Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v7.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/fdtable.h>
24 #include <linux/uaccess.h>
25 #include <linux/mmu_context.h>
26
27 #include "amdgpu.h"
28 #include "amdgpu_amdkfd.h"
29 #include "cikd.h"
30 #include "cik_sdma.h"
31 #include "gfx_v7_0.h"
32 #include "gca/gfx_7_2_d.h"
33 #include "gca/gfx_7_2_enum.h"
34 #include "gca/gfx_7_2_sh_mask.h"
35 #include "oss/oss_2_0_d.h"
36 #include "oss/oss_2_0_sh_mask.h"
37 #include "gmc/gmc_7_1_d.h"
38 #include "gmc/gmc_7_1_sh_mask.h"
39 #include "cik_structs.h"
40
41 enum hqd_dequeue_request_type {
42         NO_ACTION = 0,
43         DRAIN_PIPE,
44         RESET_WAVES
45 };
46
47 enum {
48         MAX_TRAPID = 8,         /* 3 bits in the bitfield. */
49         MAX_WATCH_ADDRESSES = 4
50 };
51
52 enum {
53         ADDRESS_WATCH_REG_ADDR_HI = 0,
54         ADDRESS_WATCH_REG_ADDR_LO,
55         ADDRESS_WATCH_REG_CNTL,
56         ADDRESS_WATCH_REG_MAX
57 };
58
59 /*  not defined in the CI/KV reg file  */
60 enum {
61         ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
62         ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
63         ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
64         /* extend the mask to 26 bits to match the low address field */
65         ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
66         ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
67 };
68
69 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
70         mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
71         mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
72         mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
73         mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
74 };
75
76 union TCP_WATCH_CNTL_BITS {
77         struct {
78                 uint32_t mask:24;
79                 uint32_t vmid:4;
80                 uint32_t atc:1;
81                 uint32_t mode:2;
82                 uint32_t valid:1;
83         } bitfields, bits;
84         uint32_t u32All;
85         signed int i32All;
86         float f32All;
87 };
88
89 /*
90  * Register access functions
91  */
92
93 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
94                 uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
95                 uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
96
97 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
98                                         unsigned int vmid);
99
100 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
101 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
102                         uint32_t queue_id, uint32_t __user *wptr,
103                         uint32_t wptr_shift, uint32_t wptr_mask,
104                         struct mm_struct *mm);
105 static int kgd_hqd_dump(struct kgd_dev *kgd,
106                         uint32_t pipe_id, uint32_t queue_id,
107                         uint32_t (**dump)[2], uint32_t *n_regs);
108 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
109                              uint32_t __user *wptr, struct mm_struct *mm);
110 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
111                              uint32_t engine_id, uint32_t queue_id,
112                              uint32_t (**dump)[2], uint32_t *n_regs);
113 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
114                                 uint32_t pipe_id, uint32_t queue_id);
115
116 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
117                                 enum kfd_preempt_type reset_type,
118                                 unsigned int utimeout, uint32_t pipe_id,
119                                 uint32_t queue_id);
120 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
121 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
122                                 unsigned int utimeout);
123 static int kgd_address_watch_disable(struct kgd_dev *kgd);
124 static int kgd_address_watch_execute(struct kgd_dev *kgd,
125                                         unsigned int watch_point_id,
126                                         uint32_t cntl_val,
127                                         uint32_t addr_hi,
128                                         uint32_t addr_lo);
129 static int kgd_wave_control_execute(struct kgd_dev *kgd,
130                                         uint32_t gfx_index_val,
131                                         uint32_t sq_cmd);
132 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
133                                         unsigned int watch_point_id,
134                                         unsigned int reg_offset);
135
136 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
137 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
138                                                         uint8_t vmid);
139
140 static void set_scratch_backing_va(struct kgd_dev *kgd,
141                                         uint64_t va, uint32_t vmid);
142 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
143                 uint64_t page_table_base);
144 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
145 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
146 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd);
147
148 /* Because of REG_GET_FIELD() being used, we put this function in the
149  * asic specific file.
