Linux-libre 5.7.5-gnu
[librecmc/linux-libre.git] / drivers / dma / stm32-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30
31 #include "virt-dma.h"
32
33 #define STM32_DMA_LISR                  0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR                  0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR                 0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR                 0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI                   BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI                   BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI                   BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI                  BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI                   BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI                 (STM32_DMA_TCI \
43                                          | STM32_DMA_TEI \
44                                          | STM32_DMA_DMEI \
45                                          | STM32_DMA_FEI)
46
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x)                (0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n)            ((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK       GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n)         ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK       GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n)         ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK           GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n)             ((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK        GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n)          ((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK        GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n)          ((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n)      ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK          GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n)            ((n & 0x3) << 6)
63 #define STM32_DMA_SCR_CT                BIT(19) /* Target in double buffer */
64 #define STM32_DMA_SCR_DBM               BIT(18) /* Double Buffer Mode */
65 #define STM32_DMA_SCR_PINCOS            BIT(15) /* Peripheral inc offset size */
66 #define STM32_DMA_SCR_MINC              BIT(10) /* Memory increment mode */
67 #define STM32_DMA_SCR_PINC              BIT(9) /* Peripheral increment mode */
68 #define STM32_DMA_SCR_CIRC              BIT(8) /* Circular mode */
69 #define STM32_DMA_SCR_PFCTRL            BIT(5) /* Peripheral Flow Controller */
70 #define STM32_DMA_SCR_TCIE              BIT(4) /* Transfer Complete Int Enable
71                                                 */
72 #define STM32_DMA_SCR_TEIE              BIT(2) /* Transfer Error Int Enable */
73 #define STM32_DMA_SCR_DMEIE             BIT(1) /* Direct Mode Err Int Enable */
74 #define STM32_DMA_SCR_EN                BIT(0) /* Stream Enable */
75 #define STM32_DMA_SCR_CFG_MASK          (STM32_DMA_SCR_PINC \
76                                         | STM32_DMA_SCR_MINC \
77                                         | STM32_DMA_SCR_PINCOS \
78                                         | STM32_DMA_SCR_PL_MASK)
79 #define STM32_DMA_SCR_IRQ_MASK          (STM32_DMA_SCR_TCIE \
80                                         | STM32_DMA_SCR_TEIE \
81                                         | STM32_DMA_SCR_DMEIE)
82
83 /* DMA Stream x number of data register */
84 #define STM32_DMA_SNDTR(x)              (0x0014 + 0x18 * (x))
85
86 /* DMA stream peripheral address register */
87 #define STM32_DMA_SPAR(x)               (0x0018 + 0x18 * (x))
88
89 /* DMA stream x memory 0 address register */
90 #define STM32_DMA_SM0AR(x)              (0x001c + 0x18 * (x))
91
92 /* DMA stream x memory 1 address register */
93 #define STM32_DMA_SM1AR(x)              (0x0020 + 0x18 * (x))
94
95 /* DMA stream x FIFO control register */
96 #define STM32_DMA_SFCR(x)               (0x0024 + 0x18 * (x))
97 #define STM32_DMA_SFCR_FTH_MASK         GENMASK(1, 0)
98 #define STM32_DMA_SFCR_FTH(n)           (n & STM32_DMA_SFCR_FTH_MASK)
99 #define STM32_DMA_SFCR_FEIE             BIT(7) /* FIFO error interrupt enable */
100 #define STM32_DMA_SFCR_DMDIS            BIT(2) /* Direct mode disable */
101 #define STM32_DMA_SFCR_MASK             (STM32_DMA_SFCR_FEIE \
102                                         | STM32_DMA_SFCR_DMDIS)
103
104 /* DMA direction */
105 #define STM32_DMA_DEV_TO_MEM            0x00
106 #define STM32_DMA_MEM_TO_DEV            0x01
107 #define STM32_DMA_MEM_TO_MEM            0x02
108
109 /* DMA priority level */
110 #define STM32_DMA_PRIORITY_LOW          0x00
111 #define STM32_DMA_PRIORITY_MEDIUM       0x01
112 #define STM32_DMA_PRIORITY_HIGH         0x02
113 #define STM32_DMA_PRIORITY_VERY_HIGH    0x03
114
115 /* DMA FIFO threshold selection */
116 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL           0x00
117 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL               0x01
118 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL          0x02
119 #define STM32_DMA_FIFO_THRESHOLD_FULL                   0x03
120
121 #define STM32_DMA_MAX_DATA_ITEMS        0xffff
122 /*
123  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
124  * gather at boundary. Thus it's safer to round down this value on FIFO
125  * size (16 Bytes)
126  */
127 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS        \
128         ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
129 #define STM32_DMA_MAX_CHANNELS          0x08
130 #define STM32_DMA_MAX_REQUEST_ID        0x08
