Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32
33 #define MQD_SIZE_ALIGNED 768
34
35 /*
36  * kfd_locked is used to lock the kfd driver during suspend or reset
37  * once locked, kfd driver will stop any further GPU execution.
38  * create process (open) will return -EAGAIN.
39  */
40 static atomic_t kfd_locked = ATOMIC_INIT(0);
41
42 #ifdef KFD_SUPPORT_IOMMU_V2
43 static const struct kfd_device_info kaveri_device_info = {
44         .asic_family = CHIP_KAVERI,
45         .max_pasid_bits = 16,
46         /* max num of queues for KV.TODO should be a dynamic value */
47         .max_no_of_hqd  = 24,
48         .doorbell_size  = 4,
49         .ih_ring_entry_size = 4 * sizeof(uint32_t),
50         .event_interrupt_class = &event_interrupt_class_cik,
51         .num_of_watch_points = 4,
52         .mqd_size_aligned = MQD_SIZE_ALIGNED,
53         .supports_cwsr = false,
54         .needs_iommu_device = true,
55         .needs_pci_atomics = false,
56         .num_sdma_engines = 2,
57         .num_xgmi_sdma_engines = 0,
58         .num_sdma_queues_per_engine = 2,
59 };
60
61 static const struct kfd_device_info carrizo_device_info = {
62         .asic_family = CHIP_CARRIZO,
63         .max_pasid_bits = 16,
64         /* max num of queues for CZ.TODO should be a dynamic value */
65         .max_no_of_hqd  = 24,
66         .doorbell_size  = 4,
67         .ih_ring_entry_size = 4 * sizeof(uint32_t),
68         .event_interrupt_class = &event_interrupt_class_cik,
69         .num_of_watch_points = 4,
70         .mqd_size_aligned = MQD_SIZE_ALIGNED,
71         .supports_cwsr = true,
72         .needs_iommu_device = true,
73         .needs_pci_atomics = false,
74         .num_sdma_engines = 2,
75         .num_xgmi_sdma_engines = 0,
76         .num_sdma_queues_per_engine = 2,
77 };
78
79 static const struct kfd_device_info raven_device_info = {
80         .asic_family = CHIP_RAVEN,
81         .max_pasid_bits = 16,
82         .max_no_of_hqd  = 24,
83         .doorbell_size  = 8,
84         .ih_ring_entry_size = 8 * sizeof(uint32_t),
85         .event_interrupt_class = &event_interrupt_class_v9,
86         .num_of_watch_points = 4,
87         .mqd_size_aligned = MQD_SIZE_ALIGNED,
88         .supports_cwsr = true,
89         .needs_iommu_device = true,
90         .needs_pci_atomics = true,
91         .num_sdma_engines = 1,
92         .num_xgmi_sdma_engines = 0,
93         .num_sdma_queues_per_engine = 2,
94 };
95 #endif
96
97 static const struct kfd_device_info hawaii_device_info = {
98         .asic_family = CHIP_HAWAII,
99         .max_pasid_bits = 16,
100         /* max num of queues for KV.TODO should be a dynamic value */
101         .max_no_of_hqd  = 24,
102         .doorbell_size  = 4,
103         .ih_ring_entry_size = 4 * sizeof(uint32_t),
104         .event_interrupt_class = &event_interrupt_class_cik,
105         .num_of_watch_points = 4,
106         .mqd_size_aligned = MQD_SIZE_ALIGNED,
107         .supports_cwsr = false,
108         .needs_iommu_device = false,
109         .needs_pci_atomics = false,
110         .num_sdma_engines = 2,
111         .num_xgmi_sdma_engines = 0,
112         .num_sdma_queues_per_engine = 2,
113 };
114
115 static const struct kfd_device_info tonga_device_info = {
116         .asic_family = CHIP_TONGA,
117         .max_pasid_bits = 16,
118         .max_no_of_hqd  = 24,
119         .doorbell_size  = 4,
120         .ih_ring_entry_size = 4 * sizeof(uint32_t),
121         .event_interrupt_class = &event_interrupt_class_cik,
122         .num_of_watch_points = 4,
123         .mqd_size_aligned = MQD_SIZE_ALIGNED,
124         .supports_cwsr = false,
125         .needs_iommu_device = false,
126         .needs_pci_atomics = true,
127         .num_sdma_engines = 2,
128         .num_xgmi_sdma_engines = 0,
129         .num_sdma_queues_per_engine = 2,
130 };
131
132 static const struct kfd_device_info fiji_device_info = {
133         .asic_family = CHIP_FIJI,
134         .max_pasid_bits = 16,
135         .max_no_of_hqd  = 24,
136         .doorbell_size  = 4,
137         .ih_ring_entry_size = 4 * sizeof(uint32_t),
138         .event_interrupt_class = &event_interrupt_class_cik,
139         .num_of_watch_points = 4,
140         .mqd_size_aligned = MQD_SIZE_ALIGNED,
141         .supports_cwsr = true,
142         .needs_iommu_device = false,
143         .needs_pci_atomics = true,
144         .num_sdma_engines = 2,
145         .num_xgmi_sdma_engines = 0,
146         .num_sdma_queues_per_engine = 2,
147 };
148
149 static const struct kfd_device_info fiji_vf_device_info = {
150         .asic_family = CHIP_FIJI,
151         .max_pasid_bits = 16,
152         .max_no_of_hqd  = 24,
153         .doorbell_size  = 4,
154         .ih_ring_entry_size = 4 * sizeof(uint32_t),
155         .event_interrupt_class = &event_interrupt_class_cik,
156         .num_of_watch_points = 4,
157         .mqd_size_aligned = MQD_SIZE_ALIGNED,
158         .supports_cwsr = true,
159         .needs_iommu_device = false,
160         .needs_pci_atomics = false,
