Linux-libre 5.7.3-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 #include "amdgpu_amdkfd.h"
36 #include "amdgpu_gmc.h"
37 #include "amdgpu_xgmi.h"
38
39 /**
40  * DOC: GPUVM
41  *
42  * GPUVM is similar to the legacy gart on older asics, however
43  * rather than there being a single global gart table
44  * for the entire GPU, there are multiple VM page tables active
45  * at any given time.  The VM page tables can contain a mix
46  * vram pages and system memory pages and system memory pages
47  * can be mapped as snooped (cached system pages) or unsnooped
48  * (uncached system pages).
49  * Each VM has an ID associated with it and there is a page table
50  * associated with each VMID.  When execting a command buffer,
51  * the kernel tells the the ring what VMID to use for that command
52  * buffer.  VMIDs are allocated dynamically as commands are submitted.
53  * The userspace drivers maintain their own address space and the kernel
54  * sets up their pages tables accordingly when they submit their
55  * command buffers and a VMID is assigned.
56  * Cayman/Trinity support up to 8 active VMs at any given time;
57  * SI supports 16.
58  */
59
60 #define START(node) ((node)->start)
61 #define LAST(node) ((node)->last)
62
63 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
64                      START, LAST, static, amdgpu_vm_it)
65
66 #undef START
67 #undef LAST
68
69 /**
70  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
71  */
72 struct amdgpu_prt_cb {
73
74         /**
75          * @adev: amdgpu device
76          */
77         struct amdgpu_device *adev;
78
79         /**
80          * @cb: callback
81          */
82         struct dma_fence_cb cb;
83 };
84
85 /**
86  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
87  * happens while holding this lock anywhere to prevent deadlocks when
88  * an MMU notifier runs in reclaim-FS context.
89  */
90 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
91 {
92         mutex_lock(&vm->eviction_lock);
93         vm->saved_flags = memalloc_nofs_save();
94 }
95
96 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
97 {
98         if (mutex_trylock(&vm->eviction_lock)) {
99                 vm->saved_flags = memalloc_nofs_save();
100                 return 1;
101         }
102         return 0;
103 }
104
105 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
106 {
107         memalloc_nofs_restore(vm->saved_flags);
108         mutex_unlock(&vm->eviction_lock);
109 }
110
111 /**
112  * amdgpu_vm_level_shift - return the addr shift for each level
113  *
114  * @adev: amdgpu_device pointer
115  * @level: VMPT level
116  *
117  * Returns:
118  * The number of bits the pfn needs to be right shifted for a level.
119  */
120 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
121                                       unsigned level)
122 {
123         switch (level) {
124         case AMDGPU_VM_PDB2:
125         case AMDGPU_VM_PDB1:
126         case AMDGPU_VM_PDB0:
127                 return 9 * (AMDGPU_VM_PDB0 - level) +
128                         adev->vm_manager.block_size;
129         case AMDGPU_VM_PTB:
130                 return 0;
131         default:
132                 return ~0;
133         }
134 }
135
136 /**
137  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
138  *
139  * @adev: amdgpu_device pointer
140  * @level: VMPT level
141  *
142  * Returns:
143  * The number of entries in a page directory or page table.
144  */
145 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
146                                       unsigned level)
147 {
148         unsigned shift = amdgpu_vm_level_shift(adev,
149                                                adev->vm_manager.root_level);
150
151         if (level == adev->vm_manager.root_level)
152                 /* For the root directory */
153                 return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
154                         >> shift;
155         else if (level != AMDGPU_VM_PTB)
156                 /* Everything in between */
157                 return 512;
158         else
159                 /* For the page tables on the leaves */
160                 return AMDGPU_VM_PTE_COUNT(adev);
161 }
162
163 /**
164  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
165  *
166  * @adev: amdgpu_device pointer
167  *
168  * Returns:
169  * The number of entries in the root page directory which needs the ATS setting.
170  */
171 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
172 {
173         unsigned shift;
174
175         shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
176         return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
177 }
178
179 /**
180  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
181  *
182  * @adev: amdgpu_device pointer
183  * @level: VMPT level
184  *
185  * Returns:
186  * The mask to extract the entry number of a PD/PT from an address.
187  */
188 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
189                                        unsigned int level)
190 {
191         if (level <= adev->vm_manager.root_level)
192                 return 0xffffffff;
193         else if (level != AMDGPU_VM_PTB)
194                 return 0x1ff;
195         else
196                 return AMDGPU_VM_PTE_COUNT(adev) - 1;
197 }
198
199 /**
200  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
201  *
202  * @adev: amdgpu_device pointer
203  * @level: VMPT level
204  *
205  * Returns:
206  * The size of the BO for a page directory or page table in bytes.
207  */
208 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
209 {
210         return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
211 }
212
213 /**
214  * amdgpu_vm_bo_evicted - vm_bo is evicted
215  *
216  * @vm_bo: vm_bo which is evicted
217  *
218  * State for PDs/PTs and per VM BOs which are not at the location they should
219  * be.
220  */
221 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
222 {
223         struct amdgpu_vm *vm = vm_bo->vm;
224         struct amdgpu_bo *bo = vm_bo->bo;
225
226         vm_bo->moved = true;
227         if (bo->tbo.type == ttm_bo_type_kernel)
228                 list_move(&vm_bo->vm_status, &vm->evicted);
229         else
230                 list_move_tail(&vm_bo->vm_status, &vm->evicted);
231 }
232 /**
233  * amdgpu_vm_bo_moved - vm_bo is moved
234  *
235  * @vm_bo: vm_bo which is moved
236  *
237  * State for per VM BOs which are moved, but that change is not yet reflected
238  * in the page tables.
239  */
240 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
241 {
242         list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
243 }
244
245 /**
246  * amdgpu_vm_bo_idle - vm_bo is idle
247  *
248  * @vm_bo: vm_bo which is now idle
249  *
250  * State for PDs/PTs and per VM BOs which have gone through the state machine
251  * and are now idle.
252  */
253 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
254 {
255         list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
256         vm_bo->moved = false;
257 }
258
259 /**
260  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
261  *
262  * @vm_bo: vm_bo which is now invalidated
263  *
264  * State for normal BOs which are invalidated and that change not yet reflected
265  * in the PTs.
266  */
267 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
268 {
269         spin_lock(&vm_bo->vm->invalidated_lock);
270         list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
271         spin_unlock(&vm_bo->vm->invalidated_lock);
272 }
273
274 /**
275  * amdgpu_vm_bo_relocated - vm_bo is reloacted
276  *
277  * @vm_bo: vm_bo which is relocated
278  *
279  * State for PDs/PTs which needs to update their parent PD.
280  * For the root PD, just move to idle state.
281  */
282 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
283 {
284         if (vm_bo->bo->parent)
285                 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
286         else
287                 amdgpu_vm_bo_idle(vm_bo);
288 }
289
290 /**
291  * amdgpu_vm_bo_done - vm_bo is done
292  *
293  * @vm_bo: vm_bo which is now done
294  *
295  * State for normal BOs which are invalidated and that change has been updated
296  * in the PTs.
297  */
298 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
299 {
300         spin_lock(&vm_bo->vm->invalidated_lock);
301         list_del_init(&vm_bo->vm_status);
302         spin_unlock(&vm_bo->vm->invalidated_lock);
303 }
304
305 /**
306  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
307  *
308  * @base: base structure for tracking BO usage in a VM
309  * @vm: vm to which bo is to be added
310  * @bo: amdgpu buffer object
311  *
312  * Initialize a bo_va_base structure and add it to the appropriate lists
313  *
314  */
315 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
316                                    struct amdgpu_vm *vm,
317                                    struct amdgpu_bo *bo)
318 {
319         base->vm = vm;
320         base->bo = bo;
321         base->next = NULL;
322         INIT_LIST_HEAD(&base->vm_status);
323
324         if (!bo)
325                 return;
326         base->next = bo->vm_bo;
327         bo->vm_bo = base;
328
329         if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
330                 return;
331
332         vm->bulk_moveable = false;
333         if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
334                 amdgpu_vm_bo_relocated(base);
335         else
336                 amdgpu_vm_bo_idle(base);
337
338         if (bo->preferred_domains &
339             amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
340                 return;
341
342         /*
343          * we checked all the prerequisites, but it looks like this per vm bo
344          * is currently evicted. add the bo to the evicted list to make sure it
345          * is validated on next vm use to avoid fault.
346          * */
347         amdgpu_vm_bo_evicted(base);
348 }
349
350 /**
351  * amdgpu_vm_pt_parent - get the parent page directory
352  *
353  * @pt: child page table
354  *
355  * Helper to get the parent entry for the child page table. NULL if we are at
356  * the root page directory.
357  */
358 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
359 {
360         struct amdgpu_bo *parent = pt->base.bo->parent;
361
362         if (!parent)
363                 return NULL;
364
365         return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
366 }
367
368 /*
369  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
370  */
371 struct amdgpu_vm_pt_cursor {
372         uint64_t pfn;
373         struct amdgpu_vm_pt *parent;
374         struct amdgpu_vm_pt *entry;
375         unsigned level;
376 };
377
378 /**
379  * amdgpu_vm_pt_start - start PD/PT walk
380  *
381  * @adev: amdgpu_device pointer
382  * @vm: amdgpu_vm structure
383  * @start: start address of the walk
384  * @cursor: state to initialize
385  *
386  * Initialize a amdgpu_vm_pt_cursor to start a walk.
387  */
388 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
389                                struct amdgpu_vm *vm, uint64_t start,
390                                struct amdgpu_vm_pt_cursor *cursor)
391 {
392         cursor->pfn = start;
393         cursor->parent = NULL;
394         cursor->entry = &vm->root;
395         cursor->level = adev->vm_manager.root_level;
396 }
397
398 /**
399  * amdgpu_vm_pt_descendant - go to child node
400  *
401  * @adev: amdgpu_device pointer
402  * @cursor: current state
403  *
404  * Walk to the child node of the current node.
405  * Returns:
406  * True if the walk was possible, false otherwise.
407  */
408 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
409                                     struct amdgpu_vm_pt_cursor *cursor)
410 {
411         unsigned mask, shift, idx;
412
413         if (!cursor->entry->entries)
414                 return false;
415
416         BUG_ON(!cursor->entry->base.bo);
417         mask = amdgpu_vm_entries_mask(adev, cursor->level);
418         shift = amdgpu_vm_level_shift(adev, cursor->level);
419
420         ++cursor->level;
421         idx = (cursor->pfn >> shift) & mask;
422         cursor->parent = cursor->entry;
423         cursor->entry = &cursor->entry->entries[idx];
424         return true;
425 }
426
427 /**
428  * amdgpu_vm_pt_sibling - go to sibling node
429  *
430  * @adev: amdgpu_device pointer
431  * @cursor: current state
432  *
433  * Walk to the sibling node of the current node.
434  * Returns:
435  * True if the walk was possible, false otherwise.
436  */
437 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
438                                  struct amdgpu_vm_pt_cursor *cursor)
439 {
440         unsigned shift, num_entries;
441
442         /* Root doesn't have a sibling */
443         if (!cursor->parent)
444                 return false;
445
446         /* Go to our parents and see if we got a sibling */
447         shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
448         num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
449
450         if (cursor->entry == &cursor->parent->entries[num_entries - 1])
451                 return false;
452
453         cursor->pfn += 1ULL << shift;
454         cursor->pfn &= ~((1ULL << shift) - 1);
455         ++cursor->entry;
456         return true;
457 }
458
459 /**
460  * amdgpu_vm_pt_ancestor - go to parent node
461  *
462  * @cursor: current state
463  *
464  * Walk to the parent node of the current node.
465  * Returns:
466  * True if the walk was possible, false otherwise.
467  */
468 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
469 {
470         if (!cursor->parent)
471                 return false;
472
473         --cursor->level;
474         cursor->entry = cursor->parent;
475         cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
476         return true;
477 }
478
479 /**
480  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
481  *
482  * @adev: amdgpu_device pointer
483  * @cursor: current state
484  *
485  * Walk the PD/PT tree to the next node.
486  */
487 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
488                               struct amdgpu_vm_pt_cursor *cursor)
489 {
490         /* First try a newborn child */
491         if (amdgpu_vm_pt_descendant(adev, cursor))
492                 return;
493
494         /* If that didn't worked try to find a sibling */
495         while (!amdgpu_vm_pt_sibling(adev, cursor)) {
496                 /* No sibling, go to our parents and grandparents */
497                 if (!amdgpu_vm_pt_ancestor(cursor)) {
498                         cursor->pfn = ~0ll;
499                         return;
500                 }
501         }
502 }
503
504 /**
505  * amdgpu_vm_pt_first_dfs - start a deep first search
506  *
507  * @adev: amdgpu_device structure
508  * @vm: amdgpu_vm structure
509  * @start: optional cursor to start with
510  * @cursor: state to initialize
511  *
512  * Starts a deep first traversal of the PD/PT tree.
