1f1d9b897a49eb66db703cade8bb92dbf6329a2a
[oweals/u-boot.git] / drivers / ddr / fsl / ddr4_dimm_params.c
1 /*
2  * Copyright 2014-2016 Freescale Semiconductor, Inc.
3  * Copyright 2017-2018 NXP Semiconductor
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  *
7  * calculate the organization and timing parameter
8  * from ddr3 spd, please refer to the spec
9  * JEDEC standard No.21-C 4_01_02_12R23A.pdf
10  *
11  *
12  */
13
14 #include <common.h>
15 #include <fsl_ddr_sdram.h>
16
17 #include <fsl_ddr.h>
18
19 /*
20  * Calculate the Density of each Physical Rank.
21  * Returned size is in bytes.
22  *
23  * Total DIMM size =
24  * sdram capacity(bit) / 8 * primary bus width / sdram width
25  *                     * Logical Ranks per DIMM
26  *
27  * where: sdram capacity  = spd byte4[3:0]
28  *        primary bus width = spd byte13[2:0]
29  *        sdram width = spd byte12[2:0]
30  *        Logical Ranks per DIMM = spd byte12[5:3] for SDP, DDP, QDP
31  *                                 spd byte12{5:3] * spd byte6[6:4] for 3DS
32  *
33  * To simplify each rank size = total DIMM size / Number of Package Ranks
34  * where Number of Package Ranks = spd byte12[5:3]
35  *
36  * SPD byte4 - sdram density and banks
37  *      bit[3:0]        size(bit)       size(byte)
38  *      0000            256Mb           32MB
39  *      0001            512Mb           64MB
40  *      0010            1Gb             128MB
41  *      0011            2Gb             256MB
42  *      0100            4Gb             512MB
43  *      0101            8Gb             1GB
44  *      0110            16Gb            2GB
45  *      0111            32Gb            4GB
46  *
47  * SPD byte13 - module memory bus width
48  *      bit[2:0]        primary bus width
49  *      000             8bits
50  *      001             16bits
51  *      010             32bits
52  *      011             64bits
53  *
54  * SPD byte12 - module organization
55  *      bit[2:0]        sdram device width
56  *      000             4bits
57  *      001             8bits
58  *      010             16bits
59  *      011             32bits
60  *
61  * SPD byte12 - module organization
62  *      bit[5:3]        number of package ranks per DIMM
63  *      000             1
64  *      001             2
65  *      010             3
66  *      011             4
67  *
68  * SPD byte6 - SDRAM package type
69  *      bit[6:4]        Die count
70  *      000             1
71  *      001             2
72  *      010             3
73  *      011             4
74  *      100             5
75  *      101             6
76  *      110             7
77  *      111             8
78  *
79  * SPD byte6 - SRAM package type
80  *      bit[1:0]        Signal loading
81  *      00              Not specified
82  *      01              Multi load stack
83  *      10              Sigle load stack (3DS)
84  *      11              Reserved
85  */
86 static unsigned long long
87 compute_ranksize(const struct ddr4_spd_eeprom_s *spd)
88 {
89         unsigned long long bsize;
90
91         int nbit_sdram_cap_bsize = 0;
92         int nbit_primary_bus_width = 0;
93         int nbit_sdram_width = 0;
94         int die_count = 0;
95         bool package_3ds;
96
97         if ((spd->density_banks & 0xf) <= 7)
98                 nbit_sdram_cap_bsize = (spd->density_banks & 0xf) + 28;
99         if ((spd->bus_width & 0x7) < 4)
100                 nbit_primary_bus_width = (spd->bus_width & 0x7) + 3;
101         if ((spd->organization & 0x7) < 4)
102                 nbit_sdram_width = (spd->organization & 0x7) + 2;
103         package_3ds = (spd->package_type & 0x3) == 0x2;
104         if ((spd->package_type & 0x80) && !package_3ds) { /* other than 3DS */
105                 printf("Warning: not supported SDRAM package type\n");
106                 return 0;
107         }
108         if (package_3ds)
109                 die_count = (spd->package_type >> 4) & 0x7;
110
111         bsize = 1ULL << (nbit_sdram_cap_bsize - 3 +
112                          nbit_primary_bus_width - nbit_sdram_width +
113                          die_count);
114
115         debug("DDR: DDR rank density = 0x%16llx\n", bsize);
116
117         return bsize;
118 }
119
120 #define spd_to_ps(mtb, ftb)     \
121         (mtb * pdimm->mtb_ps + (ftb * pdimm->ftb_10th_ps) / 10)
122 /*
123  * ddr_compute_dimm_parameters for DDR4 SPD
124  *
125  * Compute DIMM parameters based upon the SPD information in spd.
126  * Writes the results to the dimm_params_t structure pointed by pdimm.
