused,
966                         fSubtract(fMargin_RO_c,
967                                         fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
968         fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
969
970         repeat = fSubtract(fVDDC_base,
971                         fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
972
973         fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
974                         fGetSquare(repeat)),
975                         fAdd(fMultiply(fMargin_RO_b, repeat),
976                         fMargin_RO_c));
977
978         fDC_SCLK = fSubtract(fRO_fused,
979                         fSubtract(fRO_DC_margin,
980                         fSubtract(fSM_A3,
981                         fMultiply(fSM_A2, repeat))));
982         fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
983
984         fSigma_DC = fSubtract(fSclk, fDC_SCLK);
985
986         fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
987         fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
988         fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
989         fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
990
991         fSquared_Sigma_DC = fGetSquare(fSigma_DC);
992         fSquared_Sigma_CR = fGetSquare(fSigma_CR);
993         fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
994
995         fSclk_margin = fAdd(fMicro_FMAX,
996                         fAdd(fMicro_CR,
997                         fAdd(fMargin_fixed,
998                         fSqrt(fAdd(fSquared_Sigma_FMAX,
999                         fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
1000         /*
1001          fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
1002          fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
1003          fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
1004          */
1005
1006         fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
1007         fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
1008         fC_Term = fAdd(fRO_DC_margin,
1009                         fAdd(fMultiply(fSM_A0, fLkg_FT),
1010                         fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
1011                         fAdd(fSclk, fSclk_margin)),
1012                         fAdd(fMultiply(fSM_A3,
1013                         fAdd(fSclk, fSclk_margin)),
1014                         fSubtract(fSM_A7, fRO_fused)))));
1015
1016         SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
1017
1018         if (GreaterThan(fRoots[0], fRoots[1]))
1019                 fEVV_V = fRoots[1];
1020         else
1021                 fEVV_V = fRoots[0];
1022
1023         if (GreaterThan(fV_min, fEVV_V))
1024                 fEVV_V = fV_min;
1025         else if (GreaterThan(fEVV_V, fV_max))
1026                 fEVV_V = fSubtract(fV_max, fStepSize);
1027
1028         fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
1029
1030         /*-----------------
1031          * PART 4
1032          *-----------------
1033          */
1034
1035         fV_x = fV_min;
1036
1037         while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
1038                 fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
1039                                 fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
1040                                 fGetSquare(fV_x)), fDerateTDP);
1041
1042                 fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
1043                                 fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
1044                                 fT_prod), fKv_b_fused), fV_x)), fV_x)));
1045                 fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
1046                                 fKt_Beta_fused, fT_prod)));
1047                 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1048                                 fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
1049                 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1050                                 fKt_Beta_fused, fT_FT)));
1051
1052                 fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
1053
1054                 fTDP_Current = fDivide(fTDP_Power, fV_x);
1055
1056                 fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
1057                                 ConvertToFraction(10)));
1058
1059                 fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
1060
1061                 if (GreaterThan(fV_max, fV_NL) &&
1062                         (GreaterThan(fV_NL, fEVV_V) ||
1063                         Equal(fV_NL, fEVV_V))) {
1064                         fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1065
1066                         *voltage = (uint16_t)fV_NL.partial.real;
1067                         break;
1068                 } else
1069                         fV_x = fAdd(fV_x, fStepSize);
1070         }
1071
1072         return result;
1073 }
1074
1075 /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
1076  * @param hwmgr input: pointer to hwManager
1077  * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
1078  * @param sclk                        input: in 10Khz unit. DPM state SCLK frequency
1079  *              which is define in PPTable SCLK/VDDC dependence
1080  *                              table associated with this virtual_voltage_Id
1081  * @param virtual_voltage_Id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1082  * @param voltage                      output: real voltage level in unit of mv
1083  */
1084 int atomctrl_get_voltage_evv_on_sclk(
1085                 struct pp_hwmgr *hwmgr,
1086                 uint8_t voltage_type,
1087                 uint32_t sclk, uint16_t virtual_voltage_Id,
1088                 uint16_t *voltage)
1089 {
1090         struct amdgpu_device *adev = hwmgr->adev;
1091         GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1092         int result;
1093
1094         get_voltage_info_param_space.ucVoltageType   =
1095                 voltage_type;
1096         get_voltage_info_param_space.ucVoltageMode   =
1097                 ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1098         get_voltage_info_param_space.usVoltageLevel  =
1099                 cpu_to_le16(virtual_voltage_Id);
1100         get_voltage_info_param_space.ulSCLKFreq      =
1101                 cpu_to_le32(sclk);
1102
1103         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1104                         GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1105                         (uint32_t *)&get_voltage_info_param_space);
1106
1107         *voltage = result ? 0 :
1108                         le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1109                                 (&get_voltage_info_param_space))->usVoltageLevel);
1110
1111         return result;
1112 }
1113
1114 /**
1115  * atomctrl_get_voltage_evv gets voltage via call to ATOM COMMAND table.
