Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / dma-buf / dma-fence.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Fence mechanism for dma-buf and to allow for asynchronous dma access
4  *
5  * Copyright (C) 2012 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/atomic.h>
16 #include <linux/dma-fence.h>
17 #include <linux/sched/signal.h>
18
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/dma_fence.h>
21
22 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
23 EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
24 EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
25
26 static DEFINE_SPINLOCK(dma_fence_stub_lock);
27 static struct dma_fence dma_fence_stub;
28
29 /*
30  * fence context counter: each execution context should have its own
31  * fence context, this allows checking if fences belong to the same
32  * context or not. One device can have multiple separate contexts,
33  * and they're used if some engine can run independently of another.
34  */
35 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
36
37 /**
38  * DOC: DMA fences overview
39  *
40  * DMA fences, represented by &struct dma_fence, are the kernel internal
41  * synchronization primitive for DMA operations like GPU rendering, video
42  * encoding/decoding, or displaying buffers on a screen.
43  *
44  * A fence is initialized using dma_fence_init() and completed using
45  * dma_fence_signal(). Fences are associated with a context, allocated through
46  * dma_fence_context_alloc(), and all fences on the same context are
47  * fully ordered.
48  *
49  * Since the purposes of fences is to facilitate cross-device and
50  * cross-application synchronization, there's multiple ways to use one:
51  *
52  * - Individual fences can be exposed as a &sync_file, accessed as a file
53  *   descriptor from userspace, created by calling sync_file_create(). This is
54  *   called explicit fencing, since userspace passes around explicit
55  *   synchronization points.
56  *
57  * - Some subsystems also have their own explicit fencing primitives, like
58  *   &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
59  *   fence to be updated.
60  *
61  * - Then there's also implicit fencing, where the synchronization points are
62  *   implicitly passed around as part of shared &dma_buf instances. Such
63  *   implicit fences are stored in &struct reservation_object through the
64  *   &dma_buf.resv pointer.
65  */
66
67 static const char *dma_fence_stub_get_name(struct dma_fence *fence)
68 {
69         return "stub";
70 }
71
72 static const struct dma_fence_ops dma_fence_stub_ops = {
73         .get_driver_name = dma_fence_stub_get_name,
74         .get_timeline_name = dma_fence_stub_get_name,
75 };
76
77 /**
78  * dma_fence_get_stub - return a signaled fence
79  *
80  * Return a stub fence which is already signaled.
81  */
82 struct dma_fence *dma_fence_get_stub(void)
83 {
84         spin_lock(&dma_fence_stub_lock);
85         if (!dma_fence_stub.ops) {
86                 dma_fence_init(&dma_fence_stub,
87                                &dma_fence_stub_ops,
88                                &dma_fence_stub_lock,
89                                0, 0);
90                 dma_fence_signal_locked(&dma_fence_stub);
91         }
92         spin_unlock(&dma_fence_stub_lock);
93
94         return dma_fence_get(&dma_fence_stub);
95 }
96 EXPORT_SYMBOL(dma_fence_get_stub);
97
98 /**
99  * dma_fence_context_alloc - allocate an array of fence contexts
100  * @num: amount of contexts to allocate
101  *
102  * This function will return the first index of the number of fence contexts
103  * allocated.  The fence context is used for setting &dma_fence.context to a
104  * unique number by passing the context to dma_fence_init().
105  */
106 u64 dma_fence_context_alloc(unsigned num)
107 {
108         WARN_ON(!num);
109         return atomic64_add_return(num, &dma_fence_context_counter) - num;
110 }
111 EXPORT_SYMBOL(dma_fence_context_alloc);
112
113 /**
114  * dma_fence_signal_locked - signal completion of a fence
115  * @fence: the fence to signal
116  *
117  * Signal completion for software callbacks on a fence, this will unblock
118  * dma_fence_wait() calls and run all the callbacks added with
119  * dma_fence_add_callback(). Can be called multiple times, but since a fence
120  * can only go from the unsignaled to the signaled state and not back, it will
121  * only be effective the first time.
122  *
123  * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
124  * held.
125  *
126  * Returns 0 on success and a negative error value when @fence has been
127  * signalled already.