513  */
514 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
515                                    struct amdgpu_vm *vm,
516                                    struct amdgpu_vm_pt_cursor *start,
517                                    struct amdgpu_vm_pt_cursor *cursor)
518 {
519         if (start)
520                 *cursor = *start;
521         else
522                 amdgpu_vm_pt_start(adev, vm, 0, cursor);
523         while (amdgpu_vm_pt_descendant(adev, cursor));
524 }
525
526 /**
527  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
528  *
529  * @start: starting point for the search
530  * @entry: current entry
531  *
532  * Returns:
533  * True when the search should continue, false otherwise.
534  */
535 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
536                                       struct amdgpu_vm_pt *entry)
537 {
538         return entry && (!start || entry != start->entry);
539 }
540
541 /**
542  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
543  *
544  * @adev: amdgpu_device structure
545  * @cursor: current state
546  *
547  * Move the cursor to the next node in a deep first search.
548  */
549 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
550                                   struct amdgpu_vm_pt_cursor *cursor)
551 {
552         if (!cursor->entry)
553                 return;
554
555         if (!cursor->parent)
556                 cursor->entry = NULL;
557         else if (amdgpu_vm_pt_sibling(adev, cursor))
558                 while (amdgpu_vm_pt_descendant(adev, cursor));
559         else
560                 amdgpu_vm_pt_ancestor(cursor);
561 }
562
563 /*
564  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
565  */
566 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)          \
567         for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),          \
568              (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
569              amdgpu_vm_pt_continue_dfs((start), (entry));                       \
570              (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
571
572 /**
573  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
574  *
575  * @vm: vm providing the BOs
576  * @validated: head of validation list
577  * @entry: entry to add
578  *
579  * Add the page directory to the list of BOs to
580  * validate for command submission.
581  */
582 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
583                          struct list_head *validated,
584                          struct amdgpu_bo_list_entry *entry)
585 {
586         entry->priority = 0;
587         entry->tv.bo = &vm->root.base.bo->tbo;
588         /* Two for VM updates, one for TTM and one for the CS job */
589         entry->tv.num_shared = 4;
590         entry->user_pages = NULL;
591         list_add(&entry->tv.head, validated);
592 }
593
594 /**
595  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
596  *
597  * @bo: BO which was removed from the LRU
598  *
599  * Make sure the bulk_moveable flag is updated when a BO is removed from the
600  * LRU.
601  */
602 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
603 {
604         struct amdgpu_bo *abo;
605         struct amdgpu_vm_bo_base *bo_base;
606
607         if (!amdgpu_bo_is_amdgpu_bo(bo))
608                 return;
609
610         if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
611                 return;
612
613         abo = ttm_to_amdgpu_bo(bo);
614         if (!abo->parent)
615                 return;
616         for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
617                 struct amdgpu_vm *vm = bo_base->vm;
618
619                 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
620                         vm->bulk_moveable = false;
621         }
622
623 }
624 /**
625  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
626  *
627  * @adev: amdgpu device pointer
628  * @vm: vm providing the BOs
629  *
630  * Move all BOs to the end of LRU and remember their positions to put them
631  * together.
632  */
633 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
634                                 struct amdgpu_vm *vm)
635 {
636         struct amdgpu_vm_bo_base *bo_base;
637
638         if (vm->bulk_moveable) {
639                 spin_lock(&ttm_bo_glob.lru_lock);
640                 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
641                 spin_unlock(&ttm_bo_glob.lru_lock);
642                 return;
643         }
644
645         memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
646
647         spin_lock(&ttm_bo_glob.lru_lock);
648         list_for_each_entry(bo_base, &vm->idle, vm_status) {
649                 struct amdgpu_bo *bo = bo_base->bo;
650
651                 if (!bo->parent)
652                         continue;
653
654                 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
655                 if (bo->shadow)
656                         ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
657                                                 &vm->lru_bulk_move);
658         }
659         spin_unlock(&ttm_bo_glob.lru_lock);
660
661         vm->bulk_moveable = true;
662 }
663
664 /**
665  * amdgpu_vm_validate_pt_bos - validate the page table BOs
666  *
667  * @adev: amdgpu device pointer
668  * @vm: vm providing the BOs
669  * @validate: callback to do the validation
670  * @param: parameter for the validation callback
671  *
672  * Validate the page table BOs on command submission if neccessary.
673  *
674  * Returns:
675  * Validation result.
676  */
677 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
678                               int (*validate)(void *p, struct amdgpu_bo *bo),
679                               void *param)
680 {
681         struct amdgpu_vm_bo_base *bo_base, *tmp;
682         int r;
683
684         vm->bulk_moveable &= list_empty(&vm->evicted);
685
686         list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
687                 struct amdgpu_bo *bo = bo_base->bo;
688
689                 r = validate(param, bo);
690                 if (r)
691                         return r;
692
693                 if (bo->tbo.type != ttm_bo_type_kernel) {
694                         amdgpu_vm_bo_moved(bo_base);
695                 } else {
696                         vm->update_funcs->map_table(bo);
697                         amdgpu_vm_bo_relocated(bo_base);
698                 }
699         }
700
701         amdgpu_vm_eviction_lock(vm);
702         vm->evicting = false;
703         amdgpu_vm_eviction_unlock(vm);
704
705         return 0;
706 }
707
708 /**
709  * amdgpu_vm_ready - check VM is ready for updates
710  *
711  * @vm: VM to check
712  *
713  * Check if all VM PDs/PTs are ready for updates
714  *
715  * Returns:
716  * True if eviction list is empty.
717  */
718 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
719 {
720         return list_empty(&vm->evicted);
721 }
722
723 /**
724  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
725  *
726  * @adev: amdgpu_device pointer
727  * @vm: VM to clear BO from
728  * @bo: BO to clear
729  * @direct: use a direct update
730  *
731  * Root PD needs to be reserved when calling this.
732  *
733  * Returns:
734  * 0 on success, errno otherwise.
735  */
736 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
737                               struct amdgpu_vm *vm,
738                               struct amdgpu_bo *bo,
739                               bool direct)
740 {
741         struct ttm_operation_ctx ctx = { true, false };
742         unsigned level = adev->vm_manager.root_level;
743         struct amdgpu_vm_update_params params;
744         struct amdgpu_bo *ancestor = bo;
745         unsigned entries, ats_entries;
746         uint64_t addr;
747         int r;
748
749         /* Figure out our place in the hierarchy */
750         if (ancestor->parent) {
751                 ++level;
752                 while (ancestor->parent->parent) {
753                         ++level;
754                         ancestor = ancestor->parent;
755                 }
756         }
757
758         entries = amdgpu_bo_size(bo) / 8;
759         if (!vm->pte_support_ats) {
760                 ats_entries = 0;
761
762         } else if (!bo->parent) {
763                 ats_entries = amdgpu_vm_num_ats_entries(adev);
764                 ats_entries = min(ats_entries, entries);
765                 entries -= ats_entries;
766
767         } else {
768                 struct amdgpu_vm_pt *pt;
769
770                 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
771                 ats_entries = amdgpu_vm_num_ats_entries(adev);
772                 if ((pt - vm->root.entries) >= ats_entries) {
773                         ats_entries = 0;
774                 } else {
775                         ats_entries = entries;
776                         entries = 0;
777                 }
778         }
779
780         r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
781         if (r)
782                 return r;
783
784         if (bo->shadow) {
785                 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
786                                     &ctx);
787                 if (r)
788                         return r;
789         }
790
791         r = vm->update_funcs->map_table(bo);
792         if (r)
793                 return r;
794
795         memset(&params, 0, sizeof(params));
796         params.adev = adev;
797         params.vm = vm;
798         params.direct = direct;
799
800         r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
801         if (r)
802                 return r;
803
804         addr = 0;
805         if (ats_entries) {
806                 uint64_t value = 0, flags;
807
808                 flags = AMDGPU_PTE_DEFAULT_ATC;
809                 if (level != AMDGPU_VM_PTB) {
810                         /* Handle leaf PDEs as PTEs */
811                         flags |= AMDGPU_PDE_PTE;
812                         amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
813                 }
814
815                 r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
816                                              value, flags);
817                 if (r)
818                         return r;
819
820                 addr += ats_entries * 8;
821         }
822
823         if (entries) {
824                 uint64_t value = 0, flags = 0;
825
826                 if (adev->asic_type >= CHIP_VEGA10) {
827                         if (level != AMDGPU_VM_PTB) {
828                                 /* Handle leaf PDEs as PTEs */
829                                 flags |= AMDGPU_PDE_PTE;
830                                 amdgpu_gmc_get_vm_pde(adev, level,
831                                                       &value, &flags);
832                         } else {
833                                 /* Workaround for fault priority problem on GMC9 */
834                                 flags = AMDGPU_PTE_EXECUTABLE;
835                         }
836                 }
837
838                 r = vm->update_funcs->update(&params, bo, addr, 0, entries,
839                                              value, flags);
840                 if (r)
841                         return r;
842         }
843
844         return vm->update_funcs->commit(&params, NULL);
845 }
846
847 /**
848  * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
849  *
850  * @adev: amdgpu_device pointer
851  * @vm: requesting vm
852  * @level: the page table level
853  * @direct: use a direct update
854  * @bp: resulting BO allocation parameters
855  */
856 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
857                                int level, bool direct,
858                                struct amdgpu_bo_param *bp)
859 {
860         memset(bp, 0, sizeof(*bp));
861
862         bp->size = amdgpu_vm_bo_size(adev, level);
863         bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
864         bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
865         bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
866         bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
867                 AMDGPU_GEM_CREATE_CPU_GTT_USWC;
868         if (vm->use_cpu_for_update)
869                 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
870         else if (!vm->root.base.bo || vm->root.base.bo->shadow)
871                 bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
872         bp->type = ttm_bo_type_kernel;
873         bp->no_wait_gpu = direct;
874         if (vm->root.base.bo)
875                 bp->resv = vm->root.base.bo->tbo.base.resv;
876 }
877
878 /**
879  * amdgpu_vm_alloc_pts - Allocate a specific page table
880  *
881  * @adev: amdgpu_device pointer
882  * @vm: VM to allocate page tables for
883  * @cursor: Which page table to allocate
884  * @direct: use a direct update
885  *
886  * Make sure a specific page table or directory is allocated.
887  *
888  * Returns:
889  * 1 if page table needed to be allocated, 0 if page table was already
890  * allocated, negative errno if an error occurred.
891  */
892 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
893                                struct amdgpu_vm *vm,
894                                struct amdgpu_vm_pt_cursor *cursor,
895                                bool direct)
896 {
897         struct amdgpu_vm_pt *entry = cursor->entry;
898         struct amdgpu_bo_param bp;
899         struct amdgpu_bo *pt;
900         int r;
901
902         if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
903                 unsigned num_entries;
904
905                 num_entries = amdgpu_vm_num_entries(adev, cursor->level);
906                 entry->entries = kvmalloc_array(num_entries,
907                                                 sizeof(*entry->entries),
908                                                 GFP_KERNEL | __GFP_ZERO);
909                 if (!entry->entries)
910                         return -ENOMEM;
911         }
912
913         if (entry->base.bo)
914                 return 0;
915
916         amdgpu_vm_bo_param(adev, vm, cursor->level, direct, &bp);
917
918         r = amdgpu_bo_create(adev, &bp, &pt);
919         if (r)
920                 return r;
921
922         /* Keep a reference to the root directory to avoid
923          * freeing them up in the wrong order.
924          */
925         pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
926         amdgpu_vm_bo_base_init(&entry->base, vm, pt);
927
928         r = amdgpu_vm_clear_bo(adev, vm, pt, direct);
929         if (r)
930                 goto error_free_pt;
931
932         return 0;
933
934 error_free_pt:
935         amdgpu_bo_unref(&pt->shadow);
936         amdgpu_bo_unref(&pt);
937         return r;
938 }
939
940 /**
941  * amdgpu_vm_free_table - fre one PD/PT
942  *
943  * @entry: PDE to free
944  */
945 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
946 {
947         if (entry->base.bo) {
948                 entry->base.bo->vm_bo = NULL;
949                 list_del(&entry->base.vm_status);
950                 amdgpu_bo_unref(&entry->base.bo->shadow);
951                 amdgpu_bo_unref(&entry->base.bo);
952         }
953         kvfree(entry->entries);
954         entry->entries = NULL;
955 }
956
957 /**
958  * amdgpu_vm_free_pts - free PD/PT levels
959  *
960  * @adev: amdgpu device structure
961  * @vm: amdgpu vm structure
962  * @start: optional cursor where to start freeing PDs/PTs
963  *
964  * Free the page directory or page table level and all sub levels.