127  *
128  */
129 unsigned int ddr_compute_dimm_parameters(const unsigned int ctrl_num,
130                                          const generic_spd_eeprom_t *spd,
131                                          dimm_params_t *pdimm,
132                                          unsigned int dimm_number)
133 {
134         unsigned int retval;
135         int i;
136         const u8 udimm_rc_e_dq[18] = {
137                 0x0c, 0x2c, 0x15, 0x35, 0x15, 0x35, 0x0b, 0x2c, 0x15,
138                 0x35, 0x0b, 0x35, 0x0b, 0x2c, 0x0b, 0x35, 0x15, 0x36
139         };
140         int spd_error = 0;
141         u8 *ptr;
142
143         if (spd->mem_type) {
144                 if (spd->mem_type != SPD_MEMTYPE_DDR4) {
145                         printf("Ctrl %u DIMM %u: is not a DDR4 SPD.\n",
146                                ctrl_num, dimm_number);
147                         return 1;
148                 }
149         } else {
150                 memset(pdimm, 0, sizeof(dimm_params_t));
151                 return 1;
152         }
153
154         retval = ddr4_spd_check(spd);
155         if (retval) {
156                 printf("DIMM %u: failed checksum\n", dimm_number);
157                 return 2;
158         }
159
160         /*
161          * The part name in ASCII in the SPD EEPROM is not null terminated.
162          * Guarantee null termination here by presetting all bytes to 0
163          * and copying the part name in ASCII from the SPD onto it
164          */
165         memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
166         if ((spd->info_size_crc & 0xF) > 2)
167                 memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
168
169         /* DIMM organization parameters */
170         pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1;
171         pdimm->rank_density = compute_ranksize(spd);
172         pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
173         pdimm->die_density = spd->density_banks & 0xf;
174         pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7));
175         if ((spd->bus_width >> 3) & 0x3)
176                 pdimm->ec_sdram_width = 8;
177         else
178                 pdimm->ec_sdram_width = 0;
179         pdimm->data_width = pdimm->primary_sdram_width
180                           + pdimm->ec_sdram_width;
181         pdimm->device_width = 1 << ((spd->organization & 0x7) + 2);
182         pdimm->package_3ds = (spd->package_type & 0x3) == 0x2 ?
183                              (spd->package_type >> 4) & 0x7 : 0;
184
185         /* These are the types defined by the JEDEC SPD spec */
186         pdimm->mirrored_dimm = 0;
187         pdimm->registered_dimm = 0;
188         switch (spd->module_type & DDR4_SPD_MODULETYPE_MASK) {
189         case DDR4_SPD_MODULETYPE_RDIMM:
190                 /* Registered/buffered DIMMs */
191                 pdimm->registered_dimm = 1;
192                 if (spd->mod_section.registered.reg_map & 0x1)
193                         pdimm->mirrored_dimm = 1;
194                 break;
195
196         case DDR4_SPD_MODULETYPE_UDIMM:
197         case DDR4_SPD_MODULETYPE_SO_DIMM:
198                 /* Unbuffered DIMMs */
199                 if (spd->mod_section.unbuffered.addr_mapping & 0x1)
200                         pdimm->mirrored_dimm = 1;
201                 if ((spd->mod_section.unbuffered.mod_height & 0xe0) == 0 &&
202                     (spd->mod_section.unbuffered.ref_raw_card == 0x04)) {
203                         /* Fix SPD error found on DIMMs with raw card E0 */
204                         for (i = 0; i < 18; i++) {
205                                 if (spd->mapping[i] == udimm_rc_e_dq[i])
206                                         continue;
207                                 spd_error = 1;
208                                 debug("SPD byte %d: 0x%x, should be 0x%x\n",
209                                       60 + i, spd->mapping[i],
210                                       udimm_rc_e_dq[i]);
211                                 ptr = (u8 *)&spd->mapping[i];
212                                 *ptr = udimm_rc_e_dq[i];
213                         }
214                         if (spd_error)
215                                 puts("SPD DQ mapping error fixed\n");
216                 }
217                 break;
218
219         default:
220                 printf("unknown module_type 0x%02X\n", spd->module_type);
221                 return 1;
222         }
223
224         /* SDRAM device parameters */
225         pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12;
226         pdimm->n_col_addr = (spd->addressing & 0x7) + 9;
227         pdimm->bank_addr_bits = (spd->density_banks >> 4) & 0x3;