128  */
129 int dma_fence_signal_locked(struct dma_fence *fence)
130 {
131         struct dma_fence_cb *cur, *tmp;
132         int ret = 0;
133
134         lockdep_assert_held(fence->lock);
135
136         if (WARN_ON(!fence))
137                 return -EINVAL;
138
139         if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
140                 ret = -EINVAL;
141
142                 /*
143                  * we might have raced with the unlocked dma_fence_signal,
144                  * still run through all callbacks
145                  */
146         } else {
147                 fence->timestamp = ktime_get();
148                 set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
149                 trace_dma_fence_signaled(fence);
150         }
151
152         list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
153                 list_del_init(&cur->node);
154                 cur->func(fence, cur);
155         }
156         return ret;
157 }
158 EXPORT_SYMBOL(dma_fence_signal_locked);
159
160 /**
161  * dma_fence_signal - signal completion of a fence
162  * @fence: the fence to signal
163  *
164  * Signal completion for software callbacks on a fence, this will unblock
165  * dma_fence_wait() calls and run all the callbacks added with
166  * dma_fence_add_callback(). Can be called multiple times, but since a fence
167  * can only go from the unsignaled to the signaled state and not back, it will
168  * only be effective the first time.
169  *
170  * Returns 0 on success and a negative error value when @fence has been
171  * signalled already.
172  */
173 int dma_fence_signal(struct dma_fence *fence)
174 {
175         unsigned long flags;
176
177         if (!fence)
178                 return -EINVAL;
179
180         if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
181                 return -EINVAL;
182
183         fence->timestamp = ktime_get();
184         set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
185         trace_dma_fence_signaled(fence);
186
187         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) {
188                 struct dma_fence_cb *cur, *tmp;
189
190                 spin_lock_irqsave(fence->lock, flags);
191                 list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
192                         list_del_init(&cur->node);
193                         cur->func(fence, cur);
194                 }
195                 spin_unlock_irqrestore(fence->lock, flags);
196         }
197         return 0;
198 }
199 EXPORT_SYMBOL(dma_fence_signal);
200
201 /**
202  * dma_fence_wait_timeout - sleep until the fence gets signaled
203  * or until timeout elapses
204  * @fence: the fence to wait on
205  * @intr: if true, do an interruptible wait
206  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
207  *
208  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
209  * remaining timeout in jiffies on success. Other error values may be
210  * returned on custom implementations.
211  *
212  * Performs a synchronous wait on this fence. It is assumed the caller
213  * directly or indirectly (buf-mgr between reservation and committing)
214  * holds a reference to the fence, otherwise the fence might be
215  * freed before return, resulting in undefined behavior.
216  *
217  * See also dma_fence_wait() and dma_fence_wait_any_timeout().
218  */
219 signed long
220 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
221 {
222         signed long ret;
223
224         if (WARN_ON(timeout < 0))
225                 return -EINVAL;
226
227         trace_dma_fence_wait_start(fence);
228         if (fence->ops->wait)
229                 ret = fence->ops->wait(fence, intr, timeout);
230         else
231                 ret = dma_fence_default_wait(fence, intr, timeout);
232         trace_dma_fence_wait_end(fence);
233         return ret;
234 }
235 EXPORT_SYMBOL(dma_fence_wait_timeout);
236
237 /**
238  * dma_fence_release - default relese function for fences
239  * @kref: &dma_fence.recfount
240  *
241  * This is the default release functions for &dma_fence. Drivers shouldn't call
242  * this directly, but instead call dma_fence_put().
243  */
244 void dma_fence_release(struct kref *kref)
245 {
246         struct dma_fence *fence =
247                 container_of(kref, struct dma_fence, refcount);
248
249         trace_dma_fence_destroy(fence);
250
251         if (WARN(!list_empty(&fence->cb_list),
252                  "Fence %s:%s:%llx:%llx released with pending signals!\n",
253                  fence->ops->get_driver_name(fence),
254                  fence->ops->get_timeline_name(fence),
255                  fence->context, fence->seqno)) {
256                 unsigned long flags;
257
258                 /*
259                  * Failed to signal before release, likely a refcounting issue.
260                  *
261                  * This should never happen, but if it does make sure that we
262                  * don't leave chains dangling. We set the error flag first
263                  * so that the callbacks know this signal is due to an error.