965  */
966 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
967                                struct amdgpu_vm *vm,
968                                struct amdgpu_vm_pt_cursor *start)
969 {
970         struct amdgpu_vm_pt_cursor cursor;
971         struct amdgpu_vm_pt *entry;
972
973         vm->bulk_moveable = false;
974
975         for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
976                 amdgpu_vm_free_table(entry);
977
978         if (start)
979                 amdgpu_vm_free_table(start->entry);
980 }
981
982 /**
983  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
984  *
985  * @adev: amdgpu_device pointer
986  */
987 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
988 {
989         const struct amdgpu_ip_block *ip_block;
990         bool has_compute_vm_bug;
991         struct amdgpu_ring *ring;
992         int i;
993
994         has_compute_vm_bug = false;
995
996         ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
997         if (ip_block) {
998                 /* Compute has a VM bug for GFX version < 7.
999                    Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1000                 if (ip_block->version->major <= 7)
1001                         has_compute_vm_bug = true;
1002                 else if (ip_block->version->major == 8)
1003                         if (adev->gfx.mec_fw_version < 673)
1004                                 has_compute_vm_bug = true;
1005         }
1006
1007         for (i = 0; i < adev->num_rings; i++) {
1008                 ring = adev->rings[i];
1009                 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1010                         /* only compute rings */
1011                         ring->has_compute_vm_bug = has_compute_vm_bug;
1012                 else
1013                         ring->has_compute_vm_bug = false;
1014         }
1015 }
1016
1017 /**
1018  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1019  *
1020  * @ring: ring on which the job will be submitted
1021  * @job: job to submit
1022  *
1023  * Returns:
1024  * True if sync is needed.
1025  */
1026 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1027                                   struct amdgpu_job *job)
1028 {
1029         struct amdgpu_device *adev = ring->adev;
1030         unsigned vmhub = ring->funcs->vmhub;
1031         struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1032         struct amdgpu_vmid *id;
1033         bool gds_switch_needed;
1034         bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1035
1036         if (job->vmid == 0)
1037                 return false;
1038         id = &id_mgr->ids[job->vmid];
1039         gds_switch_needed = ring->funcs->emit_gds_switch && (
1040                 id->gds_base != job->gds_base ||
1041                 id->gds_size != job->gds_size ||
1042                 id->gws_base != job->gws_base ||
1043                 id->gws_size != job->gws_size ||
1044                 id->oa_base != job->oa_base ||
1045                 id->oa_size != job->oa_size);
1046
1047         if (amdgpu_vmid_had_gpu_reset(adev, id))
1048                 return true;
1049
1050         return vm_flush_needed || gds_switch_needed;
1051 }
1052
1053 /**
1054  * amdgpu_vm_flush - hardware flush the vm
1055  *
1056  * @ring: ring to use for flush
1057  * @job:  related job
1058  * @need_pipe_sync: is pipe sync needed
1059  *
1060  * Emit a VM flush when it is necessary.
1061  *
1062  * Returns:
1063  * 0 on success, errno otherwise.
1064  */
1065 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1066                     bool need_pipe_sync)
1067 {
1068         struct amdgpu_device *adev = ring->adev;
1069         unsigned vmhub = ring->funcs->vmhub;
1070         struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1071         struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1072         bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1073                 id->gds_base != job->gds_base ||
1074                 id->gds_size != job->gds_size ||
1075                 id->gws_base != job->gws_base ||
1076                 id->gws_size != job->gws_size ||
1077                 id->oa_base != job->oa_base ||
1078                 id->oa_size != job->oa_size);
1079         bool vm_flush_needed = job->vm_needs_flush;
1080         struct dma_fence *fence = NULL;
1081         bool pasid_mapping_needed = false;
1082         unsigned patch_offset = 0;
1083         bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1084         int r;
1085
1086         if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1087                 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1088
1089         if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1090                 gds_switch_needed = true;
1091                 vm_flush_needed = true;
1092                 pasid_mapping_needed = true;
1093         }
1094
1095         mutex_lock(&id_mgr->lock);
1096         if (id->pasid != job->pasid || !id->pasid_mapping ||
1097             !dma_fence_is_signaled(id->pasid_mapping))
1098                 pasid_mapping_needed = true;
1099         mutex_unlock(&id_mgr->lock);
1100
1101         gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1102         vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1103                         job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1104         pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1105                 ring->funcs->emit_wreg;
1106
1107         if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1108                 return 0;
1109
1110         if (ring->funcs->init_cond_exec)
1111                 patch_offset = amdgpu_ring_init_cond_exec(ring);
1112
1113         if (need_pipe_sync)
1114                 amdgpu_ring_emit_pipeline_sync(ring);
1115
1116         if (vm_flush_needed) {
1117                 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1118                 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1119         }
1120
1121         if (pasid_mapping_needed)
1122                 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1123
1124         if (vm_flush_needed || pasid_mapping_needed) {
1125                 r = amdgpu_fence_emit(ring, &fence, 0);
1126                 if (r)
1127                         return r;
1128         }
1129
1130         if (vm_flush_needed) {
1131                 mutex_lock(&id_mgr->lock);
1132                 dma_fence_put(id->last_flush);
1133                 id->last_flush = dma_fence_get(fence);
1134                 id->current_gpu_reset_count =
1135                         atomic_read(&adev->gpu_reset_counter);
1136                 mutex_unlock(&id_mgr->lock);
1137         }
1138
1139         if (pasid_mapping_needed) {
1140                 mutex_lock(&id_mgr->lock);
1141                 id->pasid = job->pasid;
1142                 dma_fence_put(id->pasid_mapping);
1143                 id->pasid_mapping = dma_fence_get(fence);
1144                 mutex_unlock(&id_mgr->lock);
1145         }
1146         dma_fence_put(fence);
1147
1148         if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1149                 id->gds_base = job->gds_base;
1150                 id->gds_size = job->gds_size;
1151                 id->gws_base = job->gws_base;
1152                 id->gws_size = job->gws_size;
1153                 id->oa_base = job->oa_base;
1154                 id->oa_size = job->oa_size;
1155                 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1156                                             job->gds_size, job->gws_base,
1157                                             job->gws_size, job->oa_base,
1158                                             job->oa_size);
1159         }
1160
1161         if (ring->funcs->patch_cond_exec)
1162                 amdgpu_ring_patch_cond_exec(ring, patch_offset);
1163
1164         /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1165         if (ring->funcs->emit_switch_buffer) {
1166                 amdgpu_ring_emit_switch_buffer(ring);
1167                 amdgpu_ring_emit_switch_buffer(ring);
1168         }
1169         return 0;
1170 }
1171
1172 /**
1173  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1174  *
1175  * @vm: requested vm
1176  * @bo: requested buffer object
1177  *
1178  * Find @bo inside the requested vm.
1179  * Search inside the @bos vm list for the requested vm
1180  * Returns the found bo_va or NULL if none is found
1181  *
1182  * Object has to be reserved!
1183  *
1184  * Returns:
1185  * Found bo_va or NULL.
1186  */
1187 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1188                                        struct amdgpu_bo *bo)
1189 {
1190         struct amdgpu_vm_bo_base *base;
1191
1192         for (base = bo->vm_bo; base; base = base->next) {
1193                 if (base->vm != vm)
1194                         continue;
1195
1196                 return container_of(base, struct amdgpu_bo_va, base);
1197         }
1198         return NULL;
1199 }
1200
1201 /**
1202  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1203  *
1204  * @pages_addr: optional DMA address to use for lookup
1205  * @addr: the unmapped addr
1206  *
1207  * Look up the physical address of the page that the pte resolves
1208  * to.
1209  *
1210  * Returns:
1211  * The pointer for the page table entry.
1212  */
1213 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1214 {
1215         uint64_t result;
1216
1217         /* page table offset */
1218         result = pages_addr[addr >> PAGE_SHIFT];
1219
1220         /* in case cpu page size != gpu page size*/
1221         result |= addr & (~PAGE_MASK);
1222
1223         result &= 0xFFFFFFFFFFFFF000ULL;
1224
1225         return result;
1226 }
1227
1228 /**
1229  * amdgpu_vm_update_pde - update a single level in the hierarchy
1230  *
1231  * @params: parameters for the update
1232  * @vm: requested vm
1233  * @entry: entry to update
1234  *
1235  * Makes sure the requested entry in parent is up to date.
1236  */
1237 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1238                                 struct amdgpu_vm *vm,
1239                                 struct amdgpu_vm_pt *entry)
1240 {
1241         struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1242         struct amdgpu_bo *bo = parent->base.bo, *pbo;
1243         uint64_t pde, pt, flags;
1244         unsigned level;
1245
1246         for (level = 0, pbo = bo->parent; pbo; ++level)
1247                 pbo = pbo->parent;
1248
1249         level += params->adev->vm_manager.root_level;
1250         amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1251         pde = (entry - parent->entries) * 8;
1252         return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1253 }
1254
1255 /**
1256  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1257  *
1258  * @adev: amdgpu_device pointer
1259  * @vm: related vm
1260  *
1261  * Mark all PD level as invalid after an error.
1262  */
1263 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1264                                      struct amdgpu_vm *vm)
1265 {
1266         struct amdgpu_vm_pt_cursor cursor;
1267         struct amdgpu_vm_pt *entry;
1268
1269         for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1270                 if (entry->base.bo && !entry->base.moved)
1271                         amdgpu_vm_bo_relocated(&entry->base);
1272 }
1273
1274 /**
1275  * amdgpu_vm_update_pdes - make sure that all directories are valid
1276  *
1277  * @adev: amdgpu_device pointer
1278  * @vm: requested vm
1279  * @direct: submit directly to the paging queue
1280  *
1281  * Makes sure all directories are up to date.
1282  *
1283  * Returns:
1284  * 0 for success, error for failure.
1285  */
1286 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1287                           struct amdgpu_vm *vm, bool direct)
1288 {
1289         struct amdgpu_vm_update_params params;
1290         int r;
1291
1292         if (list_empty(&vm->relocated))
1293                 return 0;
1294
1295         memset(&params, 0, sizeof(params));
1296         params.adev = adev;
1297         params.vm = vm;
1298         params.direct = direct;
1299
1300         r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1301         if (r)
1302                 return r;
1303
1304         while (!list_empty(&vm->relocated)) {
1305                 struct amdgpu_vm_pt *entry;
1306
1307                 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1308                                          base.vm_status);
1309                 amdgpu_vm_bo_idle(&entry->base);
1310
1311                 r = amdgpu_vm_update_pde(&params, vm, entry);
1312                 if (r)
1313                         goto error;
1314         }
1315
1316         r = vm->update_funcs->commit(&params, &vm->last_update);
1317         if (r)
1318                 goto error;
1319         return 0;
1320
1321 error:
1322         amdgpu_vm_invalidate_pds(adev, vm);
1323         return r;
1324 }
1325
1326 /*
1327  * amdgpu_vm_update_flags - figure out flags for PTE updates
1328  *
1329  * Make sure to set the right flags for the PTEs at the desired level.
1330  */
1331 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1332                                    struct amdgpu_bo *bo, unsigned level,
1333                                    uint64_t pe, uint64_t addr,
1334                                    unsigned count, uint32_t incr,
1335                                    uint64_t flags)
1336
1337 {
1338         if (level != AMDGPU_VM_PTB) {
1339                 flags |= AMDGPU_PDE_PTE;
1340                 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1341
1342         } else if (params->adev->asic_type >= CHIP_VEGA10 &&
1343                    !(flags & AMDGPU_PTE_VALID) &&
1344                    !(flags & AMDGPU_PTE_PRT)) {
1345
1346                 /* Workaround for fault priority problem on GMC9 */
1347                 flags |= AMDGPU_PTE_EXECUTABLE;
1348         }
1349
1350         params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1351                                          flags);
1352 }
1353
1354 /**
1355  * amdgpu_vm_fragment - get fragment for PTEs
1356  *
1357  * @params: see amdgpu_vm_update_params definition
1358  * @start: first PTE to handle
1359  * @end: last PTE to handle
1360  * @flags: hw mapping flags
1361  * @frag: resulting fragment size
1362  * @frag_end: end of this fragment
1363  *
1364  * Returns the first possible fragment for the start and end address.