150  */
151 static int get_tile_config(struct kgd_dev *kgd,
152                 struct tile_config *config)
153 {
154         struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
155
156         config->gb_addr_config = adev->gfx.config.gb_addr_config;
157         config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
158                                 MC_ARB_RAMCFG, NOOFBANK);
159         config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
160                                 MC_ARB_RAMCFG, NOOFRANKS);
161
162         config->tile_config_ptr = adev->gfx.config.tile_mode_array;
163         config->num_tile_configs =
164                         ARRAY_SIZE(adev->gfx.config.tile_mode_array);
165         config->macro_tile_config_ptr =
166                         adev->gfx.config.macrotile_mode_array;
167         config->num_macro_tile_configs =
168                         ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
169
170         return 0;
171 }
172
173 static const struct kfd2kgd_calls kfd2kgd = {
174         .program_sh_mem_settings = kgd_program_sh_mem_settings,
175         .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
176         .init_interrupts = kgd_init_interrupts,
177         .hqd_load = kgd_hqd_load,
178         .hqd_sdma_load = kgd_hqd_sdma_load,
179         .hqd_dump = kgd_hqd_dump,
180         .hqd_sdma_dump = kgd_hqd_sdma_dump,
181         .hqd_is_occupied = kgd_hqd_is_occupied,
182         .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
183         .hqd_destroy = kgd_hqd_destroy,
184         .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
185         .address_watch_disable = kgd_address_watch_disable,
186         .address_watch_execute = kgd_address_watch_execute,
187         .wave_control_execute = kgd_wave_control_execute,
188         .address_watch_get_offset = kgd_address_watch_get_offset,
189         .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
190         .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
191         .set_scratch_backing_va = set_scratch_backing_va,
192         .get_tile_config = get_tile_config,
193         .set_vm_context_page_table_base = set_vm_context_page_table_base,
194         .invalidate_tlbs = invalidate_tlbs,
195         .invalidate_tlbs_vmid = invalidate_tlbs_vmid,
196         .read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
197 };
198
199 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
200 {
201         return (struct kfd2kgd_calls *)&kfd2kgd;
202 }
203
204 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
205 {
206         return (struct amdgpu_device *)kgd;
207 }
208
209 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
210                         uint32_t queue, uint32_t vmid)
211 {
212         struct amdgpu_device *adev = get_amdgpu_device(kgd);
213         uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
214
215         mutex_lock(&adev->srbm_mutex);
216         WREG32(mmSRBM_GFX_CNTL, value);
217 }
218
219 static void unlock_srbm(struct kgd_dev *kgd)
220 {
221         struct amdgpu_device *adev = get_amdgpu_device(kgd);
222
223         WREG32(mmSRBM_GFX_CNTL, 0);
224         mutex_unlock(&adev->srbm_mutex);
225 }
226
227 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
228                                 uint32_t queue_id)
229 {
230         struct amdgpu_device *adev = get_amdgpu_device(kgd);
231
232         uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
233         uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
234
235         lock_srbm(kgd, mec, pipe, queue_id, 0);
236 }
237
238 static void release_queue(struct kgd_dev *kgd)
239 {
240         unlock_srbm(kgd);
241 }
242
243 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
244                                         uint32_t sh_mem_config,
245                                         uint32_t sh_mem_ape1_base,
246                                         uint32_t sh_mem_ape1_limit,
247                                         uint32_t sh_mem_bases)
248 {
249         struct amdgpu_device *adev = get_amdgpu_device(kgd);
250
251         lock_srbm(kgd, 0, 0, 0, vmid);
252
253         WREG32(mmSH_MEM_CONFIG, sh_mem_config);
254         WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
255         WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
256         WREG32(mmSH_MEM_BASES, sh_mem_bases);
257
258         unlock_srbm(kgd);
259 }
260
261 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
262                                         unsigned int vmid)
263 {
264         struct amdgpu_device *adev = get_amdgpu_device(kgd);
265
266         /*
267          * We have to assume that there is no outstanding mapping.
268          * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
269          * a mapping is in progress or because a mapping finished and the
270          * SW cleared it. So the protocol is to always wait & clear.
271          */
272         uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
273                         ATC_VMID0_PASID_MAPPING__VALID_MASK;
274
275         WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
276
277         while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
278                 cpu_relax();
279         WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
280
281         /* Mapping vmid to pasid also for IH block */
282         WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
283
284         return 0;
285 }
286
287 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
288 {
289         struct amdgpu_device *adev = get_amdgpu_device(kgd);
290         uint32_t mec;
291         uint32_t pipe;
292
293         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
294         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
295
296         lock_srbm(kgd, mec, pipe, 0, 0);
297
298         WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
299                         CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
300
301         unlock_srbm(kgd);
302
303         return 0;
304 }
305
306 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
307 {
308         uint32_t retval;
309
310         retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
311                         m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
312
313         pr_debug("sdma base address: 0x%x\n", retval);
314
315         return retval;
316 }
317
318 static inline struct cik_mqd *get_mqd(void *mqd)
319 {
320         return (struct cik_mqd *)mqd;
321 }
322
323 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
324 {
325         return (struct cik_sdma_rlc_registers *)mqd;
326 }
327
328 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
329                         uint32_t queue_id, uint32_t __user *wptr,
330                         uint32_t wptr_shift, uint32_t wptr_mask,
331                         struct mm_struct *mm)
332 {
333         struct amdgpu_device *adev = get_amdgpu_device(kgd);
334         struct cik_mqd *m;
335         uint32_t *mqd_hqd;
336         uint32_t reg, wptr_val, data;
337         bool valid_wptr = false;
338
339         m = get_mqd(mqd);
340
341         acquire_queue(kgd, pipe_id, queue_id);
342
343         /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
344         mqd_hqd = &m->cp_mqd_base_addr_lo;
345
346         for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
347                 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
348
349         /* Copy userspace write pointer value to register.
