ddr: altera: Clean up initialize_reg_file()
[oweals/u-boot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15
16 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group);
17
18 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
19         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
20
21 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
22         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
23
24 static struct socfpga_sdr_reg_file *sdr_reg_file =
25         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
26
27 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
28         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
29
30 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
31         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
32
33 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
34         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
35
36 static struct socfpga_data_mgr *data_mgr =
37         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
38
39 static struct socfpga_sdr_ctrl *sdr_ctrl =
40         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
41
42 #define DELTA_D         1
43
44 /*
45  * In order to reduce ROM size, most of the selectable calibration steps are
46  * decided at compile time based on the user's calibration mode selection,
47  * as captured by the STATIC_CALIB_STEPS selection below.
48  *
49  * However, to support simulation-time selection of fast simulation mode, where
50  * we skip everything except the bare minimum, we need a few of the steps to
51  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
52  * check, which is based on the rtl-supplied value, or we dynamically compute
53  * the value to use based on the dynamically-chosen calibration mode
54  */
55
56 #define DLEVEL 0
57 #define STATIC_IN_RTL_SIM 0
58 #define STATIC_SKIP_DELAY_LOOPS 0
59
60 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
61         STATIC_SKIP_DELAY_LOOPS)
62
63 /* calibration steps requested by the rtl */
64 uint16_t dyn_calib_steps;
65
66 /*
67  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
68  * instead of static, we use boolean logic to select between
69  * non-skip and skip values
70  *
71  * The mask is set to include all bits when not-skipping, but is
72  * zero when skipping
73  */
74
75 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
76
77 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
78         ((non_skip_value) & skip_delay_mask)
79
80 struct gbl_type *gbl;
81 struct param_type *param;
82 uint32_t curr_shadow_reg;
83
84 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
85         uint32_t write_group, uint32_t use_dm,
86         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
87
88 static void set_failing_group_stage(uint32_t group, uint32_t stage,
89         uint32_t substage)
90 {
91         /*
92          * Only set the global stage if there was not been any other
93          * failing group
94          */
95         if (gbl->error_stage == CAL_STAGE_NIL)  {
96                 gbl->error_substage = substage;
97                 gbl->error_stage = stage;
98                 gbl->error_group = group;
99         }
100 }
101
102 static void reg_file_set_group(uint32_t set_group)
103 {
104         /* Read the current group and stage */
105         uint32_t cur_stage_group = readl(&sdr_reg_file->cur_stage);
106
107         /* Clear the group */
108         cur_stage_group &= 0x0000FFFF;
109
110         /* Set the group */
111         cur_stage_group |= (set_group << 16);
112
113         /* Write the data back */
114         writel(cur_stage_group, &sdr_reg_file->cur_stage);
115 }
116
117 static void reg_file_set_stage(uint32_t set_stage)
118 {
119         /* Read the current group and stage */
120         uint32_t cur_stage_group = readl(&sdr_reg_file->cur_stage);
121
122         /* Clear the stage and substage */
123         cur_stage_group &= 0xFFFF0000;
124
125         /* Set the stage */
126         cur_stage_group |= (set_stage & 0x000000FF);
127
128         /* Write the data back */
129         writel(cur_stage_group, &sdr_reg_file->cur_stage);
130 }
131
132 static void reg_file_set_sub_stage(uint32_t set_sub_stage)
133 {
134         /* Read the current group and stage */
135         uint32_t cur_stage_group = readl(&sdr_reg_file->cur_stage);
136
137         /* Clear the substage */
138         cur_stage_group &= 0xFFFF00FF;
139
140         /* Set the sub stage */
141         cur_stage_group |= ((set_sub_stage << 8) & 0x0000FF00);
142
143         /* Write the data back */
144         writel(cur_stage_group, &sdr_reg_file->cur_stage);
145 }
146
147 static void initialize(void)
148 {
149         debug("%s:%d\n", __func__, __LINE__);
150         /* USER calibration has control over path to memory */
151         /*
152          * In Hard PHY this is a 2-bit control:
153          * 0: AFI Mux Select
154          * 1: DDIO Mux Select
155          */
156         writel(0x3, &phy_mgr_cfg->mux_sel);
157
158         /* USER memory clock is not stable we begin initialization  */
159         writel(0, &phy_mgr_cfg->reset_mem_stbl);
160
161         /* USER calibration status all set to zero */
162         writel(0, &phy_mgr_cfg->cal_status);
163
164         writel(0, &phy_mgr_cfg->cal_debug_info);
165
166         if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
167                 param->read_correct_mask_vg  = ((uint32_t)1 <<
168                         (RW_MGR_MEM_DQ_PER_READ_DQS /
169                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
170                 param->write_correct_mask_vg = ((uint32_t)1 <<
171                         (RW_MGR_MEM_DQ_PER_READ_DQS /
172                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
173                 param->read_correct_mask     = ((uint32_t)1 <<
174                         RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
175                 param->write_correct_mask    = ((uint32_t)1 <<
176                         RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
177                 param->dm_correct_mask       = ((uint32_t)1 <<
178                         (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
179                         - 1;
180         }
181 }
182
183 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
184 {
185         uint32_t odt_mask_0 = 0;
186         uint32_t odt_mask_1 = 0;
187         uint32_t cs_and_odt_mask;
188
189         if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
190                 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
191                         /*
192                          * 1 Rank
193                          * Read: ODT = 0
194                          * Write: ODT = 1
195                          */
196                         odt_mask_0 = 0x0;
197                         odt_mask_1 = 0x1;
198                 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
199                         /* 2 Ranks */
200                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
201                                 /* - Dual-Slot , Single-Rank
202                                  * (1 chip-select per DIMM)
203                                  * OR
204                                  * - RDIMM, 4 total CS (2 CS per DIMM)
205                                  * means 2 DIMM
206                                  * Since MEM_NUMBER_OF_RANKS is 2 they are
207                                  * both single rank
208                                  * with 2 CS each (special for RDIMM)
209                                  * Read: Turn on ODT on the opposite rank
210                                  * Write: Turn on ODT on all ranks
211                                  */
212                                 odt_mask_0 = 0x3 & ~(1 << rank);
213                                 odt_mask_1 = 0x3;
214                         } else {
215                                 /*
216                                  * USER - Single-Slot , Dual-rank DIMMs
217                                  * (2 chip-selects per DIMM)
218                                  * USER Read: Turn on ODT off on all ranks
219                                  * USER Write: Turn on ODT on active rank
220                                  */
221                                 odt_mask_0 = 0x0;
222                                 odt_mask_1 = 0x3 & (1 << rank);
223                         }
224                 } else {
225                         /* 4 Ranks
226                          * Read:
227                          * ----------+-----------------------+
228                          *           |                       |
229                          *           |         ODT           |
230                          * Read From +-----------------------+
231                          *   Rank    |  3  |  2  |  1  |  0  |
232                          * ----------+-----+-----+-----+-----+
233                          *     0     |  0  |  1  |  0  |  0  |
234                          *     1     |  1  |  0  |  0  |  0  |
235                          *     2     |  0  |  0  |  0  |  1  |
236                          *     3     |  0  |  0  |  1  |  0  |
237                          * ----------+-----+-----+-----+-----+
238                          *
239                          * Write:
240                          * ----------+-----------------------+
241                          *           |                       |
242                          *           |         ODT           |
243                          * Write To  +-----------------------+
244                          *   Rank    |  3  |  2  |  1  |  0  |
245                          * ----------+-----+-----+-----+-----+
246                          *     0     |  0  |  1  |  0  |  1  |
247                          *     1     |  1  |  0  |  1  |  0  |
248                          *     2     |  0  |  1  |  0  |  1  |
249                          *     3     |  1  |  0  |  1  |  0  |
250                          * ----------+-----+-----+-----+-----+
251                          */
252                         switch (rank) {
253                         case 0:
254                                 odt_mask_0 = 0x4;
255                                 odt_mask_1 = 0x5;
256                                 break;
257                         case 1:
258                                 odt_mask_0 = 0x8;
259                                 odt_mask_1 = 0xA;
260                                 break;
261                         case 2:
262                                 odt_mask_0 = 0x1;
263                                 odt_mask_1 = 0x5;
264                                 break;
265                         case 3:
266                                 odt_mask_0 = 0x2;
267                                 odt_mask_1 = 0xA;
268                                 break;
269                         }
270                 }
271         } else {
272                 odt_mask_0 = 0x0;
273                 odt_mask_1 = 0x0;
274         }
275
276         cs_and_odt_mask =
277                 (0xFF & ~(1 << rank)) |
278                 ((0xFF & odt_mask_0) << 8) |
279                 ((0xFF & odt_mask_1) << 16);
280         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
281                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
282 }
283
284 static void scc_mgr_initialize(void)
285 {
286         u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_RFILE_OFFSET;
287
288         /*
289          * Clear register file for HPS
290          * 16 (2^4) is the size of the full register file in the scc mgr:
291          *      RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
292          * MEM_IF_READ_DQS_WIDTH - 1) + 1;
293          */
294         uint32_t i;
295         for (i = 0; i < 16; i++) {
296                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
297                            __func__, __LINE__, i);
298                 writel(0, addr + (i << 2));
299         }
300 }
301
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group,
303                                                 uint32_t delay)
304 {
305         u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
306
307         /* Load the setting in the SCC manager */
308         writel(delay, addr + (read_group << 2));
309 }
310
311 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group,
312         uint32_t delay)
313 {
314         u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
315
316         writel(delay, addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
317 }
318
319 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
320 {
321         u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_EN_PHASE_OFFSET;
322
323         /* Load the setting in the SCC manager */
324         writel(phase, addr + (read_group << 2));
325 }
326
327 static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group,
328                                                uint32_t phase)
329 {
330         uint32_t r;
331         uint32_t update_scan_chains;
332
333         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
334              r += NUM_RANKS_PER_SHADOW_REG) {
335                 /*
336                  * USER although the h/w doesn't support different phases per
337                  * shadow register, for simplicity our scc manager modeling
338                  * keeps different phase settings per shadow reg, and it's
339                  * important for us to keep them in sync to match h/w.
340                  * for efficiency, the scan chain update should occur only
341                  * once to sr0.
342                  */
343                 update_scan_chains = (r == 0) ? 1 : 0;
344
345                 scc_mgr_set_dqs_en_phase(read_group, phase);
346
347                 if (update_scan_chains) {
348                         writel(read_group, &sdr_scc_mgr->dqs_ena);
349                         writel(0, &sdr_scc_mgr->update);
350                 }
351         }
352 }
353
354 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group,
355                                                   uint32_t phase)
356 {
357         u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQDQS_OUT_PHASE_OFFSET;
358
359         /* Load the setting in the SCC manager */
360         writel(phase, addr + (write_group << 2));
361 }
362
363 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
364                                                      uint32_t phase)
365 {
366         uint32_t r;
367         uint32_t update_scan_chains;
368
369         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
370              r += NUM_RANKS_PER_SHADOW_REG) {
371                 /*
372                  * USER although the h/w doesn't support different phases per
373                  * shadow register, for simplicity our scc manager modeling
374                  * keeps different phase settings per shadow reg, and it's
375                  * important for us to keep them in sync to match h/w.
376                  * for efficiency, the scan chain update should occur only
377                  * once to sr0.
378                  */
379                 update_scan_chains = (r == 0) ? 1 : 0;
380
381                 scc_mgr_set_dqdqs_output_phase(write_group, phase);
382
383                 if (update_scan_chains) {
384                         writel(write_group, &sdr_scc_mgr->dqs_ena);
385                         writel(0, &sdr_scc_mgr->update);
386                 }
387         }
388 }
389
390 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
391 {
392         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_EN_DELAY_OFFSET;
393
394         /* Load the setting in the SCC manager */
395         writel(delay + IO_DQS_EN_DELAY_OFFSET, addr +
396                (read_group << 2));
397 }
398
399 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
400                                                uint32_t delay)
401 {
402         uint32_t r;
403
404         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
405                 r += NUM_RANKS_PER_SHADOW_REG) {
406                 scc_mgr_set_dqs_en_delay(read_group, delay);
407
408                 writel(read_group, &sdr_scc_mgr->dqs_ena);
409                 /*
410                  * In shadow register mode, the T11 settings are stored in
411                  * registers in the core, which are updated by the DQS_ENA
412                  * signals. Not issuing the SCC_MGR_UPD command allows us to
413                  * save lots of rank switching overhead, by calling
414                  * select_shadow_regs_for_update with update_scan_chains
415                  * set to 0.
416                  */
417                 writel(0, &sdr_scc_mgr->update);
418         }
419         /*
420          * In shadow register mode, the T11 settings are stored in
421          * registers in the core, which are updated by the DQS_ENA
422          * signals. Not issuing the SCC_MGR_UPD command allows us to
423          * save lots of rank switching overhead, by calling
424          * select_shadow_regs_for_update with update_scan_chains
425          * set to 0.
426          */
427         writel(0, &sdr_scc_mgr->update);
428 }
429
430 static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay)
431 {
432         uint32_t read_group;
433         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_OCT_OUT1_DELAY_OFFSET;
434
435         /*
436          * Load the setting in the SCC manager
437          * Although OCT affects only write data, the OCT delay is controlled
438          * by the DQS logic block which is instantiated once per read group.
439          * For protocols where a write group consists of multiple read groups,
440          * the setting must be set multiple times.