1365  */
1366 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1367                                uint64_t start, uint64_t end, uint64_t flags,
1368                                unsigned int *frag, uint64_t *frag_end)
1369 {
1370         /**
1371          * The MC L1 TLB supports variable sized pages, based on a fragment
1372          * field in the PTE. When this field is set to a non-zero value, page
1373          * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1374          * flags are considered valid for all PTEs within the fragment range
1375          * and corresponding mappings are assumed to be physically contiguous.
1376          *
1377          * The L1 TLB can store a single PTE for the whole fragment,
1378          * significantly increasing the space available for translation
1379          * caching. This leads to large improvements in throughput when the
1380          * TLB is under pressure.
1381          *
1382          * The L2 TLB distributes small and large fragments into two
1383          * asymmetric partitions. The large fragment cache is significantly
1384          * larger. Thus, we try to use large fragments wherever possible.
1385          * Userspace can support this by aligning virtual base address and
1386          * allocation size to the fragment size.
1387          *
1388          * Starting with Vega10 the fragment size only controls the L1. The L2
1389          * is now directly feed with small/huge/giant pages from the walker.
1390          */
1391         unsigned max_frag;
1392
1393         if (params->adev->asic_type < CHIP_VEGA10)
1394                 max_frag = params->adev->vm_manager.fragment_size;
1395         else
1396                 max_frag = 31;
1397
1398         /* system pages are non continuously */
1399         if (params->pages_addr) {
1400                 *frag = 0;
1401                 *frag_end = end;
1402                 return;
1403         }
1404
1405         /* This intentionally wraps around if no bit is set */
1406         *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1407         if (*frag >= max_frag) {
1408                 *frag = max_frag;
1409                 *frag_end = end & ~((1ULL << max_frag) - 1);
1410         } else {
1411                 *frag_end = start + (1 << *frag);
1412         }
1413 }
1414
1415 /**
1416  * amdgpu_vm_update_ptes - make sure that page tables are valid
1417  *
1418  * @params: see amdgpu_vm_update_params definition
1419  * @start: start of GPU address range
1420  * @end: end of GPU address range
1421  * @dst: destination address to map to, the next dst inside the function
1422  * @flags: mapping flags
1423  *
1424  * Update the page tables in the range @start - @end.
1425  *
1426  * Returns:
1427  * 0 for success, -EINVAL for failure.
1428  */
1429 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1430                                  uint64_t start, uint64_t end,
1431                                  uint64_t dst, uint64_t flags)
1432 {
1433         struct amdgpu_device *adev = params->adev;
1434         struct amdgpu_vm_pt_cursor cursor;
1435         uint64_t frag_start = start, frag_end;
1436         unsigned int frag;
1437         int r;
1438
1439         /* figure out the initial fragment */
1440         amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1441
1442         /* walk over the address space and update the PTs */
1443         amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1444         while (cursor.pfn < end) {
1445                 unsigned shift, parent_shift, mask;
1446                 uint64_t incr, entry_end, pe_start;
1447                 struct amdgpu_bo *pt;
1448
1449                 if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1450                         /* make sure that the page tables covering the
1451                          * address range are actually allocated
1452                          */
1453                         r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1454                                                 &cursor, params->direct);
1455                         if (r)
1456                                 return r;
1457                 }
1458
1459                 shift = amdgpu_vm_level_shift(adev, cursor.level);
1460                 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1461                 if (adev->asic_type < CHIP_VEGA10 &&
1462                     (flags & AMDGPU_PTE_VALID)) {
1463                         /* No huge page support before GMC v9 */
1464                         if (cursor.level != AMDGPU_VM_PTB) {
1465                                 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1466                                         return -ENOENT;
1467                                 continue;
1468                         }
1469                 } else if (frag < shift) {
1470                         /* We can't use this level when the fragment size is
1471                          * smaller than the address shift. Go to the next
1472                          * child entry and try again.
1473                          */
1474                         if (amdgpu_vm_pt_descendant(adev, &cursor))
1475                                 continue;
1476                 } else if (frag >= parent_shift) {
1477                         /* If the fragment size is even larger than the parent
1478                          * shift we should go up one level and check it again.
1479                          */
1480                         if (!amdgpu_vm_pt_ancestor(&cursor))
1481                                 return -EINVAL;
1482                         continue;
1483                 }
1484
1485                 pt = cursor.entry->base.bo;
1486                 if (!pt) {
1487                         /* We need all PDs and PTs for mapping something, */
1488                         if (flags & AMDGPU_PTE_VALID)
1489                                 return -ENOENT;
1490
1491                         /* but unmapping something can happen at a higher
1492                          * level.
1493                          */
1494                         if (!amdgpu_vm_pt_ancestor(&cursor))
1495                                 return -EINVAL;
1496
1497                         pt = cursor.entry->base.bo;
1498                         shift = parent_shift;
1499                 }
1500
1501                 /* Looks good so far, calculate parameters for the update */
1502                 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1503                 mask = amdgpu_vm_entries_mask(adev, cursor.level);
1504                 pe_start = ((cursor.pfn >> shift) & mask) * 8;
1505                 entry_end = ((uint64_t)mask + 1) << shift;
1506                 entry_end += cursor.pfn & ~(entry_end - 1);
1507                 entry_end = min(entry_end, end);
1508
1509                 do {
1510                         uint64_t upd_end = min(entry_end, frag_end);
1511                         unsigned nptes = (upd_end - frag_start) >> shift;
1512
1513                         /* This can happen when we set higher level PDs to
1514                          * silent to stop fault floods.
1515                          */
1516                         nptes = max(nptes, 1u);
1517                         amdgpu_vm_update_flags(params, pt, cursor.level,
1518                                                pe_start, dst, nptes, incr,
1519                                                flags | AMDGPU_PTE_FRAG(frag));
1520
1521                         pe_start += nptes * 8;
1522                         dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1523
1524                         frag_start = upd_end;
1525                         if (frag_start >= frag_end) {
1526                                 /* figure out the next fragment */
1527                                 amdgpu_vm_fragment(params, frag_start, end,
1528                                                    flags, &frag, &frag_end);
1529                                 if (frag < shift)
1530                                         break;
1531                         }
1532                 } while (frag_start < entry_end);
1533
1534                 if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1535                         /* Free all child entries.
1536                          * Update the tables with the flags and addresses and free up subsequent
1537                          * tables in the case of huge pages or freed up areas.
1538                          * This is the maximum you can free, because all other page tables are not
1539                          * completely covered by the range and so potentially still in use.
1540                          */
1541                         while (cursor.pfn < frag_start) {
1542                                 amdgpu_vm_free_pts(adev, params->vm, &cursor);
1543                                 amdgpu_vm_pt_next(adev, &cursor);
1544                         }
1545
1546                 } else if (frag >= shift) {
1547                         /* or just move on to the next on the same level. */
1548                         amdgpu_vm_pt_next(adev, &cursor);
1549                 }
1550         }
1551
1552         return 0;
1553 }
1554
1555 /**
1556  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1557  *
1558  * @adev: amdgpu_device pointer
1559  * @vm: requested vm
1560  * @direct: direct submission in a page fault
1561  * @resv: fences we need to sync to
1562  * @start: start of mapped range
1563  * @last: last mapped entry
1564  * @flags: flags for the entries
1565  * @addr: addr to set the area to
1566  * @pages_addr: DMA addresses to use for mapping
1567  * @fence: optional resulting fence
1568  *
1569  * Fill in the page table entries between @start and @last.
1570  *
1571  * Returns:
1572  * 0 for success, -EINVAL for failure.
1573  */
1574 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1575                                        struct amdgpu_vm *vm, bool direct,
1576                                        struct dma_resv *resv,
1577                                        uint64_t start, uint64_t last,
1578                                        uint64_t flags, uint64_t addr,
1579                                        dma_addr_t *pages_addr,
1580                                        struct dma_fence **fence)
1581 {
1582         struct amdgpu_vm_update_params params;
1583         enum amdgpu_sync_mode sync_mode;
1584         int r;
1585
1586         memset(&params, 0, sizeof(params));
1587         params.adev = adev;
1588         params.vm = vm;
1589         params.direct = direct;
1590         params.pages_addr = pages_addr;
1591
1592         /* Implicitly sync to command submissions in the same VM before
1593          * unmapping. Sync to moving fences before mapping.
1594          */
1595         if (!(flags & AMDGPU_PTE_VALID))
1596                 sync_mode = AMDGPU_SYNC_EQ_OWNER;
1597         else
1598                 sync_mode = AMDGPU_SYNC_EXPLICIT;
1599
1600         amdgpu_vm_eviction_lock(vm);
1601         if (vm->evicting) {
1602                 r = -EBUSY;
1603                 goto error_unlock;
1604         }
1605
1606         if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1607                 struct amdgpu_bo *root = vm->root.base.bo;
1608
1609                 if (!dma_fence_is_signaled(vm->last_direct))
1610                         amdgpu_bo_fence(root, vm->last_direct, true);
1611         }
1612
1613         r = vm->update_funcs->prepare(&params, resv, sync_mode);
1614         if (r)
1615                 goto error_unlock;
1616
1617         r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1618         if (r)
1619                 goto error_unlock;
1620
1621         r = vm->update_funcs->commit(&params, fence);
1622
1623 error_unlock:
1624         amdgpu_vm_eviction_unlock(vm);
1625         return r;
1626 }
1627
1628 /**
1629  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1630  *
1631  * @adev: amdgpu_device pointer
1632  * @resv: fences we need to sync to
1633  * @pages_addr: DMA addresses to use for mapping
1634  * @vm: requested vm
1635  * @mapping: mapped range and flags to use for the update
1636  * @flags: HW flags for the mapping
1637  * @bo_adev: amdgpu_device pointer that bo actually been allocated
1638  * @nodes: array of drm_mm_nodes with the MC addresses
1639  * @fence: optional resulting fence
1640  *
1641  * Split the mapping into smaller chunks so that each update fits
1642  * into a SDMA IB.
1643  *
1644  * Returns:
1645  * 0 for success, -EINVAL for failure.
1646  */
1647 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1648                                       struct dma_resv *resv,
1649                                       dma_addr_t *pages_addr,
1650                                       struct amdgpu_vm *vm,
1651                                       struct amdgpu_bo_va_mapping *mapping,
1652                                       uint64_t flags,
1653                                       struct amdgpu_device *bo_adev,
1654                                       struct drm_mm_node *nodes,
1655                                       struct dma_fence **fence)
1656 {
1657         unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1658         uint64_t pfn, start = mapping->start;
1659         int r;
1660
1661         /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1662          * but in case of something, we filter the flags in first place
1663          */
1664         if (!(mapping->flags & AMDGPU_PTE_READABLE))
1665                 flags &= ~AMDGPU_PTE_READABLE;
1666         if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1667                 flags &= ~AMDGPU_PTE_WRITEABLE;
1668
1669         /* Apply ASIC specific mapping flags */
1670         amdgpu_gmc_get_vm_pte(adev, mapping, &flags);
1671
1672         trace_amdgpu_vm_bo_update(mapping);
1673
1674         pfn = mapping->offset >> PAGE_SHIFT;
1675         if (nodes) {
1676                 while (pfn >= nodes->size) {
1677                         pfn -= nodes->size;
1678                         ++nodes;
1679                 }
1680         }
1681
1682         do {
1683                 dma_addr_t *dma_addr = NULL;
1684                 uint64_t max_entries;
1685                 uint64_t addr, last;
1686
1687                 if (nodes) {
1688                         addr = nodes->start << PAGE_SHIFT;
1689                         max_entries = (nodes->size - pfn) *
1690                                 AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1691                 } else {
1692                         addr = 0;
1693                         max_entries = S64_MAX;
1694                 }
1695
1696                 if (pages_addr) {
1697                         uint64_t count;
1698
1699                         for (count = 1;
1700                              count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1701                              ++count) {
1702                                 uint64_t idx = pfn + count;
1703
1704                                 if (pages_addr[idx] !=
1705                                     (pages_addr[idx - 1] + PAGE_SIZE))
1706                                         break;
1707                         }
1708
1709                         if (count < min_linear_pages) {
1710                                 addr = pfn << PAGE_SHIFT;
1711                                 dma_addr = pages_addr;
1712                         } else {
1713                                 addr = pages_addr[pfn];
1714                                 max_entries = count *
1715                                         AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1716                         }
1717
1718                 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1719                         addr += bo_adev->vm_manager.vram_base_offset;
1720                         addr += pfn << PAGE_SHIFT;
1721                 }
1722
1723                 last = min((uint64_t)mapping->last, start + max_entries - 1);
1724                 r = amdgpu_vm_bo_update_mapping(adev, vm, false, resv,
1725                                                 start, last, flags, addr,
1726                                                 dma_addr, fence);
1727                 if (r)
1728                         return r;
1729
1730                 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1731                 if (nodes && nodes->size == pfn) {
1732                         pfn = 0;
1733                         ++nodes;
1734                 }
1735                 start = last + 1;
1736
1737         } while (unlikely(start != mapping->last + 1));
1738
1739         return 0;
1740 }
1741
1742 /**
1743  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1744  *
1745  * @adev: amdgpu_device pointer
1746  * @bo_va: requested BO and VM object
1747  * @clear: if true clear the entries
1748  *
1749  * Fill in the page table entries for @bo_va.