228         pdimm->bank_group_bits = (spd->density_banks >> 6) & 0x3;
229
230         /*
231          * The SPD spec has not the ECC bit,
232          * We consider the DIMM as ECC capability
233          * when the extension bus exist
234          */
235         if (pdimm->ec_sdram_width)
236                 pdimm->edc_config = 0x02;
237         else
238                 pdimm->edc_config = 0x00;
239
240         /*
241          * The SPD spec has not the burst length byte
242          * but DDR4 spec has nature BL8 and BC4,
243          * BL8 -bit3, BC4 -bit2
244          */
245         pdimm->burst_lengths_bitmask = 0x0c;
246         pdimm->row_density = __ilog2(pdimm->rank_density);
247
248         /* MTB - medium timebase
249          * The MTB in the SPD spec is 125ps,
250          *
251          * FTB - fine timebase
252          * use 1/10th of ps as our unit to avoid floating point
253          * eg, 10 for 1ps, 25 for 2.5ps, 50 for 5ps
254          */
255         if ((spd->timebases & 0xf) == 0x0) {
256                 pdimm->mtb_ps = 125;
257                 pdimm->ftb_10th_ps = 10;
258
259         } else {
260                 printf("Unknown Timebases\n");
261         }
262
263         /* sdram minimum cycle time */
264         pdimm->tckmin_x_ps = spd_to_ps(spd->tck_min, spd->fine_tck_min);
265
266         /* sdram max cycle time */
267         pdimm->tckmax_ps = spd_to_ps(spd->tck_max, spd->fine_tck_max);
268
269         /*
270          * CAS latency supported
271          * bit0 - CL7
272          * bit4 - CL11
273          * bit8 - CL15
274          * bit12- CL19
275          * bit16- CL23
276          */
277         pdimm->caslat_x  = (spd->caslat_b1 << 7)        |
278                            (spd->caslat_b2 << 15)       |
279                            (spd->caslat_b3 << 23);
280
281         BUG_ON(spd->caslat_b4 != 0);
282
283         /*
284          * min CAS latency time
285          */
286         pdimm->taa_ps = spd_to_ps(spd->taa_min, spd->fine_taa_min);
287
288         /*
289          * min RAS to CAS delay time
290          */
291         pdimm->trcd_ps = spd_to_ps(spd->trcd_min, spd->fine_trcd_min);
292
293         /*
294          * Min Row Precharge Delay Time
295          */
296         pdimm->trp_ps = spd_to_ps(spd->trp_min, spd->fine_trp_min);
297
298         /* min active to precharge delay time */
299         pdimm->tras_ps = (((spd->tras_trc_ext & 0xf) << 8) +
300                           spd->tras_min_lsb) * pdimm->mtb_ps;
301
302         /* min active to actice/refresh delay time */
303         pdimm->trc_ps = spd_to_ps((((spd->tras_trc_ext & 0xf0) << 4) +
304                                    spd->trc_min_lsb), spd->fine_trc_min);
305         /* Min Refresh Recovery Delay Time */
306         pdimm->trfc1_ps = ((spd->trfc1_min_msb << 8) | (spd->trfc1_min_lsb)) *
307                        pdimm->mtb_ps;
308         pdimm->trfc2_ps = ((spd->trfc2_min_msb << 8) | (spd->trfc2_min_lsb)) *
309                        pdimm->mtb_ps;
310         pdimm->trfc4_ps = ((spd->trfc4_min_msb << 8) | (spd->trfc4_min_lsb)) *
311                         pdimm->mtb_ps;
312         /* min four active window delay time */
313         pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min) *
314                         pdimm->mtb_ps;
315
316         /* min row active to row active delay time, different bank group */
317         pdimm->trrds_ps = spd_to_ps(spd->trrds_min, spd->fine_trrds_min);
318         /* min row active to row active delay time, same bank group */
319         pdimm->trrdl_ps = spd_to_ps(spd->trrdl_min, spd->fine_trrdl_min);
320         /* min CAS to CAS Delay Time (tCCD_Lmin), same bank group */
321         pdimm->tccdl_ps = spd_to_ps(spd->tccdl_min, spd->fine_tccdl_min);
322
323         if (pdimm->package_3ds) {
324                 if (pdimm->die_density <= 0x4) {
325                         pdimm->trfc_slr_ps = 260000;
326                 } else if (pdimm->die_density <= 0x5) {
327                         pdimm->trfc_slr_ps = 350000;
328                 } else {
329                         printf("WARN: Unsupported logical rank density 0x%x\n",
330                                pdimm->die_density);
331                 }
332         }
333
334         /*
335          * Average periodic refresh interval
336          * tREFI = 7.8 us at normal temperature range
337          */
338         pdimm->refresh_rate_ps = 7800000;
339
340         for (i = 0; i < 18; i++)
341                 pdimm->dq_mapping[i] = spd->mapping[i];
342
343         pdimm->dq_mapping_ors = ((spd->mapping[0] >> 6) & 0x3) == 0 ? 1 : 0;
344
345         return 0;
346 }