264                  */
265                 spin_lock_irqsave(fence->lock, flags);
266                 fence->error = -EDEADLK;
267                 dma_fence_signal_locked(fence);
268                 spin_unlock_irqrestore(fence->lock, flags);
269         }
270
271         if (fence->ops->release)
272                 fence->ops->release(fence);
273         else
274                 dma_fence_free(fence);
275 }
276 EXPORT_SYMBOL(dma_fence_release);
277
278 /**
279  * dma_fence_free - default release function for &dma_fence.
280  * @fence: fence to release
281  *
282  * This is the default implementation for &dma_fence_ops.release. It calls
283  * kfree_rcu() on @fence.
284  */
285 void dma_fence_free(struct dma_fence *fence)
286 {
287         kfree_rcu(fence, rcu);
288 }
289 EXPORT_SYMBOL(dma_fence_free);
290
291 /**
292  * dma_fence_enable_sw_signaling - enable signaling on fence
293  * @fence: the fence to enable
294  *
295  * This will request for sw signaling to be enabled, to make the fence
296  * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
297  * internally.
298  */
299 void dma_fence_enable_sw_signaling(struct dma_fence *fence)
300 {
301         unsigned long flags;
302
303         if (!test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
304                               &fence->flags) &&
305             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) &&
306             fence->ops->enable_signaling) {
307                 trace_dma_fence_enable_signal(fence);
308
309                 spin_lock_irqsave(fence->lock, flags);
310
311                 if (!fence->ops->enable_signaling(fence))
312                         dma_fence_signal_locked(fence);
313
314                 spin_unlock_irqrestore(fence->lock, flags);
315         }
316 }
317 EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
318
319 /**
320  * dma_fence_add_callback - add a callback to be called when the fence
321  * is signaled
322  * @fence: the fence to wait on
323  * @cb: the callback to register
324  * @func: the function to call
325  *
326  * @cb will be initialized by dma_fence_add_callback(), no initialization
327  * by the caller is required. Any number of callbacks can be registered
328  * to a fence, but a callback can only be registered to one fence at a time.
329  *
330  * Note that the callback can be called from an atomic context.  If
331  * fence is already signaled, this function will return -ENOENT (and
332  * *not* call the callback).
333  *
334  * Add a software callback to the fence. Same restrictions apply to
335  * refcount as it does to dma_fence_wait(), however the caller doesn't need to
336  * keep a refcount to fence afterward dma_fence_add_callback() has returned:
337  * when software access is enabled, the creator of the fence is required to keep
338  * the fence alive until after it signals with dma_fence_signal(). The callback
339  * itself can be called from irq context.
340  *
341  * Returns 0 in case of success, -ENOENT if the fence is already signaled
342  * and -EINVAL in case of error.
343  */
344 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
345                            dma_fence_func_t func)
346 {
347         unsigned long flags;
348         int ret = 0;
349         bool was_set;
350
351         if (WARN_ON(!fence || !func))
352                 return -EINVAL;
353
354         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
355                 INIT_LIST_HEAD(&cb->node);
356                 return -ENOENT;
357         }
358
359         spin_lock_irqsave(fence->lock, flags);
360
361         was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
362                                    &fence->flags);
363
364         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
365                 ret = -ENOENT;
366         else if (!was_set && fence->ops->enable_signaling) {
367                 trace_dma_fence_enable_signal(fence);
368
369                 if (!fence->ops->enable_signaling(fence)) {
370                         dma_fence_signal_locked(fence);
371                         ret = -ENOENT;
372                 }
373         }
374
375         if (!ret) {
376                 cb->func = func;
377                 list_add_tail(&cb->node, &fence->cb_list);
378         } else
379                 INIT_LIST_HEAD(&cb->node);
380         spin_unlock_irqrestore(fence->lock, flags);
381
382         return ret;
383 }
384 EXPORT_SYMBOL(dma_fence_add_callback);
385
386 /**
387  * dma_fence_get_status - returns the status upon completion
388  * @fence: the dma_fence to query
389  *
390  * This wraps dma_fence_get_status_locked() to return the error status
391  * condition on a signaled fence. See dma_fence_get_status_locked() for more
392  * details.