1750  *
1751  * Returns:
1752  * 0 for success, -EINVAL for failure.
1753  */
1754 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1755                         bool clear)
1756 {
1757         struct amdgpu_bo *bo = bo_va->base.bo;
1758         struct amdgpu_vm *vm = bo_va->base.vm;
1759         struct amdgpu_bo_va_mapping *mapping;
1760         dma_addr_t *pages_addr = NULL;
1761         struct ttm_mem_reg *mem;
1762         struct drm_mm_node *nodes;
1763         struct dma_fence **last_update;
1764         struct dma_resv *resv;
1765         uint64_t flags;
1766         struct amdgpu_device *bo_adev = adev;
1767         int r;
1768
1769         if (clear || !bo) {
1770                 mem = NULL;
1771                 nodes = NULL;
1772                 resv = vm->root.base.bo->tbo.base.resv;
1773         } else {
1774                 struct ttm_dma_tt *ttm;
1775
1776                 mem = &bo->tbo.mem;
1777                 nodes = mem->mm_node;
1778                 if (mem->mem_type == TTM_PL_TT) {
1779                         ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1780                         pages_addr = ttm->dma_address;
1781                 }
1782                 resv = bo->tbo.base.resv;
1783         }
1784
1785         if (bo) {
1786                 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1787                 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1788         } else {
1789                 flags = 0x0;
1790         }
1791
1792         if (clear || (bo && bo->tbo.base.resv ==
1793                       vm->root.base.bo->tbo.base.resv))
1794                 last_update = &vm->last_update;
1795         else
1796                 last_update = &bo_va->last_pt_update;
1797
1798         if (!clear && bo_va->base.moved) {
1799                 bo_va->base.moved = false;
1800                 list_splice_init(&bo_va->valids, &bo_va->invalids);
1801
1802         } else if (bo_va->cleared != clear) {
1803                 list_splice_init(&bo_va->valids, &bo_va->invalids);
1804         }
1805
1806         list_for_each_entry(mapping, &bo_va->invalids, list) {
1807                 r = amdgpu_vm_bo_split_mapping(adev, resv, pages_addr, vm,
1808                                                mapping, flags, bo_adev, nodes,
1809                                                last_update);
1810                 if (r)
1811                         return r;
1812         }
1813
1814         /* If the BO is not in its preferred location add it back to
1815          * the evicted list so that it gets validated again on the
1816          * next command submission.
1817          */
1818         if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1819                 uint32_t mem_type = bo->tbo.mem.mem_type;
1820
1821                 if (!(bo->preferred_domains &
1822                       amdgpu_mem_type_to_domain(mem_type)))
1823                         amdgpu_vm_bo_evicted(&bo_va->base);
1824                 else
1825                         amdgpu_vm_bo_idle(&bo_va->base);
1826         } else {
1827                 amdgpu_vm_bo_done(&bo_va->base);
1828         }
1829
1830         list_splice_init(&bo_va->invalids, &bo_va->valids);
1831         bo_va->cleared = clear;
1832
1833         if (trace_amdgpu_vm_bo_mapping_enabled()) {
1834                 list_for_each_entry(mapping, &bo_va->valids, list)
1835                         trace_amdgpu_vm_bo_mapping(mapping);
1836         }
1837
1838         return 0;
1839 }
1840
1841 /**
1842  * amdgpu_vm_update_prt_state - update the global PRT state
1843  *
1844  * @adev: amdgpu_device pointer
1845  */
1846 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1847 {
1848         unsigned long flags;
1849         bool enable;
1850
1851         spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1852         enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1853         adev->gmc.gmc_funcs->set_prt(adev, enable);
1854         spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1855 }
1856
1857 /**
1858  * amdgpu_vm_prt_get - add a PRT user
1859  *
1860  * @adev: amdgpu_device pointer
1861  */
1862 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1863 {
1864         if (!adev->gmc.gmc_funcs->set_prt)
1865                 return;
1866
1867         if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1868                 amdgpu_vm_update_prt_state(adev);
1869 }
1870
1871 /**
1872  * amdgpu_vm_prt_put - drop a PRT user
1873  *
1874  * @adev: amdgpu_device pointer
1875  */
1876 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1877 {
1878         if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1879                 amdgpu_vm_update_prt_state(adev);
1880 }
1881
1882 /**
1883  * amdgpu_vm_prt_cb - callback for updating the PRT status
1884  *
1885  * @fence: fence for the callback
1886  * @_cb: the callback function
1887  */
1888 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1889 {
1890         struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1891
1892         amdgpu_vm_prt_put(cb->adev);
1893         kfree(cb);
1894 }
1895
1896 /**
1897  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1898  *
1899  * @adev: amdgpu_device pointer
1900  * @fence: fence for the callback
1901  */
1902 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1903                                  struct dma_fence *fence)
1904 {
1905         struct amdgpu_prt_cb *cb;
1906
1907         if (!adev->gmc.gmc_funcs->set_prt)
1908                 return;
1909
1910         cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1911         if (!cb) {
1912                 /* Last resort when we are OOM */
1913                 if (fence)
1914                         dma_fence_wait(fence, false);
1915
1916                 amdgpu_vm_prt_put(adev);
1917         } else {
1918                 cb->adev = adev;
1919                 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1920                                                      amdgpu_vm_prt_cb))
1921                         amdgpu_vm_prt_cb(fence, &cb->cb);
1922         }
1923 }
1924
1925 /**
1926  * amdgpu_vm_free_mapping - free a mapping
1927  *
1928  * @adev: amdgpu_device pointer
1929  * @vm: requested vm
1930  * @mapping: mapping to be freed
1931  * @fence: fence of the unmap operation
1932  *
1933  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1934  */
1935 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1936                                    struct amdgpu_vm *vm,
1937                                    struct amdgpu_bo_va_mapping *mapping,
1938                                    struct dma_fence *fence)
1939 {
1940         if (mapping->flags & AMDGPU_PTE_PRT)
1941                 amdgpu_vm_add_prt_cb(adev, fence);
1942         kfree(mapping);
1943 }
1944
1945 /**
1946  * amdgpu_vm_prt_fini - finish all prt mappings
1947  *
1948  * @adev: amdgpu_device pointer
1949  * @vm: requested vm
1950  *
1951  * Register a cleanup callback to disable PRT support after VM dies.
1952  */
1953 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1954 {
1955         struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1956         struct dma_fence *excl, **shared;
1957         unsigned i, shared_count;
1958         int r;
1959
1960         r = dma_resv_get_fences_rcu(resv, &excl,
1961                                               &shared_count, &shared);
1962         if (r) {
1963                 /* Not enough memory to grab the fence list, as last resort
1964                  * block for all the fences to complete.
1965                  */
1966                 dma_resv_wait_timeout_rcu(resv, true, false,
1967                                                     MAX_SCHEDULE_TIMEOUT);
1968                 return;
1969         }
1970
1971         /* Add a callback for each fence in the reservation object */
1972         amdgpu_vm_prt_get(adev);
1973         amdgpu_vm_add_prt_cb(adev, excl);
1974
1975         for (i = 0; i < shared_count; ++i) {
1976                 amdgpu_vm_prt_get(adev);
1977                 amdgpu_vm_add_prt_cb(adev, shared[i]);
1978         }
1979
1980         kfree(shared);
1981 }
1982
1983 /**
1984  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1985  *
1986  * @adev: amdgpu_device pointer
1987  * @vm: requested vm
1988  * @fence: optional resulting fence (unchanged if no work needed to be done
1989  * or if an error occurred)
1990  *
1991  * Make sure all freed BOs are cleared in the PT.
1992  * PTs have to be reserved and mutex must be locked!
1993  *
1994  * Returns:
1995  * 0 for success.
1996  *
1997  */
1998 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1999                           struct amdgpu_vm *vm,
2000                           struct dma_fence **fence)
2001 {
2002         struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2003         struct amdgpu_bo_va_mapping *mapping;
2004         uint64_t init_pte_value = 0;
2005         struct dma_fence *f = NULL;
2006         int r;
2007
2008         while (!list_empty(&vm->freed)) {
2009                 mapping = list_first_entry(&vm->freed,
2010                         struct amdgpu_bo_va_mapping, list);
2011                 list_del(&mapping->list);
2012
2013                 if (vm->pte_support_ats &&
2014                     mapping->start < AMDGPU_GMC_HOLE_START)
2015                         init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2016
2017                 r = amdgpu_vm_bo_update_mapping(adev, vm, false, resv,
2018                                                 mapping->start, mapping->last,
2019                                                 init_pte_value, 0, NULL, &f);
2020                 amdgpu_vm_free_mapping(adev, vm, mapping, f);
2021                 if (r) {
2022                         dma_fence_put(f);
2023                         return r;
2024                 }
2025         }
2026
2027         if (fence && f) {
2028                 dma_fence_put(*fence);
2029                 *fence = f;
2030         } else {
2031                 dma_fence_put(f);
2032         }
2033
2034         return 0;
2035
2036 }
2037
2038 /**
2039  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2040  *
2041  * @adev: amdgpu_device pointer
2042  * @vm: requested vm
2043  *
2044  * Make sure all BOs which are moved are updated in the PTs.
2045  *
2046  * Returns:
2047  * 0 for success.
2048  *
2049  * PTs have to be reserved!
2050  */
2051 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2052                            struct amdgpu_vm *vm)
2053 {
2054         struct amdgpu_bo_va *bo_va, *tmp;
2055         struct dma_resv *resv;
2056         bool clear;
2057         int r;
2058
2059         list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2060                 /* Per VM BOs never need to bo cleared in the page tables */
2061                 r = amdgpu_vm_bo_update(adev, bo_va, false);
2062                 if (r)
2063                         return r;
2064         }
2065
2066         spin_lock(&vm->invalidated_lock);
2067         while (!list_empty(&vm->invalidated)) {
2068                 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2069                                          base.vm_status);
2070                 resv = bo_va->base.bo->tbo.base.resv;
2071                 spin_unlock(&vm->invalidated_lock);
2072
2073                 /* Try to reserve the BO to avoid clearing its ptes */
2074                 if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2075                         clear = false;
2076                 /* Somebody else is using the BO right now */
2077                 else
2078                         clear = true;
2079
2080                 r = amdgpu_vm_bo_update(adev, bo_va, clear);
2081                 if (r)
2082                         return r;
2083
2084                 if (!clear)
2085                         dma_resv_unlock(resv);
2086                 spin_lock(&vm->invalidated_lock);
2087         }
2088         spin_unlock(&vm->invalidated_lock);
2089
2090         return 0;
2091 }
2092
2093 /**
2094  * amdgpu_vm_bo_add - add a bo to a specific vm
2095  *
2096  * @adev: amdgpu_device pointer
2097  * @vm: requested vm
2098  * @bo: amdgpu buffer object
2099  *
2100  * Add @bo into the requested vm.
2101  * Add @bo to the list of bos associated with the vm
2102  *
2103  * Returns:
2104  * Newly added bo_va or NULL for failure
2105  *
2106  * Object has to be reserved!
2107  */
2108 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2109                                       struct amdgpu_vm *vm,
2110                                       struct amdgpu_bo *bo)
2111 {
2112         struct amdgpu_bo_va *bo_va;
2113
2114         bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2115         if (bo_va == NULL) {
2116                 return NULL;
2117         }
2118         amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2119
2120         bo_va->ref_count = 1;
2121         INIT_LIST_HEAD(&bo_va->valids);
2122         INIT_LIST_HEAD(&bo_va->invalids);
2123
2124         if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) &&
2125             (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) {
2126                 bo_va->is_xgmi = true;
2127                 mutex_lock(&adev->vm_manager.lock_pstate);
2128                 /* Power up XGMI if it can be potentially used */
2129                 if (++adev->vm_manager.xgmi_map_counter == 1)
2130                         amdgpu_xgmi_set_pstate(adev, 1);
2131                 mutex_unlock(&adev->vm_manager.lock_pstate);
2132         }
2133
2134         return bo_va;
2135 }
2136
2137
2138 /**
2139  * amdgpu_vm_bo_insert_mapping - insert a new mapping
2140  *
2141  * @adev: amdgpu_device pointer
2142  * @bo_va: bo_va to store the address
2143  * @mapping: the mapping to insert
2144  *
2145  * Insert a new mapping into all structures.