131 #define STM32_DMA_MAX_DATA_PARAM        0x03
132 #define STM32_DMA_FIFO_SIZE             16      /* FIFO is 16 bytes */
133 #define STM32_DMA_MIN_BURST             4
134 #define STM32_DMA_MAX_BURST             16
135
136 /* DMA Features */
137 #define STM32_DMA_THRESHOLD_FTR_MASK    GENMASK(1, 0)
138 #define STM32_DMA_THRESHOLD_FTR_GET(n)  ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
139
140 enum stm32_dma_width {
141         STM32_DMA_BYTE,
142         STM32_DMA_HALF_WORD,
143         STM32_DMA_WORD,
144 };
145
146 enum stm32_dma_burst_size {
147         STM32_DMA_BURST_SINGLE,
148         STM32_DMA_BURST_INCR4,
149         STM32_DMA_BURST_INCR8,
150         STM32_DMA_BURST_INCR16,
151 };
152
153 /**
154  * struct stm32_dma_cfg - STM32 DMA custom configuration
155  * @channel_id: channel ID
156  * @request_line: DMA request
157  * @stream_config: 32bit mask specifying the DMA channel configuration
158  * @features: 32bit mask specifying the DMA Feature list
159  */
160 struct stm32_dma_cfg {
161         u32 channel_id;
162         u32 request_line;
163         u32 stream_config;
164         u32 features;
165 };
166
167 struct stm32_dma_chan_reg {
168         u32 dma_lisr;
169         u32 dma_hisr;
170         u32 dma_lifcr;
171         u32 dma_hifcr;
172         u32 dma_scr;
173         u32 dma_sndtr;
174         u32 dma_spar;
175         u32 dma_sm0ar;
176         u32 dma_sm1ar;
177         u32 dma_sfcr;
178 };
179
180 struct stm32_dma_sg_req {
181         u32 len;
182         struct stm32_dma_chan_reg chan_reg;
183 };
184
185 struct stm32_dma_desc {
186         struct virt_dma_desc vdesc;
187         bool cyclic;
188         u32 num_sgs;
189         struct stm32_dma_sg_req sg_req[];
190 };
191
192 struct stm32_dma_chan {
193         struct virt_dma_chan vchan;
194         bool config_init;
195         bool busy;
196         u32 id;
197         u32 irq;
198         struct stm32_dma_desc *desc;
199         u32 next_sg;
200         struct dma_slave_config dma_sconfig;
201         struct stm32_dma_chan_reg chan_reg;
202         u32 threshold;
203         u32 mem_burst;
204         u32 mem_width;
205 };
206
207 struct stm32_dma_device {
208         struct dma_device ddev;
209         void __iomem *base;
210         struct clk *clk;
211         bool mem2mem;
212         struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
213 };
214
215 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
216 {
217         return container_of(chan->vchan.chan.device, struct stm32_dma_device,
218                             ddev);
219 }
220
221 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
222 {
223         return container_of(c, struct stm32_dma_chan, vchan.chan);
224 }
225
226 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
227 {
228         return container_of(vdesc, struct stm32_dma_desc, vdesc);
229 }
230
231 static struct device *chan2dev(struct stm32_dma_chan *chan)
232 {
233         return &chan->vchan.chan.dev->device;
234 }
235
236 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
237 {
238         return readl_relaxed(dmadev->base + reg);
239 }
240
241 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
242 {
243         writel_relaxed(val, dmadev->base + reg);
244 }
245
246 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
247                                enum dma_slave_buswidth width)
248 {
249         switch (width) {
250         case DMA_SLAVE_BUSWIDTH_1_BYTE:
251                 return STM32_DMA_BYTE;
252         case DMA_SLAVE_BUSWIDTH_2_BYTES:
253                 return STM32_DMA_HALF_WORD;
254         case DMA_SLAVE_BUSWIDTH_4_BYTES:
255                 return STM32_DMA_WORD;
256         default:
257                 dev_err(chan2dev(chan), "Dma bus width not supported\n");
258                 return -EINVAL;
259         }
260 }
261
262 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
263                                                        u32 threshold)
264 {
265         enum dma_slave_buswidth max_width;
266
267         if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
268                 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
269         else
270                 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
271
272         while ((buf_len < max_width  || buf_len % max_width) &&
273                max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
274                 max_width = max_width >> 1;
275
276         return max_width;
277 }
278
279 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
280                                                 enum dma_slave_buswidth width)
281 {
282         u32 remaining;
283
284         if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
285                 if (burst != 0) {
286                         /*
287                          * If number of beats fit in several whole bursts
288                          * this configuration is allowed.
289                          */
290                         remaining = ((STM32_DMA_FIFO_SIZE / width) *
291                                      (threshold + 1) / 4) % burst;
292
293                         if (remaining == 0)
294                                 return true;
295                 } else {
296                         return true;
297                 }
298         }
299
300         return false;
301 }
302
303 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
304 {
305         /*
306          * Buffer or period length has to be aligned on FIFO depth.
307          * Otherwise bytes may be stuck within FIFO at buffer or period
308          * length.