393  *
394  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
395  * been signaled without an error condition, or a negative error code
396  * if the fence has been completed in err.
397  */
398 int dma_fence_get_status(struct dma_fence *fence)
399 {
400         unsigned long flags;
401         int status;
402
403         spin_lock_irqsave(fence->lock, flags);
404         status = dma_fence_get_status_locked(fence);
405         spin_unlock_irqrestore(fence->lock, flags);
406
407         return status;
408 }
409 EXPORT_SYMBOL(dma_fence_get_status);
410
411 /**
412  * dma_fence_remove_callback - remove a callback from the signaling list
413  * @fence: the fence to wait on
414  * @cb: the callback to remove
415  *
416  * Remove a previously queued callback from the fence. This function returns
417  * true if the callback is successfully removed, or false if the fence has
418  * already been signaled.
419  *
420  * *WARNING*:
421  * Cancelling a callback should only be done if you really know what you're
422  * doing, since deadlocks and race conditions could occur all too easily. For
423  * this reason, it should only ever be done on hardware lockup recovery,
424  * with a reference held to the fence.
425  *
426  * Behaviour is undefined if @cb has not been added to @fence using
427  * dma_fence_add_callback() beforehand.
428  */
429 bool
430 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
431 {
432         unsigned long flags;
433         bool ret;
434
435         spin_lock_irqsave(fence->lock, flags);
436
437         ret = !list_empty(&cb->node);
438         if (ret)
439                 list_del_init(&cb->node);
440
441         spin_unlock_irqrestore(fence->lock, flags);
442
443         return ret;
444 }
445 EXPORT_SYMBOL(dma_fence_remove_callback);
446
447 struct default_wait_cb {
448         struct dma_fence_cb base;
449         struct task_struct *task;
450 };
451
452 static void
453 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
454 {
455         struct default_wait_cb *wait =
456                 container_of(cb, struct default_wait_cb, base);
457
458         wake_up_state(wait->task, TASK_NORMAL);
459 }
460
461 /**
462  * dma_fence_default_wait - default sleep until the fence gets signaled
463  * or until timeout elapses
464  * @fence: the fence to wait on
465  * @intr: if true, do an interruptible wait
466  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
467  *
468  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
469  * remaining timeout in jiffies on success. If timeout is zero the value one is
470  * returned if the fence is already signaled for consistency with other
471  * functions taking a jiffies timeout.
472  */
473 signed long
474 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
475 {
476         struct default_wait_cb cb;
477         unsigned long flags;
478         signed long ret = timeout ? timeout : 1;
479         bool was_set;
480
481         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
482                 return ret;
483
484         spin_lock_irqsave(fence->lock, flags);
485
486         if (intr && signal_pending(current)) {
487                 ret = -ERESTARTSYS;
488                 goto out;
489         }
490
491         was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
492                                    &fence->flags);
493
494         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
495                 goto out;
496
497         if (!was_set && fence->ops->enable_signaling) {
498                 trace_dma_fence_enable_signal(fence);
499
500                 if (!fence->ops->enable_signaling(fence)) {
501                         dma_fence_signal_locked(fence);
502                         goto out;
503                 }
504         }
505
506         if (!timeout) {
507                 ret = 0;
508                 goto out;
509         }
510
511         cb.base.func = dma_fence_default_wait_cb;
512         cb.task = current;
513         list_add(&cb.base.node, &fence->cb_list);
514
515         while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
516                 if (intr)
517                         __set_current_state(TASK_INTERRUPTIBLE);
518                 else
519                         __set_current_state(TASK_UNINTERRUPTIBLE);
520                 spin_unlock_irqrestore(fence->lock, flags);
521
522                 ret = schedule_timeout(ret);
523
524                 spin_lock_irqsave(fence->lock, flags);
525                 if (ret > 0 && intr && signal_pending(current))
526                         ret = -ERESTARTSYS;
527         }
528
529         if (!list_empty(&cb.base.node))
530                 list_del(&cb.base.node);
531         __set_current_state(TASK_RUNNING);
532
533 out:
534         spin_unlock_irqrestore(fence->lock, flags);
535         return ret;
536 }
537 EXPORT_SYMBOL(dma_fence_default_wait);
538
539 static bool
540 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
541                             uint32_t *idx)
542 {
543         int i;
544
545         for (i = 0; i < count; ++i) {
546                 struct dma_fence *fence = fences[i];
547                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
548                         if (idx)
549                                 *idx = i;
550                         return true;
551                 }
552         }
553         return false;
554 }
555
556 /**
557  * dma_fence_wait_any_timeout - sleep until any fence gets signaled
558  * or until timeout elapses
559  * @fences: array of fences to wait on
560  * @count: number of fences to wait on
561  * @intr: if true, do an interruptible wait
562  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
563  * @idx: used to store the first signaled fence index, meaningful only on
564  *      positive return
565  *
566  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
567  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
568  * on success.
