ddr: altera: Clean up rw_mgr_mem_calibrate_write_test() part 3
[oweals/u-boot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34
35 static struct socfpga_data_mgr *data_mgr =
36         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
41 #define DELTA_D         1
42
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60         STATIC_SKIP_DELAY_LOOPS)
61
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73
74 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
75
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77         ((non_skip_value) & skip_delay_mask)
78
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82
83 static void set_failing_group_stage(uint32_t group, uint32_t stage,
84         uint32_t substage)
85 {
86         /*
87          * Only set the global stage if there was not been any other
88          * failing group
89          */
90         if (gbl->error_stage == CAL_STAGE_NIL)  {
91                 gbl->error_substage = substage;
92                 gbl->error_stage = stage;
93                 gbl->error_group = group;
94         }
95 }
96
97 static void reg_file_set_group(u16 set_group)
98 {
99         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
100 }
101
102 static void reg_file_set_stage(u8 set_stage)
103 {
104         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
105 }
106
107 static void reg_file_set_sub_stage(u8 set_sub_stage)
108 {
109         set_sub_stage &= 0xff;
110         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
111 }
112
113 /**
114  * phy_mgr_initialize() - Initialize PHY Manager
115  *
116  * Initialize PHY Manager.
117  */
118 static void phy_mgr_initialize(void)
119 {
120         u32 ratio;
121
122         debug("%s:%d\n", __func__, __LINE__);
123         /* Calibration has control over path to memory */
124         /*
125          * In Hard PHY this is a 2-bit control:
126          * 0: AFI Mux Select
127          * 1: DDIO Mux Select
128          */
129         writel(0x3, &phy_mgr_cfg->mux_sel);
130
131         /* USER memory clock is not stable we begin initialization  */
132         writel(0, &phy_mgr_cfg->reset_mem_stbl);
133
134         /* USER calibration status all set to zero */
135         writel(0, &phy_mgr_cfg->cal_status);
136
137         writel(0, &phy_mgr_cfg->cal_debug_info);
138
139         /* Init params only if we do NOT skip calibration. */
140         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
141                 return;
142
143         ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
144                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
145         param->read_correct_mask_vg = (1 << ratio) - 1;
146         param->write_correct_mask_vg = (1 << ratio) - 1;
147         param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
148         param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
149         ratio = RW_MGR_MEM_DATA_WIDTH /
150                 RW_MGR_MEM_DATA_MASK_WIDTH;
151         param->dm_correct_mask = (1 << ratio) - 1;
152 }
153
154 /**
155  * set_rank_and_odt_mask() - Set Rank and ODT mask
156  * @rank:       Rank mask
157  * @odt_mode:   ODT mode, OFF or READ_WRITE
158  *
159  * Set Rank and ODT mask (On-Die Termination).
160  */
161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
162 {
163         u32 odt_mask_0 = 0;
164         u32 odt_mask_1 = 0;
165         u32 cs_and_odt_mask;
166
167         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
168                 odt_mask_0 = 0x0;
169                 odt_mask_1 = 0x0;
170         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
171                 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
172                 case 1: /* 1 Rank */
173                         /* Read: ODT = 0 ; Write: ODT = 1 */
174                         odt_mask_0 = 0x0;
175                         odt_mask_1 = 0x1;
176                         break;
177                 case 2: /* 2 Ranks */
178                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
179                                 /*
180                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
181                                  *   OR
182                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
183                                  *
184                                  * Since MEM_NUMBER_OF_RANKS is 2, they
185                                  * are both single rank with 2 CS each
186                                  * (special for RDIMM).