441          */
442         for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
443              RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
444              read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
445              RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
446                 writel(delay, addr + (read_group << 2));
447 }
448
449 static void scc_mgr_set_dq_out1_delay(uint32_t write_group,
450                                       uint32_t dq_in_group, uint32_t delay)
451 {
452         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
453
454         /* Load the setting in the SCC manager */
455         writel(delay, addr + (dq_in_group << 2));
456 }
457
458 static void scc_mgr_set_dq_in_delay(uint32_t write_group,
459         uint32_t dq_in_group, uint32_t delay)
460 {
461         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
462
463         /* Load the setting in the SCC manager */
464         writel(delay, addr + (dq_in_group << 2));
465 }
466
467 static void scc_mgr_set_hhp_extras(void)
468 {
469         /*
470          * Load the fixed setting in the SCC manager
471          * bits: 0:0 = 1'b1   - dqs bypass
472          * bits: 1:1 = 1'b1   - dq bypass
473          * bits: 4:2 = 3'b001   - rfifo_mode
474          * bits: 6:5 = 2'b01  - rfifo clock_select
475          * bits: 7:7 = 1'b0  - separate gating from ungating setting
476          * bits: 8:8 = 1'b0  - separate OE from Output delay setting
477          */
478         uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
479         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET;
480
481         writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET);
482 }
483
484 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group,
485                                               uint32_t delay)
486 {
487         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
488
489         /* Load the setting in the SCC manager */
490         writel(delay, addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
491 }
492
493 static void scc_mgr_set_dm_out1_delay(uint32_t write_group,
494                                              uint32_t dm, uint32_t delay)
495 {
496         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
497
498         /* Load the setting in the SCC manager */
499         writel(delay, addr +
500                 ((RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm) << 2));
501 }
502
503 /*
504  * USER Zero all DQS config
505  * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
506  */
507 static void scc_mgr_zero_all(void)
508 {
509         uint32_t i, r;
510
511         /*
512          * USER Zero all DQS config settings, across all groups and all
513          * shadow registers
514          */
515         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
516              NUM_RANKS_PER_SHADOW_REG) {
517                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
518                         /*
519                          * The phases actually don't exist on a per-rank basis,
520                          * but there's no harm updating them several times, so
521                          * let's keep the code simple.
522                          */
523                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
524                         scc_mgr_set_dqs_en_phase(i, 0);
525                         scc_mgr_set_dqs_en_delay(i, 0);
526                 }
527
528                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
529                         scc_mgr_set_dqdqs_output_phase(i, 0);
530                         /* av/cv don't have out2 */
531                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
532                 }
533         }
534
535         /* multicast to all DQS group enables */
536         writel(0xff, &sdr_scc_mgr->dqs_ena);
537         writel(0, &sdr_scc_mgr->update);
538 }
539
540 static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode)
541 {
542         /* mode = 0 : Do NOT bypass - Half Rate Mode */
543         /* mode = 1 : Bypass - Full Rate Mode */
544
545         /* only need to set once for all groups, pins, dq, dqs, dm */
546         if (write_group == 0) {
547                 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__,
548                            __LINE__);
549                 scc_mgr_set_hhp_extras();
550                 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
551                           __func__, __LINE__);
552         }
553         /* multicast to all DQ enables */
554         writel(0xff, &sdr_scc_mgr->dq_ena);
555         writel(0xff, &sdr_scc_mgr->dm_ena);
556
557         /* update current DQS IO enable */
558         writel(0, &sdr_scc_mgr->dqs_io_ena);
559
560         /* update the DQS logic */
561         writel(write_group, &sdr_scc_mgr->dqs_ena);
562
563         /* hit update */
564         writel(0, &sdr_scc_mgr->update);
565 }
566
567 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
568                                int32_t out_only)
569 {
570         uint32_t i, r;
571
572         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
573                 NUM_RANKS_PER_SHADOW_REG) {
574                 /* Zero all DQ config settings */
575                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
576                         scc_mgr_set_dq_out1_delay(write_group, i, 0);
577                         if (!out_only)
578                                 scc_mgr_set_dq_in_delay(write_group, i, 0);
579                 }
580
581                 /* multicast to all DQ enables */
582                 writel(0xff, &sdr_scc_mgr->dq_ena);
583
584                 /* Zero all DM config settings */
585                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
586                         scc_mgr_set_dm_out1_delay(write_group, i, 0);
587                 }
588
589                 /* multicast to all DM enables */
590                 writel(0xff, &sdr_scc_mgr->dm_ena);
591
592                 /* zero all DQS io settings */
593                 if (!out_only)
594                         scc_mgr_set_dqs_io_in_delay(write_group, 0);
595                 /* av/cv don't have out2 */
596                 scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
597                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
598                 scc_mgr_load_dqs_for_write_group(write_group);
599
600                 /* multicast to all DQS IO enables (only 1) */
601                 writel(0, &sdr_scc_mgr->dqs_io_ena);
602
603                 /* hit update to zero everything */
604                 writel(0, &sdr_scc_mgr->update);
605         }
606 }
607
608 /* load up dqs config settings */
609 static void scc_mgr_load_dqs(uint32_t dqs)
610 {
611         writel(dqs, &sdr_scc_mgr->dqs_ena);
612 }
613
614 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group)
615 {
616         uint32_t read_group;
617         uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena;
618         /*
619          * Although OCT affects only write data, the OCT delay is controlled
620          * by the DQS logic block which is instantiated once per read group.
621          * For protocols where a write group consists of multiple read groups,
622          * the setting must be scanned multiple times.
623          */
624         for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
625              RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
626              read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
627              RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
628                 writel(read_group, addr);
629 }
630
631 /* load up dqs io config settings */
632 static void scc_mgr_load_dqs_io(void)
633 {
634         writel(0, &sdr_scc_mgr->dqs_io_ena);
635 }
636
637 /* load up dq config settings */
638 static void scc_mgr_load_dq(uint32_t dq_in_group)
639 {
640         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
641 }
642
643 /* load up dm config settings */
644 static void scc_mgr_load_dm(uint32_t dm)
645 {
646         writel(dm, &sdr_scc_mgr->dm_ena);
647 }
648
649 /*
650  * apply and load a particular input delay for the DQ pins in a group
651  * group_bgn is the index of the first dq pin (in the write group)
652  */
653 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group,
654                                             uint32_t group_bgn, uint32_t delay)
655 {
656         uint32_t i, p;
657
658         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
659                 scc_mgr_set_dq_in_delay(write_group, p, delay);
660                 scc_mgr_load_dq(p);
661         }
662 }
663
664 /* apply and load a particular output delay for the DQ pins in a group */
665 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group,
666                                               uint32_t group_bgn,
667                                               uint32_t delay1)
668 {
669         uint32_t i, p;
670
671         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
672                 scc_mgr_set_dq_out1_delay(write_group, i, delay1);
673                 scc_mgr_load_dq(i);
674         }
675 }
676
677 /* apply and load a particular output delay for the DM pins in a group */
678 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group,
679                                               uint32_t delay1)
680 {
681         uint32_t i;
682
683         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
684                 scc_mgr_set_dm_out1_delay(write_group, i, delay1);
685                 scc_mgr_load_dm(i);
686         }
687 }
688
689
690 /* apply and load delay on both DQS and OCT out1 */
691 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
692                                                     uint32_t delay)
693 {
694         scc_mgr_set_dqs_out1_delay(write_group, delay);
695         scc_mgr_load_dqs_io();
696
697         scc_mgr_set_oct_out1_delay(write_group, delay);
698         scc_mgr_load_dqs_for_write_group(write_group);
699 }
700
701 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */
702 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
703                                                   uint32_t group_bgn,
704                                                   uint32_t delay)
705 {
706         uint32_t i, p, new_delay;
707
708         /* dq shift */
709         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
710                 new_delay = READ_SCC_DQ_OUT2_DELAY;
711                 new_delay += delay;
712
713                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
714                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
715                                    %u > %lu => %lu", __func__, __LINE__,
716                                    write_group, group_bgn, delay, i, p, new_delay,
717                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
718                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
719                         new_delay = IO_IO_OUT2_DELAY_MAX;
720                 }
721
722                 scc_mgr_load_dq(i);
723         }
724
725         /* dm shift */
726         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
727                 new_delay = READ_SCC_DM_IO_OUT2_DELAY;
728                 new_delay += delay;
729
730                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
731                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
732                                    %u > %lu => %lu\n",  __func__, __LINE__,
733                                    write_group, group_bgn, delay, i, new_delay,
734                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
735                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
736                         new_delay = IO_IO_OUT2_DELAY_MAX;
737                 }
738
739                 scc_mgr_load_dm(i);
740         }
741
742         /* dqs shift */
743         new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
744         new_delay += delay;
745
746         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
747                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
748                            " adding %u to OUT1\n", __func__, __LINE__,
749                            write_group, group_bgn, delay, new_delay,
750                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
751                            new_delay - IO_IO_OUT2_DELAY_MAX);
752                 scc_mgr_set_dqs_out1_delay(write_group, new_delay -
753                                            IO_IO_OUT2_DELAY_MAX);
754                 new_delay = IO_IO_OUT2_DELAY_MAX;
755         }
756
757         scc_mgr_load_dqs_io();
758
759         /* oct shift */
760         new_delay = READ_SCC_OCT_OUT2_DELAY;
761         new_delay += delay;
762
763         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
764                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
765                            " adding %u to OUT1\n", __func__, __LINE__,
766                            write_group, group_bgn, delay, new_delay,
767                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
768                            new_delay - IO_IO_OUT2_DELAY_MAX);
769                 scc_mgr_set_oct_out1_delay(write_group, new_delay -
770                                            IO_IO_OUT2_DELAY_MAX);
771                 new_delay = IO_IO_OUT2_DELAY_MAX;
772         }
773
774         scc_mgr_load_dqs_for_write_group(write_group);
775 }
776
777 /*
778  * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
779  * and to all ranks
780  */
781 static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
782         uint32_t write_group, uint32_t group_bgn, uint32_t delay)
783 {
784         uint32_t r;
785
786         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
787                 r += NUM_RANKS_PER_SHADOW_REG) {
788                 scc_mgr_apply_group_all_out_delay_add(write_group,
789                                                       group_bgn, delay);
790                 writel(0, &sdr_scc_mgr->update);
791         }
792 }
793
794 /* optimization used to recover some slots in ddr3 inst_rom */
795 /* could be applied to other protocols if we wanted to */
796 static void set_jump_as_return(void)
797 {
798         /*
799          * to save space, we replace return with jump to special shared
800          * RETURN instruction so we set the counter to large value so that
801          * we always jump
802          */
803         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
804         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
805 }
806
807 /*
808  * should always use constants as argument to ensure all computations are
809  * performed at compile time
810  */
811 static void delay_for_n_mem_clocks(const uint32_t clocks)
812 {
813         uint32_t afi_clocks;
814         uint8_t inner = 0;
815         uint8_t outer = 0;
816         uint16_t c_loop = 0;
817
818         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
819
820
821         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
822         /* scale (rounding up) to get afi clocks */
823
824         /*
825          * Note, we don't bother accounting for being off a little bit
826          * because of a few extra instructions in outer loops
827          * Note, the loops have a test at the end, and do the test before
828          * the decrement, and so always perform the loop
829          * 1 time more than the counter value
830          */
831         if (afi_clocks == 0) {
832                 ;
833         } else if (afi_clocks <= 0x100) {
834                 inner = afi_clocks-1;
835                 outer = 0;
836                 c_loop = 0;
837         } else if (afi_clocks <= 0x10000) {
838                 inner = 0xff;
839                 outer = (afi_clocks-1) >> 8;
840                 c_loop = 0;
841         } else {
842                 inner = 0xff;
843                 outer = 0xff;
844                 c_loop = (afi_clocks-1) >> 16;
845         }
846
847         /*
848          * rom instructions are structured as follows:
849          *
850          *    IDLE_LOOP2: jnz cntr0, TARGET_A
851          *    IDLE_LOOP1: jnz cntr1, TARGET_B
852          *                return
853          *
854          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
855          * TARGET_B is set to IDLE_LOOP2 as well
856          *
857          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
858          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
859          *
860          * a little confusing, but it helps save precious space in the inst_rom
861          * and sequencer rom and keeps the delays more accurate and reduces
862          * overhead
863          */
864         if (afi_clocks <= 0x100) {
865                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
866                         &sdr_rw_load_mgr_regs->load_cntr1);
867
868                 writel(RW_MGR_IDLE_LOOP1,
869                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
870
871                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
872                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
873         } else {
874                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
875                         &sdr_rw_load_mgr_regs->load_cntr0);
876
877                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
878                         &sdr_rw_load_mgr_regs->load_cntr1);
879
880                 writel(RW_MGR_IDLE_LOOP2,
881                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
882
883                 writel(RW_MGR_IDLE_LOOP2,
884                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
885
886                 /* hack to get around compiler not being smart enough */
887                 if (afi_clocks <= 0x10000) {
888                         /* only need to run once */
889                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
890                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
891                 } else {
892                         do {
893                                 writel(RW_MGR_IDLE_LOOP2,
894                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
895                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
896                         } while (c_loop-- != 0);
897                 }
898         }
899         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
900 }
901
902 static void rw_mgr_mem_initialize(void)
903 {
904         uint32_t r;
905         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
906                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
907
908         debug("%s:%d\n", __func__, __LINE__);
909
910         /* The reset / cke part of initialization is broadcasted to all ranks */
911         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
912                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
913
914         /*
915          * Here's how you load register for a loop
916          * Counters are located @ 0x800
917          * Jump address are located @ 0xC00
918          * For both, registers 0 to 3 are selected using bits 3 and 2, like
919          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
920          * I know this ain't pretty, but Avalon bus throws away the 2 least
921          * significant bits
922          */
923
924         /* start with memory RESET activated */
925
926         /* tINIT = 200us */
927
928         /*
929          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
930          * If a and b are the number of iteration in 2 nested loops
931          * it takes the following number of cycles to complete the operation:
932          * number_of_cycles = ((2 + n) * a + 2) * b
933          * where n is the number of instruction in the inner loop
934          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
935          * b = 6A
936          */
937
938         /* Load counters */
939         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
940                &sdr_rw_load_mgr_regs->load_cntr0);
941         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
942                &sdr_rw_load_mgr_regs->load_cntr1);
943         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
944                &sdr_rw_load_mgr_regs->load_cntr2);
945
946         /* Load jump address */
947         writel(RW_MGR_INIT_RESET_0_CKE_0,
948                 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
949         writel(RW_MGR_INIT_RESET_0_CKE_0,
950                 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
951         writel(RW_MGR_INIT_RESET_0_CKE_0,
952                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
953
954         /* Execute count instruction */
955         writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr);
956
957         /* indicate that memory is stable */
958         writel(1, &phy_mgr_cfg->reset_mem_stbl);
959
960         /*
961          * transition the RESET to high
962          * Wait for 500us
963          */
964
965         /*
966          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
967          * If a and b are the number of iteration in 2 nested loops
968          * it takes the following number of cycles to complete the operation
969          * number_of_cycles = ((2 + n) * a + 2) * b
970          * where n is the number of instruction in the inner loop
971          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
972          * b = FF
973          */
974
975         /* Load counters */
976         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
977                &sdr_rw_load_mgr_regs->load_cntr0);
978         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
979                &sdr_rw_load_mgr_regs->load_cntr1);
980         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
981                &sdr_rw_load_mgr_regs->load_cntr2);
982
983         /* Load jump address */
984         writel(RW_MGR_INIT_RESET_1_CKE_0,
985                 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
986         writel(RW_MGR_INIT_RESET_1_CKE_0,
987                 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
988         writel(RW_MGR_INIT_RESET_1_CKE_0,
989                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
990
991         writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr);
992
993         /* bring up clock enable */
994
995         /* tXRP < 250 ck cycles */
996         delay_for_n_mem_clocks(250);
997
998         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
999                 if (param->skip_ranks[r]) {
1000                         /* request to skip the rank */
1001                         continue;
1002                 }
1003
1004                 /* set rank */
1005                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1006
1007                 /*
1008                  * USER Use Mirror-ed commands for odd ranks if address
1009                  * mirrorring is on
1010                  */
1011                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1012                         set_jump_as_return();
1013                         writel(RW_MGR_MRS2_MIRR, grpaddr);
1014                         delay_for_n_mem_clocks(4);
1015                         set_jump_as_return();
1016                         writel(RW_MGR_MRS3_MIRR, grpaddr);
1017                         delay_for_n_mem_clocks(4);
1018                         set_jump_as_return();
1019                         writel(RW_MGR_MRS1_MIRR, grpaddr);
1020                         delay_for_n_mem_clocks(4);
1021                         set_jump_as_return();
1022                         writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr);
1023                 } else {
1024                         set_jump_as_return();
1025                         writel(RW_MGR_MRS2, grpaddr);
1026                         delay_for_n_mem_clocks(4);
1027                         set_jump_as_return();
1028                         writel(RW_MGR_MRS3, grpaddr);
1029                         delay_for_n_mem_clocks(4);
1030                         set_jump_as_return();
1031                         writel(RW_MGR_MRS1, grpaddr);
1032                         set_jump_as_return();
1033                         writel(RW_MGR_MRS0_DLL_RESET, grpaddr);
1034                 }
1035                 set_jump_as_return();
1036                 writel(RW_MGR_ZQCL, grpaddr);
1037
1038                 /* tZQinit = tDLLK = 512 ck cycles */
1039                 delay_for_n_mem_clocks(512);
1040         }
1041 }
1042
1043 /*
1044  * At the end of calibration we have to program the user settings in, and
1045  * USER  hand off the memory to the user.