569  *
570  * Synchronous waits for the first fence in the array to be signaled. The
571  * caller needs to hold a reference to all fences in the array, otherwise a
572  * fence might be freed before return, resulting in undefined behavior.
573  *
574  * See also dma_fence_wait() and dma_fence_wait_timeout().
575  */
576 signed long
577 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
578                            bool intr, signed long timeout, uint32_t *idx)
579 {
580         struct default_wait_cb *cb;
581         signed long ret = timeout;
582         unsigned i;
583
584         if (WARN_ON(!fences || !count || timeout < 0))
585                 return -EINVAL;
586
587         if (timeout == 0) {
588                 for (i = 0; i < count; ++i)
589                         if (dma_fence_is_signaled(fences[i])) {
590                                 if (idx)
591                                         *idx = i;
592                                 return 1;
593                         }
594
595                 return 0;
596         }
597
598         cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
599         if (cb == NULL) {
600                 ret = -ENOMEM;
601                 goto err_free_cb;
602         }
603
604         for (i = 0; i < count; ++i) {
605                 struct dma_fence *fence = fences[i];
606
607                 cb[i].task = current;
608                 if (dma_fence_add_callback(fence, &cb[i].base,
609                                            dma_fence_default_wait_cb)) {
610                         /* This fence is already signaled */
611                         if (idx)
612                                 *idx = i;
613                         goto fence_rm_cb;
614                 }
615         }
616
617         while (ret > 0) {
618                 if (intr)
619                         set_current_state(TASK_INTERRUPTIBLE);
620                 else
621                         set_current_state(TASK_UNINTERRUPTIBLE);
622
623                 if (dma_fence_test_signaled_any(fences, count, idx))
624                         break;
625
626                 ret = schedule_timeout(ret);
627
628                 if (ret > 0 && intr && signal_pending(current))
629                         ret = -ERESTARTSYS;
630         }
631
632         __set_current_state(TASK_RUNNING);
633
634 fence_rm_cb:
635         while (i-- > 0)
636                 dma_fence_remove_callback(fences[i], &cb[i].base);
637
638 err_free_cb:
639         kfree(cb);
640
641         return ret;
642 }
643 EXPORT_SYMBOL(dma_fence_wait_any_timeout);
644
645 /**
646  * dma_fence_init - Initialize a custom fence.
647  * @fence: the fence to initialize
648  * @ops: the dma_fence_ops for operations on this fence
649  * @lock: the irqsafe spinlock to use for locking this fence
650  * @context: the execution context this fence is run on
651  * @seqno: a linear increasing sequence number for this context
652  *
653  * Initializes an allocated fence, the caller doesn't have to keep its
654  * refcount after committing with this fence, but it will need to hold a
655  * refcount again if &dma_fence_ops.enable_signaling gets called.
656  *
657  * context and seqno are used for easy comparison between fences, allowing
658  * to check which fence is later by simply using dma_fence_later().
659  */
660 void
661 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
662                spinlock_t *lock, u64 context, u64 seqno)
663 {
664         BUG_ON(!lock);
665         BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
666
667         kref_init(&fence->refcount);
668         fence->ops = ops;
669         INIT_LIST_HEAD(&fence->cb_list);
670         fence->lock = lock;
671         fence->context = context;
672         fence->seqno = seqno;
673         fence->flags = 0UL;
674         fence->error = 0;
675
676         trace_dma_fence_init(fence);
677 }
678 EXPORT_SYMBOL(dma_fence_init);