187                                  *
188                                  * Read: Turn on ODT on the opposite rank
189                                  * Write: Turn on ODT on all ranks
190                                  */
191                                 odt_mask_0 = 0x3 & ~(1 << rank);
192                                 odt_mask_1 = 0x3;
193                         } else {
194                                 /*
195                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
196                                  *
197                                  * Read: Turn on ODT off on all ranks
198                                  * Write: Turn on ODT on active rank
199                                  */
200                                 odt_mask_0 = 0x0;
201                                 odt_mask_1 = 0x3 & (1 << rank);
202                         }
203                         break;
204                 case 4: /* 4 Ranks */
205                         /* Read:
206                          * ----------+-----------------------+
207                          *           |         ODT           |
208                          * Read From +-----------------------+
209                          *   Rank    |  3  |  2  |  1  |  0  |
210                          * ----------+-----+-----+-----+-----+
211                          *     0     |  0  |  1  |  0  |  0  |
212                          *     1     |  1  |  0  |  0  |  0  |
213                          *     2     |  0  |  0  |  0  |  1  |
214                          *     3     |  0  |  0  |  1  |  0  |
215                          * ----------+-----+-----+-----+-----+
216                          *
217                          * Write:
218                          * ----------+-----------------------+
219                          *           |         ODT           |
220                          * Write To  +-----------------------+
221                          *   Rank    |  3  |  2  |  1  |  0  |
222                          * ----------+-----+-----+-----+-----+
223                          *     0     |  0  |  1  |  0  |  1  |
224                          *     1     |  1  |  0  |  1  |  0  |
225                          *     2     |  0  |  1  |  0  |  1  |
226                          *     3     |  1  |  0  |  1  |  0  |
227                          * ----------+-----+-----+-----+-----+
228                          */
229                         switch (rank) {
230                         case 0:
231                                 odt_mask_0 = 0x4;
232                                 odt_mask_1 = 0x5;
233                                 break;
234                         case 1:
235                                 odt_mask_0 = 0x8;
236                                 odt_mask_1 = 0xA;
237                                 break;
238                         case 2:
239                                 odt_mask_0 = 0x1;
240                                 odt_mask_1 = 0x5;
241                                 break;
242                         case 3:
243                                 odt_mask_0 = 0x2;
244                                 odt_mask_1 = 0xA;
245                                 break;
246                         }
247                         break;
248                 }
249         }
250
251         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
252                           ((0xFF & odt_mask_0) << 8) |
253                           ((0xFF & odt_mask_1) << 16);
254         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
255                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
256 }
257
258 /**
259  * scc_mgr_set() - Set SCC Manager register
260  * @off:        Base offset in SCC Manager space
261  * @grp:        Read/Write group
262  * @val:        Value to be set
263  *
264  * This function sets the SCC Manager (Scan Chain Control Manager) register.
265  */
266 static void scc_mgr_set(u32 off, u32 grp, u32 val)
267 {
268         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
269 }
270
271 /**
272  * scc_mgr_initialize() - Initialize SCC Manager registers
273  *
274  * Initialize SCC Manager registers.
275  */
276 static void scc_mgr_initialize(void)
277 {
278         /*
279          * Clear register file for HPS. 16 (2^4) is the size of the
280          * full register file in the scc mgr:
281          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
282          *                             MEM_IF_READ_DQS_WIDTH - 1);
283          */
284         int i;
285
286         for (i = 0; i < 16; i++) {
287                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
288                            __func__, __LINE__, i);
289                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
290         }
291 }
292
293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
294 {
295         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
296 }
297
298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
299 {
300         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
301 }
302
303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
304 {
305         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
306 }
307
308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
309 {
310         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
311 }
312
313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
314 {
315         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
316                     delay);
317 }
318
319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
322 }
323
324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
325 {
326         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
327 }
328
329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
330 {
331         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
332                     delay);
333 }
334
335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
336 {
337         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
338                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
339                     delay);
340 }
341
342 /* load up dqs config settings */
343 static void scc_mgr_load_dqs(uint32_t dqs)
344 {
345         writel(dqs, &sdr_scc_mgr->dqs_ena);
346 }
347
348 /* load up dqs io config settings */
349 static void scc_mgr_load_dqs_io(void)
350 {
351         writel(0, &sdr_scc_mgr->dqs_io_ena);
352 }
353
354 /* load up dq config settings */
355 static void scc_mgr_load_dq(uint32_t dq_in_group)
356 {
357         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
358 }
359
360 /* load up dm config settings */
361 static void scc_mgr_load_dm(uint32_t dm)
362 {
363         writel(dm, &sdr_scc_mgr->dm_ena);
364 }
365
366 /**
367  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
368  * @off:        Base offset in SCC Manager space
369  * @grp:        Read/Write group
370  * @val:        Value to be set
371  * @update:     If non-zero, trigger SCC Manager update for all ranks
372  *
373  * This function sets the SCC Manager (Scan Chain Control Manager) register
374  * and optionally triggers the SCC update for all ranks.