1046  */
1047 static void rw_mgr_mem_handoff(void)
1048 {
1049         uint32_t r;
1050         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1051                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1052
1053         debug("%s:%d\n", __func__, __LINE__);
1054         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1055                 if (param->skip_ranks[r])
1056                         /* request to skip the rank */
1057                         continue;
1058                 /* set rank */
1059                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1060
1061                 /* precharge all banks ... */
1062                 writel(RW_MGR_PRECHARGE_ALL, grpaddr);
1063
1064                 /* load up MR settings specified by user */
1065
1066                 /*
1067                  * Use Mirror-ed commands for odd ranks if address
1068                  * mirrorring is on
1069                  */
1070                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1071                         set_jump_as_return();
1072                         writel(RW_MGR_MRS2_MIRR, grpaddr);
1073                         delay_for_n_mem_clocks(4);
1074                         set_jump_as_return();
1075                         writel(RW_MGR_MRS3_MIRR, grpaddr);
1076                         delay_for_n_mem_clocks(4);
1077                         set_jump_as_return();
1078                         writel(RW_MGR_MRS1_MIRR, grpaddr);
1079                         delay_for_n_mem_clocks(4);
1080                         set_jump_as_return();
1081                         writel(RW_MGR_MRS0_USER_MIRR, grpaddr);
1082                 } else {
1083                         set_jump_as_return();
1084                         writel(RW_MGR_MRS2, grpaddr);
1085                         delay_for_n_mem_clocks(4);
1086                         set_jump_as_return();
1087                         writel(RW_MGR_MRS3, grpaddr);
1088                         delay_for_n_mem_clocks(4);
1089                         set_jump_as_return();
1090                         writel(RW_MGR_MRS1, grpaddr);
1091                         delay_for_n_mem_clocks(4);
1092                         set_jump_as_return();
1093                         writel(RW_MGR_MRS0_USER, grpaddr);
1094                 }
1095                 /*
1096                  * USER  need to wait tMOD (12CK or 15ns) time before issuing
1097                  * other commands, but we will have plenty of NIOS cycles before
1098                  * actual handoff so its okay.
1099                  */
1100         }
1101 }
1102
1103 /*
1104  * performs a guaranteed read on the patterns we are going to use during a
1105  * read test to ensure memory works
1106  */
1107 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1108         uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1109         uint32_t all_ranks)
1110 {
1111         uint32_t r, vg;
1112         uint32_t correct_mask_vg;
1113         uint32_t tmp_bit_chk;
1114         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1115                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1116         uint32_t addr;
1117         uint32_t base_rw_mgr;
1118
1119         *bit_chk = param->read_correct_mask;
1120         correct_mask_vg = param->read_correct_mask_vg;
1121
1122         for (r = rank_bgn; r < rank_end; r++) {
1123                 if (param->skip_ranks[r])
1124                         /* request to skip the rank */
1125                         continue;
1126
1127                 /* set rank */
1128                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1129
1130                 /* Load up a constant bursts of read commands */
1131                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1132                 writel(RW_MGR_GUARANTEED_READ,
1133                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1134
1135                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1136                 writel(RW_MGR_GUARANTEED_READ_CONT,
1137                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1138
1139                 tmp_bit_chk = 0;
1140                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1141                         /* reset the fifos to get pointers to known state */
1142
1143                         writel(0, &phy_mgr_cmd->fifo_reset);
1144                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1145                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1146
1147                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1148                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1149
1150                         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1151                         writel(RW_MGR_GUARANTEED_READ, addr +
1152                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1153                                 vg) << 2));
1154
1155                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1156                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1157
1158                         if (vg == 0)
1159                                 break;
1160                 }
1161                 *bit_chk &= tmp_bit_chk;
1162         }
1163
1164         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1165         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1166
1167         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1168         debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1169                    %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1170                    (long unsigned int)(*bit_chk == param->read_correct_mask));
1171         return *bit_chk == param->read_correct_mask;
1172 }
1173
1174 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1175         (uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1176 {
1177         return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1178                 num_tries, bit_chk, 1);
1179 }
1180
1181 /* load up the patterns we are going to use during a read test */
1182 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1183         uint32_t all_ranks)
1184 {
1185         uint32_t r;
1186         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1187                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1188
1189         debug("%s:%d\n", __func__, __LINE__);
1190         for (r = rank_bgn; r < rank_end; r++) {
1191                 if (param->skip_ranks[r])
1192                         /* request to skip the rank */
1193                         continue;
1194
1195                 /* set rank */
1196                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1197
1198                 /* Load up a constant bursts */
1199                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1200
1201                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1202                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1203
1204                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1205
1206                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1207                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1208
1209                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1210
1211                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1212                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1213
1214                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1215
1216                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1217                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1218
1219                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1220                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1221         }
1222
1223         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1224 }
1225
1226 /*
1227  * try a read and see if it returns correct data back. has dummy reads
1228  * inserted into the mix used to align dqs enable. has more thorough checks
1229  * than the regular read test.
1230  */
1231 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1232         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1233         uint32_t all_groups, uint32_t all_ranks)
1234 {
1235         uint32_t r, vg;
1236         uint32_t correct_mask_vg;
1237         uint32_t tmp_bit_chk;
1238         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1239                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1240         uint32_t addr;
1241         uint32_t base_rw_mgr;
1242
1243         *bit_chk = param->read_correct_mask;
1244         correct_mask_vg = param->read_correct_mask_vg;
1245
1246         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1247                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1248
1249         for (r = rank_bgn; r < rank_end; r++) {
1250                 if (param->skip_ranks[r])
1251                         /* request to skip the rank */
1252                         continue;
1253
1254                 /* set rank */
1255                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1256
1257                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1258
1259                 writel(RW_MGR_READ_B2B_WAIT1,
1260                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1261
1262                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1263                 writel(RW_MGR_READ_B2B_WAIT2,
1264                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1265
1266                 if (quick_read_mode)
1267                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1268                         /* need at least two (1+1) reads to capture failures */
1269                 else if (all_groups)
1270                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1271                 else
1272                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1273
1274                 writel(RW_MGR_READ_B2B,
1275                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1276                 if (all_groups)
1277                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1278                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1279                                &sdr_rw_load_mgr_regs->load_cntr3);
1280                 else
1281                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1282
1283                 writel(RW_MGR_READ_B2B,
1284                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1285
1286                 tmp_bit_chk = 0;
1287                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1288                         /* reset the fifos to get pointers to known state */
1289                         writel(0, &phy_mgr_cmd->fifo_reset);
1290                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1291                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1292
1293                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1294                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1295
1296                         if (all_groups)
1297                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1298                         else
1299                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1300
1301                         writel(RW_MGR_READ_B2B, addr +
1302                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1303                                vg) << 2));
1304
1305                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1306                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1307
1308                         if (vg == 0)
1309                                 break;
1310                 }
1311                 *bit_chk &= tmp_bit_chk;
1312         }
1313
1314         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1315         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1316
1317         if (all_correct) {
1318                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1319                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1320                            (%u == %u) => %lu", __func__, __LINE__, group,
1321                            all_groups, *bit_chk, param->read_correct_mask,
1322                            (long unsigned int)(*bit_chk ==
1323                            param->read_correct_mask));
1324                 return *bit_chk == param->read_correct_mask;
1325         } else  {
1326                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1327                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1328                            (%u != %lu) => %lu\n", __func__, __LINE__,
1329                            group, all_groups, *bit_chk, (long unsigned int)0,
1330                            (long unsigned int)(*bit_chk != 0x00));
1331                 return *bit_chk != 0x00;
1332         }
1333 }
1334
1335 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1336         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1337         uint32_t all_groups)
1338 {
1339         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1340                                               bit_chk, all_groups, 1);
1341 }
1342
1343 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1344 {
1345         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1346         (*v)++;
1347 }
1348
1349 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1350 {
1351         uint32_t i;
1352
1353         for (i = 0; i < VFIFO_SIZE-1; i++)
1354                 rw_mgr_incr_vfifo(grp, v);
1355 }
1356
1357 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1358 {
1359         uint32_t  v;
1360         uint32_t fail_cnt = 0;
1361         uint32_t test_status;
1362
1363         for (v = 0; v < VFIFO_SIZE; ) {
1364                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1365                            __func__, __LINE__, v);
1366                 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1367                         (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1368                 if (!test_status) {
1369                         fail_cnt++;
1370
1371                         if (fail_cnt == 2)
1372                                 break;
1373                 }
1374
1375                 /* fiddle with FIFO */
1376                 rw_mgr_incr_vfifo(grp, &v);
1377         }
1378
1379         if (v >= VFIFO_SIZE) {
1380                 /* no failing read found!! Something must have gone wrong */
1381                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1382                            __func__, __LINE__);
1383                 return 0;
1384         } else {
1385                 return v;
1386         }
1387 }
1388
1389 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1390                               uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1391                               uint32_t *v, uint32_t *d, uint32_t *p,
1392                               uint32_t *i, uint32_t *max_working_cnt)
1393 {
1394         uint32_t found_begin = 0;
1395         uint32_t tmp_delay = 0;
1396         uint32_t test_status;
1397
1398         for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1399                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1400                 *work_bgn = tmp_delay;
1401                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1402
1403                 for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1404                         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1405                                 IO_DELAY_PER_OPA_TAP) {
1406                                 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1407
1408                                 test_status =
1409                                 rw_mgr_mem_calibrate_read_test_all_ranks
1410                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1411
1412                                 if (test_status) {
1413                                         *max_working_cnt = 1;
1414                                         found_begin = 1;
1415                                         break;
1416                                 }
1417                         }
1418
1419                         if (found_begin)
1420                                 break;
1421
1422                         if (*p > IO_DQS_EN_PHASE_MAX)
1423                                 /* fiddle with FIFO */
1424                                 rw_mgr_incr_vfifo(*grp, v);
1425                 }
1426
1427                 if (found_begin)
1428                         break;
1429         }
1430
1431         if (*i >= VFIFO_SIZE) {
1432                 /* cannot find working solution */
1433                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1434                            ptap/dtap\n", __func__, __LINE__);
1435                 return 0;
1436         } else {
1437                 return 1;
1438         }
1439 }
1440
1441 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1442                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1443                              uint32_t *p, uint32_t *max_working_cnt)
1444 {
1445         uint32_t found_begin = 0;
1446         uint32_t tmp_delay;
1447
1448         /* Special case code for backing up a phase */
1449         if (*p == 0) {
1450                 *p = IO_DQS_EN_PHASE_MAX;
1451                 rw_mgr_decr_vfifo(*grp, v);
1452         } else {
1453                 (*p)--;
1454         }
1455         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1456         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1457
1458         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1459                 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1460                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1461
1462                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1463                                                              PASS_ONE_BIT,
1464                                                              bit_chk, 0)) {
1465                         found_begin = 1;
1466                         *work_bgn = tmp_delay;
1467                         break;
1468                 }
1469         }
1470
1471         /* We have found a working dtap before the ptap found above */
1472         if (found_begin == 1)
1473                 (*max_working_cnt)++;
1474
1475         /*
1476          * Restore VFIFO to old state before we decremented it
1477          * (if needed).