2146  */
2147 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2148                                     struct amdgpu_bo_va *bo_va,
2149                                     struct amdgpu_bo_va_mapping *mapping)
2150 {
2151         struct amdgpu_vm *vm = bo_va->base.vm;
2152         struct amdgpu_bo *bo = bo_va->base.bo;
2153
2154         mapping->bo_va = bo_va;
2155         list_add(&mapping->list, &bo_va->invalids);
2156         amdgpu_vm_it_insert(mapping, &vm->va);
2157
2158         if (mapping->flags & AMDGPU_PTE_PRT)
2159                 amdgpu_vm_prt_get(adev);
2160
2161         if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2162             !bo_va->base.moved) {
2163                 list_move(&bo_va->base.vm_status, &vm->moved);
2164         }
2165         trace_amdgpu_vm_bo_map(bo_va, mapping);
2166 }
2167
2168 /**
2169  * amdgpu_vm_bo_map - map bo inside a vm
2170  *
2171  * @adev: amdgpu_device pointer
2172  * @bo_va: bo_va to store the address
2173  * @saddr: where to map the BO
2174  * @offset: requested offset in the BO
2175  * @size: BO size in bytes
2176  * @flags: attributes of pages (read/write/valid/etc.)
2177  *
2178  * Add a mapping of the BO at the specefied addr into the VM.
2179  *
2180  * Returns:
2181  * 0 for success, error for failure.
2182  *
2183  * Object has to be reserved and unreserved outside!
2184  */
2185 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2186                      struct amdgpu_bo_va *bo_va,
2187                      uint64_t saddr, uint64_t offset,
2188                      uint64_t size, uint64_t flags)
2189 {
2190         struct amdgpu_bo_va_mapping *mapping, *tmp;
2191         struct amdgpu_bo *bo = bo_va->base.bo;
2192         struct amdgpu_vm *vm = bo_va->base.vm;
2193         uint64_t eaddr;
2194
2195         /* validate the parameters */
2196         if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2197             size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2198                 return -EINVAL;
2199
2200         /* make sure object fit at this offset */
2201         eaddr = saddr + size - 1;
2202         if (saddr >= eaddr ||
2203             (bo && offset + size > amdgpu_bo_size(bo)))
2204                 return -EINVAL;
2205
2206         saddr /= AMDGPU_GPU_PAGE_SIZE;
2207         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2208
2209         tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2210         if (tmp) {
2211                 /* bo and tmp overlap, invalid addr */
2212                 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2213                         "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2214                         tmp->start, tmp->last + 1);
2215                 return -EINVAL;
2216         }
2217
2218         mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2219         if (!mapping)
2220                 return -ENOMEM;
2221
2222         mapping->start = saddr;
2223         mapping->last = eaddr;
2224         mapping->offset = offset;
2225         mapping->flags = flags;
2226
2227         amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2228
2229         return 0;
2230 }
2231
2232 /**
2233  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2234  *
2235  * @adev: amdgpu_device pointer
2236  * @bo_va: bo_va to store the address
2237  * @saddr: where to map the BO
2238  * @offset: requested offset in the BO
2239  * @size: BO size in bytes
2240  * @flags: attributes of pages (read/write/valid/etc.)
2241  *
2242  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2243  * mappings as we do so.
2244  *
2245  * Returns:
2246  * 0 for success, error for failure.
2247  *
2248  * Object has to be reserved and unreserved outside!
2249  */
2250 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2251                              struct amdgpu_bo_va *bo_va,
2252                              uint64_t saddr, uint64_t offset,
2253                              uint64_t size, uint64_t flags)
2254 {
2255         struct amdgpu_bo_va_mapping *mapping;
2256         struct amdgpu_bo *bo = bo_va->base.bo;
2257         uint64_t eaddr;
2258         int r;
2259
2260         /* validate the parameters */
2261         if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2262             size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2263                 return -EINVAL;
2264
2265         /* make sure object fit at this offset */
2266         eaddr = saddr + size - 1;
2267         if (saddr >= eaddr ||
2268             (bo && offset + size > amdgpu_bo_size(bo)))
2269                 return -EINVAL;
2270
2271         /* Allocate all the needed memory */
2272         mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2273         if (!mapping)
2274                 return -ENOMEM;
2275
2276         r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2277         if (r) {
2278                 kfree(mapping);
2279                 return r;
2280         }
2281
2282         saddr /= AMDGPU_GPU_PAGE_SIZE;
2283         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2284
2285         mapping->start = saddr;
2286         mapping->last = eaddr;
2287         mapping->offset = offset;
2288         mapping->flags = flags;
2289
2290         amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2291
2292         return 0;
2293 }
2294
2295 /**
2296  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2297  *
2298  * @adev: amdgpu_device pointer
2299  * @bo_va: bo_va to remove the address from
2300  * @saddr: where to the BO is mapped
2301  *
2302  * Remove a mapping of the BO at the specefied addr from the VM.
2303  *
2304  * Returns:
2305  * 0 for success, error for failure.
2306  *
2307  * Object has to be reserved and unreserved outside!
2308  */
2309 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2310                        struct amdgpu_bo_va *bo_va,
2311                        uint64_t saddr)
2312 {
2313         struct amdgpu_bo_va_mapping *mapping;
2314         struct amdgpu_vm *vm = bo_va->base.vm;
2315         bool valid = true;
2316
2317         saddr /= AMDGPU_GPU_PAGE_SIZE;
2318
2319         list_for_each_entry(mapping, &bo_va->valids, list) {
2320                 if (mapping->start == saddr)
2321                         break;
2322         }
2323
2324         if (&mapping->list == &bo_va->valids) {
2325                 valid = false;
2326
2327                 list_for_each_entry(mapping, &bo_va->invalids, list) {
2328                         if (mapping->start == saddr)
2329                                 break;
2330                 }
2331
2332                 if (&mapping->list == &bo_va->invalids)
2333                         return -ENOENT;
2334         }
2335
2336         list_del(&mapping->list);
2337         amdgpu_vm_it_remove(mapping, &vm->va);
2338         mapping->bo_va = NULL;
2339         trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2340
2341         if (valid)
2342                 list_add(&mapping->list, &vm->freed);
2343         else
2344                 amdgpu_vm_free_mapping(adev, vm, mapping,
2345                                        bo_va->last_pt_update);
2346
2347         return 0;
2348 }
2349
2350 /**
2351  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2352  *
2353  * @adev: amdgpu_device pointer
2354  * @vm: VM structure to use
2355  * @saddr: start of the range
2356  * @size: size of the range
2357  *
2358  * Remove all mappings in a range, split them as appropriate.
2359  *
2360  * Returns:
2361  * 0 for success, error for failure.
2362  */
2363 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2364                                 struct amdgpu_vm *vm,
2365                                 uint64_t saddr, uint64_t size)
2366 {
2367         struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2368         LIST_HEAD(removed);
2369         uint64_t eaddr;
2370
2371         eaddr = saddr + size - 1;
2372         saddr /= AMDGPU_GPU_PAGE_SIZE;
2373         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2374
2375         /* Allocate all the needed memory */
2376         before = kzalloc(sizeof(*before), GFP_KERNEL);
2377         if (!before)
2378                 return -ENOMEM;
2379         INIT_LIST_HEAD(&before->list);
2380
2381         after = kzalloc(sizeof(*after), GFP_KERNEL);
2382         if (!after) {
2383                 kfree(before);
2384                 return -ENOMEM;
2385         }
2386         INIT_LIST_HEAD(&after->list);
2387
2388         /* Now gather all removed mappings */
2389         tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2390         while (tmp) {
2391                 /* Remember mapping split at the start */
2392                 if (tmp->start < saddr) {
2393                         before->start = tmp->start;
2394                         before->last = saddr - 1;
2395                         before->offset = tmp->offset;
2396                         before->flags = tmp->flags;
2397                         before->bo_va = tmp->bo_va;
2398                         list_add(&before->list, &tmp->bo_va->invalids);
2399                 }
2400
2401                 /* Remember mapping split at the end */
2402                 if (tmp->last > eaddr) {
2403                         after->start = eaddr + 1;
2404                         after->last = tmp->last;
2405                         after->offset = tmp->offset;
2406                         after->offset += after->start - tmp->start;
2407                         after->flags = tmp->flags;
2408                         after->bo_va = tmp->bo_va;
2409                         list_add(&after->list, &tmp->bo_va->invalids);
2410                 }
2411
2412                 list_del(&tmp->list);
2413                 list_add(&tmp->list, &removed);
2414
2415                 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2416         }
2417
2418         /* And free them up */
2419         list_for_each_entry_safe(tmp, next, &removed, list) {
2420                 amdgpu_vm_it_remove(tmp, &vm->va);
2421                 list_del(&tmp->list);
2422
2423                 if (tmp->start < saddr)
2424                     tmp->start = saddr;
2425                 if (tmp->last > eaddr)
2426                     tmp->last = eaddr;
2427
2428                 tmp->bo_va = NULL;
2429                 list_add(&tmp->list, &vm->freed);
2430                 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2431         }
2432
2433         /* Insert partial mapping before the range */
2434         if (!list_empty(&before->list)) {
2435                 amdgpu_vm_it_insert(before, &vm->va);
2436                 if (before->flags & AMDGPU_PTE_PRT)
2437                         amdgpu_vm_prt_get(adev);
2438         } else {
2439                 kfree(before);
2440         }
2441
2442         /* Insert partial mapping after the range */
2443         if (!list_empty(&after->list)) {
2444                 amdgpu_vm_it_insert(after, &vm->va);
2445                 if (after->flags & AMDGPU_PTE_PRT)
2446                         amdgpu_vm_prt_get(adev);
2447         } else {
2448                 kfree(after);
2449         }
2450
2451         return 0;
2452 }
2453
2454 /**
2455  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2456  *
2457  * @vm: the requested VM
2458  * @addr: the address
2459  *
2460  * Find a mapping by it's address.
2461  *
2462  * Returns:
2463  * The amdgpu_bo_va_mapping matching for addr or NULL
2464  *
2465  */
2466 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2467                                                          uint64_t addr)
2468 {
2469         return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2470 }
2471
2472 /**
2473  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2474  *
2475  * @vm: the requested vm
2476  * @ticket: CS ticket
2477  *
2478  * Trace all mappings of BOs reserved during a command submission.
2479  */
2480 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2481 {
2482         struct amdgpu_bo_va_mapping *mapping;
2483
2484         if (!trace_amdgpu_vm_bo_cs_enabled())
2485                 return;
2486
2487         for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2488              mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2489                 if (mapping->bo_va && mapping->bo_va->base.bo) {
2490                         struct amdgpu_bo *bo;
2491
2492                         bo = mapping->bo_va->base.bo;
2493                         if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2494                             ticket)
2495                                 continue;
2496                 }
2497
2498                 trace_amdgpu_vm_bo_cs(mapping);
2499         }
2500 }
2501
2502 /**
2503  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2504  *
2505  * @adev: amdgpu_device pointer
2506  * @bo_va: requested bo_va
2507  *
2508  * Remove @bo_va->bo from the requested vm.
2509  *
2510  * Object have to be reserved!