309          */
310         return ((buf_len % ((threshold + 1) * 4)) == 0);
311 }
312
313 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
314                                     enum dma_slave_buswidth width)
315 {
316         u32 best_burst = max_burst;
317
318         if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
319                 return 0;
320
321         while ((buf_len < best_burst * width && best_burst > 1) ||
322                !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
323                                                     width)) {
324                 if (best_burst > STM32_DMA_MIN_BURST)
325                         best_burst = best_burst >> 1;
326                 else
327                         best_burst = 0;
328         }
329
330         return best_burst;
331 }
332
333 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
334 {
335         switch (maxburst) {
336         case 0:
337         case 1:
338                 return STM32_DMA_BURST_SINGLE;
339         case 4:
340                 return STM32_DMA_BURST_INCR4;
341         case 8:
342                 return STM32_DMA_BURST_INCR8;
343         case 16:
344                 return STM32_DMA_BURST_INCR16;
345         default:
346                 dev_err(chan2dev(chan), "Dma burst size not supported\n");
347                 return -EINVAL;
348         }
349 }
350
351 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
352                                       u32 src_burst, u32 dst_burst)
353 {
354         chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
355         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
356
357         if (!src_burst && !dst_burst) {
358                 /* Using direct mode */
359                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
360         } else {
361                 /* Using FIFO mode */
362                 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
363         }
364 }
365
366 static int stm32_dma_slave_config(struct dma_chan *c,
367                                   struct dma_slave_config *config)
368 {
369         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
370
371         memcpy(&chan->dma_sconfig, config, sizeof(*config));
372
373         chan->config_init = true;
374
375         return 0;
376 }
377
378 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
379 {
380         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
381         u32 flags, dma_isr;
382
383         /*
384          * Read "flags" from DMA_xISR register corresponding to the selected
385          * DMA channel at the correct bit offset inside that register.
386          *
387          * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
388          * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
389          */
390
391         if (chan->id & 4)
392                 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
393         else
394                 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
395
396         flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
397
398         return flags & STM32_DMA_MASKI;
399 }
400
401 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
402 {
403         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
404         u32 dma_ifcr;
405
406         /*
407          * Write "flags" to the DMA_xIFCR register corresponding to the selected
408          * DMA channel at the correct bit offset inside that register.
409          *
410          * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
411          * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
412          */
413         flags &= STM32_DMA_MASKI;
414         dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
415
416         if (chan->id & 4)
417                 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
418         else
419                 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
420 }
421
422 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
423 {
424         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
425         u32 dma_scr, id, reg;
426
427         id = chan->id;
428         reg = STM32_DMA_SCR(id);
429         dma_scr = stm32_dma_read(dmadev, reg);
430
431         if (dma_scr & STM32_DMA_SCR_EN) {
432                 dma_scr &= ~STM32_DMA_SCR_EN;
433                 stm32_dma_write(dmadev, reg, dma_scr);
434
435                 return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
436                                         dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
437                                         10, 1000000);
438         }
439
440         return 0;
441 }
442
443 static void stm32_dma_stop(struct stm32_dma_chan *chan)
444 {
445         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
446         u32 dma_scr, dma_sfcr, status;
447         int ret;
448
449         /* Disable interrupts */
450         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
451         dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
452         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
453         dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
454         dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
455         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
456
457         /* Disable DMA */
458         ret = stm32_dma_disable_chan(chan);
459         if (ret < 0)
460                 return;
461
462         /* Clear interrupt status if it is there */
463         status = stm32_dma_irq_status(chan);
464         if (status) {
465                 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
466                         __func__, status);
467                 stm32_dma_irq_clear(chan, status);
468         }
469
470         chan->busy = false;
471 }
472
473 static int stm32_dma_terminate_all(struct dma_chan *c)
474 {
475         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
476         unsigned long flags;
477         LIST_HEAD(head);
478
479         spin_lock_irqsave(&chan->vchan.lock, flags);
480
481         if (chan->desc) {
482                 vchan_terminate_vdesc(&chan->desc->vdesc);
483                 if (chan->busy)
484                         stm32_dma_stop(chan);
485                 chan->desc = NULL;
486         }
487
488         vchan_get_all_descriptors(&chan->vchan, &head);
489         spin_unlock_irqrestore(&chan->vchan.lock, flags);
490         vchan_dma_desc_free_list(&chan->vchan, &head);
491
492         return 0;
493 }
494
495 static void stm32_dma_synchronize(struct dma_chan *c)
496 {
497         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
498
499         vchan_synchronize(&chan->vchan);
500 }
501
502 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
503 {
504         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
505         u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
506         u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
507         u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
508         u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
509         u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
510         u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
511
512         dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
513         dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
514         dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
515         dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
516         dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
517         dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
518 }
519
520 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
521
522 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
523 {
524         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
525         struct virt_dma_desc *vdesc;
526         struct stm32_dma_sg_req *sg_req;
527         struct stm32_dma_chan_reg *reg;
528         u32 status;
529         int ret;
530
531         ret = stm32_dma_disable_chan(chan);
532         if (ret < 0)
533                 return;
534
535         if (!chan->desc) {