161         .num_sdma_engines = 2,
162         .num_xgmi_sdma_engines = 0,
163         .num_sdma_queues_per_engine = 2,
164 };
165
166
167 static const struct kfd_device_info polaris10_device_info = {
168         .asic_family = CHIP_POLARIS10,
169         .max_pasid_bits = 16,
170         .max_no_of_hqd  = 24,
171         .doorbell_size  = 4,
172         .ih_ring_entry_size = 4 * sizeof(uint32_t),
173         .event_interrupt_class = &event_interrupt_class_cik,
174         .num_of_watch_points = 4,
175         .mqd_size_aligned = MQD_SIZE_ALIGNED,
176         .supports_cwsr = true,
177         .needs_iommu_device = false,
178         .needs_pci_atomics = true,
179         .num_sdma_engines = 2,
180         .num_xgmi_sdma_engines = 0,
181         .num_sdma_queues_per_engine = 2,
182 };
183
184 static const struct kfd_device_info polaris10_vf_device_info = {
185         .asic_family = CHIP_POLARIS10,
186         .max_pasid_bits = 16,
187         .max_no_of_hqd  = 24,
188         .doorbell_size  = 4,
189         .ih_ring_entry_size = 4 * sizeof(uint32_t),
190         .event_interrupt_class = &event_interrupt_class_cik,
191         .num_of_watch_points = 4,
192         .mqd_size_aligned = MQD_SIZE_ALIGNED,
193         .supports_cwsr = true,
194         .needs_iommu_device = false,
195         .needs_pci_atomics = false,
196         .num_sdma_engines = 2,
197         .num_xgmi_sdma_engines = 0,
198         .num_sdma_queues_per_engine = 2,
199 };
200
201 static const struct kfd_device_info polaris11_device_info = {
202         .asic_family = CHIP_POLARIS11,
203         .max_pasid_bits = 16,
204         .max_no_of_hqd  = 24,
205         .doorbell_size  = 4,
206         .ih_ring_entry_size = 4 * sizeof(uint32_t),
207         .event_interrupt_class = &event_interrupt_class_cik,
208         .num_of_watch_points = 4,
209         .mqd_size_aligned = MQD_SIZE_ALIGNED,
210         .supports_cwsr = true,
211         .needs_iommu_device = false,
212         .needs_pci_atomics = true,
213         .num_sdma_engines = 2,
214         .num_xgmi_sdma_engines = 0,
215         .num_sdma_queues_per_engine = 2,
216 };
217
218 static const struct kfd_device_info polaris12_device_info = {
219         .asic_family = CHIP_POLARIS12,
220         .max_pasid_bits = 16,
221         .max_no_of_hqd  = 24,
222         .doorbell_size  = 4,
223         .ih_ring_entry_size = 4 * sizeof(uint32_t),
224         .event_interrupt_class = &event_interrupt_class_cik,
225         .num_of_watch_points = 4,
226         .mqd_size_aligned = MQD_SIZE_ALIGNED,
227         .supports_cwsr = true,
228         .needs_iommu_device = false,
229         .needs_pci_atomics = true,
230         .num_sdma_engines = 2,
231         .num_xgmi_sdma_engines = 0,
232         .num_sdma_queues_per_engine = 2,
233 };
234
235 static const struct kfd_device_info vegam_device_info = {
236         .asic_family = CHIP_VEGAM,
237         .max_pasid_bits = 16,
238         .max_no_of_hqd  = 24,
239         .doorbell_size  = 4,
240         .ih_ring_entry_size = 4 * sizeof(uint32_t),
241         .event_interrupt_class = &event_interrupt_class_cik,
242         .num_of_watch_points = 4,
243         .mqd_size_aligned = MQD_SIZE_ALIGNED,
244         .supports_cwsr = true,
245         .needs_iommu_device = false,
246         .needs_pci_atomics = true,
247         .num_sdma_engines = 2,
248         .num_xgmi_sdma_engines = 0,
249         .num_sdma_queues_per_engine = 2,
250 };
251
252 static const struct kfd_device_info vega10_device_info = {
253         .asic_family = CHIP_VEGA10,
254         .max_pasid_bits = 16,
255         .max_no_of_hqd  = 24,
256         .doorbell_size  = 8,
257         .ih_ring_entry_size = 8 * sizeof(uint32_t),
258         .event_interrupt_class = &event_interrupt_class_v9,
259         .num_of_watch_points = 4,
260         .mqd_size_aligned = MQD_SIZE_ALIGNED,
261         .supports_cwsr = true,
262         .needs_iommu_device = false,
263         .needs_pci_atomics = false,
264         .num_sdma_engines = 2,
265         .num_xgmi_sdma_engines = 0,
266         .num_sdma_queues_per_engine = 2,
267 };
268
269 static const struct kfd_device_info vega10_vf_device_info = {
270         .asic_family = CHIP_VEGA10,
271         .max_pasid_bits = 16,
272         .max_no_of_hqd  = 24,
273         .doorbell_size  = 8,
274         .ih_ring_entry_size = 8 * sizeof(uint32_t),
275         .event_interrupt_class = &event_interrupt_class_v9,
276         .num_of_watch_points = 4,
277         .mqd_size_aligned = MQD_SIZE_ALIGNED,
278         .supports_cwsr = true,
279         .needs_iommu_device = false,
280         .needs_pci_atomics = false,
281         .num_sdma_engines = 2,
282         .num_xgmi_sdma_engines = 0,
283         .num_sdma_queues_per_engine = 2,
284 };
285
286 static const struct kfd_device_info vega12_device_info = {
287         .asic_family = CHIP_VEGA12,
288         .max_pasid_bits = 16,
289         .max_no_of_hqd  = 24,
290         .doorbell_size  = 8,