375  */
376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
377                                   const int update)
378 {
379         u32 r;
380
381         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
382              r += NUM_RANKS_PER_SHADOW_REG) {
383                 scc_mgr_set(off, grp, val);
384
385                 if (update || (r == 0)) {
386                         writel(grp, &sdr_scc_mgr->dqs_ena);
387                         writel(0, &sdr_scc_mgr->update);
388                 }
389         }
390 }
391
392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
393 {
394         /*
395          * USER although the h/w doesn't support different phases per
396          * shadow register, for simplicity our scc manager modeling
397          * keeps different phase settings per shadow reg, and it's
398          * important for us to keep them in sync to match h/w.
399          * for efficiency, the scan chain update should occur only
400          * once to sr0.
401          */
402         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
403                               read_group, phase, 0);
404 }
405
406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
407                                                      uint32_t phase)
408 {
409         /*
410          * USER although the h/w doesn't support different phases per
411          * shadow register, for simplicity our scc manager modeling
412          * keeps different phase settings per shadow reg, and it's
413          * important for us to keep them in sync to match h/w.
414          * for efficiency, the scan chain update should occur only
415          * once to sr0.
416          */
417         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
418                               write_group, phase, 0);
419 }
420
421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
422                                                uint32_t delay)
423 {
424         /*
425          * In shadow register mode, the T11 settings are stored in
426          * registers in the core, which are updated by the DQS_ENA
427          * signals. Not issuing the SCC_MGR_UPD command allows us to
428          * save lots of rank switching overhead, by calling
429          * select_shadow_regs_for_update with update_scan_chains
430          * set to 0.
431          */
432         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
433                               read_group, delay, 1);
434         writel(0, &sdr_scc_mgr->update);
435 }
436
437 /**
438  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
439  * @write_group:        Write group
440  * @delay:              Delay value
441  *
442  * This function sets the OCT output delay in SCC manager.
443  */
444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
445 {
446         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
447                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
448         const int base = write_group * ratio;
449         int i;
450         /*
451          * Load the setting in the SCC manager
452          * Although OCT affects only write data, the OCT delay is controlled
453          * by the DQS logic block which is instantiated once per read group.
454          * For protocols where a write group consists of multiple read groups,
455          * the setting must be set multiple times.
456          */
457         for (i = 0; i < ratio; i++)
458                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
459 }
460
461 /**
462  * scc_mgr_set_hhp_extras() - Set HHP extras.
463  *
464  * Load the fixed setting in the SCC manager HHP extras.
465  */
466 static void scc_mgr_set_hhp_extras(void)
467 {
468         /*
469          * Load the fixed setting in the SCC manager
470          * bits: 0:0 = 1'b1     - DQS bypass
471          * bits: 1:1 = 1'b1     - DQ bypass
472          * bits: 4:2 = 3'b001   - rfifo_mode
473          * bits: 6:5 = 2'b01    - rfifo clock_select
474          * bits: 7:7 = 1'b0     - separate gating from ungating setting
475          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
476          */
477         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
478                           (1 << 2) | (1 << 1) | (1 << 0);
479         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
480                          SCC_MGR_HHP_GLOBALS_OFFSET |
481                          SCC_MGR_HHP_EXTRAS_OFFSET;
482
483         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
484                    __func__, __LINE__);
485         writel(value, addr);
486         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
487                    __func__, __LINE__);
488 }
489
490 /**
491  * scc_mgr_zero_all() - Zero all DQS config
492  *
493  * Zero all DQS config.
494  */
495 static void scc_mgr_zero_all(void)
496 {
497         int i, r;
498
499         /*
500          * USER Zero all DQS config settings, across all groups and all
501          * shadow registers
502          */
503         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
504              r += NUM_RANKS_PER_SHADOW_REG) {
505                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
506                         /*
507                          * The phases actually don't exist on a per-rank basis,
508                          * but there's no harm updating them several times, so
509                          * let's keep the code simple.