1116  * @param hwmgr input: pointer to hwManager
1117  * @param virtual_voltage_id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1118  * @param voltage                      output: real voltage level in unit of mv
1119  */
1120 int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
1121                              uint16_t virtual_voltage_id,
1122                              uint16_t *voltage)
1123 {
1124         struct amdgpu_device *adev = hwmgr->adev;
1125         GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1126         int result;
1127         int entry_id;
1128
1129         /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
1130         for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
1131                 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
1132                         /* found */
1133                         break;
1134                 }
1135         }
1136
1137         if (entry_id >= hwmgr->dyn_state.vddc_dependency_on_sclk->count) {
1138                 pr_debug("Can't find requested voltage id in vddc_dependency_on_sclk table!\n");
1139                 return -EINVAL;
1140         }
1141
1142         get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
1143         get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1144         get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
1145         get_voltage_info_param_space.ulSCLKFreq =
1146                 cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
1147
1148         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1149                         GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1150                         (uint32_t *)&get_voltage_info_param_space);
1151
1152         if (0 != result)
1153                 return result;
1154
1155         *voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1156                                 (&get_voltage_info_param_space))->usVoltageLevel);
1157
1158         return result;
1159 }
1160
1161 /**
1162  * Get the mpll reference clock in 10KHz
1163  */
1164 uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1165 {
1166         ATOM_COMMON_TABLE_HEADER *fw_info;
1167         uint32_t clock;
1168         u8 frev, crev;
1169         u16 size;
1170
1171         fw_info = (ATOM_COMMON_TABLE_HEADER *)
1172                 smu_atom_get_data_table(hwmgr->adev,
1173                                 GetIndexIntoMasterTable(DATA, FirmwareInfo),
1174                                 &size, &frev, &crev);
1175
1176         if (fw_info == NULL)
1177                 clock = 2700;
1178         else {
1179                 if ((fw_info->ucTableFormatRevision == 2) &&
1180                         (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1181                         ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1182                                 (ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1183                         clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1184                 } else {
1185                         ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1186                                 (ATOM_FIRMWARE_INFO *)fw_info;
1187                         clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1188                 }
1189         }
1190
1191         return clock;
1192 }
1193
1194 /**
1195  * Get the asic internal spread spectrum table
1196  */
1197 static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1198 {
1199         ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1200         u8 frev, crev;
1201         u16 size;
1202
1203         table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1204                 smu_atom_get_data_table(device,
1205                         GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1206                         &size, &frev, &crev);
1207
1208         return table;
1209 }
1210
1211 /**
1212  * Get the asic internal spread spectrum assignment
1213  */
1214 static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1215                 const uint8_t clockSource,
1216                 const uint32_t clockSpeed,
1217                 pp_atomctrl_internal_ss_info *ssEntry)
1218 {
1219         ATOM_ASIC_INTERNAL_SS_INFO *table;
1220         ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1221         int entry_found = 0;
1222
1223         memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1224
1225         table = asic_internal_ss_get_ss_table(hwmgr->adev);
1226
1227         if (NULL == table)
1228                 return -1;
1229
1230         ssInfo = &table->asSpreadSpectrum[0];
1231
1232         while (((uint8_t *)ssInfo - (uint8_t *)table) <
1233                 le16_to_cpu(table->sHeader.usStructureSize)) {
1234                 if ((clockSource == ssInfo->ucClockIndication) &&
1235                         ((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1236                         entry_found = 1;
1237                         break;
1238                 }
1239