291         .ih_ring_entry_size = 8 * sizeof(uint32_t),
292         .event_interrupt_class = &event_interrupt_class_v9,
293         .num_of_watch_points = 4,
294         .mqd_size_aligned = MQD_SIZE_ALIGNED,
295         .supports_cwsr = true,
296         .needs_iommu_device = false,
297         .needs_pci_atomics = false,
298         .num_sdma_engines = 2,
299         .num_xgmi_sdma_engines = 0,
300         .num_sdma_queues_per_engine = 2,
301 };
302
303 static const struct kfd_device_info vega20_device_info = {
304         .asic_family = CHIP_VEGA20,
305         .max_pasid_bits = 16,
306         .max_no_of_hqd  = 24,
307         .doorbell_size  = 8,
308         .ih_ring_entry_size = 8 * sizeof(uint32_t),
309         .event_interrupt_class = &event_interrupt_class_v9,
310         .num_of_watch_points = 4,
311         .mqd_size_aligned = MQD_SIZE_ALIGNED,
312         .supports_cwsr = true,
313         .needs_iommu_device = false,
314         .needs_pci_atomics = false,
315         .num_sdma_engines = 2,
316         .num_xgmi_sdma_engines = 0,
317         .num_sdma_queues_per_engine = 8,
318 };
319
320 static const struct kfd_device_info navi10_device_info = {
321         .asic_family = CHIP_NAVI10,
322         .max_pasid_bits = 16,
323         .max_no_of_hqd  = 24,
324         .doorbell_size  = 8,
325         .ih_ring_entry_size = 8 * sizeof(uint32_t),
326         .event_interrupt_class = &event_interrupt_class_v9,
327         .num_of_watch_points = 4,
328         .mqd_size_aligned = MQD_SIZE_ALIGNED,
329         .needs_iommu_device = false,
330         .supports_cwsr = true,
331         .needs_pci_atomics = false,
332         .num_sdma_engines = 2,
333         .num_xgmi_sdma_engines = 0,
334         .num_sdma_queues_per_engine = 8,
335 };
336
337 struct kfd_deviceid {
338         unsigned short did;
339         const struct kfd_device_info *device_info;
340 };
341
342 static const struct kfd_deviceid supported_devices[] = {
343 #ifdef KFD_SUPPORT_IOMMU_V2
344         { 0x1304, &kaveri_device_info },        /* Kaveri */
345         { 0x1305, &kaveri_device_info },        /* Kaveri */
346         { 0x1306, &kaveri_device_info },        /* Kaveri */
347         { 0x1307, &kaveri_device_info },        /* Kaveri */
348         { 0x1309, &kaveri_device_info },        /* Kaveri */
349         { 0x130A, &kaveri_device_info },        /* Kaveri */
350         { 0x130B, &kaveri_device_info },        /* Kaveri */
351         { 0x130C, &kaveri_device_info },        /* Kaveri */
352         { 0x130D, &kaveri_device_info },        /* Kaveri */
353         { 0x130E, &kaveri_device_info },        /* Kaveri */
354         { 0x130F, &kaveri_device_info },        /* Kaveri */
355         { 0x1310, &kaveri_device_info },        /* Kaveri */
356         { 0x1311, &kaveri_device_info },        /* Kaveri */
357         { 0x1312, &kaveri_device_info },        /* Kaveri */
358         { 0x1313, &kaveri_device_info },        /* Kaveri */
359         { 0x1315, &kaveri_device_info },        /* Kaveri */
360         { 0x1316, &kaveri_device_info },        /* Kaveri */
361         { 0x1317, &kaveri_device_info },        /* Kaveri */
362         { 0x1318, &kaveri_device_info },        /* Kaveri */
363         { 0x131B, &kaveri_device_info },        /* Kaveri */
364         { 0x131C, &kaveri_device_info },        /* Kaveri */
365         { 0x131D, &kaveri_device_info },        /* Kaveri */
366         { 0x9870, &carrizo_device_info },       /* Carrizo */
367         { 0x9874, &carrizo_device_info },       /* Carrizo */
368         { 0x9875, &carrizo_device_info },       /* Carrizo */
369         { 0x9876, &carrizo_device_info },       /* Carrizo */
370         { 0x9877, &carrizo_device_info },       /* Carrizo */
371         { 0x15DD, &raven_device_info },         /* Raven */
372         { 0x15D8, &raven_device_info },         /* Raven */
373 #endif
374         { 0x67A0, &hawaii_device_info },        /* Hawaii */
375         { 0x67A1, &hawaii_device_info },        /* Hawaii */
376         { 0x67A2, &hawaii_device_info },        /* Hawaii */
377         { 0x67A8, &hawaii_device_info },        /* Hawaii */
378         { 0x67A9, &hawaii_device_info },        /* Hawaii */
379         { 0x67AA, &hawaii_device_info },        /* Hawaii */
380         { 0x67B0, &hawaii_device_info },        /* Hawaii */
381         { 0x67B1, &hawaii_device_info },        /* Hawaii */
382         { 0x67B8, &hawaii_device_info },        /* Hawaii */
383         { 0x67B9, &hawaii_device_info },        /* Hawaii */
384         { 0x67BA, &hawaii_device_info },        /* Hawaii */
385         { 0x67BE, &hawaii_device_info },        /* Hawaii */
386         { 0x6920, &tonga_device_info },         /* Tonga */
387         { 0x6921, &tonga_device_info },         /* Tonga */
388         { 0x6928, &tonga_device_info },         /* Tonga */
389         { 0x6929, &tonga_device_info },         /* Tonga */
390         { 0x692B, &tonga_device_info },         /* Tonga */
391         { 0x6938, &tonga_device_info },         /* Tonga */