510                          */
511                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
512                         scc_mgr_set_dqs_en_phase(i, 0);
513                         scc_mgr_set_dqs_en_delay(i, 0);
514                 }
515
516                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
517                         scc_mgr_set_dqdqs_output_phase(i, 0);
518                         /* Arria V/Cyclone V don't have out2. */
519                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
520                 }
521         }
522
523         /* Multicast to all DQS group enables. */
524         writel(0xff, &sdr_scc_mgr->dqs_ena);
525         writel(0, &sdr_scc_mgr->update);
526 }
527
528 /**
529  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
530  * @write_group:        Write group
531  *
532  * Set bypass mode and trigger SCC update.
533  */
534 static void scc_set_bypass_mode(const u32 write_group)
535 {
536         /* Multicast to all DQ enables. */
537         writel(0xff, &sdr_scc_mgr->dq_ena);
538         writel(0xff, &sdr_scc_mgr->dm_ena);
539
540         /* Update current DQS IO enable. */
541         writel(0, &sdr_scc_mgr->dqs_io_ena);
542
543         /* Update the DQS logic. */
544         writel(write_group, &sdr_scc_mgr->dqs_ena);
545
546         /* Hit update. */
547         writel(0, &sdr_scc_mgr->update);
548 }
549
550 /**
551  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
552  * @write_group:        Write group
553  *
554  * Load DQS settings for Write Group, do not trigger SCC update.
555  */
556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
557 {
558         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
559                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
560         const int base = write_group * ratio;
561         int i;
562         /*
563          * Load the setting in the SCC manager
564          * Although OCT affects only write data, the OCT delay is controlled
565          * by the DQS logic block which is instantiated once per read group.
566          * For protocols where a write group consists of multiple read groups,
567          * the setting must be set multiple times.
568          */
569         for (i = 0; i < ratio; i++)
570                 writel(base + i, &sdr_scc_mgr->dqs_ena);
571 }
572
573 /**
574  * scc_mgr_zero_group() - Zero all configs for a group
575  *
576  * Zero DQ, DM, DQS and OCT configs for a group.
577  */
578 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
579 {
580         int i, r;
581
582         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
583              r += NUM_RANKS_PER_SHADOW_REG) {
584                 /* Zero all DQ config settings. */
585                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
586                         scc_mgr_set_dq_out1_delay(i, 0);
587                         if (!out_only)
588                                 scc_mgr_set_dq_in_delay(i, 0);
589                 }
590
591                 /* Multicast to all DQ enables. */
592                 writel(0xff, &sdr_scc_mgr->dq_ena);
593
594                 /* Zero all DM config settings. */
595                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
596                         scc_mgr_set_dm_out1_delay(i, 0);
597
598                 /* Multicast to all DM enables. */
599                 writel(0xff, &sdr_scc_mgr->dm_ena);
600
601                 /* Zero all DQS IO settings. */
602                 if (!out_only)
603                         scc_mgr_set_dqs_io_in_delay(0);
604
605                 /* Arria V/Cyclone V don't have out2. */
606                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
607                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
608                 scc_mgr_load_dqs_for_write_group(write_group);
609
610                 /* Multicast to all DQS IO enables (only 1 in total). */
611                 writel(0, &sdr_scc_mgr->dqs_io_ena);
612
613                 /* Hit update to zero everything. */
614                 writel(0, &sdr_scc_mgr->update);
615         }
616 }
617
618 /*
619  * apply and load a particular input delay for the DQ pins in a group
620  * group_bgn is the index of the first dq pin (in the write group)
621  */
622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
623 {
624         uint32_t i, p;
625
626         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
627                 scc_mgr_set_dq_in_delay(p, delay);
628                 scc_mgr_load_dq(p);
629         }
630 }
631
632 /**
633  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
634  * @delay:              Delay value
635  *
636  * Apply and load a particular output delay for the DQ pins in a group.