1478          */
1479         (*p)++;
1480         if (*p > IO_DQS_EN_PHASE_MAX) {
1481                 *p = 0;
1482                 rw_mgr_incr_vfifo(*grp, v);
1483         }
1484
1485         scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1486 }
1487
1488 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1489                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1490                              uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1491                              uint32_t *work_end)
1492 {
1493         uint32_t found_end = 0;
1494
1495         (*p)++;
1496         *work_end += IO_DELAY_PER_OPA_TAP;
1497         if (*p > IO_DQS_EN_PHASE_MAX) {
1498                 /* fiddle with FIFO */
1499                 *p = 0;
1500                 rw_mgr_incr_vfifo(*grp, v);
1501         }
1502
1503         for (; *i < VFIFO_SIZE + 1; (*i)++) {
1504                 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1505                         += IO_DELAY_PER_OPA_TAP) {
1506                         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1507
1508                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1509                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1510                                 found_end = 1;
1511                                 break;
1512                         } else {
1513                                 (*max_working_cnt)++;
1514                         }
1515                 }
1516
1517                 if (found_end)
1518                         break;
1519
1520                 if (*p > IO_DQS_EN_PHASE_MAX) {
1521                         /* fiddle with FIFO */
1522                         rw_mgr_incr_vfifo(*grp, v);
1523                         *p = 0;
1524                 }
1525         }
1526
1527         if (*i >= VFIFO_SIZE + 1) {
1528                 /* cannot see edge of failing read */
1529                 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1530                            failed\n", __func__, __LINE__);
1531                 return 0;
1532         } else {
1533                 return 1;
1534         }
1535 }
1536
1537 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1538                                   uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1539                                   uint32_t *p, uint32_t *work_mid,
1540                                   uint32_t *work_end)
1541 {
1542         int i;
1543         int tmp_delay = 0;
1544
1545         *work_mid = (*work_bgn + *work_end) / 2;
1546
1547         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1548                    *work_bgn, *work_end, *work_mid);
1549         /* Get the middle delay to be less than a VFIFO delay */
1550         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1551                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1552                 ;
1553         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1554         while (*work_mid > tmp_delay)
1555                 *work_mid -= tmp_delay;
1556         debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1557
1558         tmp_delay = 0;
1559         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1560                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1561                 ;
1562         tmp_delay -= IO_DELAY_PER_OPA_TAP;
1563         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1564         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1565                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1566                 ;
1567         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1568
1569         scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1570         scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1571
1572         /*
1573          * push vfifo until we can successfully calibrate. We can do this
1574          * because the largest possible margin in 1 VFIFO cycle.
1575          */
1576         for (i = 0; i < VFIFO_SIZE; i++) {
1577                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1578                            *v);
1579                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1580                                                              PASS_ONE_BIT,
1581                                                              bit_chk, 0)) {
1582                         break;
1583                 }
1584
1585                 /* fiddle with FIFO */
1586                 rw_mgr_incr_vfifo(*grp, v);
1587         }
1588
1589         if (i >= VFIFO_SIZE) {
1590                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1591                            failed\n", __func__, __LINE__);
1592                 return 0;
1593         } else {
1594                 return 1;
1595         }
1596 }
1597
1598 /* find a good dqs enable to use */
1599 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1600 {
1601         uint32_t v, d, p, i;
1602         uint32_t max_working_cnt;
1603         uint32_t bit_chk;
1604         uint32_t dtaps_per_ptap;
1605         uint32_t work_bgn, work_mid, work_end;
1606         uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1607
1608         debug("%s:%d %u\n", __func__, __LINE__, grp);
1609
1610         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1611
1612         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1613         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1614
1615         /* ************************************************************** */
1616         /* * Step 0 : Determine number of delay taps for each phase tap * */
1617         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1618
1619         /* ********************************************************* */
1620         /* * Step 1 : First push vfifo until we get a failing read * */
1621         v = find_vfifo_read(grp, &bit_chk);
1622
1623         max_working_cnt = 0;
1624
1625         /* ******************************************************** */
1626         /* * step 2: find first working phase, increment in ptaps * */
1627         work_bgn = 0;
1628         if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1629                                 &p, &i, &max_working_cnt) == 0)
1630                 return 0;
1631
1632         work_end = work_bgn;
1633
1634         /*
1635          * If d is 0 then the working window covers a phase tap and
1636          * we can follow the old procedure otherwise, we've found the beginning,
1637          * and we need to increment the dtaps until we find the end.
1638          */
1639         if (d == 0) {
1640                 /* ********************************************************* */
1641                 /* * step 3a: if we have room, back off by one and
1642                 increment in dtaps * */
1643
1644                 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1645                                  &max_working_cnt);
1646
1647                 /* ********************************************************* */
1648                 /* * step 4a: go forward from working phase to non working
1649                 phase, increment in ptaps * */
1650                 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1651                                          &i, &max_working_cnt, &work_end) == 0)
1652                         return 0;
1653
1654                 /* ********************************************************* */
1655                 /* * step 5a:  back off one from last, increment in dtaps  * */
1656
1657                 /* Special case code for backing up a phase */
1658                 if (p == 0) {
1659                         p = IO_DQS_EN_PHASE_MAX;
1660                         rw_mgr_decr_vfifo(grp, &v);
1661                 } else {
1662                         p = p - 1;
1663                 }
1664
1665                 work_end -= IO_DELAY_PER_OPA_TAP;
1666                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1667
1668                 /* * The actual increment of dtaps is done outside of
1669                 the if/else loop to share code */
1670                 d = 0;
1671
1672                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1673                            vfifo=%u ptap=%u\n", __func__, __LINE__,
1674                            v, p);
1675         } else {
1676                 /* ******************************************************* */
1677                 /* * step 3-5b:  Find the right edge of the window using
1678                 delay taps   * */
1679                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1680                            ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1681                            v, p, d, work_bgn);
1682
1683                 work_end = work_bgn;
1684
1685                 /* * The actual increment of dtaps is done outside of the
1686                 if/else loop to share code */
1687
1688                 /* Only here to counterbalance a subtract later on which is
1689                 not needed if this branch of the algorithm is taken */
1690                 max_working_cnt++;
1691         }
1692
1693         /* The dtap increment to find the failing edge is done here */
1694         for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1695                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1696                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1697                                    end-2: dtap=%u\n", __func__, __LINE__, d);
1698                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1699
1700                         if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1701                                                                       PASS_ONE_BIT,
1702                                                                       &bit_chk, 0)) {
1703                                 break;
1704                         }
1705         }
1706
1707         /* Go back to working dtap */
1708         if (d != 0)
1709                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1710
1711         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1712                    ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1713                    v, p, d-1, work_end);
1714
1715         if (work_end < work_bgn) {
1716                 /* nil range */
1717                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1718                            failed\n", __func__, __LINE__);
1719                 return 0;
1720         }
1721
1722         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1723                    __func__, __LINE__, work_bgn, work_end);
1724
1725         /* *************************************************************** */
1726         /*
1727          * * We need to calculate the number of dtaps that equal a ptap
1728          * * To do that we'll back up a ptap and re-find the edge of the
1729          * * window using dtaps
1730          */
1731
1732         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1733                    for tracking\n", __func__, __LINE__);
1734
1735         /* Special case code for backing up a phase */
1736         if (p == 0) {
1737                 p = IO_DQS_EN_PHASE_MAX;
1738                 rw_mgr_decr_vfifo(grp, &v);
1739                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1740                            cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1741                            v, p);
1742         } else {
1743                 p = p - 1;
1744                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1745                            phase only: v=%u p=%u", __func__, __LINE__,
1746                            v, p);
1747         }
1748
1749         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1750
1751         /*
1752          * Increase dtap until we first see a passing read (in case the
1753          * window is smaller than a ptap),
1754          * and then a failing read to mark the edge of the window again
1755          */
1756
1757         /* Find a passing read */
1758         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1759                    __func__, __LINE__);
1760         found_passing_read = 0;
1761         found_failing_read = 0;
1762         initial_failing_dtap = d;
1763         for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1764                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1765                            read d=%u\n", __func__, __LINE__, d);
1766                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1767
1768                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1769                                                              PASS_ONE_BIT,
1770                                                              &bit_chk, 0)) {
1771                         found_passing_read = 1;
1772                         break;
1773                 }
1774         }
1775
1776         if (found_passing_read) {
1777                 /* Find a failing read */
1778                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1779                            read\n", __func__, __LINE__);
1780                 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1781                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1782                                    testing read d=%u\n", __func__, __LINE__, d);
1783                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1784
1785                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1786                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1787                                 found_failing_read = 1;
1788                                 break;
1789                         }
1790                 }
1791         } else {
1792                 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1793                            calculate dtaps", __func__, __LINE__);
1794                 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1795         }
1796
1797         /*
1798          * The dynamically calculated dtaps_per_ptap is only valid if we
1799          * found a passing/failing read. If we didn't, it means d hit the max
1800          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1801          * statically calculated value.
1802          */
1803         if (found_passing_read && found_failing_read)
1804                 dtaps_per_ptap = d - initial_failing_dtap;
1805
1806         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1807         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1808                    - %u = %u",  __func__, __LINE__, d,
1809                    initial_failing_dtap, dtaps_per_ptap);
1810
1811         /* ******************************************** */
1812         /* * step 6:  Find the centre of the window   * */
1813         if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1814                                    &work_mid, &work_end) == 0)
1815                 return 0;
1816
1817         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1818                    vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1819                    v, p-1, d);
1820         return 1;
1821 }
1822
1823 /*
1824  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1825  * dq_in_delay values
1826  */
1827 static uint32_t
1828 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1829 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1830 {
1831         uint32_t found;
1832         uint32_t i;
1833         uint32_t p;
1834         uint32_t d;
1835         uint32_t r;
1836
1837         const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1838                 (RW_MGR_MEM_DQ_PER_READ_DQS-1);
1839                 /* we start at zero, so have one less dq to devide among */
1840
1841         debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1842               test_bgn);
1843
1844         /* try different dq_in_delays since the dq path is shorter than dqs */
1845
1846         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1847              r += NUM_RANKS_PER_SHADOW_REG) {
1848                 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1849                         i++, p++, d += delay_step) {
1850                         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1851                                    vfifo_find_dqs_", __func__, __LINE__);
1852                         debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1853                                write_group, read_group);
1854                         debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1855                         scc_mgr_set_dq_in_delay(write_group, p, d);
1856                         scc_mgr_load_dq(p);
1857                 }
1858                 writel(0, &sdr_scc_mgr->update);
1859         }
1860
1861         found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1862
1863         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1864                    en_phase_sweep_dq", __func__, __LINE__);
1865         debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1866                    chain to zero\n", write_group, read_group, found);
1867
1868         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1869              r += NUM_RANKS_PER_SHADOW_REG) {
1870                 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1871                         i++, p++) {
1872                         scc_mgr_set_dq_in_delay(write_group, p, 0);
1873                         scc_mgr_load_dq(p);
1874                 }
1875                 writel(0, &sdr_scc_mgr->update);
1876         }
1877
1878         return found;
1879 }
1880
1881 /* per-bit deskew DQ and center */
1882 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1883         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1884         uint32_t use_read_test, uint32_t update_fom)
1885 {
1886         uint32_t i, p, d, min_index;
1887         /*
1888          * Store these as signed since there are comparisons with
1889          * signed numbers.
1890          */
1891         uint32_t bit_chk;
1892         uint32_t sticky_bit_chk;
1893         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1894         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1895         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1896         int32_t mid;
1897         int32_t orig_mid_min, mid_min;
1898         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1899                 final_dqs_en;
1900         int32_t dq_margin, dqs_margin;
1901         uint32_t stop;
1902         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1903         uint32_t addr;
1904
1905         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1906
1907         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1908         start_dqs = readl(addr + (read_group << 2));
1909         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1910                 start_dqs_en = readl(addr + ((read_group << 2)
1911                                      - IO_DQS_EN_DELAY_OFFSET));
1912
1913         /* set the left and right edge of each bit to an illegal value */
1914         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1915         sticky_bit_chk = 0;
1916         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1917                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1918                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1919         }
1920
1921         /* Search for the left edge of the window for each bit */
1922         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1923                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1924
1925                 writel(0, &sdr_scc_mgr->update);
1926
1927                 /*
1928                  * Stop searching when the read test doesn't pass AND when
1929                  * we've seen a passing read on every bit.
1930                  */
1931                 if (use_read_test) {
1932                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1933                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1934                                 &bit_chk, 0, 0);
1935                 } else {
1936                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1937                                                         0, PASS_ONE_BIT,
1938                                                         &bit_chk, 0);
1939                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1940                                 (read_group - (write_group *
1941                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1942                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1943                         stop = (bit_chk == 0);
1944                 }
1945                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1946                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1947                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1948                            && %u", __func__, __LINE__, d,
1949                            sticky_bit_chk,
1950                         param->read_correct_mask, stop);
1951
1952                 if (stop == 1) {
1953                         break;
1954                 } else {
1955                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1956                                 if (bit_chk & 1) {
1957                                         /* Remember a passing test as the
1958                                         left_edge */
1959                                         left_edge[i] = d;
1960                                 } else {
1961                                         /* If a left edge has not been seen yet,
1962                                         then a future passing test will mark
1963                                         this edge as the right edge */
1964                                         if (left_edge[i] ==
1965                                                 IO_IO_IN_DELAY_MAX + 1) {
1966                                                 right_edge[i] = -(d + 1);
1967                                         }
1968                                 }
1969                                 bit_chk = bit_chk >> 1;
1970                         }
1971                 }
1972         }
1973
1974         /* Reset DQ delay chains to 0 */
1975         scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0);
1976         sticky_bit_chk = 0;
1977         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1978                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1979                            %d right_edge[%u]: %d\n", __func__, __LINE__,
1980                            i, left_edge[i], i, right_edge[i]);
1981
1982                 /*
1983                  * Check for cases where we haven't found the left edge,
1984                  * which makes our assignment of the the right edge invalid.