2511  */
2512 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2513                       struct amdgpu_bo_va *bo_va)
2514 {
2515         struct amdgpu_bo_va_mapping *mapping, *next;
2516         struct amdgpu_bo *bo = bo_va->base.bo;
2517         struct amdgpu_vm *vm = bo_va->base.vm;
2518         struct amdgpu_vm_bo_base **base;
2519
2520         if (bo) {
2521                 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2522                         vm->bulk_moveable = false;
2523
2524                 for (base = &bo_va->base.bo->vm_bo; *base;
2525                      base = &(*base)->next) {
2526                         if (*base != &bo_va->base)
2527                                 continue;
2528
2529                         *base = bo_va->base.next;
2530                         break;
2531                 }
2532         }
2533
2534         spin_lock(&vm->invalidated_lock);
2535         list_del(&bo_va->base.vm_status);
2536         spin_unlock(&vm->invalidated_lock);
2537
2538         list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2539                 list_del(&mapping->list);
2540                 amdgpu_vm_it_remove(mapping, &vm->va);
2541                 mapping->bo_va = NULL;
2542                 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2543                 list_add(&mapping->list, &vm->freed);
2544         }
2545         list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2546                 list_del(&mapping->list);
2547                 amdgpu_vm_it_remove(mapping, &vm->va);
2548                 amdgpu_vm_free_mapping(adev, vm, mapping,
2549                                        bo_va->last_pt_update);
2550         }
2551
2552         dma_fence_put(bo_va->last_pt_update);
2553
2554         if (bo && bo_va->is_xgmi) {
2555                 mutex_lock(&adev->vm_manager.lock_pstate);
2556                 if (--adev->vm_manager.xgmi_map_counter == 0)
2557                         amdgpu_xgmi_set_pstate(adev, 0);
2558                 mutex_unlock(&adev->vm_manager.lock_pstate);
2559         }
2560
2561         kfree(bo_va);
2562 }
2563
2564 /**
2565  * amdgpu_vm_evictable - check if we can evict a VM
2566  *
2567  * @bo: A page table of the VM.
2568  *
2569  * Check if it is possible to evict a VM.
2570  */
2571 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2572 {
2573         struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2574
2575         /* Page tables of a destroyed VM can go away immediately */
2576         if (!bo_base || !bo_base->vm)
2577                 return true;
2578
2579         /* Don't evict VM page tables while they are busy */
2580         if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2581                 return false;
2582
2583         /* Try to block ongoing updates */
2584         if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2585                 return false;
2586
2587         /* Don't evict VM page tables while they are updated */
2588         if (!dma_fence_is_signaled(bo_base->vm->last_direct)) {
2589                 amdgpu_vm_eviction_unlock(bo_base->vm);
2590                 return false;
2591         }
2592
2593         bo_base->vm->evicting = true;
2594         amdgpu_vm_eviction_unlock(bo_base->vm);
2595         return true;
2596 }
2597
2598 /**
2599  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2600  *
2601  * @adev: amdgpu_device pointer
2602  * @bo: amdgpu buffer object
2603  * @evicted: is the BO evicted
2604  *
2605  * Mark @bo as invalid.
2606  */
2607 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2608                              struct amdgpu_bo *bo, bool evicted)
2609 {
2610         struct amdgpu_vm_bo_base *bo_base;
2611
2612         /* shadow bo doesn't have bo base, its validation needs its parent */
2613         if (bo->parent && bo->parent->shadow == bo)
2614                 bo = bo->parent;
2615
2616         for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2617                 struct amdgpu_vm *vm = bo_base->vm;
2618
2619                 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2620                         amdgpu_vm_bo_evicted(bo_base);
2621                         continue;
2622                 }
2623
2624                 if (bo_base->moved)
2625                         continue;
2626                 bo_base->moved = true;
2627
2628                 if (bo->tbo.type == ttm_bo_type_kernel)
2629                         amdgpu_vm_bo_relocated(bo_base);
2630                 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2631                         amdgpu_vm_bo_moved(bo_base);
2632                 else
2633                         amdgpu_vm_bo_invalidated(bo_base);
2634         }
2635 }
2636
2637 /**
2638  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2639  *
2640  * @vm_size: VM size
2641  *
2642  * Returns:
2643  * VM page table as power of two
2644  */
2645 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2646 {
2647         /* Total bits covered by PD + PTs */
2648         unsigned bits = ilog2(vm_size) + 18;
2649
2650         /* Make sure the PD is 4K in size up to 8GB address space.
2651            Above that split equal between PD and PTs */
2652         if (vm_size <= 8)
2653                 return (bits - 9);
2654         else
2655                 return ((bits + 3) / 2);
2656 }
2657
2658 /**
2659  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2660  *
2661  * @adev: amdgpu_device pointer
2662  * @min_vm_size: the minimum vm size in GB if it's set auto
2663  * @fragment_size_default: Default PTE fragment size
2664  * @max_level: max VMPT level
2665  * @max_bits: max address space size in bits
2666  *
2667  */
2668 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2669                            uint32_t fragment_size_default, unsigned max_level,
2670                            unsigned max_bits)
2671 {
2672         unsigned int max_size = 1 << (max_bits - 30);
2673         unsigned int vm_size;
2674         uint64_t tmp;
2675
2676         /* adjust vm size first */
2677         if (amdgpu_vm_size != -1) {
2678                 vm_size = amdgpu_vm_size;
2679                 if (vm_size > max_size) {
2680                         dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2681                                  amdgpu_vm_size, max_size);
2682                         vm_size = max_size;
2683                 }
2684         } else {
2685                 struct sysinfo si;
2686                 unsigned int phys_ram_gb;
2687
2688                 /* Optimal VM size depends on the amount of physical
2689                  * RAM available. Underlying requirements and
2690                  * assumptions:
2691                  *
2692                  *  - Need to map system memory and VRAM from all GPUs
2693                  *     - VRAM from other GPUs not known here
2694                  *     - Assume VRAM <= system memory
2695                  *  - On GFX8 and older, VM space can be segmented for
2696                  *    different MTYPEs
2697                  *  - Need to allow room for fragmentation, guard pages etc.
2698                  *
2699                  * This adds up to a rough guess of system memory x3.
2700                  * Round up to power of two to maximize the available
2701                  * VM size with the given page table size.
2702                  */
2703                 si_meminfo(&si);
2704                 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2705                                (1 << 30) - 1) >> 30;
2706                 vm_size = roundup_pow_of_two(
2707                         min(max(phys_ram_gb * 3, min_vm_size), max_size));
2708         }
2709
2710         adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2711
2712         tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2713         if (amdgpu_vm_block_size != -1)
2714                 tmp >>= amdgpu_vm_block_size - 9;
2715         tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2716         adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2717         switch (adev->vm_manager.num_level) {
2718         case 3:
2719                 adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2720                 break;
2721         case 2:
2722                 adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2723                 break;
2724         case 1:
2725                 adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2726                 break;
2727         default:
2728                 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2729         }
2730         /* block size depends on vm size and hw setup*/
2731         if (amdgpu_vm_block_size != -1)
2732                 adev->vm_manager.block_size =
2733                         min((unsigned)amdgpu_vm_block_size, max_bits
2734                             - AMDGPU_GPU_PAGE_SHIFT
2735                             - 9 * adev->vm_manager.num_level);
2736         else if (adev->vm_manager.num_level > 1)
2737                 adev->vm_manager.block_size = 9;
2738         else
2739                 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2740
2741         if (amdgpu_vm_fragment_size == -1)
2742                 adev->vm_manager.fragment_size = fragment_size_default;
2743         else
2744                 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2745
2746         DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2747                  vm_size, adev->vm_manager.num_level + 1,
2748                  adev->vm_manager.block_size,
2749                  adev->vm_manager.fragment_size);
2750 }
2751
2752 /**
2753  * amdgpu_vm_wait_idle - wait for the VM to become idle
2754  *
2755  * @vm: VM object to wait for
2756  * @timeout: timeout to wait for VM to become idle
2757  */
2758 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2759 {
2760         timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2761                                             true, true, timeout);
2762         if (timeout <= 0)
2763                 return timeout;
2764
2765         return dma_fence_wait_timeout(vm->last_direct, true, timeout);
2766 }
2767
2768 /**
2769  * amdgpu_vm_init - initialize a vm instance
2770  *
2771  * @adev: amdgpu_device pointer
2772  * @vm: requested vm
2773  * @vm_context: Indicates if it GFX or Compute context
2774  * @pasid: Process address space identifier
2775  *
2776  * Init @vm fields.
2777  *
2778  * Returns:
2779  * 0 for success, error for failure.
2780  */
2781 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2782                    int vm_context, unsigned int pasid)
2783 {
2784         struct amdgpu_bo_param bp;
2785         struct amdgpu_bo *root;
2786         int r, i;
2787
2788         vm->va = RB_ROOT_CACHED;
2789         for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2790                 vm->reserved_vmid[i] = NULL;
2791         INIT_LIST_HEAD(&vm->evicted);
2792         INIT_LIST_HEAD(&vm->relocated);
2793         INIT_LIST_HEAD(&vm->moved);
2794         INIT_LIST_HEAD(&vm->idle);
2795         INIT_LIST_HEAD(&vm->invalidated);
2796         spin_lock_init(&vm->invalidated_lock);
2797         INIT_LIST_HEAD(&vm->freed);
2798
2799
2800         /* create scheduler entities for page table updates */
2801         r = drm_sched_entity_init(&vm->direct, DRM_SCHED_PRIORITY_NORMAL,
2802                                   adev->vm_manager.vm_pte_scheds,
2803                                   adev->vm_manager.vm_pte_num_scheds, NULL);
2804         if (r)
2805                 return r;
2806
2807         r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2808                                   adev->vm_manager.vm_pte_scheds,
2809                                   adev->vm_manager.vm_pte_num_scheds, NULL);
2810         if (r)
2811                 goto error_free_direct;
2812
2813         vm->pte_support_ats = false;
2814         vm->is_compute_context = false;
2815
2816         if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2817                 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2818                                                 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2819
2820                 if (adev->asic_type == CHIP_RAVEN)
2821                         vm->pte_support_ats = true;
2822         } else {
2823                 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2824                                                 AMDGPU_VM_USE_CPU_FOR_GFX);
2825         }
2826         DRM_DEBUG_DRIVER("VM update mode is %s\n",
2827                          vm->use_cpu_for_update ? "CPU" : "SDMA");
2828         WARN_ONCE((vm->use_cpu_for_update &&
2829                    !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2830                   "CPU update of VM recommended only for large BAR system\n");
2831
2832         if (vm->use_cpu_for_update)
2833                 vm->update_funcs = &amdgpu_vm_cpu_funcs;
2834         else
2835                 vm->update_funcs = &amdgpu_vm_sdma_funcs;
2836         vm->last_update = NULL;
2837         vm->last_direct = dma_fence_get_stub();
2838
2839         mutex_init(&vm->eviction_lock);
2840         vm->evicting = false;
2841
2842         amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2843         if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2844                 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2845         r = amdgpu_bo_create(adev, &bp, &root);
2846         if (r)
2847                 goto error_free_delayed;
2848
2849         r = amdgpu_bo_reserve(root, true);
2850         if (r)
2851                 goto error_free_root;
2852
2853         r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2854         if (r)
2855                 goto error_unreserve;
2856
2857         amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2858
2859         r = amdgpu_vm_clear_bo(adev, vm, root, false);
2860         if (r)
2861                 goto error_unreserve;
2862
2863         amdgpu_bo_unreserve(vm->root.base.bo);
2864
2865         if (pasid) {
2866                 unsigned long flags;
2867
2868                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2869                 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2870                               GFP_ATOMIC);
2871                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2872                 if (r < 0)
2873                         goto error_free_root;
2874
2875                 vm->pasid = pasid;
2876         }
2877
2878         INIT_KFIFO(vm->faults);
2879
2880         return 0;
2881
2882 error_unreserve:
2883         amdgpu_bo_unreserve(vm->root.base.bo);
2884
2885 error_free_root:
2886         amdgpu_bo_unref(&vm->root.base.bo->shadow);
2887         amdgpu_bo_unref(&vm->root.base.bo);
2888         vm->root.base.bo = NULL;
2889
2890 error_free_delayed:
2891         dma_fence_put(vm->last_direct);
2892         drm_sched_entity_destroy(&vm->delayed);
2893
2894 error_free_direct:
2895         drm_sched_entity_destroy(&vm->direct);
2896
2897         return r;
2898 }
2899
2900 /**
2901  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2902  *
2903  * @adev: amdgpu_device pointer
2904  * @vm: the VM to check
2905  *
2906  * check all entries of the root PD, if any subsequent PDs are allocated,
2907  * it means there are page table creating and filling, and is no a clean
2908  * VM
2909  *
2910  * Returns:
2911  *      0 if this VM is clean
2912  */
2913 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2914         struct amdgpu_vm *vm)
2915 {
2916         enum amdgpu_vm_level root = adev->vm_manager.root_level;
2917         unsigned int entries = amdgpu_vm_num_entries(adev, root);
2918         unsigned int i = 0;
2919
2920         if (!(vm->root.entries))
2921                 return 0;
2922
2923         for (i = 0; i < entries; i++) {
2924                 if (vm->root.entries[i].base.bo)
2925                         return -EINVAL;
2926         }
2927
2928         return 0;
2929 }
2930
2931 /**
2932  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2933  *
2934  * @adev: amdgpu_device pointer
2935  * @vm: requested vm
2936  * @pasid: pasid to use
2937  *
2938  * This only works on GFX VMs that don't have any BOs added and no
2939  * page tables allocated yet.