637  */
638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
639 {
640         int i;
641
642         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
643                 scc_mgr_set_dq_out1_delay(i, delay);
644                 scc_mgr_load_dq(i);
645         }
646 }
647
648 /* apply and load a particular output delay for the DM pins in a group */
649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
650 {
651         uint32_t i;
652
653         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
654                 scc_mgr_set_dm_out1_delay(i, delay1);
655                 scc_mgr_load_dm(i);
656         }
657 }
658
659
660 /* apply and load delay on both DQS and OCT out1 */
661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
662                                                     uint32_t delay)
663 {
664         scc_mgr_set_dqs_out1_delay(delay);
665         scc_mgr_load_dqs_io();
666
667         scc_mgr_set_oct_out1_delay(write_group, delay);
668         scc_mgr_load_dqs_for_write_group(write_group);
669 }
670
671 /**
672  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
673  * @write_group:        Write group
674  * @delay:              Delay value
675  *
676  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
677  */
678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
679                                                   const u32 delay)
680 {
681         u32 i, new_delay;
682
683         /* DQ shift */
684         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
685                 scc_mgr_load_dq(i);
686
687         /* DM shift */
688         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
689                 scc_mgr_load_dm(i);
690
691         /* DQS shift */
692         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
693         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
694                 debug_cond(DLEVEL == 1,
695                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
696                            __func__, __LINE__, write_group, delay, new_delay,
697                            IO_IO_OUT2_DELAY_MAX,
698                            new_delay - IO_IO_OUT2_DELAY_MAX);
699                 new_delay -= IO_IO_OUT2_DELAY_MAX;
700                 scc_mgr_set_dqs_out1_delay(new_delay);
701         }
702
703         scc_mgr_load_dqs_io();
704
705         /* OCT shift */
706         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
707         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
708                 debug_cond(DLEVEL == 1,
709                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
710                            __func__, __LINE__, write_group, delay,
711                            new_delay, IO_IO_OUT2_DELAY_MAX,
712                            new_delay - IO_IO_OUT2_DELAY_MAX);
713                 new_delay -= IO_IO_OUT2_DELAY_MAX;
714                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
715         }
716
717         scc_mgr_load_dqs_for_write_group(write_group);
718 }
719
720 /**
721  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
722  * @write_group:        Write group
723  * @delay:              Delay value
724  *
725  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
726  */
727 static void
728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
729                                                 const u32 delay)
730 {
731         int r;
732
733         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
734              r += NUM_RANKS_PER_SHADOW_REG) {
735                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
736                 writel(0, &sdr_scc_mgr->update);
737         }
738 }
739
740 /**
741  * set_jump_as_return() - Return instruction optimization
742  *
743  * Optimization used to recover some slots in ddr3 inst_rom could be
744  * applied to other protocols if we wanted to
745  */
746 static void set_jump_as_return(void)
747 {
748         /*
749          * To save space, we replace return with jump to special shared
750          * RETURN instruction so we set the counter to large value so that
751          * we always jump.
752          */
753         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
754         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
755 }
756
757 /*
758  * should always use constants as argument to ensure all computations are
759  * performed at compile time
760  */
761 static void delay_for_n_mem_clocks(const uint32_t clocks)
762 {
763         uint32_t afi_clocks;
764         uint8_t inner = 0;
765         uint8_t outer = 0;
766         uint16_t c_loop = 0;
767
768         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
769
770
771         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
772         /* scale (rounding up) to get afi clocks */
773
774         /*
775          * Note, we don't bother accounting for being off a little bit
776          * because of a few extra instructions in outer loops
777          * Note, the loops have a test at the end, and do the test before
778          * the decrement, and so always perform the loop
779          * 1 time more than the counter value
780          */
781         if (afi_clocks == 0) {
782                 ;
783         } else if (afi_clocks <= 0x100) {
784                 inner = afi_clocks-1;
785                 outer = 0;
786                 c_loop = 0;
787         } else if (afi_clocks <= 0x10000) {
788                 inner = 0xff;
789                 outer = (afi_clocks-1) >> 8;
790                 c_loop = 0;
791         } else {
792                 inner = 0xff;
793                 outer = 0xff;
794                 c_loop = (afi_clocks-1) >> 16;
795         }
796
797         /*
798          * rom instructions are structured as follows:
799          *
800          *    IDLE_LOOP2: jnz cntr0, TARGET_A
801          *    IDLE_LOOP1: jnz cntr1, TARGET_B
802          *                return
803          *
804          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
805          * TARGET_B is set to IDLE_LOOP2 as well
806          *
807          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
808          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
809          *
810          * a little confusing, but it helps save precious space in the inst_rom
811          * and sequencer rom and keeps the delays more accurate and reduces
812          * overhead
813          */
814         if (afi_clocks <= 0x100) {
815                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
816                         &sdr_rw_load_mgr_regs->load_cntr1);
817
818                 writel(RW_MGR_IDLE_LOOP1,
819                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
820
821                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
822                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
823         } else {
824                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
825                         &sdr_rw_load_mgr_regs->load_cntr0);
826
827                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
828                         &sdr_rw_load_mgr_regs->load_cntr1);
829
830                 writel(RW_MGR_IDLE_LOOP2,
831                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
832
833                 writel(RW_MGR_IDLE_LOOP2,
834                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
835
836                 /* hack to get around compiler not being smart enough */
837                 if (afi_clocks <= 0x10000) {
838                         /* only need to run once */
839                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
840                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
841                 } else {
842                         do {
843                                 writel(RW_MGR_IDLE_LOOP2,
844                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
845                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
846                         } while (c_loop-- != 0);
847                 }
848         }
849         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
850 }
851
852 /**
853  * rw_mgr_mem_init_load_regs() - Load instruction registers
854  * @cntr0:      Counter 0 value
855  * @cntr1:      Counter 1 value
856  * @cntr2:      Counter 2 value
857  * @jump:       Jump instruction value
858  *
859  * Load instruction registers.