1985                  * Reset it to the illegal value.
1986                  */
1987                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1988                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1989                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1990                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1991                                    right_edge[%u]: %d\n", __func__, __LINE__,
1992                                    i, right_edge[i]);
1993                 }
1994
1995                 /*
1996                  * Reset sticky bit (except for bits where we have seen
1997                  * both the left and right edge).
1998                  */
1999                 sticky_bit_chk = sticky_bit_chk << 1;
2000                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
2001                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
2002                         sticky_bit_chk = sticky_bit_chk | 1;
2003                 }
2004
2005                 if (i == 0)
2006                         break;
2007         }
2008
2009         /* Search for the right edge of the window for each bit */
2010         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
2011                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2012                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2013                         uint32_t delay = d + start_dqs_en;
2014                         if (delay > IO_DQS_EN_DELAY_MAX)
2015                                 delay = IO_DQS_EN_DELAY_MAX;
2016                         scc_mgr_set_dqs_en_delay(read_group, delay);
2017                 }
2018                 scc_mgr_load_dqs(read_group);
2019
2020                 writel(0, &sdr_scc_mgr->update);
2021
2022                 /*
2023                  * Stop searching when the read test doesn't pass AND when
2024                  * we've seen a passing read on every bit.
2025                  */
2026                 if (use_read_test) {
2027                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
2028                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
2029                                 &bit_chk, 0, 0);
2030                 } else {
2031                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2032                                                         0, PASS_ONE_BIT,
2033                                                         &bit_chk, 0);
2034                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
2035                                 (read_group - (write_group *
2036                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
2037                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
2038                         stop = (bit_chk == 0);
2039                 }
2040                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2041                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
2042
2043                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
2044                            %u && %u", __func__, __LINE__, d,
2045                            sticky_bit_chk, param->read_correct_mask, stop);
2046
2047                 if (stop == 1) {
2048                         break;
2049                 } else {
2050                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2051                                 if (bit_chk & 1) {
2052                                         /* Remember a passing test as
2053                                         the right_edge */
2054                                         right_edge[i] = d;
2055                                 } else {
2056                                         if (d != 0) {
2057                                                 /* If a right edge has not been
2058                                                 seen yet, then a future passing
2059                                                 test will mark this edge as the
2060                                                 left edge */
2061                                                 if (right_edge[i] ==
2062                                                 IO_IO_IN_DELAY_MAX + 1) {
2063                                                         left_edge[i] = -(d + 1);
2064                                                 }
2065                                         } else {
2066                                                 /* d = 0 failed, but it passed
2067                                                 when testing the left edge,
2068                                                 so it must be marginal,
2069                                                 set it to -1 */
2070                                                 if (right_edge[i] ==
2071                                                         IO_IO_IN_DELAY_MAX + 1 &&
2072                                                         left_edge[i] !=
2073                                                         IO_IO_IN_DELAY_MAX
2074                                                         + 1) {
2075                                                         right_edge[i] = -1;
2076                                                 }
2077                                                 /* If a right edge has not been
2078                                                 seen yet, then a future passing
2079                                                 test will mark this edge as the
2080                                                 left edge */
2081                                                 else if (right_edge[i] ==
2082                                                         IO_IO_IN_DELAY_MAX +
2083                                                         1) {
2084                                                         left_edge[i] = -(d + 1);
2085                                                 }
2086                                         }
2087                                 }
2088
2089                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2090                                            d=%u]: ", __func__, __LINE__, d);
2091                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2092                                            (int)(bit_chk & 1), i, left_edge[i]);
2093                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2094                                            right_edge[i]);
2095                                 bit_chk = bit_chk >> 1;
2096                         }
2097                 }
2098         }
2099
2100         /* Check that all bits have a window */
2101         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2102                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2103                            %d right_edge[%u]: %d", __func__, __LINE__,
2104                            i, left_edge[i], i, right_edge[i]);
2105                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2106                         == IO_IO_IN_DELAY_MAX + 1)) {
2107                         /*
2108                          * Restore delay chain settings before letting the loop
2109                          * in rw_mgr_mem_calibrate_vfifo to retry different
2110                          * dqs/ck relationships.
2111                          */
2112                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2113                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2114                                 scc_mgr_set_dqs_en_delay(read_group,
2115                                                          start_dqs_en);
2116                         }
2117                         scc_mgr_load_dqs(read_group);
2118                         writel(0, &sdr_scc_mgr->update);
2119
2120                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2121                                    find edge [%u]: %d %d", __func__, __LINE__,
2122                                    i, left_edge[i], right_edge[i]);
2123                         if (use_read_test) {
2124                                 set_failing_group_stage(read_group *
2125                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2126                                         CAL_STAGE_VFIFO,
2127                                         CAL_SUBSTAGE_VFIFO_CENTER);
2128                         } else {
2129                                 set_failing_group_stage(read_group *
2130                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2131                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2132                                         CAL_SUBSTAGE_VFIFO_CENTER);
2133                         }
2134                         return 0;
2135                 }
2136         }
2137
2138         /* Find middle of window for each DQ bit */
2139         mid_min = left_edge[0] - right_edge[0];
2140         min_index = 0;
2141         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2142                 mid = left_edge[i] - right_edge[i];
2143                 if (mid < mid_min) {
2144                         mid_min = mid;
2145                         min_index = i;
2146                 }
2147         }
2148
2149         /*
2150          * -mid_min/2 represents the amount that we need to move DQS.
2151          * If mid_min is odd and positive we'll need to add one to
2152          * make sure the rounding in further calculations is correct
2153          * (always bias to the right), so just add 1 for all positive values.
2154          */
2155         if (mid_min > 0)
2156                 mid_min++;
2157
2158         mid_min = mid_min / 2;
2159
2160         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2161                    __func__, __LINE__, mid_min, min_index);
2162
2163         /* Determine the amount we can change DQS (which is -mid_min) */
2164         orig_mid_min = mid_min;
2165         new_dqs = start_dqs - mid_min;
2166         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2167                 new_dqs = IO_DQS_IN_DELAY_MAX;
2168         else if (new_dqs < 0)
2169                 new_dqs = 0;
2170
2171         mid_min = start_dqs - new_dqs;
2172         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2173                    mid_min, new_dqs);
2174
2175         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2176                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2177                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2178                 else if (start_dqs_en - mid_min < 0)
2179                         mid_min += start_dqs_en - mid_min;
2180         }
2181         new_dqs = start_dqs - mid_min;
2182
2183         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2184                    new_dqs=%d mid_min=%d\n", start_dqs,
2185                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2186                    new_dqs, mid_min);
2187
2188         /* Initialize data for export structures */
2189         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2190         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2191
2192         /* add delay to bring centre of all DQ windows to the same "level" */
2193         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2194                 /* Use values before divide by 2 to reduce round off error */
2195                 shift_dq = (left_edge[i] - right_edge[i] -
2196                         (left_edge[min_index] - right_edge[min_index]))/2  +
2197                         (orig_mid_min - mid_min);
2198
2199                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2200                            shift_dq[%u]=%d\n", i, shift_dq);
2201
2202                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2203                 temp_dq_in_delay1 = readl(addr + (p << 2));
2204                 temp_dq_in_delay2 = readl(addr + (i << 2));
2205
2206                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2207                         (int32_t)IO_IO_IN_DELAY_MAX) {
2208                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2209                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2210                         shift_dq = -(int32_t)temp_dq_in_delay1;
2211                 }
2212                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2213                            shift_dq[%u]=%d\n", i, shift_dq);
2214                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2215                 scc_mgr_set_dq_in_delay(write_group, p, final_dq[i]);
2216                 scc_mgr_load_dq(p);
2217
2218                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2219                            left_edge[i] - shift_dq + (-mid_min),
2220                            right_edge[i] + shift_dq - (-mid_min));
2221                 /* To determine values for export structures */
2222                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2223                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2224
2225                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2226                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2227         }
2228
2229         final_dqs = new_dqs;
2230         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2231                 final_dqs_en = start_dqs_en - mid_min;
2232
2233         /* Move DQS-en */
2234         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2235                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2236                 scc_mgr_load_dqs(read_group);
2237         }
2238
2239         /* Move DQS */
2240         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2241         scc_mgr_load_dqs(read_group);
2242         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2243                    dqs_margin=%d", __func__, __LINE__,
2244                    dq_margin, dqs_margin);
2245
2246         /*
2247          * Do not remove this line as it makes sure all of our decisions
2248          * have been applied. Apply the update bit.
2249          */
2250         writel(0, &sdr_scc_mgr->update);
2251
2252         return (dq_margin >= 0) && (dqs_margin >= 0);
2253 }
2254
2255 /*
2256  * calibrate the read valid prediction FIFO.
2257  *
2258  *  - read valid prediction will consist of finding a good DQS enable phase,
2259  * DQS enable delay, DQS input phase, and DQS input delay.
2260  *  - we also do a per-bit deskew on the DQ lines.
2261  */
2262 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2263                                            uint32_t test_bgn)
2264 {
2265         uint32_t p, d, rank_bgn, sr;
2266         uint32_t dtaps_per_ptap;
2267         uint32_t tmp_delay;
2268         uint32_t bit_chk;
2269         uint32_t grp_calibrated;
2270         uint32_t write_group, write_test_bgn;
2271         uint32_t failed_substage;
2272
2273         debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2274
2275         /* update info for sims */
2276         reg_file_set_stage(CAL_STAGE_VFIFO);
2277
2278         write_group = read_group;
2279         write_test_bgn = test_bgn;
2280
2281         /* USER Determine number of delay taps for each phase tap */
2282         dtaps_per_ptap = 0;
2283         tmp_delay = 0;
2284         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2285                 dtaps_per_ptap++;
2286                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2287         }
2288         dtaps_per_ptap--;
2289         tmp_delay = 0;
2290
2291         /* update info for sims */
2292         reg_file_set_group(read_group);
2293
2294         grp_calibrated = 0;
2295
2296         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2297         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2298
2299         for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2300                 /*
2301                  * In RLDRAMX we may be messing the delay of pins in
2302                  * the same write group but outside of the current read
2303                  * the group, but that's ok because we haven't
2304                  * calibrated output side yet.
2305                  */
2306                 if (d > 0) {
2307                         scc_mgr_apply_group_all_out_delay_add_all_ranks
2308                         (write_group, write_test_bgn, d);
2309                 }
2310
2311                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2312                         p++) {
2313                         /* set a particular dqdqs phase */
2314                         scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2315
2316                         debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2317                                    p=%u d=%u\n", __func__, __LINE__,
2318                                    read_group, p, d);
2319
2320                         /*
2321                          * Load up the patterns used by read calibration
2322                          * using current DQDQS phase.
2323                          */
2324                         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2325                         if (!(gbl->phy_debug_mode_flags &
2326                                 PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2327                                 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2328                                     (read_group, 1, &bit_chk)) {
2329                                         debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2330                                                    __func__, __LINE__);
2331                                         debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2332                                                    read_group, p, d);
2333                                         break;
2334                                 }
2335                         }
2336
2337 /* case:56390 */
2338                         grp_calibrated = 1;
2339                 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2340                     (write_group, read_group, test_bgn)) {
2341                                 /*
2342                                  * USER Read per-bit deskew can be done on a
2343                                  * per shadow register basis.
2344                                  */
2345                                 for (rank_bgn = 0, sr = 0;
2346                                         rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2347                                         rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2348                                         ++sr) {
2349                                         /*
2350                                          * Determine if this set of ranks
2351                                          * should be skipped entirely.
2352                                          */
2353                                         if (!param->skip_shadow_regs[sr]) {
2354                                                 /*
2355                                                  * If doing read after write
2356                                                  * calibration, do not update
2357                                                  * FOM, now - do it then.
2358                                                  */
2359                                         if (!rw_mgr_mem_calibrate_vfifo_center
2360                                                 (rank_bgn, write_group,
2361                                                 read_group, test_bgn, 1, 0)) {
2362                                                         grp_calibrated = 0;
2363                                                         failed_substage =
2364                                                 CAL_SUBSTAGE_VFIFO_CENTER;
2365                                                 }
2366                                         }
2367                                 }
2368                         } else {
2369                                 grp_calibrated = 0;
2370                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2371                         }
2372                 }
2373         }
2374
2375         if (grp_calibrated == 0) {
2376                 set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2377                                         failed_substage);
2378                 return 0;
2379         }
2380
2381         /*
2382          * Reset the delay chains back to zero if they have moved > 1
2383          * (check for > 1 because loop will increase d even when pass in
2384          * first case).