536                 vdesc = vchan_next_desc(&chan->vchan);
537                 if (!vdesc)
538                         return;
539
540                 list_del(&vdesc->node);
541
542                 chan->desc = to_stm32_dma_desc(vdesc);
543                 chan->next_sg = 0;
544         }
545
546         if (chan->next_sg == chan->desc->num_sgs)
547                 chan->next_sg = 0;
548
549         sg_req = &chan->desc->sg_req[chan->next_sg];
550         reg = &sg_req->chan_reg;
551
552         reg->dma_scr &= ~STM32_DMA_SCR_EN;
553         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
554         stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
555         stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
556         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
557         stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
558         stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
559
560         chan->next_sg++;
561
562         /* Clear interrupt status if it is there */
563         status = stm32_dma_irq_status(chan);
564         if (status)
565                 stm32_dma_irq_clear(chan, status);
566
567         if (chan->desc->cyclic)
568                 stm32_dma_configure_next_sg(chan);
569
570         stm32_dma_dump_reg(chan);
571
572         /* Start DMA */
573         reg->dma_scr |= STM32_DMA_SCR_EN;
574         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
575
576         chan->busy = true;
577
578         dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
579 }
580
581 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
582 {
583         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
584         struct stm32_dma_sg_req *sg_req;
585         u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
586
587         id = chan->id;
588         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
589
590         if (dma_scr & STM32_DMA_SCR_DBM) {
591                 if (chan->next_sg == chan->desc->num_sgs)
592                         chan->next_sg = 0;
593
594                 sg_req = &chan->desc->sg_req[chan->next_sg];
595
596                 if (dma_scr & STM32_DMA_SCR_CT) {
597                         dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
598                         stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
599                         dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
600                                 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
601                 } else {
602                         dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
603                         stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
604                         dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
605                                 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
606                 }
607         }
608 }
609
610 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
611 {
612         if (chan->desc) {
613                 if (chan->desc->cyclic) {
614                         vchan_cyclic_callback(&chan->desc->vdesc);
615                         chan->next_sg++;
616                         stm32_dma_configure_next_sg(chan);
617                 } else {
618                         chan->busy = false;
619                         if (chan->next_sg == chan->desc->num_sgs) {
620                                 vchan_cookie_complete(&chan->desc->vdesc);
621                                 chan->desc = NULL;
622                         }
623                         stm32_dma_start_transfer(chan);
624                 }
625         }
626 }
627
628 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
629 {
630         struct stm32_dma_chan *chan = devid;
631         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
632         u32 status, scr, sfcr;
633
634         spin_lock(&chan->vchan.lock);
635
636         status = stm32_dma_irq_status(chan);
637         scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
638         sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
639
640         if (status & STM32_DMA_TCI) {
641                 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
642                 if (scr & STM32_DMA_SCR_TCIE)
643                         stm32_dma_handle_chan_done(chan);
644                 status &= ~STM32_DMA_TCI;
645         }
646         if (status & STM32_DMA_HTI) {
647                 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
648                 status &= ~STM32_DMA_HTI;
649         }
650         if (status & STM32_DMA_FEI) {
651                 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
652                 status &= ~STM32_DMA_FEI;
653                 if (sfcr & STM32_DMA_SFCR_FEIE) {
654                         if (!(scr & STM32_DMA_SCR_EN))
655                                 dev_err(chan2dev(chan), "FIFO Error\n");
656                         else
657                                 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
658                 }
659         }
660         if (status) {
661                 stm32_dma_irq_clear(chan, status);
662                 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
663                 if (!(scr & STM32_DMA_SCR_EN))
664                         dev_err(chan2dev(chan), "chan disabled by HW\n");
665         }
666
667         spin_unlock(&chan->vchan.lock);
668
669         return IRQ_HANDLED;
670 }
671
672 static void stm32_dma_issue_pending(struct dma_chan *c)
673 {
674         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
675         unsigned long flags;
676
677         spin_lock_irqsave(&chan->vchan.lock, flags);
678         if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
679                 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
680                 stm32_dma_start_transfer(chan);
681
682         }
683         spin_unlock_irqrestore(&chan->vchan.lock, flags);
684 }
685
686 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
687                                     enum dma_transfer_direction direction,
688                                     enum dma_slave_buswidth *buswidth,
689                                     u32 buf_len)
690 {
691         enum dma_slave_buswidth src_addr_width, dst_addr_width;
692         int src_bus_width, dst_bus_width;
693         int src_burst_size, dst_burst_size;
694         u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
695         u32 dma_scr, threshold;
696
697         src_addr_width = chan->dma_sconfig.src_addr_width;
698         dst_addr_width = chan->dma_sconfig.dst_addr_width;
699         src_maxburst = chan->dma_sconfig.src_maxburst;
700         dst_maxburst = chan->dma_sconfig.dst_maxburst;
701         threshold = chan->threshold;
702
703         switch (direction) {
704         case DMA_MEM_TO_DEV:
705                 /* Set device data size */
706                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
707                 if (dst_bus_width < 0)
708                         return dst_bus_width;
709
710                 /* Set device burst size */
711                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
712                                                           dst_maxburst,
713                                                           threshold,
714                                                           dst_addr_width);
715
716                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
717                 if (dst_burst_size < 0)
718                         return dst_burst_size;
719
720                 /* Set memory data size */
721                 src_addr_width = stm32_dma_get_max_width(buf_len, threshold);
722                 chan->mem_width = src_addr_width;
723                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
724                 if (src_bus_width < 0)
725                         return src_bus_width;
726
727                 /* Set memory burst size */
728                 src_maxburst = STM32_DMA_MAX_BURST;
729                 src_best_burst = stm32_dma_get_best_burst(buf_len,