860  */
861 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
862 {
863         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
864                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
865
866         /* Load counters */
867         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
868                &sdr_rw_load_mgr_regs->load_cntr0);
869         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
870                &sdr_rw_load_mgr_regs->load_cntr1);
871         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
872                &sdr_rw_load_mgr_regs->load_cntr2);
873
874         /* Load jump address */
875         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
876         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
877         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
878
879         /* Execute count instruction */
880         writel(jump, grpaddr);
881 }
882
883 /**
884  * rw_mgr_mem_load_user() - Load user calibration values
885  * @fin1:       Final instruction 1
886  * @fin2:       Final instruction 2
887  * @precharge:  If 1, precharge the banks at the end
888  *
889  * Load user calibration values and optionally precharge the banks.
890  */
891 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
892                                  const int precharge)
893 {
894         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
895                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
896         u32 r;
897
898         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
899                 if (param->skip_ranks[r]) {
900                         /* request to skip the rank */
901                         continue;
902                 }
903
904                 /* set rank */
905                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
906
907                 /* precharge all banks ... */
908                 if (precharge)
909                         writel(RW_MGR_PRECHARGE_ALL, grpaddr);
910
911                 /*
912                  * USER Use Mirror-ed commands for odd ranks if address
913                  * mirrorring is on
914                  */
915                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
916                         set_jump_as_return();
917                         writel(RW_MGR_MRS2_MIRR, grpaddr);
918                         delay_for_n_mem_clocks(4);
919                         set_jump_as_return();
920                         writel(RW_MGR_MRS3_MIRR, grpaddr);
921                         delay_for_n_mem_clocks(4);
922                         set_jump_as_return();
923                         writel(RW_MGR_MRS1_MIRR, grpaddr);
924                         delay_for_n_mem_clocks(4);
925                         set_jump_as_return();
926                         writel(fin1, grpaddr);
927                 } else {
928                         set_jump_as_return();
929                         writel(RW_MGR_MRS2, grpaddr);
930                         delay_for_n_mem_clocks(4);
931                         set_jump_as_return();
932                         writel(RW_MGR_MRS3, grpaddr);
933                         delay_for_n_mem_clocks(4);
934                         set_jump_as_return();
935                         writel(RW_MGR_MRS1, grpaddr);
936                         set_jump_as_return();
937                         writel(fin2, grpaddr);
938                 }
939
940                 if (precharge)
941                         continue;
942
943                 set_jump_as_return();
944                 writel(RW_MGR_ZQCL, grpaddr);
945
946                 /* tZQinit = tDLLK = 512 ck cycles */
947                 delay_for_n_mem_clocks(512);
948         }
949 }
950
951 /**
952  * rw_mgr_mem_initialize() - Initialize RW Manager
953  *
954  * Initialize RW Manager.