392         { 0x6939, &tonga_device_info },         /* Tonga */
393         { 0x7300, &fiji_device_info },          /* Fiji */
394         { 0x730F, &fiji_vf_device_info },       /* Fiji vf*/
395         { 0x67C0, &polaris10_device_info },     /* Polaris10 */
396         { 0x67C1, &polaris10_device_info },     /* Polaris10 */
397         { 0x67C2, &polaris10_device_info },     /* Polaris10 */
398         { 0x67C4, &polaris10_device_info },     /* Polaris10 */
399         { 0x67C7, &polaris10_device_info },     /* Polaris10 */
400         { 0x67C8, &polaris10_device_info },     /* Polaris10 */
401         { 0x67C9, &polaris10_device_info },     /* Polaris10 */
402         { 0x67CA, &polaris10_device_info },     /* Polaris10 */
403         { 0x67CC, &polaris10_device_info },     /* Polaris10 */
404         { 0x67CF, &polaris10_device_info },     /* Polaris10 */
405         { 0x67D0, &polaris10_vf_device_info },  /* Polaris10 vf*/
406         { 0x67DF, &polaris10_device_info },     /* Polaris10 */
407         { 0x6FDF, &polaris10_device_info },     /* Polaris10 */
408         { 0x67E0, &polaris11_device_info },     /* Polaris11 */
409         { 0x67E1, &polaris11_device_info },     /* Polaris11 */
410         { 0x67E3, &polaris11_device_info },     /* Polaris11 */
411         { 0x67E7, &polaris11_device_info },     /* Polaris11 */
412         { 0x67E8, &polaris11_device_info },     /* Polaris11 */
413         { 0x67E9, &polaris11_device_info },     /* Polaris11 */
414         { 0x67EB, &polaris11_device_info },     /* Polaris11 */
415         { 0x67EF, &polaris11_device_info },     /* Polaris11 */
416         { 0x67FF, &polaris11_device_info },     /* Polaris11 */
417         { 0x6980, &polaris12_device_info },     /* Polaris12 */
418         { 0x6981, &polaris12_device_info },     /* Polaris12 */
419         { 0x6985, &polaris12_device_info },     /* Polaris12 */
420         { 0x6986, &polaris12_device_info },     /* Polaris12 */
421         { 0x6987, &polaris12_device_info },     /* Polaris12 */
422         { 0x6995, &polaris12_device_info },     /* Polaris12 */
423         { 0x6997, &polaris12_device_info },     /* Polaris12 */
424         { 0x699F, &polaris12_device_info },     /* Polaris12 */
425         { 0x694C, &vegam_device_info },         /* VegaM */
426         { 0x694E, &vegam_device_info },         /* VegaM */
427         { 0x694F, &vegam_device_info },         /* VegaM */
428         { 0x6860, &vega10_device_info },        /* Vega10 */
429         { 0x6861, &vega10_device_info },        /* Vega10 */
430         { 0x6862, &vega10_device_info },        /* Vega10 */
431         { 0x6863, &vega10_device_info },        /* Vega10 */
432         { 0x6864, &vega10_device_info },        /* Vega10 */
433         { 0x6867, &vega10_device_info },        /* Vega10 */
434         { 0x6868, &vega10_device_info },        /* Vega10 */
435         { 0x6869, &vega10_device_info },        /* Vega10 */
436         { 0x686A, &vega10_device_info },        /* Vega10 */
437         { 0x686B, &vega10_device_info },        /* Vega10 */
438         { 0x686C, &vega10_vf_device_info },     /* Vega10  vf*/
439         { 0x686D, &vega10_device_info },        /* Vega10 */
440         { 0x686E, &vega10_device_info },        /* Vega10 */
441         { 0x686F, &vega10_device_info },        /* Vega10 */
442         { 0x687F, &vega10_device_info },        /* Vega10 */
443         { 0x69A0, &vega12_device_info },        /* Vega12 */
444         { 0x69A1, &vega12_device_info },        /* Vega12 */
445         { 0x69A2, &vega12_device_info },        /* Vega12 */
446         { 0x69A3, &vega12_device_info },        /* Vega12 */
447         { 0x69AF, &vega12_device_info },        /* Vega12 */
448         { 0x66a0, &vega20_device_info },        /* Vega20 */
449         { 0x66a1, &vega20_device_info },        /* Vega20 */
450         { 0x66a2, &vega20_device_info },        /* Vega20 */
451         { 0x66a3, &vega20_device_info },        /* Vega20 */
452         { 0x66a4, &vega20_device_info },        /* Vega20 */
453         { 0x66a7, &vega20_device_info },        /* Vega20 */
454         { 0x66af, &vega20_device_info },        /* Vega20 */
455         /* Navi10 */
456         { 0x7310, &navi10_device_info },        /* Navi10 */
457         { 0x7312, &navi10_device_info },        /* Navi10 */
458         { 0x7318, &navi10_device_info },        /* Navi10 */
459         { 0x731a, &navi10_device_info },        /* Navi10 */
460         { 0x731f, &navi10_device_info },        /* Navi10 */
461 };
462
463 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
464                                 unsigned int chunk_size);
465 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
466
467 static int kfd_resume(struct kfd_dev *kfd);
468
469 static const struct kfd_device_info *lookup_device_info(unsigned short did)
470 {
471         size_t i;
472
473         for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
474                 if (supported_devices[i].did == did) {