730                                                           src_maxburst,
731                                                           threshold,
732                                                           src_addr_width);
733                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
734                 if (src_burst_size < 0)
735                         return src_burst_size;
736
737                 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
738                         STM32_DMA_SCR_PSIZE(dst_bus_width) |
739                         STM32_DMA_SCR_MSIZE(src_bus_width) |
740                         STM32_DMA_SCR_PBURST(dst_burst_size) |
741                         STM32_DMA_SCR_MBURST(src_burst_size);
742
743                 /* Set FIFO threshold */
744                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
745                 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
746
747                 /* Set peripheral address */
748                 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
749                 *buswidth = dst_addr_width;
750                 break;
751
752         case DMA_DEV_TO_MEM:
753                 /* Set device data size */
754                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
755                 if (src_bus_width < 0)
756                         return src_bus_width;
757
758                 /* Set device burst size */
759                 src_best_burst = stm32_dma_get_best_burst(buf_len,
760                                                           src_maxburst,
761                                                           threshold,
762                                                           src_addr_width);
763                 chan->mem_burst = src_best_burst;
764                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
765                 if (src_burst_size < 0)
766                         return src_burst_size;
767
768                 /* Set memory data size */
769                 dst_addr_width = stm32_dma_get_max_width(buf_len, threshold);
770                 chan->mem_width = dst_addr_width;
771                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
772                 if (dst_bus_width < 0)
773                         return dst_bus_width;
774
775                 /* Set memory burst size */
776                 dst_maxburst = STM32_DMA_MAX_BURST;
777                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
778                                                           dst_maxburst,
779                                                           threshold,
780                                                           dst_addr_width);
781                 chan->mem_burst = dst_best_burst;
782                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
783                 if (dst_burst_size < 0)
784                         return dst_burst_size;
785
786                 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
787                         STM32_DMA_SCR_PSIZE(src_bus_width) |
788                         STM32_DMA_SCR_MSIZE(dst_bus_width) |
789                         STM32_DMA_SCR_PBURST(src_burst_size) |
790                         STM32_DMA_SCR_MBURST(dst_burst_size);
791
792                 /* Set FIFO threshold */
793                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
794                 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
795
796                 /* Set peripheral address */
797                 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
798                 *buswidth = chan->dma_sconfig.src_addr_width;
799                 break;
800
801         default:
802                 dev_err(chan2dev(chan), "Dma direction is not supported\n");
803                 return -EINVAL;
804         }
805
806         stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
807
808         /* Set DMA control register */
809         chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
810                         STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
811                         STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
812         chan->chan_reg.dma_scr |= dma_scr;
813
814         return 0;
815 }
816
817 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
818 {
819         memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
820 }
821
822 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
823         struct dma_chan *c, struct scatterlist *sgl,
824         u32 sg_len, enum dma_transfer_direction direction,
825         unsigned long flags, void *context)
826 {
827         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
828         struct stm32_dma_desc *desc;
829         struct scatterlist *sg;
830         enum dma_slave_buswidth buswidth;
831         u32 nb_data_items;
832         int i, ret;
833
834         if (!chan->config_init) {
835                 dev_err(chan2dev(chan), "dma channel is not configured\n");
836                 return NULL;
837         }
838
839         if (sg_len < 1) {
840                 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
841                 return NULL;
842         }
843
844         desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
845         if (!desc)
846                 return NULL;
847
848         /* Set peripheral flow controller */
849         if (chan->dma_sconfig.device_fc)
850                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
851         else
852                 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
853
854         for_each_sg(sgl, sg, sg_len, i) {
855                 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
856                                                sg_dma_len(sg));
857                 if (ret < 0)
858                         goto err;
859
860                 desc->sg_req[i].len = sg_dma_len(sg);
861
862                 nb_data_items = desc->sg_req[i].len / buswidth;
863                 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
864                         dev_err(chan2dev(chan), "nb items not supported\n");
865                         goto err;
866                 }
867
868                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
869                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
870                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
871                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
872                 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
873                 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
874                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
875         }
876
877         desc->num_sgs = sg_len;
878         desc->cyclic = false;
879
880         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
881
882 err:
883         kfree(desc);
884         return NULL;
885 }
886
887 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
888         struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
889         size_t period_len, enum dma_transfer_direction direction,
890         unsigned long flags)
891 {
892         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
893         struct stm32_dma_desc *desc;
894         enum dma_slave_buswidth buswidth;
895         u32 num_periods, nb_data_items;
896         int i, ret;
897
898         if (!buf_len || !period_len) {
899                 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
900                 return NULL;
901         }
902
903         if (!chan->config_init) {
904                 dev_err(chan2dev(chan), "dma channel is not configured\n");
905                 return NULL;
906         }
907
908         if (buf_len % period_len) {
909                 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
910                 return NULL;
911         }
912
913         /*
914          * We allow to take more number of requests till DMA is
915          * not started. The driver will loop over all requests.
916          * Once DMA is started then new requests can be queued only after
917          * terminating the DMA.