955  */
956 static void rw_mgr_mem_initialize(void)
957 {
958         debug("%s:%d\n", __func__, __LINE__);
959
960         /* The reset / cke part of initialization is broadcasted to all ranks */
961         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
962                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
963
964         /*
965          * Here's how you load register for a loop
966          * Counters are located @ 0x800
967          * Jump address are located @ 0xC00
968          * For both, registers 0 to 3 are selected using bits 3 and 2, like
969          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
970          * I know this ain't pretty, but Avalon bus throws away the 2 least
971          * significant bits
972          */
973
974         /* Start with memory RESET activated */
975
976         /* tINIT = 200us */
977
978         /*
979          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
980          * If a and b are the number of iteration in 2 nested loops
981          * it takes the following number of cycles to complete the operation:
982          * number_of_cycles = ((2 + n) * a + 2) * b
983          * where n is the number of instruction in the inner loop
984          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
985          * b = 6A
986          */
987         rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
988                                   SEQ_TINIT_CNTR2_VAL,
989                                   RW_MGR_INIT_RESET_0_CKE_0);
990
991         /* Indicate that memory is stable. */
992         writel(1, &phy_mgr_cfg->reset_mem_stbl);
993
994         /*
995          * transition the RESET to high
996          * Wait for 500us
997          */
998
999         /*
1000          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1001          * If a and b are the number of iteration in 2 nested loops
1002          * it takes the following number of cycles to complete the operation
1003          * number_of_cycles = ((2 + n) * a + 2) * b
1004          * where n is the number of instruction in the inner loop
1005          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1006          * b = FF
1007          */
1008         rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1009                                   SEQ_TRESET_CNTR2_VAL,
1010                                   RW_MGR_INIT_RESET_1_CKE_0);
1011
1012         /* Bring up clock enable. */
1013
1014         /* tXRP < 250 ck cycles */
1015         delay_for_n_mem_clocks(250);
1016
1017         rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1018                              0);
1019 }
1020
1021 /*
1022  * At the end of calibration we have to program the user settings in, and
1023  * USER  hand off the memory to the user.
1024  */
1025 static void rw_mgr_mem_handoff(void)
1026 {
1027         rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1028         /*
1029          * USER  need to wait tMOD (12CK or 15ns) time before issuing
1030          * other commands, but we will have plenty of NIOS cycles before
1031          * actual handoff so its okay.
1032          */
1033 }
1034
1035 /*
1036  * issue write test command.
1037  * two variants are provided. one that just tests a write pattern and
1038  * another that tests datamask functionality.
1039  */
1040 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
1041                                                   uint32_t test_dm)
1042 {
1043         uint32_t mcc_instruction;
1044         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
1045                 ENABLE_SUPER_QUICK_CALIBRATION);
1046         uint32_t rw_wl_nop_cycles;
1047         uint32_t addr;
1048
1049         /*
1050          * Set counter and jump addresses for the right
1051          * number of NOP cycles.
1052          * The number of supported NOP cycles can range from -1 to infinity
1053          * Three different cases are handled:
1054          *
1055          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1056          *    mechanism will be used to insert the right number of NOPs
1057          *
1058          * 2. For a number of NOP cycles equals to 0, the micro-instruction
1059          *    issuing the write command will jump straight to the
1060          *    micro-instruction that turns on DQS (for DDRx), or outputs write
1061          *    data (for RLD), skipping
1062          *    the NOP micro-instruction all together
1063          *
1064          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1065          *    turned on in the same micro-instruction that issues the write
1066          *    command. Then we need
1067          *    to directly jump to the micro-instruction that sends out the data
1068          *
1069          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1070          *       (2 and 3). One jump-counter (0) is used to perform multiple
1071          *       write-read operations.
1072          *       one counter left to issue this command in "multiple-group" mode
1073          */
1074
1075         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1076
1077         if (rw_wl_nop_cycles == -1) {
1078                 /*
1079                  * CNTR 2 - We want to execute the special write operation that
1080                  * turns on DQS right away and then skip directly to the
1081                  * instruction that sends out the data. We set the counter to a
1082                  * large number so that the jump is always taken.
1083                  */
1084                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1085
1086                 /* CNTR 3 - Not used */
1087                 if (test_dm) {
1088                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
1089                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1090                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1091                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1092                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1093                 } else {
1094                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1095                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
1096                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1097                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1098                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1099                 }
1100         } else if (rw_wl_nop_cycles == 0) {
1101                 /*
1102                  * CNTR 2 - We want to skip the NOP operation and go straight
1103                  * to the DQS enable instruction. We set the counter to a large
1104                  * number so that the jump is always taken.