475                         WARN_ON(!supported_devices[i].device_info);
476                         return supported_devices[i].device_info;
477                 }
478         }
479
480         dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
481                  did);
482
483         return NULL;
484 }
485
486 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
487         struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
488 {
489         struct kfd_dev *kfd;
490         const struct kfd_device_info *device_info =
491                                         lookup_device_info(pdev->device);
492
493         if (!device_info) {
494                 dev_err(kfd_device, "kgd2kfd_probe failed\n");
495                 return NULL;
496         }
497
498         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
499         if (!kfd)
500                 return NULL;
501
502         /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
503          * 32 and 64-bit requests are possible and must be
504          * supported.
505          */
506         kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
507         if (device_info->needs_pci_atomics &&
508             !kfd->pci_atomic_requested) {
509                 dev_info(kfd_device,
510                          "skipped device %x:%x, PCI rejects atomics\n",
511                          pdev->vendor, pdev->device);
512                 kfree(kfd);
513                 return NULL;
514         }
515
516         kfd->kgd = kgd;
517         kfd->device_info = device_info;
518         kfd->pdev = pdev;
519         kfd->init_complete = false;
520         kfd->kfd2kgd = f2g;
521         atomic_set(&kfd->compute_profile, 0);
522
523         mutex_init(&kfd->doorbell_mutex);
524         memset(&kfd->doorbell_available_index, 0,
525                 sizeof(kfd->doorbell_available_index));
526
527         atomic_set(&kfd->sram_ecc_flag, 0);
528
529         return kfd;
530 }
531
532 static void kfd_cwsr_init(struct kfd_dev *kfd)
533 {
534         if (cwsr_enable && kfd->device_info->supports_cwsr) {
535                 if (kfd->device_info->asic_family < CHIP_VEGA10) {
536                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
537                         kfd->cwsr_isa = cwsr_trap_gfx8_hex;
538                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
539                 } else if (kfd->device_info->asic_family < CHIP_NAVI10) {
540                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
541                         kfd->cwsr_isa = cwsr_trap_gfx9_hex;
542                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
543                 } else {
544                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
545                         kfd->cwsr_isa = cwsr_trap_gfx10_hex;
546                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
547                 }
548
549                 kfd->cwsr_enabled = true;
550         }
551 }
552
553 bool kgd2kfd_device_init(struct kfd_dev *kfd,
554                          const struct kgd2kfd_shared_resources *gpu_resources)
555 {
556         unsigned int size;
557
558         kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
559                         KGD_ENGINE_MEC1);
560         kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
561                         KGD_ENGINE_SDMA1);
562         kfd->shared_resources = *gpu_resources;
563
564         kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
565         kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
566         kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
567                         - kfd->vm_info.first_vmid_kfd + 1;
568
569         /* Verify module parameters regarding mapped process number*/
570         if ((hws_max_conc_proc < 0)
571                         || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
572                 dev_err(kfd_device,
573                         "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
574                         hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
575                         kfd->vm_info.vmid_num_kfd);
576                 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
577         } else
578                 kfd->max_proc_per_quantum = hws_max_conc_proc;
579
580         /* Allocate global GWS that is shared by all KFD processes */
581         if (hws_gws_support && amdgpu_amdkfd_alloc_gws(kfd->kgd,
582                         amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws)) {
583                 dev_err(kfd_device, "Could not allocate %d gws\n",
584                         amdgpu_amdkfd_get_num_gws(kfd->kgd));
585                 goto out;
586         }
587         /* calculate max size of mqds needed for queues */
588         size = max_num_of_queues_per_device *
589                         kfd->device_info->mqd_size_aligned;
590
591         /*
592          * calculate max size of runlist packet.