350          * Activate doorbell logic to monitor subsequent changes.
351          */
352         data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
353                              CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
354         WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
355
356         /* read_user_ptr may take the mm->mmap_sem.
357          * release srbm_mutex to avoid circular dependency between
358          * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
359          */
360         release_queue(kgd);
361         valid_wptr = read_user_wptr(mm, wptr, wptr_val);
362         acquire_queue(kgd, pipe_id, queue_id);
363         if (valid_wptr)
364                 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
365
366         data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
367         WREG32(mmCP_HQD_ACTIVE, data);
368
369         release_queue(kgd);
370
371         return 0;
372 }
373
374 static int kgd_hqd_dump(struct kgd_dev *kgd,
375                         uint32_t pipe_id, uint32_t queue_id,
376                         uint32_t (**dump)[2], uint32_t *n_regs)
377 {
378         struct amdgpu_device *adev = get_amdgpu_device(kgd);
379         uint32_t i = 0, reg;
380 #define HQD_N_REGS (35+4)
381 #define DUMP_REG(addr) do {                             \
382                 if (WARN_ON_ONCE(i >= HQD_N_REGS))      \
383                         break;                          \
384                 (*dump)[i][0] = (addr) << 2;            \
385                 (*dump)[i++][1] = RREG32(addr);         \
386         } while (0)
387
388         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
389         if (*dump == NULL)
390                 return -ENOMEM;
391
392         acquire_queue(kgd, pipe_id, queue_id);
393
394         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
395         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
396         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
397         DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
398
399         for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
400                 DUMP_REG(reg);
401
402         release_queue(kgd);
403
404         WARN_ON_ONCE(i != HQD_N_REGS);
405         *n_regs = i;
406
407         return 0;
408 }
409
410 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
411                              uint32_t __user *wptr, struct mm_struct *mm)
412 {
413         struct amdgpu_device *adev = get_amdgpu_device(kgd);
414         struct cik_sdma_rlc_registers *m;
415         unsigned long end_jiffies;
416         uint32_t sdma_base_addr;
417         uint32_t data;
418
419         m = get_sdma_mqd(mqd);
420         sdma_base_addr = get_sdma_base_addr(m);
421
422         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
423                 m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
424
425         end_jiffies = msecs_to_jiffies(2000) + jiffies;
426         while (true) {
427                 data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
428                 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
429                         break;
430                 if (time_after(jiffies, end_jiffies))
431                         return -ETIME;
432                 usleep_range(500, 1000);
433         }
434         if (m->sdma_engine_id) {
435                 data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
436                 data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
437                                 RESUME_CTX, 0);
438                 WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
439         } else {
440                 data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
441                 data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
442                                 RESUME_CTX, 0);
443                 WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
444         }
445
446         data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
447                              ENABLE, 1);
448         WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
449         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
450
451         if (read_user_wptr(mm, wptr, data))
452                 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
453         else
454                 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
455                        m->sdma_rlc_rb_rptr);
456
457         WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
458                                 m->sdma_rlc_virtual_addr);
459         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
460         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
461                         m->sdma_rlc_rb_base_hi);
462         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
463                         m->sdma_rlc_rb_rptr_addr_lo);
464         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
465                         m->sdma_rlc_rb_rptr_addr_hi);
466
467         data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
468                              RB_ENABLE, 1);
469         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
470
471         return 0;
472 }
473
474 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
475                              uint32_t engine_id, uint32_t queue_id,
476                              uint32_t (**dump)[2], uint32_t *n_regs)
477 {
478         struct amdgpu_device *adev = get_amdgpu_device(kgd);
479         uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
480                 queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
481         uint32_t i = 0, reg;
482 #undef HQD_N_REGS
483 #define HQD_N_REGS (19+4)
484
485         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
486         if (*dump == NULL)
487                 return -ENOMEM;
488
489         for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
490                 DUMP_REG(sdma_offset + reg);
491         for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
492              reg++)
493                 DUMP_REG(sdma_offset + reg);
494
495         WARN_ON_ONCE(i != HQD_N_REGS);
496         *n_regs = i;
497
498         return 0;
499 }
500
501 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
502                                 uint32_t pipe_id, uint32_t queue_id)
503 {
504         struct amdgpu_device *adev = get_amdgpu_device(kgd);
505         uint32_t act;
506         bool retval = false;
507         uint32_t low, high;
508
509         acquire_queue(kgd, pipe_id, queue_id);