1240                 ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1241                                 sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1242         }
1243
1244         if (entry_found) {
1245                 ssEntry->speed_spectrum_percentage =
1246                         le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
1247                 ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
1248
1249                 if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1250                         (GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1251                         (GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1252                         ssEntry->speed_spectrum_rate /= 100;
1253                 }
1254
1255                 switch (ssInfo->ucSpreadSpectrumMode) {
1256                 case 0:
1257                         ssEntry->speed_spectrum_mode =
1258                                 pp_atomctrl_spread_spectrum_mode_down;
1259                         break;
1260                 case 1:
1261                         ssEntry->speed_spectrum_mode =
1262                                 pp_atomctrl_spread_spectrum_mode_center;
1263                         break;
1264                 default:
1265                         ssEntry->speed_spectrum_mode =
1266                                 pp_atomctrl_spread_spectrum_mode_down;
1267                         break;
1268                 }
1269         }
1270
1271         return entry_found ? 0 : 1;
1272 }
1273
1274 /**
1275  * Get the memory clock spread spectrum info
1276  */
1277 int atomctrl_get_memory_clock_spread_spectrum(
1278                 struct pp_hwmgr *hwmgr,
1279                 const uint32_t memory_clock,
1280                 pp_atomctrl_internal_ss_info *ssInfo)
1281 {
1282         return asic_internal_ss_get_ss_asignment(hwmgr,
1283                         ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1284 }
1285 /**
1286  * Get the engine clock spread spectrum info
1287  */
1288 int atomctrl_get_engine_clock_spread_spectrum(
1289                 struct pp_hwmgr *hwmgr,
1290                 const uint32_t engine_clock,
1291                 pp_atomctrl_internal_ss_info *ssInfo)
1292 {
1293         return asic_internal_ss_get_ss_asignment(hwmgr,
1294                         ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1295 }
1296
1297 int atomctrl_read_efuse(struct pp_hwmgr *hwmgr, uint16_t start_index,
1298                 uint16_t end_index, uint32_t mask, uint32_t *efuse)
1299 {
1300         struct amdgpu_device *adev = hwmgr->adev;
1301         int result;
1302         READ_EFUSE_VALUE_PARAMETER efuse_param;
1303
1304         efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
1305         efuse_param.sEfuse.ucBitShift = (uint8_t)
1306                         (start_index - ((start_index / 32) * 32));
1307         efuse_param.sEfuse.ucBitLength  = (uint8_t)
1308                         ((end_index - start_index) + 1);
1309
1310         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1311                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1312                         (uint32_t *)&efuse_param);
1313         *efuse = result ? 0 : le32_to_cpu(efuse_param.ulEfuseValue) & mask;
1314
1315         return result;
1316 }
1317
1318 int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1319                               uint8_t level)
1320 {
1321         struct amdgpu_device *adev = hwmgr->adev;
1322         DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
1323         int result;
1324
1325         memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
1326                 memory_clock & SET_CLOCK_FREQ_MASK;
1327         memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
1328                 ADJUST_MC_SETTING_PARAM;
1329         memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
1330
1331         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1332                  GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
1333                 (uint32_t *)&memory_clock_parameters);
1334
1335         return result;
1336 }
1337
1338 int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1339                                 uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
1340 {
1341         struct amdgpu_device *adev = hwmgr->adev;
1342         int result;
1343         GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
1344
1345         get_voltage_info_param_space.ucVoltageType = voltage_type;
1346         get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1347         get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
1348         get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
1349
1350         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1351                         GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1352                         (uint32_t *)&get_voltage_info_param_space);
1353
1354         *voltage = result ? 0 :
1355                 le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel);