918          */
919         if (chan->busy) {
920                 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
921                 return NULL;
922         }
923
924         ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
925         if (ret < 0)
926                 return NULL;
927
928         nb_data_items = period_len / buswidth;
929         if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
930                 dev_err(chan2dev(chan), "number of items not supported\n");
931                 return NULL;
932         }
933
934         /*  Enable Circular mode or double buffer mode */
935         if (buf_len == period_len)
936                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
937         else
938                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
939
940         /* Clear periph ctrl if client set it */
941         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
942
943         num_periods = buf_len / period_len;
944
945         desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
946         if (!desc)
947                 return NULL;
948
949         for (i = 0; i < num_periods; i++) {
950                 desc->sg_req[i].len = period_len;
951
952                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
953                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
954                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
955                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
956                 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
957                 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
958                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
959                 buf_addr += period_len;
960         }
961
962         desc->num_sgs = num_periods;
963         desc->cyclic = true;
964
965         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
966 }
967
968 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
969         struct dma_chan *c, dma_addr_t dest,
970         dma_addr_t src, size_t len, unsigned long flags)
971 {
972         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
973         enum dma_slave_buswidth max_width;
974         struct stm32_dma_desc *desc;
975         size_t xfer_count, offset;
976         u32 num_sgs, best_burst, dma_burst, threshold;
977         int i;
978
979         num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
980         desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
981         if (!desc)
982                 return NULL;
983
984         threshold = chan->threshold;
985
986         for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
987                 xfer_count = min_t(size_t, len - offset,
988                                    STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
989
990                 /* Compute best burst size */
991                 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
992                 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
993                                                       threshold, max_width);
994                 dma_burst = stm32_dma_get_burst(chan, best_burst);
995
996                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
997                 desc->sg_req[i].chan_reg.dma_scr =
998                         STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
999                         STM32_DMA_SCR_PBURST(dma_burst) |
1000                         STM32_DMA_SCR_MBURST(dma_burst) |
1001                         STM32_DMA_SCR_MINC |
1002                         STM32_DMA_SCR_PINC |
1003                         STM32_DMA_SCR_TCIE |
1004                         STM32_DMA_SCR_TEIE;
1005                 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1006                 desc->sg_req[i].chan_reg.dma_sfcr |=
1007                         STM32_DMA_SFCR_FTH(threshold);
1008                 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1009                 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1010                 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1011                 desc->sg_req[i].len = xfer_count;
1012         }
1013
1014         desc->num_sgs = num_sgs;
1015         desc->cyclic = false;
1016
1017         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1018 }
1019
1020 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1021 {
1022         u32 dma_scr, width, ndtr;
1023         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1024
1025         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1026         width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1027         ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1028
1029         return ndtr << width;
1030 }
1031
1032 /**
1033  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1034  * @chan: dma channel
1035  *
1036  * This function called when IRQ are disable, checks that the hardware has not
1037  * switched on the next transfer in double buffer mode. The test is done by
1038  * comparing the next_sg memory address with the hardware related register
1039  * (based on CT bit value).
1040  *
1041  * Returns true if expected current transfer is still running or double
1042  * buffer mode is not activated.
1043  */
1044 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1045 {
1046         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1047         struct stm32_dma_sg_req *sg_req;
1048         u32 dma_scr, dma_smar, id;
1049
1050         id = chan->id;
1051         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1052
1053         if (!(dma_scr & STM32_DMA_SCR_DBM))
1054                 return true;
1055
1056         sg_req = &chan->desc->sg_req[chan->next_sg];
1057
1058         if (dma_scr & STM32_DMA_SCR_CT) {
1059                 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1060                 return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1061         }
1062
1063         dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1064
1065         return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1066 }
1067
1068 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1069                                      struct stm32_dma_desc *desc,
1070                                      u32 next_sg)
1071 {
1072         u32 modulo, burst_size;
1073         u32 residue;
1074         u32 n_sg = next_sg;
1075         struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1076         int i;
1077
1078         /*
1079          * Calculate the residue means compute the descriptors
1080          * information:
1081          * - the sg_req currently transferred
1082          * - the Hardware remaining position in this sg (NDTR bits field).
1083          *
1084          * A race condition may occur if DMA is running in cyclic or double
1085          * buffer mode, since the DMA register are automatically reloaded at end
1086          * of period transfer. The hardware may have switched to the next
1087          * transfer (CT bit updated) just before the position (SxNDTR reg) is
1088          * read.
1089          * In this case the SxNDTR reg could (or not) correspond to the new
1090          * transfer position, and not the expected one.
1091          * The strategy implemented in the stm32 driver is to:
1092          *  - read the SxNDTR register
1093          *  - crosscheck that hardware is still in current transfer.
1094          * In case of switch, we can assume that the DMA is at the beginning of
1095          * the next transfer. So we approximate the residue in consequence, by
1096          * pointing on the beginning of next transfer.
1097          *
1098          * This race condition doesn't apply for none cyclic mode, as double
1099          * buffer is not used. In such situation registers are updated by the
1100          * software.