2385          */
2386         if (d > 2)
2387                 scc_mgr_zero_group(write_group, write_test_bgn, 1);
2388
2389         return 1;
2390 }
2391
2392 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2393 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2394                                                uint32_t test_bgn)
2395 {
2396         uint32_t rank_bgn, sr;
2397         uint32_t grp_calibrated;
2398         uint32_t write_group;
2399
2400         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2401
2402         /* update info for sims */
2403
2404         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2405         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2406
2407         write_group = read_group;
2408
2409         /* update info for sims */
2410         reg_file_set_group(read_group);
2411
2412         grp_calibrated = 1;
2413         /* Read per-bit deskew can be done on a per shadow register basis */
2414         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2415                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2416                 /* Determine if this set of ranks should be skipped entirely */
2417                 if (!param->skip_shadow_regs[sr]) {
2418                 /* This is the last calibration round, update FOM here */
2419                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2420                                                                 write_group,
2421                                                                 read_group,
2422                                                                 test_bgn, 0,
2423                                                                 1)) {
2424                                 grp_calibrated = 0;
2425                         }
2426                 }
2427         }
2428
2429
2430         if (grp_calibrated == 0) {
2431                 set_failing_group_stage(write_group,
2432                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2433                                         CAL_SUBSTAGE_VFIFO_CENTER);
2434                 return 0;
2435         }
2436
2437         return 1;
2438 }
2439
2440 /* Calibrate LFIFO to find smallest read latency */
2441 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2442 {
2443         uint32_t found_one;
2444         uint32_t bit_chk;
2445
2446         debug("%s:%d\n", __func__, __LINE__);
2447
2448         /* update info for sims */
2449         reg_file_set_stage(CAL_STAGE_LFIFO);
2450         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2451
2452         /* Load up the patterns used by read calibration for all ranks */
2453         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2454         found_one = 0;
2455
2456         do {
2457                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2458                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2459                            __func__, __LINE__, gbl->curr_read_lat);
2460
2461                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2462                                                               NUM_READ_TESTS,
2463                                                               PASS_ALL_BITS,
2464                                                               &bit_chk, 1)) {
2465                         break;
2466                 }
2467
2468                 found_one = 1;
2469                 /* reduce read latency and see if things are working */
2470                 /* correctly */
2471                 gbl->curr_read_lat--;
2472         } while (gbl->curr_read_lat > 0);
2473
2474         /* reset the fifos to get pointers to known state */
2475
2476         writel(0, &phy_mgr_cmd->fifo_reset);
2477
2478         if (found_one) {
2479                 /* add a fudge factor to the read latency that was determined */
2480                 gbl->curr_read_lat += 2;
2481                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2482                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2483                            read_lat=%u\n", __func__, __LINE__,
2484                            gbl->curr_read_lat);
2485                 return 1;
2486         } else {
2487                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2488                                         CAL_SUBSTAGE_READ_LATENCY);
2489
2490                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2491                            read_lat=%u\n", __func__, __LINE__,
2492                            gbl->curr_read_lat);
2493                 return 0;
2494         }
2495 }
2496
2497 /*
2498  * issue write test command.
2499  * two variants are provided. one that just tests a write pattern and
2500  * another that tests datamask functionality.
2501  */
2502 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2503                                                   uint32_t test_dm)
2504 {
2505         uint32_t mcc_instruction;
2506         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2507                 ENABLE_SUPER_QUICK_CALIBRATION);
2508         uint32_t rw_wl_nop_cycles;
2509         uint32_t addr;
2510
2511         /*
2512          * Set counter and jump addresses for the right
2513          * number of NOP cycles.
2514          * The number of supported NOP cycles can range from -1 to infinity
2515          * Three different cases are handled:
2516          *
2517          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2518          *    mechanism will be used to insert the right number of NOPs
2519          *
2520          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2521          *    issuing the write command will jump straight to the
2522          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2523          *    data (for RLD), skipping
2524          *    the NOP micro-instruction all together
2525          *
2526          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2527          *    turned on in the same micro-instruction that issues the write
2528          *    command. Then we need
2529          *    to directly jump to the micro-instruction that sends out the data
2530          *
2531          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2532          *       (2 and 3). One jump-counter (0) is used to perform multiple
2533          *       write-read operations.
2534          *       one counter left to issue this command in "multiple-group" mode
2535          */
2536
2537         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2538
2539         if (rw_wl_nop_cycles == -1) {
2540                 /*
2541                  * CNTR 2 - We want to execute the special write operation that
2542                  * turns on DQS right away and then skip directly to the
2543                  * instruction that sends out the data. We set the counter to a
2544                  * large number so that the jump is always taken.
2545                  */
2546                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2547
2548                 /* CNTR 3 - Not used */
2549                 if (test_dm) {
2550                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2551                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2552                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2553                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2554                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2555                 } else {
2556                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2557                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2558                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2559                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2560                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2561                 }
2562         } else if (rw_wl_nop_cycles == 0) {
2563                 /*
2564                  * CNTR 2 - We want to skip the NOP operation and go straight
2565                  * to the DQS enable instruction. We set the counter to a large
2566                  * number so that the jump is always taken.
2567                  */
2568                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2569
2570                 /* CNTR 3 - Not used */
2571                 if (test_dm) {
2572                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2573                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2574                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2575                 } else {
2576                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2577                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2578                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2579                 }
2580         } else {
2581                 /*
2582                  * CNTR 2 - In this case we want to execute the next instruction
2583                  * and NOT take the jump. So we set the counter to 0. The jump
2584                  * address doesn't count.
2585                  */
2586                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2587                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2588
2589                 /*
2590                  * CNTR 3 - Set the nop counter to the number of cycles we
2591                  * need to loop for, minus 1.
2592                  */
2593                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2594                 if (test_dm) {
2595                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2596                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2597                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2598                 } else {
2599                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2600                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2601                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2602                 }
2603         }
2604
2605         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2606                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2607
2608         if (quick_write_mode)
2609                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2610         else
2611                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2612
2613         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2614
2615         /*
2616          * CNTR 1 - This is used to ensure enough time elapses
2617          * for read data to come back.
2618          */
2619         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2620
2621         if (test_dm) {
2622                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2623                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2624         } else {
2625                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2626                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2627         }
2628
2629         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2630         writel(mcc_instruction, addr + (group << 2));
2631 }
2632
2633 /* Test writes, can check for a single bit pass or multiple bit pass */
2634 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2635         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2636         uint32_t *bit_chk, uint32_t all_ranks)
2637 {
2638         uint32_t r;
2639         uint32_t correct_mask_vg;
2640         uint32_t tmp_bit_chk;
2641         uint32_t vg;
2642         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2643                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2644         uint32_t addr_rw_mgr;
2645         uint32_t base_rw_mgr;
2646
2647         *bit_chk = param->write_correct_mask;
2648         correct_mask_vg = param->write_correct_mask_vg;
2649
2650         for (r = rank_bgn; r < rank_end; r++) {
2651                 if (param->skip_ranks[r]) {
2652                         /* request to skip the rank */
2653                         continue;
2654                 }
2655
2656                 /* set rank */
2657                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2658
2659                 tmp_bit_chk = 0;
2660                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2661                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2662                         /* reset the fifos to get pointers to known state */
2663                         writel(0, &phy_mgr_cmd->fifo_reset);
2664
2665                         tmp_bit_chk = tmp_bit_chk <<
2666                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2667                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2668                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2669                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2670                                 use_dm);
2671
2672                         base_rw_mgr = readl(addr_rw_mgr);
2673                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2674                         if (vg == 0)
2675                                 break;
2676                 }
2677                 *bit_chk &= tmp_bit_chk;
2678         }
2679
2680         if (all_correct) {
2681                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2682                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2683                            %u => %lu", write_group, use_dm,
2684                            *bit_chk, param->write_correct_mask,
2685                            (long unsigned int)(*bit_chk ==
2686                            param->write_correct_mask));
2687                 return *bit_chk == param->write_correct_mask;
2688         } else {
2689                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2690                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2691                        write_group, use_dm, *bit_chk);
2692                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2693                         (long unsigned int)(*bit_chk != 0));
2694                 return *bit_chk != 0x00;
2695         }
2696 }
2697
2698 /*
2699  * center all windows. do per-bit-deskew to possibly increase size of
2700  * certain windows.
2701  */
2702 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2703         uint32_t write_group, uint32_t test_bgn)
2704 {
2705         uint32_t i, p, min_index;
2706         int32_t d;
2707         /*
2708          * Store these as signed since there are comparisons with
2709          * signed numbers.
2710          */
2711         uint32_t bit_chk;
2712         uint32_t sticky_bit_chk;
2713         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2714         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2715         int32_t mid;
2716         int32_t mid_min, orig_mid_min;
2717         int32_t new_dqs, start_dqs, shift_dq;
2718         int32_t dq_margin, dqs_margin, dm_margin;
2719         uint32_t stop;
2720         uint32_t temp_dq_out1_delay;
2721         uint32_t addr;
2722
2723         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2724
2725         dm_margin = 0;
2726
2727         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2728         start_dqs = readl(addr +
2729                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2730
2731         /* per-bit deskew */
2732
2733         /*
2734          * set the left and right edge of each bit to an illegal value
2735          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2736          */
2737         sticky_bit_chk = 0;
2738         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2739                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2740                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2741         }
2742
2743         /* Search for the left edge of the window for each bit */
2744         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2745                 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d);
2746
2747                 writel(0, &sdr_scc_mgr->update);
2748
2749                 /*
2750                  * Stop searching when the read test doesn't pass AND when
2751                  * we've seen a passing read on every bit.
2752                  */
2753                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2754                         0, PASS_ONE_BIT, &bit_chk, 0);
2755                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2756                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2757                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2758                            == %u && %u [bit_chk= %u ]\n",
2759                         d, sticky_bit_chk, param->write_correct_mask,
2760                         stop, bit_chk);
2761
2762                 if (stop == 1) {
2763                         break;
2764                 } else {
2765                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2766                                 if (bit_chk & 1) {
2767                                         /*
2768                                          * Remember a passing test as the
2769                                          * left_edge.
2770                                          */
2771                                         left_edge[i] = d;
2772                                 } else {
2773                                         /*
2774                                          * If a left edge has not been seen
2775                                          * yet, then a future passing test will
2776                                          * mark this edge as the right edge.
2777                                          */
2778                                         if (left_edge[i] ==
2779                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2780                                                 right_edge[i] = -(d + 1);
2781                                         }
2782                                 }
2783                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2784                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2785                                            (int)(bit_chk & 1), i, left_edge[i]);
2786                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2787                                        right_edge[i]);
2788                                 bit_chk = bit_chk >> 1;
2789                         }
2790                 }
2791         }
2792
2793         /* Reset DQ delay chains to 0 */
2794         scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0);
2795         sticky_bit_chk = 0;
2796         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2797                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2798                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2799                            i, left_edge[i], i, right_edge[i]);
2800
2801                 /*
2802                  * Check for cases where we haven't found the left edge,
2803                  * which makes our assignment of the the right edge invalid.
2804                  * Reset it to the illegal value.
2805                  */
2806                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2807                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2808                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2809                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2810                                    right_edge[%u]: %d\n", __func__, __LINE__,
2811                                    i, right_edge[i]);
2812                 }
2813
2814                 /*
2815                  * Reset sticky bit (except for bits where we have
2816                  * seen the left edge).
2817                  */
2818                 sticky_bit_chk = sticky_bit_chk << 1;
2819                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2820                         sticky_bit_chk = sticky_bit_chk | 1;
2821
2822                 if (i == 0)
2823                         break;
2824         }
2825
2826         /* Search for the right edge of the window for each bit */
2827         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2828                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2829                                                         d + start_dqs);
2830
2831                 writel(0, &sdr_scc_mgr->update);
2832
2833                 /*
2834                  * Stop searching when the read test doesn't pass AND when
2835                  * we've seen a passing read on every bit.
2836                  */
2837                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2838                         0, PASS_ONE_BIT, &bit_chk, 0);
2839
2840                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2841                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2842
2843                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2844                            %u && %u\n", d, sticky_bit_chk,
2845                            param->write_correct_mask, stop);
2846
2847                 if (stop == 1) {
2848                         if (d == 0) {
2849                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2850                                         i++) {
2851                                         /* d = 0 failed, but it passed when
2852                                         testing the left edge, so it must be
2853                                         marginal, set it to -1 */
2854                                         if (right_edge[i] ==
2855                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2856                                                 left_edge[i] !=
2857                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2858                                                 right_edge[i] = -1;
2859                                         }
2860                                 }
2861                         }
2862                         break;
2863                 } else {
2864                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2865                                 if (bit_chk & 1) {
2866                                         /*
2867                                          * Remember a passing test as
2868                                          * the right_edge.
2869                                          */
2870                                         right_edge[i] = d;
2871                                 } else {
2872                                         if (d != 0) {
2873                                                 /*
2874                                                  * If a right edge has not
2875                                                  * been seen yet, then a future
2876                                                  * passing test will mark this
2877                                                  * edge as the left edge.
2878                                                  */
2879                                                 if (right_edge[i] ==
2880                                                     IO_IO_OUT1_DELAY_MAX + 1)
2881                                                         left_edge[i] = -(d + 1);
2882                                         } else {
2883                                                 /*
2884                                                  * d = 0 failed, but it passed
2885                                                  * when testing the left edge,
2886                                                  * so it must be marginal, set
2887                                                  * it to -1.
2888                                                  */
2889                                                 if (right_edge[i] ==
2890                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
2891                                                     left_edge[i] !=
2892                                                     IO_IO_OUT1_DELAY_MAX + 1)
2893                                                         right_edge[i] = -1;
2894                                                 /*
2895                                                  * If a right edge has not been
2896                                                  * seen yet, then a future
2897                                                  * passing test will mark this
2898                                                  * edge as the left edge.
2899                                                  */
2900                                                 else if (right_edge[i] ==
2901                                                         IO_IO_OUT1_DELAY_MAX +
2902                                                         1)
2903                                                         left_edge[i] = -(d + 1);
2904                                         }
2905                                 }
2906                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2907                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2908                                            (int)(bit_chk & 1), i, left_edge[i]);
2909                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2910                                            right_edge[i]);
2911                                 bit_chk = bit_chk >> 1;
2912                         }
2913                 }
2914         }
2915
2916         /* Check that all bits have a window */
2917         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2918                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2919                            %d right_edge[%u]: %d", __func__, __LINE__,
2920                            i, left_edge[i], i, right_edge[i]);
2921                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2922                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2923                         set_failing_group_stage(test_bgn + i,
2924                                                 CAL_STAGE_WRITES,
2925                                                 CAL_SUBSTAGE_WRITES_CENTER);
2926                         return 0;
2927                 }
2928         }
2929
2930         /* Find middle of window for each DQ bit */
2931         mid_min = left_edge[0] - right_edge[0];
2932         min_index = 0;
2933         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2934                 mid = left_edge[i] - right_edge[i];
2935                 if (mid < mid_min) {
2936                         mid_min = mid;
2937                         min_index = i;
2938                 }
2939         }
2940
2941         /*
2942          * -mid_min/2 represents the amount that we need to move DQS.