1356
1357         return result;
1358 }
1359
1360 int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
1361 {
1362
1363         int i;
1364         u8 frev, crev;
1365         u16 size;
1366
1367         ATOM_SMU_INFO_V2_1 *psmu_info =
1368                 (ATOM_SMU_INFO_V2_1 *)smu_atom_get_data_table(hwmgr->adev,
1369                         GetIndexIntoMasterTable(DATA, SMU_Info),
1370                         &size, &frev, &crev);
1371
1372
1373         for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
1374                 table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
1375                 table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1376                 table->entry[i].usFcw_pcc =
1377                         le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
1378                 table->entry[i].usFcw_trans_upper =
1379                         le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
1380                 table->entry[i].usRcw_trans_lower =
1381                         le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
1382         }
1383
1384         return 0;
1385 }
1386
1387 int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
1388                                   struct pp_atom_ctrl__avfs_parameters *param)
1389 {
1390         ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1391
1392         if (param == NULL)
1393                 return -EINVAL;
1394
1395         profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1396                         smu_atom_get_data_table(hwmgr->adev,
1397                                         GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1398                                         NULL, NULL, NULL);
1399         if (!profile)
1400                 return -1;
1401
1402         param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
1403         param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
1404         param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
1405         param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
1406         param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
1407         param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
1408         param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
1409         param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
1410         param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
1411         param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
1412         param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
1413         param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
1414         param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1415         param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1416         param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1417         param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
1418         param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
1419         param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
1420         param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
1421         param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1422         param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1423         param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1424         param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1425         param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
1426         param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1427
1428         return 0;
1429 }
1430
1431 int  atomctrl_get_svi2_info(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1432                                 uint8_t *svd_gpio_id, uint8_t *svc_gpio_id,
1433                                 uint16_t *load_line)
1434 {
1435         ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
1436                 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
1437
1438         const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
1439
1440         PP_ASSERT_WITH_CODE((NULL != voltage_info),
1441                         "Could not find Voltage Table in BIOS.", return -EINVAL);
1442
1443         voltage_object = atomctrl_lookup_voltage_type_v3
1444                 (voltage_info, voltage_type,  VOLTAGE_OBJ_SVID2);
1445
1446         *svd_gpio_id = voltage_object->asSVID2Obj.ucSVDGpioId;
1447         *svc_gpio_id = voltage_object->asSVID2Obj.ucSVCGpioId;
1448         *load_line = voltage_object->asSVID2Obj.usLoadLine_PSI;
1449
1450         return 0;
1451 }
1452
1453 int atomctrl_get_leakage_id_from_efuse(struct pp_hwmgr *hwmgr, uint16_t *virtual_voltage_id)
1454 {
1455         struct amdgpu_device *adev = hwmgr->adev;
1456         SET_VOLTAGE_PS_ALLOCATION allocation;
1457         SET_VOLTAGE_PARAMETERS_V1_3 *voltage_parameters =
1458                         (SET_VOLTAGE_PARAMETERS_V1_3 *)&allocation.sASICSetVoltage;
1459         int result;
1460
1461         voltage_parameters->ucVoltageMode = ATOM_GET_LEAKAGE_ID;