593          * There can be only 2 packets at once
594          */
595         size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
596                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
597                 + sizeof(struct pm4_mes_runlist)) * 2;
598
599         /* Add size of HIQ & DIQ */
600         size += KFD_KERNEL_QUEUE_SIZE * 2;
601
602         /* add another 512KB for all other allocations on gart (HPD, fences) */
603         size += 512 * 1024;
604
605         if (amdgpu_amdkfd_alloc_gtt_mem(
606                         kfd->kgd, size, &kfd->gtt_mem,
607                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
608                         false)) {
609                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
610                 goto alloc_gtt_mem_failure;
611         }
612
613         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
614
615         /* Initialize GTT sa with 512 byte chunk size */
616         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
617                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
618                 goto kfd_gtt_sa_init_error;
619         }
620
621         if (kfd_doorbell_init(kfd)) {
622                 dev_err(kfd_device,
623                         "Error initializing doorbell aperture\n");
624                 goto kfd_doorbell_error;
625         }
626
627         if (kfd->kfd2kgd->get_hive_id)
628                 kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
629
630         if (kfd_interrupt_init(kfd)) {
631                 dev_err(kfd_device, "Error initializing interrupts\n");
632                 goto kfd_interrupt_error;
633         }
634
635         kfd->dqm = device_queue_manager_init(kfd);
636         if (!kfd->dqm) {
637                 dev_err(kfd_device, "Error initializing queue manager\n");
638                 goto device_queue_manager_error;
639         }
640
641         if (kfd_iommu_device_init(kfd)) {
642                 dev_err(kfd_device, "Error initializing iommuv2\n");
643                 goto device_iommu_error;
644         }
645
646         kfd_cwsr_init(kfd);
647
648         if (kfd_resume(kfd))
649                 goto kfd_resume_error;
650
651         kfd->dbgmgr = NULL;
652
653         if (kfd_topology_add_device(kfd)) {
654                 dev_err(kfd_device, "Error adding device to topology\n");
655                 goto kfd_topology_add_device_error;
656         }
657
658         kfd->init_complete = true;
659         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
660                  kfd->pdev->device);
661
662         pr_debug("Starting kfd with the following scheduling policy %d\n",
663                 kfd->dqm->sched_policy);
664
665         goto out;
666
667 kfd_topology_add_device_error:
668 kfd_resume_error:
669 device_iommu_error:
670         device_queue_manager_uninit(kfd->dqm);
671 device_queue_manager_error:
672         kfd_interrupt_exit(kfd);
673 kfd_interrupt_error:
674         kfd_doorbell_fini(kfd);
675 kfd_doorbell_error:
676         kfd_gtt_sa_fini(kfd);
677 kfd_gtt_sa_init_error:
678         amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
679 alloc_gtt_mem_failure:
680         if (hws_gws_support)
681                 amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
682         dev_err(kfd_device,
683                 "device %x:%x NOT added due to errors\n",
684                 kfd->pdev->vendor, kfd->pdev->device);
685 out:
686         return kfd->init_complete;
687 }
688
689 void kgd2kfd_device_exit(struct kfd_dev *kfd)
690 {
691         if (kfd->init_complete) {
692                 kgd2kfd_suspend(kfd);
693                 device_queue_manager_uninit(kfd->dqm);
694                 kfd_interrupt_exit(kfd);
695                 kfd_topology_remove_device(kfd);
696                 kfd_doorbell_fini(kfd);
697                 kfd_gtt_sa_fini(kfd);
698                 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
699                 if (hws_gws_support)
700                         amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
701         }
702
703         kfree(kfd);
704 }
705
706 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
707 {
708         if (!kfd->init_complete)
709                 return 0;
710         kgd2kfd_suspend(kfd);
711
712         /* hold dqm->lock to prevent further execution*/
713         dqm_lock(kfd->dqm);
714
715         kfd_signal_reset_event(kfd);
716         return 0;
717 }
718
719 /*
720  * Fix me. KFD won't be able to resume existing process for now.
721  * We will keep all existing process in a evicted state and
722  * wait the process to be terminated.