1101          */
1102
1103         residue = stm32_dma_get_remaining_bytes(chan);
1104
1105         if (!stm32_dma_is_current_sg(chan)) {
1106                 n_sg++;
1107                 if (n_sg == chan->desc->num_sgs)
1108                         n_sg = 0;
1109                 residue = sg_req->len;
1110         }
1111
1112         /*
1113          * In cyclic mode, for the last period, residue = remaining bytes
1114          * from NDTR,
1115          * else for all other periods in cyclic mode, and in sg mode,
1116          * residue = remaining bytes from NDTR + remaining
1117          * periods/sg to be transferred
1118          */
1119         if (!chan->desc->cyclic || n_sg != 0)
1120                 for (i = n_sg; i < desc->num_sgs; i++)
1121                         residue += desc->sg_req[i].len;
1122
1123         if (!chan->mem_burst)
1124                 return residue;
1125
1126         burst_size = chan->mem_burst * chan->mem_width;
1127         modulo = residue % burst_size;
1128         if (modulo)
1129                 residue = residue - modulo + burst_size;
1130
1131         return residue;
1132 }
1133
1134 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1135                                            dma_cookie_t cookie,
1136                                            struct dma_tx_state *state)
1137 {
1138         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1139         struct virt_dma_desc *vdesc;
1140         enum dma_status status;
1141         unsigned long flags;
1142         u32 residue = 0;
1143
1144         status = dma_cookie_status(c, cookie, state);
1145         if (status == DMA_COMPLETE || !state)
1146                 return status;
1147
1148         spin_lock_irqsave(&chan->vchan.lock, flags);
1149         vdesc = vchan_find_desc(&chan->vchan, cookie);
1150         if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1151                 residue = stm32_dma_desc_residue(chan, chan->desc,
1152                                                  chan->next_sg);
1153         else if (vdesc)
1154                 residue = stm32_dma_desc_residue(chan,
1155                                                  to_stm32_dma_desc(vdesc), 0);
1156         dma_set_residue(state, residue);
1157
1158         spin_unlock_irqrestore(&chan->vchan.lock, flags);
1159
1160         return status;
1161 }
1162
1163 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1164 {
1165         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1166         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1167         int ret;
1168
1169         chan->config_init = false;
1170
1171         ret = pm_runtime_get_sync(dmadev->ddev.dev);
1172         if (ret < 0)
1173                 return ret;
1174
1175         ret = stm32_dma_disable_chan(chan);
1176         if (ret < 0)
1177                 pm_runtime_put(dmadev->ddev.dev);
1178
1179         return ret;
1180 }
1181
1182 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1183 {
1184         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1185         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1186         unsigned long flags;
1187
1188         dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1189
1190         if (chan->busy) {
1191                 spin_lock_irqsave(&chan->vchan.lock, flags);
1192                 stm32_dma_stop(chan);
1193                 chan->desc = NULL;
1194                 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1195         }
1196
1197         pm_runtime_put(dmadev->ddev.dev);
1198
1199         vchan_free_chan_resources(to_virt_chan(c));
1200 }
1201
1202 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1203 {
1204         kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1205 }
1206
1207 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1208                                  struct stm32_dma_cfg *cfg)
1209 {
1210         stm32_dma_clear_reg(&chan->chan_reg);
1211
1212         chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1213         chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1214
1215         /* Enable Interrupts  */
1216         chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1217
1218         chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1219 }
1220
1221 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1222                                            struct of_dma *ofdma)
1223 {
1224         struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1225         struct device *dev = dmadev->ddev.dev;
1226         struct stm32_dma_cfg cfg;
1227         struct stm32_dma_chan *chan;
1228         struct dma_chan *c;
1229
1230         if (dma_spec->args_count < 4) {
1231                 dev_err(dev, "Bad number of cells\n");
1232                 return NULL;
1233         }
1234
1235         cfg.channel_id = dma_spec->args[0];
1236         cfg.request_line = dma_spec->args[1];
1237         cfg.stream_config = dma_spec->args[2];
1238         cfg.features = dma_spec->args[3];
1239
1240         if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1241             cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1242                 dev_err(dev, "Bad channel and/or request id\n");
1243                 return NULL;
1244         }
1245
1246         chan = &dmadev->chan[cfg.channel_id];
1247
1248         c = dma_get_slave_channel(&chan->vchan.chan);
1249         if (!c) {
1250                 dev_err(dev, "No more channels available\n");
1251                 return NULL;
1252         }
1253
1254         stm32_dma_set_config(chan, &cfg);
1255
1256         return c;
1257 }
1258
1259 static const struct of_device_id stm32_dma_of_match[] = {
1260         { .compatible = "st,stm32-dma", },
1261         { /* sentinel */ },
1262 };
1263 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1264
1265 static int stm32_dma_probe(struct platform_device *pdev)
1266 {
1267         struct stm32_dma_chan *chan;
1268         struct stm32_dma_device *dmadev;
1269         struct dma_device *dd;
1270         const struct of_device_id *match;
1271         struct resource *res;
1272         struct reset_control *rst;
1273         int i, ret;
1274
1275         match = of_match_device(stm32_dma_of_match, &pdev->dev);
1276         if (!match) {
1277                 dev_err(&pdev->dev, "Error: No device match found\n");
1278                 return -ENODEV;
1279         }
1280
1281         dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1282         if (!dmadev)
1283                 return -ENOMEM;
1284
1285         dd = &dmadev->ddev;
1286
1287         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1288         dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1289         if (IS_ERR(dmadev->base))
1290                 return PTR_ERR(dmadev->base);
1291
1292         dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1293         if (IS_ERR(dmadev->clk)) {
1294                 ret = PTR_ERR(dmadev->clk);
1295                 if (ret != -EPROBE_DEFER)
1296                         dev_err(&pdev->dev, "Can't get clock\n");