1462
1463         result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1464                         GetIndexIntoMasterTable(COMMAND, SetVoltage),
1465                         (uint32_t *)voltage_parameters);
1466
1467         *virtual_voltage_id = voltage_parameters->usVoltageLevel;
1468
1469         return result;
1470 }
1471
1472 int atomctrl_get_leakage_vddc_base_on_leakage(struct pp_hwmgr *hwmgr,
1473                                         uint16_t *vddc, uint16_t *vddci,
1474                                         uint16_t virtual_voltage_id,
1475                                         uint16_t efuse_voltage_id)
1476 {
1477         int i, j;
1478         int ix;
1479         u16 *leakage_bin, *vddc_id_buf, *vddc_buf, *vddci_id_buf, *vddci_buf;
1480         ATOM_ASIC_PROFILING_INFO_V2_1 *profile;
1481
1482         *vddc = 0;
1483         *vddci = 0;
1484
1485         ix = GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo);
1486
1487         profile = (ATOM_ASIC_PROFILING_INFO_V2_1 *)
1488                         smu_atom_get_data_table(hwmgr->adev,
1489                                         ix,
1490                                         NULL, NULL, NULL);
1491         if (!profile)
1492                 return -EINVAL;
1493
1494         if ((profile->asHeader.ucTableFormatRevision >= 2) &&
1495                 (profile->asHeader.ucTableContentRevision >= 1) &&
1496                 (profile->asHeader.usStructureSize >= sizeof(ATOM_ASIC_PROFILING_INFO_V2_1))) {
1497                 leakage_bin = (u16 *)((char *)profile + profile->usLeakageBinArrayOffset);
1498                 vddc_id_buf = (u16 *)((char *)profile + profile->usElbVDDC_IdArrayOffset);
1499                 vddc_buf = (u16 *)((char *)profile + profile->usElbVDDC_LevelArrayOffset);
1500                 if (profile->ucElbVDDC_Num > 0) {
1501                         for (i = 0; i < profile->ucElbVDDC_Num; i++) {
1502                                 if (vddc_id_buf[i] == virtual_voltage_id) {
1503                                         for (j = 0; j < profile->ucLeakageBinNum; j++) {
1504                                                 if (efuse_voltage_id <= leakage_bin[j]) {
1505                                                         *vddc = vddc_buf[j * profile->ucElbVDDC_Num + i];
1506                                                         break;
1507                                                 }
1508                                         }
1509                                         break;
1510                                 }
1511                         }
1512                 }
1513
1514                 vddci_id_buf = (u16 *)((char *)profile + profile->usElbVDDCI_IdArrayOffset);
1515                 vddci_buf   = (u16 *)((char *)profile + profile->usElbVDDCI_LevelArrayOffset);
1516                 if (profile->ucElbVDDCI_Num > 0) {
1517                         for (i = 0; i < profile->ucElbVDDCI_Num; i++) {
1518                                 if (vddci_id_buf[i] == virtual_voltage_id) {
1519                                         for (j = 0; j < profile->ucLeakageBinNum; j++) {
1520                                                 if (efuse_voltage_id <= leakage_bin[j]) {
1521                                                         *vddci = vddci_buf[j * profile->ucElbVDDCI_Num + i];
1522                                                         break;
1523                                                 }
1524                                         }
1525                                         break;
1526                                 }
1527                         }
1528                 }
1529         }
1530
1531         return 0;
1532 }
1533
1534 void atomctrl_get_voltage_range(struct pp_hwmgr *hwmgr, uint32_t *max_vddc,
1535                                                         uint32_t *min_vddc)
1536 {
1537         void *profile;
1538
1539         profile = smu_atom_get_data_table(hwmgr->adev,
1540                                         GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1541                                         NULL, NULL, NULL);
1542
1543         if (profile) {
1544                 switch (hwmgr->chip_id) {
1545                 case CHIP_TONGA:
1546                 case CHIP_FIJI:
1547                         *max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMaxVddc) / 4;
1548                         *min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMinVddc) / 4;
1549                         return;
1550                 case CHIP_POLARIS11:
1551                 case CHIP_POLARIS10:
1552                 case CHIP_POLARIS12:
1553                         *max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMaxVddc) / 100;
1554                         *min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMinVddc) / 100;
1555                         return;
1556                 default:
1557                         break;
1558                 }
1559         }
1560         *max_vddc = 0;
1561         *min_vddc = 0;
1562 }