723  */
724
725 int kgd2kfd_post_reset(struct kfd_dev *kfd)
726 {
727         int ret, count;
728
729         if (!kfd->init_complete)
730                 return 0;
731
732         dqm_unlock(kfd->dqm);
733
734         ret = kfd_resume(kfd);
735         if (ret)
736                 return ret;
737         count = atomic_dec_return(&kfd_locked);
738
739         atomic_set(&kfd->sram_ecc_flag, 0);
740
741         return 0;
742 }
743
744 bool kfd_is_locked(void)
745 {
746         return  (atomic_read(&kfd_locked) > 0);
747 }
748
749 void kgd2kfd_suspend(struct kfd_dev *kfd)
750 {
751         if (!kfd->init_complete)
752                 return;
753
754         /* For first KFD device suspend all the KFD processes */
755         if (atomic_inc_return(&kfd_locked) == 1)
756                 kfd_suspend_all_processes();
757
758         kfd->dqm->ops.stop(kfd->dqm);
759
760         kfd_iommu_suspend(kfd);
761 }
762
763 int kgd2kfd_resume(struct kfd_dev *kfd)
764 {
765         int ret, count;
766
767         if (!kfd->init_complete)
768                 return 0;
769
770         ret = kfd_resume(kfd);
771         if (ret)
772                 return ret;
773
774         count = atomic_dec_return(&kfd_locked);
775         WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
776         if (count == 0)
777                 ret = kfd_resume_all_processes();
778
779         return ret;
780 }
781
782 static int kfd_resume(struct kfd_dev *kfd)
783 {
784         int err = 0;
785
786         err = kfd_iommu_resume(kfd);
787         if (err) {
788                 dev_err(kfd_device,
789                         "Failed to resume IOMMU for device %x:%x\n",
790                         kfd->pdev->vendor, kfd->pdev->device);
791                 return err;
792         }
793
794         err = kfd->dqm->ops.start(kfd->dqm);
795         if (err) {
796                 dev_err(kfd_device,
797                         "Error starting queue manager for device %x:%x\n",
798                         kfd->pdev->vendor, kfd->pdev->device);
799                 goto dqm_start_error;
800         }
801
802         return err;
803
804 dqm_start_error:
805         kfd_iommu_suspend(kfd);
806         return err;
807 }
808
809 /* This is called directly from KGD at ISR. */
810 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
811 {
812         uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
813         bool is_patched = false;
814         unsigned long flags;
815
816         if (!kfd->init_complete)
817                 return;
818
819         if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
820                 dev_err_once(kfd_device, "Ring entry too small\n");
821                 return;
822         }
823
824         spin_lock_irqsave(&kfd->interrupt_lock, flags);
825
826         if (kfd->interrupts_active
827             && interrupt_is_wanted(kfd, ih_ring_entry,
828                                    patched_ihre, &is_patched)
829             && enqueue_ih_ring_entry(kfd,
830                                      is_patched ? patched_ihre : ih_ring_entry))
831                 queue_work(kfd->ih_wq, &kfd->interrupt_work);
832
833         spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
834 }
835
836 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
837 {
838         struct kfd_process *p;
839         int r;
840
841         /* Because we are called from arbitrary context (workqueue) as opposed
842          * to process context, kfd_process could attempt to exit while we are
843          * running so the lookup function increments the process ref count.
844          */
845         p = kfd_lookup_process_by_mm(mm);
846         if (!p)
847                 return -ESRCH;
848
849         r = kfd_process_evict_queues(p);
850
851         kfd_unref_process(p);
852         return r;
853 }
854
855 int kgd2kfd_resume_mm(struct mm_struct *mm)
856 {
857         struct kfd_process *p;
858         int r;
859
860         /* Because we are called from arbitrary context (workqueue) as opposed
861          * to process context, kfd_process could attempt to exit while we are
862          * running so the lookup function increments the process ref count.
863          */
864         p = kfd_lookup_process_by_mm(mm);
865         if (!p)
866                 return -ESRCH;
867
868         r = kfd_process_restore_queues(p);
869
870         kfd_unref_process(p);
871         return r;
872 }
873
874 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
875  *   prepare for safe eviction of KFD BOs that belong to the specified
876  *   process.
877  *
878  * @mm: mm_struct that identifies the specified KFD process
879  * @fence: eviction fence attached to KFD process BOs
880  *
881  */
882 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
883                                                struct dma_fence *fence)
884 {
885         struct kfd_process *p;
886         unsigned long active_time;
887         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
888
889         if (!fence)
890                 return -EINVAL;
891
892         if (dma_fence_is_signaled(fence))
893                 return 0;
894
895         p = kfd_lookup_process_by_mm(mm);
896         if (!p)
897                 return -ENODEV;
898
899         if (fence->seqno == p->last_eviction_seqno)
900                 goto out;
901
902         p->last_eviction_seqno = fence->seqno;
903
904         /* Avoid KFD process starvation. Wait for at least
905          * PROCESS_ACTIVE_TIME_MS before evicting the process again
906          */
907         active_time = get_jiffies_64() - p->last_restore_timestamp;
908         if (delay_jiffies > active_time)
909                 delay_jiffies -= active_time;
910         else
911                 delay_jiffies = 0;
912
913         /* During process initialization eviction_work.dwork is initialized
914          * to kfd_evict_bo_worker
915          */
916         schedule_delayed_work(&p->eviction_work, delay_jiffies);
917 out:
918         kfd_unref_process(p);
919         return 0;
920 }
921
922 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
923                                 unsigned int chunk_size)
924 {
925         unsigned int num_of_longs;
926
927         if (WARN_ON(buf_size < chunk_size))
928                 return -EINVAL;
929         if (WARN_ON(buf_size == 0))
930                 return -EINVAL;
931         if (WARN_ON(chunk_size == 0))
932                 return -EINVAL;
933
934         kfd->gtt_sa_chunk_size = chunk_size;
935         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
936
937         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
938                 BITS_PER_LONG;
939
940         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
941
942         if (!kfd->gtt_sa_bitmap)
943                 return -ENOMEM;
944
945         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
946                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
947
948         mutex_init(&kfd->gtt_sa_lock);
949
950         return 0;
951
952 }
953