510         act = RREG32(mmCP_HQD_ACTIVE);
511         if (act) {
512                 low = lower_32_bits(queue_address >> 8);
513                 high = upper_32_bits(queue_address >> 8);
514
515                 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
516                                 high == RREG32(mmCP_HQD_PQ_BASE_HI))
517                         retval = true;
518         }
519         release_queue(kgd);
520         return retval;
521 }
522
523 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
524 {
525         struct amdgpu_device *adev = get_amdgpu_device(kgd);
526         struct cik_sdma_rlc_registers *m;
527         uint32_t sdma_base_addr;
528         uint32_t sdma_rlc_rb_cntl;
529
530         m = get_sdma_mqd(mqd);
531         sdma_base_addr = get_sdma_base_addr(m);
532
533         sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
534
535         if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
536                 return true;
537
538         return false;
539 }
540
541 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
542                                 enum kfd_preempt_type reset_type,
543                                 unsigned int utimeout, uint32_t pipe_id,
544                                 uint32_t queue_id)
545 {
546         struct amdgpu_device *adev = get_amdgpu_device(kgd);
547         uint32_t temp;
548         enum hqd_dequeue_request_type type;
549         unsigned long flags, end_jiffies;
550         int retry;
551
552         if (adev->in_gpu_reset)
553                 return -EIO;
554
555         acquire_queue(kgd, pipe_id, queue_id);
556         WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
557
558         switch (reset_type) {
559         case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
560                 type = DRAIN_PIPE;
561                 break;
562         case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
563                 type = RESET_WAVES;
564                 break;
565         default:
566                 type = DRAIN_PIPE;
567                 break;
568         }
569
570         /* Workaround: If IQ timer is active and the wait time is close to or
571          * equal to 0, dequeueing is not safe. Wait until either the wait time
572          * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
573          * cleared before continuing. Also, ensure wait times are set to at
574          * least 0x3.
575          */
576         local_irq_save(flags);
577         preempt_disable();
578         retry = 5000; /* wait for 500 usecs at maximum */
579         while (true) {
580                 temp = RREG32(mmCP_HQD_IQ_TIMER);
581                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
582                         pr_debug("HW is processing IQ\n");
583                         goto loop;
584                 }
585                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
586                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
587                                         == 3) /* SEM-rearm is safe */
588                                 break;
589                         /* Wait time 3 is safe for CP, but our MMIO read/write
590                          * time is close to 1 microsecond, so check for 10 to
591                          * leave more buffer room
592                          */
593                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
594                                         >= 10)
595                                 break;
596                         pr_debug("IQ timer is active\n");
597                 } else
598                         break;
599 loop:
600                 if (!retry) {
601                         pr_err("CP HQD IQ timer status time out\n");
602                         break;
603                 }
604                 ndelay(100);
605                 --retry;
606         }
607         retry = 1000;
608         while (true) {
609                 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
610                 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
611                         break;
612                 pr_debug("Dequeue request is pending\n");
613
614                 if (!retry) {
615                         pr_err("CP HQD dequeue request time out\n");
616                         break;
617                 }
618                 ndelay(100);
619                 --retry;
620         }
621         local_irq_restore(flags);
622         preempt_enable();
623
624         WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
625
626         end_jiffies = (utimeout * HZ / 1000) + jiffies;
627         while (true) {
628                 temp = RREG32(mmCP_HQD_ACTIVE);
629                 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
630                         break;
631                 if (time_after(jiffies, end_jiffies)) {
632                         pr_err("cp queue preemption time out\n");
633                         release_queue(kgd);
634                         return -ETIME;
635                 }
636                 usleep_range(500, 1000);
637         }
638
639         release_queue(kgd);
640         return 0;
641 }
642
643 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
644                                 unsigned int utimeout)
645 {
646         struct amdgpu_device *adev = get_amdgpu_device(kgd);
647         struct cik_sdma_rlc_registers *m;
648         uint32_t sdma_base_addr;
649         uint32_t temp;
650         unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
651
652         m = get_sdma_mqd(mqd);
653         sdma_base_addr = get_sdma_base_addr(m);
654
655         temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
656         temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
657         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
658
659         while (true) {
660                 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
661                 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
662                         break;
663                 if (time_after(jiffies, end_jiffies))
664                         return -ETIME;
665                 usleep_range(500, 1000);
666         }
667
668         WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
669         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
670                 RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
671                 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
672
673         m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
674