1297                 return ret;
1298         }
1299
1300         ret = clk_prepare_enable(dmadev->clk);
1301         if (ret < 0) {
1302                 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1303                 return ret;
1304         }
1305
1306         dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1307                                                 "st,mem2mem");
1308
1309         rst = devm_reset_control_get(&pdev->dev, NULL);
1310         if (IS_ERR(rst)) {
1311                 ret = PTR_ERR(rst);
1312                 if (ret == -EPROBE_DEFER)
1313                         goto clk_free;
1314         } else {
1315                 reset_control_assert(rst);
1316                 udelay(2);
1317                 reset_control_deassert(rst);
1318         }
1319
1320         dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1321
1322         dma_cap_set(DMA_SLAVE, dd->cap_mask);
1323         dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1324         dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1325         dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1326         dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1327         dd->device_tx_status = stm32_dma_tx_status;
1328         dd->device_issue_pending = stm32_dma_issue_pending;
1329         dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1330         dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1331         dd->device_config = stm32_dma_slave_config;
1332         dd->device_terminate_all = stm32_dma_terminate_all;
1333         dd->device_synchronize = stm32_dma_synchronize;
1334         dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1335                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1336                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1337         dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1338                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1339                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1340         dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1341         dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1342         dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1343         dd->max_burst = STM32_DMA_MAX_BURST;
1344         dd->descriptor_reuse = true;
1345         dd->dev = &pdev->dev;
1346         INIT_LIST_HEAD(&dd->channels);
1347
1348         if (dmadev->mem2mem) {
1349                 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1350                 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1351                 dd->directions |= BIT(DMA_MEM_TO_MEM);
1352         }
1353
1354         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1355                 chan = &dmadev->chan[i];
1356                 chan->id = i;
1357                 chan->vchan.desc_free = stm32_dma_desc_free;
1358                 vchan_init(&chan->vchan, dd);
1359         }
1360
1361         ret = dma_async_device_register(dd);
1362         if (ret)
1363                 goto clk_free;
1364
1365         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1366                 chan = &dmadev->chan[i];
1367                 ret = platform_get_irq(pdev, i);
1368                 if (ret < 0)
1369                         goto err_unregister;
1370                 chan->irq = ret;
1371
1372                 ret = devm_request_irq(&pdev->dev, chan->irq,
1373                                        stm32_dma_chan_irq, 0,
1374                                        dev_name(chan2dev(chan)), chan);
1375                 if (ret) {
1376                         dev_err(&pdev->dev,
1377                                 "request_irq failed with err %d channel %d\n",
1378                                 ret, i);
1379                         goto err_unregister;
1380                 }
1381         }
1382
1383         ret = of_dma_controller_register(pdev->dev.of_node,
1384                                          stm32_dma_of_xlate, dmadev);
1385         if (ret < 0) {
1386                 dev_err(&pdev->dev,
1387                         "STM32 DMA DMA OF registration failed %d\n", ret);
1388                 goto err_unregister;
1389         }
1390
1391         platform_set_drvdata(pdev, dmadev);
1392
1393         pm_runtime_set_active(&pdev->dev);
1394         pm_runtime_enable(&pdev->dev);
1395         pm_runtime_get_noresume(&pdev->dev);
1396         pm_runtime_put(&pdev->dev);
1397
1398         dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1399
1400         return 0;
1401
1402 err_unregister:
1403         dma_async_device_unregister(dd);
1404 clk_free:
1405         clk_disable_unprepare(dmadev->clk);
1406
1407         return ret;
1408 }
1409
1410 #ifdef CONFIG_PM
1411 static int stm32_dma_runtime_suspend(struct device *dev)
1412 {
1413         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1414
1415         clk_disable_unprepare(dmadev->clk);
1416
1417         return 0;
1418 }
1419
1420 static int stm32_dma_runtime_resume(struct device *dev)
1421 {
1422         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1423         int ret;
1424
1425         ret = clk_prepare_enable(dmadev->clk);
1426         if (ret) {
1427                 dev_err(dev, "failed to prepare_enable clock\n");
1428                 return ret;
1429         }
1430
1431         return 0;
1432 }
1433 #endif
1434
1435 #ifdef CONFIG_PM_SLEEP
1436 static int stm32_dma_suspend(struct device *dev)
1437 {
1438         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1439         int id, ret, scr;
1440
1441         ret = pm_runtime_get_sync(dev);
1442         if (ret < 0)
1443                 return ret;
1444
1445         for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1446                 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1447                 if (scr & STM32_DMA_SCR_EN) {
1448                         dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1449                         return -EBUSY;
1450                 }
1451         }
1452
1453         pm_runtime_put_sync(dev);
1454
1455         pm_runtime_force_suspend(dev);
1456
1457         return 0;
1458 }
1459
1460 static int stm32_dma_resume(struct device *dev)
1461 {
1462         return pm_runtime_force_resume(dev);
1463 }
1464 #endif
1465
1466 static const struct dev_pm_ops stm32_dma_pm_ops = {
1467         SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1468         SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1469                            stm32_dma_runtime_resume, NULL)
1470 };
1471
1472 static struct platform_driver stm32_dma_driver = {
1473         .driver = {
1474                 .name = "stm32-dma",
1475                 .of_match_table = stm32_dma_of_match,
1476                 .pm = &stm32_dma_pm_ops,
1477         },
1478         .probe = stm32_dma_probe,
1479 };
1480
1481 static int __init stm32_dma_init(void)
1482 {
1483         return platform_driver_register(&stm32_dma_driver);
1484 }
1485 subsys_initcall(stm32_dma_init);