954 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
955 {
956         mutex_destroy(&kfd->gtt_sa_lock);
957         kfree(kfd->gtt_sa_bitmap);
958 }
959
960 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
961                                                 unsigned int bit_num,
962                                                 unsigned int chunk_size)
963 {
964         return start_addr + bit_num * chunk_size;
965 }
966
967 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
968                                                 unsigned int bit_num,
969                                                 unsigned int chunk_size)
970 {
971         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
972 }
973
974 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
975                         struct kfd_mem_obj **mem_obj)
976 {
977         unsigned int found, start_search, cur_size;
978
979         if (size == 0)
980                 return -EINVAL;
981
982         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
983                 return -ENOMEM;
984
985         *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
986         if (!(*mem_obj))
987                 return -ENOMEM;
988
989         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
990
991         start_search = 0;
992
993         mutex_lock(&kfd->gtt_sa_lock);
994
995 kfd_gtt_restart_search:
996         /* Find the first chunk that is free */
997         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
998                                         kfd->gtt_sa_num_of_chunks,
999                                         start_search);
1000
1001         pr_debug("Found = %d\n", found);
1002
1003         /* If there wasn't any free chunk, bail out */
1004         if (found == kfd->gtt_sa_num_of_chunks)
1005                 goto kfd_gtt_no_free_chunk;
1006
1007         /* Update fields of mem_obj */
1008         (*mem_obj)->range_start = found;
1009         (*mem_obj)->range_end = found;
1010         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1011                                         kfd->gtt_start_gpu_addr,
1012                                         found,
1013                                         kfd->gtt_sa_chunk_size);
1014         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1015                                         kfd->gtt_start_cpu_ptr,
1016                                         found,
1017                                         kfd->gtt_sa_chunk_size);
1018
1019         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1020                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1021
1022         /* If we need only one chunk, mark it as allocated and get out */
1023         if (size <= kfd->gtt_sa_chunk_size) {
1024                 pr_debug("Single bit\n");
1025                 set_bit(found, kfd->gtt_sa_bitmap);
1026                 goto kfd_gtt_out;
1027         }
1028
1029         /* Otherwise, try to see if we have enough contiguous chunks */
1030         cur_size = size - kfd->gtt_sa_chunk_size;
1031         do {
1032                 (*mem_obj)->range_end =
1033                         find_next_zero_bit(kfd->gtt_sa_bitmap,
1034                                         kfd->gtt_sa_num_of_chunks, ++found);
1035                 /*
1036                  * If next free chunk is not contiguous than we need to
1037                  * restart our search from the last free chunk we found (which
1038                  * wasn't contiguous to the previous ones
1039                  */
1040                 if ((*mem_obj)->range_end != found) {
1041                         start_search = found;
1042                         goto kfd_gtt_restart_search;
1043                 }
1044
1045                 /*
1046                  * If we reached end of buffer, bail out with error
1047                  */
1048                 if (found == kfd->gtt_sa_num_of_chunks)
1049                         goto kfd_gtt_no_free_chunk;
1050
1051                 /* Check if we don't need another chunk */
1052                 if (cur_size <= kfd->gtt_sa_chunk_size)
1053                         cur_size = 0;
1054                 else
1055                         cur_size -= kfd->gtt_sa_chunk_size;
1056
1057         } while (cur_size > 0);
1058
1059         pr_debug("range_start = %d, range_end = %d\n",
1060                 (*mem_obj)->range_start, (*mem_obj)->range_end);
1061
1062         /* Mark the chunks as allocated */
1063         for (found = (*mem_obj)->range_start;
1064                 found <= (*mem_obj)->range_end;
1065                 found++)
1066                 set_bit(found, kfd->gtt_sa_bitmap);
1067
1068 kfd_gtt_out:
1069         mutex_unlock(&kfd->gtt_sa_lock);
1070         return 0;
1071
1072 kfd_gtt_no_free_chunk:
1073         pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
1074         mutex_unlock(&kfd->gtt_sa_lock);
1075         kfree(mem_obj);
1076         return -ENOMEM;
1077 }
1078
1079 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1080 {
1081         unsigned int bit;
1082
1083         /* Act like kfree when trying to free a NULL object */
1084         if (!mem_obj)
1085                 return 0;
1086
1087         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1088                         mem_obj, mem_obj->range_start, mem_obj->range_end);
1089
1090         mutex_lock(&kfd->gtt_sa_lock);
1091
1092         /* Mark the chunks as free */
1093         for (bit = mem_obj->range_start;
1094                 bit <= mem_obj->range_end;
1095                 bit++)
1096                 clear_bit(bit, kfd->gtt_sa_bitmap);
1097
1098         mutex_unlock(&kfd->gtt_sa_lock);
1099
1100         kfree(mem_obj);
1101         return 0;
1102 }
1103
1104 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1105 {
1106         if (kfd)
1107                 atomic_inc(&kfd->sram_ecc_flag);
1108 }
1109
1110 void kfd_inc_compute_active(struct kfd_dev *kfd)
1111 {
1112         if (atomic_inc_return(&kfd->compute_profile) == 1)
1113                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1114 }
1115
1116 void kfd_dec_compute_active(struct kfd_dev *kfd)
1117 {
1118         int count = atomic_dec_return(&kfd->compute_profile);
1119
1120         if (count == 0)
1121                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1122         WARN_ONCE(count < 0, "Compute profile ref. count error");
1123 }
1124
1125 #if defined(CONFIG_DEBUG_FS)
1126
1127 /* This function will send a package to HIQ to hang the HWS
1128  * which will trigger a GPU reset and bring the HWS back to normal state
1129  */
1130 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1131 {
1132         int r = 0;
1133
1134         if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1135                 pr_err("HWS is not enabled");
1136                 return -EINVAL;
1137         }
1138
1139         r = pm_debugfs_hang_hws(&dev->dqm->packets);
1140         if (!r)
1141                 r = dqm_debugfs_execute_queues(dev->dqm);
1142
1143         return r;
1144 }
1145
1146 #endif