675         return 0;
676 }
677
678 static int kgd_address_watch_disable(struct kgd_dev *kgd)
679 {
680         struct amdgpu_device *adev = get_amdgpu_device(kgd);
681         union TCP_WATCH_CNTL_BITS cntl;
682         unsigned int i;
683
684         cntl.u32All = 0;
685
686         cntl.bitfields.valid = 0;
687         cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
688         cntl.bitfields.atc = 1;
689
690         /* Turning off this address until we set all the registers */
691         for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
692                 WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
693                         ADDRESS_WATCH_REG_CNTL], cntl.u32All);
694
695         return 0;
696 }
697
698 static int kgd_address_watch_execute(struct kgd_dev *kgd,
699                                         unsigned int watch_point_id,
700                                         uint32_t cntl_val,
701                                         uint32_t addr_hi,
702                                         uint32_t addr_lo)
703 {
704         struct amdgpu_device *adev = get_amdgpu_device(kgd);
705         union TCP_WATCH_CNTL_BITS cntl;
706
707         cntl.u32All = cntl_val;
708
709         /* Turning off this watch point until we set all the registers */
710         cntl.bitfields.valid = 0;
711         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
712                 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
713
714         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
715                 ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
716
717         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
718                 ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
719
720         /* Enable the watch point */
721         cntl.bitfields.valid = 1;
722
723         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
724                 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
725
726         return 0;
727 }
728
729 static int kgd_wave_control_execute(struct kgd_dev *kgd,
730                                         uint32_t gfx_index_val,
731                                         uint32_t sq_cmd)
732 {
733         struct amdgpu_device *adev = get_amdgpu_device(kgd);
734         uint32_t data;
735
736         mutex_lock(&adev->grbm_idx_mutex);
737
738         WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
739         WREG32(mmSQ_CMD, sq_cmd);
740
741         /*  Restore the GRBM_GFX_INDEX register  */
742
743         data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
744                 GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
745                 GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
746
747         WREG32(mmGRBM_GFX_INDEX, data);
748
749         mutex_unlock(&adev->grbm_idx_mutex);
750
751         return 0;
752 }
753
754 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
755                                         unsigned int watch_point_id,
756                                         unsigned int reg_offset)
757 {
758         return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
759 }
760
761 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
762                                                         uint8_t vmid)
763 {
764         uint32_t reg;
765         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
766
767         reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
768         return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
769 }
770
771 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
772                                                                 uint8_t vmid)
773 {
774         uint32_t reg;
775         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
776
777         reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
778         return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
779 }
780
781 static void set_scratch_backing_va(struct kgd_dev *kgd,
782                                         uint64_t va, uint32_t vmid)
783 {
784         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
785
786         lock_srbm(kgd, 0, 0, 0, vmid);
787         WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
788         unlock_srbm(kgd);
789 }
790
791 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
792                         uint64_t page_table_base)
793 {
794         struct amdgpu_device *adev = get_amdgpu_device(kgd);
795
796         if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
797                 pr_err("trying to set page table base for wrong VMID\n");
798                 return;
799         }
800         WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
801                 lower_32_bits(page_table_base));
802 }
803
804 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
805 {
806         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
807         int vmid;
808         unsigned int tmp;
809
810         if (adev->in_gpu_reset)
811                 return -EIO;
812
813         for (vmid = 0; vmid < 16; vmid++) {
814                 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
815                         continue;
816
817                 tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
818                 if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
819                         (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
820                         WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
821                         RREG32(mmVM_INVALIDATE_RESPONSE);
822                         break;
823                 }
824         }
825
826         return 0;
827 }
828
829 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
830 {
831         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
832
833         if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
834                 pr_err("non kfd vmid\n");
835                 return 0;
836         }
837
838         WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
839         RREG32(mmVM_INVALIDATE_RESPONSE);
840         return 0;
841 }
842
843  /**
844   * read_vmid_from_vmfault_reg - read vmid from register
845   *
846   * adev: amdgpu_device pointer
847   * @vmid: vmid pointer
848   * read vmid from register (CIK).
849   */
850 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
851 {
852         struct amdgpu_device *adev = get_amdgpu_device(kgd);
853
854         uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
855
856         return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
857 }