2940  *
2941  * Changes the following VM parameters:
2942  * - use_cpu_for_update
2943  * - pte_supports_ats
2944  * - pasid (old PASID is released, because compute manages its own PASIDs)
2945  *
2946  * Reinitializes the page directory to reflect the changed ATS
2947  * setting.
2948  *
2949  * Returns:
2950  * 0 for success, -errno for errors.
2951  */
2952 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2953                            unsigned int pasid)
2954 {
2955         bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2956         int r;
2957
2958         r = amdgpu_bo_reserve(vm->root.base.bo, true);
2959         if (r)
2960                 return r;
2961
2962         /* Sanity checks */
2963         r = amdgpu_vm_check_clean_reserved(adev, vm);
2964         if (r)
2965                 goto unreserve_bo;
2966
2967         if (pasid) {
2968                 unsigned long flags;
2969
2970                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2971                 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2972                               GFP_ATOMIC);
2973                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2974
2975                 if (r == -ENOSPC)
2976                         goto unreserve_bo;
2977                 r = 0;
2978         }
2979
2980         /* Check if PD needs to be reinitialized and do it before
2981          * changing any other state, in case it fails.
2982          */
2983         if (pte_support_ats != vm->pte_support_ats) {
2984                 vm->pte_support_ats = pte_support_ats;
2985                 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
2986                 if (r)
2987                         goto free_idr;
2988         }
2989
2990         /* Update VM state */
2991         vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2992                                     AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2993         DRM_DEBUG_DRIVER("VM update mode is %s\n",
2994                          vm->use_cpu_for_update ? "CPU" : "SDMA");
2995         WARN_ONCE((vm->use_cpu_for_update &&
2996                    !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2997                   "CPU update of VM recommended only for large BAR system\n");
2998
2999         if (vm->use_cpu_for_update)
3000                 vm->update_funcs = &amdgpu_vm_cpu_funcs;
3001         else
3002                 vm->update_funcs = &amdgpu_vm_sdma_funcs;
3003         dma_fence_put(vm->last_update);
3004         vm->last_update = NULL;
3005         vm->is_compute_context = true;
3006
3007         if (vm->pasid) {
3008                 unsigned long flags;
3009
3010                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3011                 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3012                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3013
3014                 /* Free the original amdgpu allocated pasid
3015                  * Will be replaced with kfd allocated pasid
3016                  */
3017                 amdgpu_pasid_free(vm->pasid);
3018                 vm->pasid = 0;
3019         }
3020
3021         /* Free the shadow bo for compute VM */
3022         amdgpu_bo_unref(&vm->root.base.bo->shadow);
3023
3024         if (pasid)
3025                 vm->pasid = pasid;
3026
3027         goto unreserve_bo;
3028
3029 free_idr:
3030         if (pasid) {
3031                 unsigned long flags;
3032
3033                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3034                 idr_remove(&adev->vm_manager.pasid_idr, pasid);
3035                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3036         }
3037 unreserve_bo:
3038         amdgpu_bo_unreserve(vm->root.base.bo);
3039         return r;
3040 }
3041
3042 /**
3043  * amdgpu_vm_release_compute - release a compute vm
3044  * @adev: amdgpu_device pointer
3045  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3046  *
3047  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3048  * pasid from vm. Compute should stop use of vm after this call.
3049  */
3050 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3051 {
3052         if (vm->pasid) {
3053                 unsigned long flags;
3054
3055                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3056                 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3057                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3058         }
3059         vm->pasid = 0;
3060         vm->is_compute_context = false;
3061 }
3062
3063 /**
3064  * amdgpu_vm_fini - tear down a vm instance
3065  *
3066  * @adev: amdgpu_device pointer
3067  * @vm: requested vm
3068  *
3069  * Tear down @vm.
3070  * Unbind the VM and remove all bos from the vm bo list
3071  */
3072 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3073 {
3074         struct amdgpu_bo_va_mapping *mapping, *tmp;
3075         bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3076         struct amdgpu_bo *root;
3077         int i;
3078
3079         amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3080
3081         root = amdgpu_bo_ref(vm->root.base.bo);
3082         amdgpu_bo_reserve(root, true);
3083         if (vm->pasid) {
3084                 unsigned long flags;
3085
3086                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3087                 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3088                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3089                 vm->pasid = 0;
3090         }
3091
3092         dma_fence_wait(vm->last_direct, false);
3093         dma_fence_put(vm->last_direct);
3094
3095         list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3096                 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3097                         amdgpu_vm_prt_fini(adev, vm);
3098                         prt_fini_needed = false;
3099                 }
3100
3101                 list_del(&mapping->list);
3102                 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3103         }
3104
3105         amdgpu_vm_free_pts(adev, vm, NULL);
3106         amdgpu_bo_unreserve(root);
3107         amdgpu_bo_unref(&root);
3108         WARN_ON(vm->root.base.bo);
3109
3110         drm_sched_entity_destroy(&vm->direct);
3111         drm_sched_entity_destroy(&vm->delayed);
3112
3113         if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3114                 dev_err(adev->dev, "still active bo inside vm\n");
3115         }
3116         rbtree_postorder_for_each_entry_safe(mapping, tmp,
3117                                              &vm->va.rb_root, rb) {
3118                 /* Don't remove the mapping here, we don't want to trigger a
3119                  * rebalance and the tree is about to be destroyed anyway.
3120                  */
3121                 list_del(&mapping->list);
3122                 kfree(mapping);
3123         }
3124
3125         dma_fence_put(vm->last_update);
3126         for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3127                 amdgpu_vmid_free_reserved(adev, vm, i);
3128 }
3129
3130 /**
3131  * amdgpu_vm_manager_init - init the VM manager
3132  *
3133  * @adev: amdgpu_device pointer
3134  *
3135  * Initialize the VM manager structures
3136  */
3137 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3138 {
3139         unsigned i;
3140
3141         amdgpu_vmid_mgr_init(adev);
3142
3143         adev->vm_manager.fence_context =
3144                 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3145         for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3146                 adev->vm_manager.seqno[i] = 0;
3147
3148         spin_lock_init(&adev->vm_manager.prt_lock);
3149         atomic_set(&adev->vm_manager.num_prt_users, 0);
3150
3151         /* If not overridden by the user, by default, only in large BAR systems
3152          * Compute VM tables will be updated by CPU
3153          */
3154 #ifdef CONFIG_X86_64
3155         if (amdgpu_vm_update_mode == -1) {
3156                 if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3157                         adev->vm_manager.vm_update_mode =
3158                                 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3159                 else
3160                         adev->vm_manager.vm_update_mode = 0;
3161         } else
3162                 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3163 #else
3164         adev->vm_manager.vm_update_mode = 0;
3165 #endif
3166
3167         idr_init(&adev->vm_manager.pasid_idr);
3168         spin_lock_init(&adev->vm_manager.pasid_lock);
3169
3170         adev->vm_manager.xgmi_map_counter = 0;
3171         mutex_init(&adev->vm_manager.lock_pstate);
3172 }
3173
3174 /**
3175  * amdgpu_vm_manager_fini - cleanup VM manager
3176  *
3177  * @adev: amdgpu_device pointer
3178  *
3179  * Cleanup the VM manager and free resources.
3180  */
3181 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3182 {
3183         WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3184         idr_destroy(&adev->vm_manager.pasid_idr);
3185
3186         amdgpu_vmid_mgr_fini(adev);
3187 }
3188
3189 /**
3190  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3191  *
3192  * @dev: drm device pointer
3193  * @data: drm_amdgpu_vm
3194  * @filp: drm file pointer
3195  *
3196  * Returns:
3197  * 0 for success, -errno for errors.
3198  */
3199 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3200 {
3201         union drm_amdgpu_vm *args = data;
3202         struct amdgpu_device *adev = dev->dev_private;
3203         struct amdgpu_fpriv *fpriv = filp->driver_priv;
3204         long timeout = msecs_to_jiffies(2000);
3205         int r;
3206
3207         switch (args->in.op) {
3208         case AMDGPU_VM_OP_RESERVE_VMID:
3209                 /* We only have requirement to reserve vmid from gfxhub */
3210                 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3211                                                AMDGPU_GFXHUB_0);
3212                 if (r)
3213                         return r;
3214                 break;
3215         case AMDGPU_VM_OP_UNRESERVE_VMID:
3216                 if (amdgpu_sriov_runtime(adev))
3217                         timeout = 8 * timeout;
3218
3219                 /* Wait vm idle to make sure the vmid set in SPM_VMID is
3220                  * not referenced anymore.
3221                  */
3222                 r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3223                 if (r)
3224                         return r;
3225
3226                 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3227                 if (r < 0)
3228                         return r;
3229
3230                 amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3231                 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3232                 break;
3233         default:
3234                 return -EINVAL;
3235         }
3236
3237         return 0;
3238 }
3239
3240 /**
3241  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3242  *
3243  * @adev: drm device pointer
3244  * @pasid: PASID identifier for VM
3245  * @task_info: task_info to fill.
3246  */
3247 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3248                          struct amdgpu_task_info *task_info)
3249 {
3250         struct amdgpu_vm *vm;
3251         unsigned long flags;
3252
3253         spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3254
3255         vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3256         if (vm)
3257                 *task_info = vm->task_info;
3258
3259         spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3260 }
3261
3262 /**
3263  * amdgpu_vm_set_task_info - Sets VMs task info.
3264  *
3265  * @vm: vm for which to set the info
3266  */
3267 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3268 {
3269         if (vm->task_info.pid)
3270                 return;
3271
3272         vm->task_info.pid = current->pid;
3273         get_task_comm(vm->task_info.task_name, current);
3274
3275         if (current->group_leader->mm != current->mm)
3276                 return;
3277
3278         vm->task_info.tgid = current->group_leader->pid;
3279         get_task_comm(vm->task_info.process_name, current->group_leader);
3280 }
3281
3282 /**
3283  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3284  * @adev: amdgpu device pointer
3285  * @pasid: PASID of the VM
3286  * @addr: Address of the fault
3287  *
3288  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3289  * shouldn't be reported any more.
3290  */
3291 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, unsigned int pasid,
3292                             uint64_t addr)
3293 {
3294         struct amdgpu_bo *root;
3295         uint64_t value, flags;
3296         struct amdgpu_vm *vm;
3297         long r;
3298
3299         spin_lock(&adev->vm_manager.pasid_lock);
3300         vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3301         if (vm)
3302                 root = amdgpu_bo_ref(vm->root.base.bo);
3303         else
3304                 root = NULL;
3305         spin_unlock(&adev->vm_manager.pasid_lock);
3306
3307         if (!root)
3308                 return false;
3309
3310         r = amdgpu_bo_reserve(root, true);
3311         if (r)
3312                 goto error_unref;
3313
3314         /* Double check that the VM still exists */
3315         spin_lock(&adev->vm_manager.pasid_lock);
3316         vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3317         if (vm && vm->root.base.bo != root)
3318                 vm = NULL;
3319         spin_unlock(&adev->vm_manager.pasid_lock);
3320         if (!vm)
3321                 goto error_unlock;
3322
3323         addr /= AMDGPU_GPU_PAGE_SIZE;
3324         flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3325                 AMDGPU_PTE_SYSTEM;
3326
3327         if (vm->is_compute_context) {
3328                 /* Intentionally setting invalid PTE flag
3329                  * combination to force a no-retry-fault
3330                  */
3331                 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3332                         AMDGPU_PTE_TF;
3333                 value = 0;
3334
3335         } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3336                 /* Redirect the access to the dummy page */
3337                 value = adev->dummy_page_addr;
3338                 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3339                         AMDGPU_PTE_WRITEABLE;
3340
3341         } else {
3342                 /* Let the hw retry silently on the PTE */
3343                 value = 0;
3344         }
3345
3346         r = amdgpu_vm_bo_update_mapping(adev, vm, true, NULL, addr, addr + 1,
3347                                         flags, value, NULL, NULL);
3348         if (r)
3349                 goto error_unlock;
3350
3351         r = amdgpu_vm_update_pdes(adev, vm, true);
3352
3353 error_unlock:
3354         amdgpu_bo_unreserve(root);
3355         if (r < 0)
3356                 DRM_ERROR("Can't handle page fault (%ld)\n", r);
3357
3358 error_unref:
3359         amdgpu_bo_unref(&root);
3360
3361         return false;
3362 }