2943          * If mid_min is odd and positive we'll need to add one to
2944          * make sure the rounding in further calculations is correct
2945          * (always bias to the right), so just add 1 for all positive values.
2946          */
2947         if (mid_min > 0)
2948                 mid_min++;
2949         mid_min = mid_min / 2;
2950         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2951                    __LINE__, mid_min);
2952
2953         /* Determine the amount we can change DQS (which is -mid_min) */
2954         orig_mid_min = mid_min;
2955         new_dqs = start_dqs;
2956         mid_min = 0;
2957         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2958                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2959         /* Initialize data for export structures */
2960         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2961         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2962
2963         /* add delay to bring centre of all DQ windows to the same "level" */
2964         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2965                 /* Use values before divide by 2 to reduce round off error */
2966                 shift_dq = (left_edge[i] - right_edge[i] -
2967                         (left_edge[min_index] - right_edge[min_index]))/2  +
2968                 (orig_mid_min - mid_min);
2969
2970                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2971                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2972
2973                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2974                 temp_dq_out1_delay = readl(addr + (i << 2));
2975                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2976                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2977                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2978                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2979                         shift_dq = -(int32_t)temp_dq_out1_delay;
2980                 }
2981                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2982                            i, shift_dq);
2983                 scc_mgr_set_dq_out1_delay(write_group, i, temp_dq_out1_delay +
2984                                           shift_dq);
2985                 scc_mgr_load_dq(i);
2986
2987                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2988                            left_edge[i] - shift_dq + (-mid_min),
2989                            right_edge[i] + shift_dq - (-mid_min));
2990                 /* To determine values for export structures */
2991                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2992                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2993
2994                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2995                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2996         }
2997
2998         /* Move DQS */
2999         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3000         writel(0, &sdr_scc_mgr->update);
3001
3002         /* Centre DM */
3003         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3004
3005         /*
3006          * set the left and right edge of each bit to an illegal value,
3007          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3008          */
3009         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3010         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3011         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3012         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3013         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3014         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3015         int32_t win_best = 0;
3016
3017         /* Search for the/part of the window with DM shift */
3018         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3019                 scc_mgr_apply_group_dm_out1_delay(write_group, d);
3020                 writel(0, &sdr_scc_mgr->update);
3021
3022                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3023                                                     PASS_ALL_BITS, &bit_chk,
3024                                                     0)) {
3025                         /* USE Set current end of the window */
3026                         end_curr = -d;
3027                         /*
3028                          * If a starting edge of our window has not been seen
3029                          * this is our current start of the DM window.
3030                          */
3031                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3032                                 bgn_curr = -d;
3033
3034                         /*
3035                          * If current window is bigger than best seen.
3036                          * Set best seen to be current window.
3037                          */
3038                         if ((end_curr-bgn_curr+1) > win_best) {
3039                                 win_best = end_curr-bgn_curr+1;
3040                                 bgn_best = bgn_curr;
3041                                 end_best = end_curr;
3042                         }
3043                 } else {
3044                         /* We just saw a failing test. Reset temp edge */
3045                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3046                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3047                         }
3048                 }
3049
3050
3051         /* Reset DM delay chains to 0 */
3052         scc_mgr_apply_group_dm_out1_delay(write_group, 0);
3053
3054         /*
3055          * Check to see if the current window nudges up aganist 0 delay.
3056          * If so we need to continue the search by shifting DQS otherwise DQS
3057          * search begins as a new search. */
3058         if (end_curr != 0) {
3059                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3060                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3061         }
3062
3063         /* Search for the/part of the window with DQS shifts */
3064         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3065                 /*
3066                  * Note: This only shifts DQS, so are we limiting ourselve to
3067                  * width of DQ unnecessarily.
3068                  */
3069                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3070                                                         d + new_dqs);
3071
3072                 writel(0, &sdr_scc_mgr->update);
3073                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3074                                                     PASS_ALL_BITS, &bit_chk,
3075                                                     0)) {
3076                         /* USE Set current end of the window */
3077                         end_curr = d;
3078                         /*
3079                          * If a beginning edge of our window has not been seen
3080                          * this is our current begin of the DM window.
3081                          */
3082                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3083                                 bgn_curr = d;
3084
3085                         /*
3086                          * If current window is bigger than best seen. Set best
3087                          * seen to be current window.
3088                          */
3089                         if ((end_curr-bgn_curr+1) > win_best) {
3090                                 win_best = end_curr-bgn_curr+1;
3091                                 bgn_best = bgn_curr;
3092                                 end_best = end_curr;
3093                         }
3094                 } else {
3095                         /* We just saw a failing test. Reset temp edge */
3096                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3097                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3098
3099                         /* Early exit optimization: if ther remaining delay
3100                         chain space is less than already seen largest window
3101                         we can exit */
3102                         if ((win_best-1) >
3103                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3104                                         break;
3105                                 }
3106                         }
3107                 }
3108
3109         /* assign left and right edge for cal and reporting; */
3110         left_edge[0] = -1*bgn_best;
3111         right_edge[0] = end_best;
3112
3113         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3114                    __LINE__, left_edge[0], right_edge[0]);
3115
3116         /* Move DQS (back to orig) */
3117         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3118
3119         /* Move DM */
3120
3121         /* Find middle of window for the DM bit */
3122         mid = (left_edge[0] - right_edge[0]) / 2;
3123
3124         /* only move right, since we are not moving DQS/DQ */
3125         if (mid < 0)
3126                 mid = 0;
3127
3128         /* dm_marign should fail if we never find a window */
3129         if (win_best == 0)
3130                 dm_margin = -1;
3131         else
3132                 dm_margin = left_edge[0] - mid;
3133
3134         scc_mgr_apply_group_dm_out1_delay(write_group, mid);
3135         writel(0, &sdr_scc_mgr->update);
3136
3137         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3138                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3139                    right_edge[0], mid, dm_margin);
3140         /* Export values */
3141         gbl->fom_out += dq_margin + dqs_margin;
3142
3143         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3144                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3145                    dq_margin, dqs_margin, dm_margin);
3146
3147         /*
3148          * Do not remove this line as it makes sure all of our
3149          * decisions have been applied.
3150          */
3151         writel(0, &sdr_scc_mgr->update);
3152         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3153 }
3154
3155 /* calibrate the write operations */
3156 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3157         uint32_t test_bgn)
3158 {
3159         /* update info for sims */
3160         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3161
3162         reg_file_set_stage(CAL_STAGE_WRITES);
3163         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3164
3165         reg_file_set_group(g);
3166
3167         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3168                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3169                                         CAL_SUBSTAGE_WRITES_CENTER);
3170                 return 0;
3171         }
3172
3173         return 1;
3174 }
3175
3176 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3177 static void mem_precharge_and_activate(void)
3178 {
3179         uint32_t r;
3180
3181         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3182                 if (param->skip_ranks[r]) {
3183                         /* request to skip the rank */
3184                         continue;
3185                 }
3186
3187                 /* set rank */
3188                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3189
3190                 /* precharge all banks ... */
3191                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3192                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3193
3194                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3195                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3196                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3197
3198                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3199                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3200                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3201
3202                 /* activate rows */
3203                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3204                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3205         }
3206 }
3207
3208 /* Configure various memory related parameters. */
3209 static void mem_config(void)
3210 {
3211         uint32_t rlat, wlat;
3212         uint32_t rw_wl_nop_cycles;
3213         uint32_t max_latency;
3214
3215         debug("%s:%d\n", __func__, __LINE__);
3216         /* read in write and read latency */
3217         wlat = readl(&data_mgr->t_wl_add);
3218         wlat += readl(&data_mgr->mem_t_add);
3219
3220         /* WL for hard phy does not include additive latency */
3221
3222         /*
3223          * add addtional write latency to offset the address/command extra
3224          * clock cycle. We change the AC mux setting causing AC to be delayed
3225          * by one mem clock cycle. Only do this for DDR3
3226          */
3227         wlat = wlat + 1;
3228
3229         rlat = readl(&data_mgr->t_rl_add);
3230
3231         rw_wl_nop_cycles = wlat - 2;
3232         gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3233
3234         /*
3235          * For AV/CV, lfifo is hardened and always runs at full rate so
3236          * max latency in AFI clocks, used here, is correspondingly smaller.
3237          */
3238         max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3239         /* configure for a burst length of 8 */
3240
3241         /* write latency */
3242         /* Adjust Write Latency for Hard PHY */
3243         wlat = wlat + 1;
3244
3245         /* set a pretty high read latency initially */
3246         gbl->curr_read_lat = rlat + 16;
3247
3248         if (gbl->curr_read_lat > max_latency)
3249                 gbl->curr_read_lat = max_latency;
3250
3251         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3252
3253         /* advertise write latency */
3254         gbl->curr_write_lat = wlat;
3255         writel(wlat - 2, &phy_mgr_cfg->afi_wlat);
3256
3257         /* initialize bit slips */
3258         mem_precharge_and_activate();
3259 }
3260
3261 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3262 static void mem_skip_calibrate(void)
3263 {
3264         uint32_t vfifo_offset;
3265         uint32_t i, j, r;
3266
3267         debug("%s:%d\n", __func__, __LINE__);
3268         /* Need to update every shadow register set used by the interface */
3269         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3270                 r += NUM_RANKS_PER_SHADOW_REG) {
3271                 /*
3272                  * Set output phase alignment settings appropriate for
3273                  * skip calibration.
3274                  */
3275                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3276                         scc_mgr_set_dqs_en_phase(i, 0);
3277 #if IO_DLL_CHAIN_LENGTH == 6
3278                         scc_mgr_set_dqdqs_output_phase(i, 6);
3279 #else
3280                         scc_mgr_set_dqdqs_output_phase(i, 7);
3281 #endif
3282                         /*
3283                          * Case:33398
3284                          *
3285                          * Write data arrives to the I/O two cycles before write
3286                          * latency is reached (720 deg).
3287                          *   -> due to bit-slip in a/c bus
3288                          *   -> to allow board skew where dqs is longer than ck
3289                          *      -> how often can this happen!?
3290                          *      -> can claim back some ptaps for high freq
3291                          *       support if we can relax this, but i digress...
3292                          *
3293                          * The write_clk leads mem_ck by 90 deg
3294                          * The minimum ptap of the OPA is 180 deg
3295                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3296                          * The write_clk is always delayed by 2 ptaps
3297                          *
3298                          * Hence, to make DQS aligned to CK, we need to delay
3299                          * DQS by:
3300                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3301                          *
3302                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3303                          * gives us the number of ptaps, which simplies to:
3304                          *
3305                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3306                          */
3307                         scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3308                                 IO_DLL_CHAIN_LENGTH - 2));
3309                 }
3310                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3311                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3312
3313                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3314                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3315                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3316                 }
3317                 writel(0xff, &sdr_scc_mgr->dq_ena);
3318                 writel(0xff, &sdr_scc_mgr->dm_ena);
3319                 writel(0, &sdr_scc_mgr->update);
3320         }
3321
3322         /* Compensate for simulation model behaviour */
3323         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3324                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3325                 scc_mgr_load_dqs(i);
3326         }
3327         writel(0, &sdr_scc_mgr->update);
3328
3329         /*
3330          * ArriaV has hard FIFOs that can only be initialized by incrementing
3331          * in sequencer.
3332          */
3333         vfifo_offset = CALIB_VFIFO_OFFSET;
3334         for (j = 0; j < vfifo_offset; j++) {
3335                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3336         }
3337         writel(0, &phy_mgr_cmd->fifo_reset);
3338
3339         /*
3340          * For ACV with hard lfifo, we get the skip-cal setting from
3341          * generation-time constant.
3342          */
3343         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3344         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3345 }
3346
3347 /* Memory calibration entry point */
3348 static uint32_t mem_calibrate(void)
3349 {
3350         uint32_t i;
3351         uint32_t rank_bgn, sr;
3352         uint32_t write_group, write_test_bgn;
3353         uint32_t read_group, read_test_bgn;
3354         uint32_t run_groups, current_run;
3355         uint32_t failing_groups = 0;
3356         uint32_t group_failed = 0;
3357         uint32_t sr_failed = 0;
3358
3359         debug("%s:%d\n", __func__, __LINE__);
3360         /* Initialize the data settings */
3361
3362         gbl->error_substage = CAL_SUBSTAGE_NIL;
3363         gbl->error_stage = CAL_STAGE_NIL;
3364         gbl->error_group = 0xff;
3365         gbl->fom_in = 0;
3366         gbl->fom_out = 0;
3367
3368         mem_config();
3369
3370         uint32_t bypass_mode = 0x1;
3371         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3372                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3373                           SCC_MGR_GROUP_COUNTER_OFFSET);
3374                 scc_set_bypass_mode(i, bypass_mode);
3375         }
3376
3377         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3378                 /*
3379                  * Set VFIFO and LFIFO to instant-on settings in skip
3380                  * calibration mode.
3381                  */
3382                 mem_skip_calibrate();
3383         } else {
3384                 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3385                         /*
3386                          * Zero all delay chain/phase settings for all
3387                          * groups and all shadow register sets.
3388                          */
3389                         scc_mgr_zero_all();
3390
3391                         run_groups = ~param->skip_groups;
3392
3393                         for (write_group = 0, write_test_bgn = 0; write_group
3394                                 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3395                                 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3396                                 /* Initialized the group failure */
3397                                 group_failed = 0;
3398
3399                                 current_run = run_groups & ((1 <<
3400                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3401                                 run_groups = run_groups >>
3402                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3403
3404                                 if (current_run == 0)
3405                                         continue;
3406
3407                                 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3408                                                     SCC_MGR_GROUP_COUNTER_OFFSET);
3409                                 scc_mgr_zero_group(write_group, write_test_bgn,
3410                                                    0);
3411
3412                                 for (read_group = write_group *
3413                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3414                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3415                                         read_test_bgn = 0;
3416                                         read_group < (write_group + 1) *
3417                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3418                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3419                                         group_failed == 0;
3420                                         read_group++, read_test_bgn +=
3421                                         RW_MGR_MEM_DQ_PER_READ_DQS) {
3422                                         /* Calibrate the VFIFO */
3423                                         if (!((STATIC_CALIB_STEPS) &
3424                                                 CALIB_SKIP_VFIFO)) {
3425                                                 if (!rw_mgr_mem_calibrate_vfifo
3426                                                         (read_group,
3427                                                         read_test_bgn)) {
3428                                                         group_failed = 1;
3429
3430                                                         if (!(gbl->
3431                                                         phy_debug_mode_flags &
3432                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3433                                                                 return 0;
3434                                                         }
3435                                                 }
3436                                         }
3437                                 }
3438
3439                                 /* Calibrate the output side */
3440                                 if (group_failed == 0)  {
3441                                         for (rank_bgn = 0, sr = 0; rank_bgn
3442                                                 < RW_MGR_MEM_NUMBER_OF_RANKS;
3443                                                 rank_bgn +=
3444                                                 NUM_RANKS_PER_SHADOW_REG,
3445                                                 ++sr) {
3446                                                 sr_failed = 0;
3447                                                 if (!((STATIC_CALIB_STEPS) &
3448                                                 CALIB_SKIP_WRITES)) {
3449                                                         if ((STATIC_CALIB_STEPS)
3450                                                 & CALIB_SKIP_DELAY_SWEEPS) {
3451                                                 /* not needed in quick mode! */
3452                                                         } else {
3453                                                 /*
3454                                                  * Determine if this set of
3455                                                  * ranks should be skipped
3456                                                  * entirely.
3457                                                  */
3458                                         if (!param->skip_shadow_regs[sr]) {
3459                                                 if (!rw_mgr_mem_calibrate_writes
3460                                                 (rank_bgn, write_group,
3461                                                 write_test_bgn)) {
3462                                                         sr_failed = 1;
3463                                                         if (!(gbl->
3464                                                         phy_debug_mode_flags &
3465                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3466                                                                 return 0;
3467                                                                         }
3468                                                                         }
3469                                                                 }
3470                                                         }
3471                                                 }
3472                                                 if (sr_failed != 0)
3473                                                         group_failed = 1;
3474                                         }
3475                                 }
3476
3477                                 if (group_failed == 0) {
3478                                         for (read_group = write_group *
3479                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3480                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3481                                         read_test_bgn = 0;
3482                                                 read_group < (write_group + 1)
3483                                                 * RW_MGR_MEM_IF_READ_DQS_WIDTH
3484                                                 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3485                                                 group_failed == 0;
3486                                                 read_group++, read_test_bgn +=
3487                                                 RW_MGR_MEM_DQ_PER_READ_DQS) {
3488                                                 if (!((STATIC_CALIB_STEPS) &
3489                                                         CALIB_SKIP_WRITES)) {
3490                                         if (!rw_mgr_mem_calibrate_vfifo_end
3491                                                 (read_group, read_test_bgn)) {
3492                                                         group_failed = 1;
3493
3494                                                 if (!(gbl->phy_debug_mode_flags
3495                                                 & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3496                                                                 return 0;
3497                                                                 }
3498                                                         }
3499                                                 }
3500                                         }
3501                                 }
3502
3503                                 if (group_failed != 0)
3504                                         failing_groups++;
3505                         }
3506
3507                         /*
3508                          * USER If there are any failing groups then report
3509                          * the failure.
3510                          */
3511                         if (failing_groups != 0)
3512                                 return 0;
3513
3514                         /* Calibrate the LFIFO */
3515                         if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3516                                 /*
3517                                  * If we're skipping groups as part of debug,
3518                                  * don't calibrate LFIFO.
3519                                  */
3520                                 if (param->skip_groups == 0) {
3521                                         if (!rw_mgr_mem_calibrate_lfifo())
3522                                                 return 0;
3523                                 }
3524                         }
3525                 }
3526         }
3527
3528         /*
3529          * Do not remove this line as it makes sure all of our decisions
3530          * have been applied.
3531          */
3532         writel(0, &sdr_scc_mgr->update);
3533         return 1;
3534 }
3535
3536 static uint32_t run_mem_calibrate(void)
3537 {
3538         uint32_t pass;
3539         uint32_t debug_info;
3540
3541         debug("%s:%d\n", __func__, __LINE__);
3542
3543         /* Reset pass/fail status shown on afi_cal_success/fail */
3544         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3545
3546         /* stop tracking manger */
3547         uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg);
3548
3549         writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg);
3550
3551         initialize();
3552         rw_mgr_mem_initialize();
3553
3554         pass = mem_calibrate();
3555
3556         mem_precharge_and_activate();
3557         writel(0, &phy_mgr_cmd->fifo_reset);
3558
3559         /*
3560          * Handoff:
3561          * Don't return control of the PHY back to AFI when in debug mode.
3562          */
3563         if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3564                 rw_mgr_mem_handoff();
3565                 /*
3566                  * In Hard PHY this is a 2-bit control:
3567                  * 0: AFI Mux Select
3568                  * 1: DDIO Mux Select
3569                  */
3570                 writel(0x2, &phy_mgr_cfg->mux_sel);
3571         }
3572
3573         writel(ctrlcfg, &sdr_ctrl->ctrl_cfg);
3574
3575         if (pass) {
3576                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3577
3578                 gbl->fom_in /= 2;
3579                 gbl->fom_out /= 2;
3580
3581                 if (gbl->fom_in > 0xff)
3582                         gbl->fom_in = 0xff;
3583
3584                 if (gbl->fom_out > 0xff)
3585                         gbl->fom_out = 0xff;
3586
3587                 /* Update the FOM in the register file */
3588                 debug_info = gbl->fom_in;
3589                 debug_info |= gbl->fom_out << 8;
3590                 writel(debug_info, &sdr_reg_file->fom);
3591
3592                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3593                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3594         } else {
3595                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3596
3597                 debug_info = gbl->error_stage;
3598                 debug_info |= gbl->error_substage << 8;
3599                 debug_info |= gbl->error_group << 16;
3600
3601                 writel(debug_info, &sdr_reg_file->failing_stage);
3602                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3603                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3604
3605                 /* Update the failing group/stage in the register file */
3606                 debug_info = gbl->error_stage;
3607                 debug_info |= gbl->error_substage << 8;
3608                 debug_info |= gbl->error_group << 16;
3609                 writel(debug_info, &sdr_reg_file->failing_stage);
3610         }
3611
3612         return pass;
3613 }
3614
3615 /**
3616  * hc_initialize_rom_data() - Initialize ROM data
3617  *
3618  * Initialize ROM data.
3619  */
3620 static void hc_initialize_rom_data(void)
3621 {
3622         u32 i, addr;
3623
3624         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3625         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3626                 writel(inst_rom_init[i], addr + (i << 2));
3627
3628         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3629         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3630                 writel(ac_rom_init[i], addr + (i << 2));
3631 }
3632
3633 /**
3634  * initialize_reg_file() - Initialize SDR register file
3635  *
3636  * Initialize SDR register file.
3637  */
3638 static void initialize_reg_file(void)
3639 {
3640         /* Initialize the register file with the correct data */
3641         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3642         writel(0, &sdr_reg_file->debug_data_addr);
3643         writel(0, &sdr_reg_file->cur_stage);
3644         writel(0, &sdr_reg_file->fom);
3645         writel(0, &sdr_reg_file->failing_stage);
3646         writel(0, &sdr_reg_file->debug1);
3647         writel(0, &sdr_reg_file->debug2);
3648 }
3649
3650 static void initialize_hps_phy(void)
3651 {
3652         uint32_t reg;
3653         /*
3654          * Tracking also gets configured here because it's in the
3655          * same register.
3656          */
3657         uint32_t trk_sample_count = 7500;
3658         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3659         /*
3660          * Format is number of outer loops in the 16 MSB, sample
3661          * count in 16 LSB.
3662          */
3663
3664         reg = 0;
3665         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3666         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3667         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3668         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3669         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3670         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3671         /*
3672          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3673          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3674          */
3675         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3676         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3677                 trk_sample_count);
3678         writel(reg, &sdr_ctrl->phy_ctrl0);
3679
3680         reg = 0;
3681         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3682                 trk_sample_count >>
3683                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3684         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3685                 trk_long_idle_sample_count);
3686         writel(reg, &sdr_ctrl->phy_ctrl1);
3687
3688         reg = 0;
3689         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3690                 trk_long_idle_sample_count >>
3691                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3692         writel(reg, &sdr_ctrl->phy_ctrl2);
3693 }
3694
3695 static void initialize_tracking(void)
3696 {
3697         uint32_t concatenated_longidle = 0x0;
3698         uint32_t concatenated_delays = 0x0;
3699         uint32_t concatenated_rw_addr = 0x0;
3700         uint32_t concatenated_refresh = 0x0;
3701         uint32_t trk_sample_count = 7500;
3702         uint32_t dtaps_per_ptap;
3703         uint32_t tmp_delay;
3704
3705         /*
3706          * compute usable version of value in case we skip full
3707          * computation later
3708          */
3709         dtaps_per_ptap = 0;
3710         tmp_delay = 0;
3711         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3712                 dtaps_per_ptap++;
3713                 tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3714         }
3715         dtaps_per_ptap--;
3716
3717         concatenated_longidle = concatenated_longidle ^ 10;
3718                 /*longidle outer loop */
3719         concatenated_longidle = concatenated_longidle << 16;
3720         concatenated_longidle = concatenated_longidle ^ 100;
3721                 /*longidle sample count */
3722         concatenated_delays = concatenated_delays ^ 243;
3723                 /* trfc, worst case of 933Mhz 4Gb */
3724         concatenated_delays = concatenated_delays << 8;
3725         concatenated_delays = concatenated_delays ^ 14;
3726                 /* trcd, worst case */
3727         concatenated_delays = concatenated_delays << 8;
3728         concatenated_delays = concatenated_delays ^ 10;
3729                 /* vfifo wait */
3730         concatenated_delays = concatenated_delays << 8;
3731         concatenated_delays = concatenated_delays ^ 4;
3732                 /* mux delay */
3733
3734         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3735         concatenated_rw_addr = concatenated_rw_addr << 8;
3736         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3737         concatenated_rw_addr = concatenated_rw_addr << 8;
3738         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3739         concatenated_rw_addr = concatenated_rw_addr << 8;
3740         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3741
3742         concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3743         concatenated_refresh = concatenated_refresh << 24;
3744         concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3745
3746         /* Initialize the register file with the correct data */
3747         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
3748         writel(trk_sample_count, &sdr_reg_file->trk_sample_count);
3749         writel(concatenated_longidle, &sdr_reg_file->trk_longidle);
3750         writel(concatenated_delays, &sdr_reg_file->delays);
3751         writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr);
3752         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width);
3753         writel(concatenated_refresh, &sdr_reg_file->trk_rfsh);
3754 }
3755
3756 int sdram_calibration_full(void)
3757 {
3758         struct param_type my_param;
3759         struct gbl_type my_gbl;
3760         uint32_t pass;
3761         uint32_t i;
3762
3763         param = &my_param;
3764         gbl = &my_gbl;
3765
3766         /* Initialize the debug mode flags */
3767         gbl->phy_debug_mode_flags = 0;
3768         /* Set the calibration enabled by default */
3769         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3770         /*
3771          * Only sweep all groups (regardless of fail state) by default
3772          * Set enabled read test by default.
3773          */
3774 #if DISABLE_GUARANTEED_READ
3775         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3776 #endif
3777         /* Initialize the register file */
3778         initialize_reg_file();
3779
3780         /* Initialize any PHY CSR */
3781         initialize_hps_phy();
3782
3783         scc_mgr_initialize();
3784
3785         initialize_tracking();
3786
3787         /* USER Enable all ranks, groups */
3788         for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3789                 param->skip_ranks[i] = 0;
3790         for (i = 0; i < NUM_SHADOW_REGS; ++i)
3791                 param->skip_shadow_regs[i] = 0;
3792         param->skip_groups = 0;
3793
3794         printf("%s: Preparing to start memory calibration\n", __FILE__);
3795
3796         debug("%s:%d\n", __func__, __LINE__);
3797         debug_cond(DLEVEL == 1,
3798                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3799                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3800                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3801                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3802                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3803         debug_cond(DLEVEL == 1,
3804                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3805                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3806                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3807                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3808         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3809                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3810         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3811                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3812                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3813         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3814                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3815                    IO_IO_OUT2_DELAY_MAX);
3816         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3817                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3818
3819         hc_initialize_rom_data();
3820
3821         /* update info for sims */
3822         reg_file_set_stage(CAL_STAGE_NIL);
3823         reg_file_set_group(0);
3824
3825         /*
3826          * Load global needed for those actions that require
3827          * some dynamic calibration support.
3828          */
3829         dyn_calib_steps = STATIC_CALIB_STEPS;
3830         /*
3831          * Load global to allow dynamic selection of delay loop settings
3832          * based on calibration mode.
3833          */
3834         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3835                 skip_delay_mask = 0xff;
3836         else
3837                 skip_delay_mask = 0x0;
3838
3839         pass = run_mem_calibrate();
3840
3841         printf("%s: Calibration complete\n", __FILE__);
3842         return pass;
3843 }