1105                  */
1106                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1107
1108                 /* CNTR 3 - Not used */
1109                 if (test_dm) {
1110                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1111                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1112                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1113                 } else {
1114                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1115                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
1116                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1117                 }
1118         } else {
1119                 /*
1120                  * CNTR 2 - In this case we want to execute the next instruction
1121                  * and NOT take the jump. So we set the counter to 0. The jump
1122                  * address doesn't count.
1123                  */
1124                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1125                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1126
1127                 /*
1128                  * CNTR 3 - Set the nop counter to the number of cycles we
1129                  * need to loop for, minus 1.
1130                  */
1131                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1132                 if (test_dm) {
1133                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1134                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1135                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1136                 } else {
1137                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1138                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1139                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1140                 }
1141         }
1142
1143         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1144                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1145
1146         if (quick_write_mode)
1147                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1148         else
1149                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1150
1151         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1152
1153         /*
1154          * CNTR 1 - This is used to ensure enough time elapses
1155          * for read data to come back.
1156          */
1157         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1158
1159         if (test_dm) {
1160                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
1161                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1162         } else {
1163                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
1164                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1165         }
1166
1167         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1168         writel(mcc_instruction, addr + (group << 2));
1169 }
1170
1171 /**
1172  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1173  * @rank_bgn:           Rank number
1174  * @write_group:        Write Group
1175  * @use_dm:             Use DM
1176  * @all_correct:        All bits must be correct in the mask
1177  * @bit_chk:            Resulting bit mask after the test
1178  * @all_ranks:          Test all ranks
1179  *
1180  * Test writes, can check for a single bit pass or multiple bit pass.
1181  */
1182 static int
1183 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1184                                 const u32 use_dm, const u32 all_correct,
1185                                 u32 *bit_chk, const u32 all_ranks)
1186 {
1187         const u32 rank_end = all_ranks ?
1188                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1189                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1190         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS /
1191                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS;
1192         const u32 correct_mask_vg = param->write_correct_mask_vg;
1193
1194         u32 tmp_bit_chk, base_rw_mgr;
1195         int vg, r;
1196
1197         *bit_chk = param->write_correct_mask;
1198
1199         for (r = rank_bgn; r < rank_end; r++) {
1200                 /* Request to skip the rank */
1201                 if (param->skip_ranks[r])
1202                         continue;
1203
1204                 /* Set rank */
1205                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1206
1207                 tmp_bit_chk = 0;
1208                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1;
1209                      vg >= 0; vg--) {
1210                         /* Reset the FIFOs to get pointers to known state. */
1211                         writel(0, &phy_mgr_cmd->fifo_reset);
1212
1213                         rw_mgr_mem_calibrate_write_test_issue(
1214                                 write_group *
1215                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg,
1216                                 use_dm);
1217
1218                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1219                         tmp_bit_chk <<= shift_ratio;
1220                         tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1221                 }
1222
1223                 *bit_chk &= tmp_bit_chk;
1224         }
1225
1226         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1227         if (all_correct) {
1228                 debug_cond(DLEVEL == 2,
1229                            "write_test(%u,%u,ALL) : %u == %u => %i\n",
1230                            write_group, use_dm, *bit_chk,
1231                            param->write_correct_mask,
1232                            *bit_chk == param->write_correct_mask);
1233                 return *bit_chk == param->write_correct_mask;
1234         } else {
1235                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1236                 debug_cond(DLEVEL == 2,
1237                            "write_test(%u,%u,ONE) : %u != %i => %i\n",
1238                            write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1239                 return *bit_chk != 0x00;
1240         }
1241 }
1242
1243 /**
1244  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1245  * @rank_bgn:   Rank number
1246  * @group:      Read/Write Group
1247  * @all_ranks:  Test all ranks
1248  *
1249  * Performs a guaranteed read on the patterns we are going to use during a
1250  * read test to ensure memory works.
1251  */
1252 static int
1253 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1254                                         const u32 all_ranks)
1255 {
1256         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1257                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1258         const u32 addr_offset =
1259                          (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1260         const u32 rank_end = all_ranks ?
1261                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1262                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1263         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1264                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1265         const u32 correct_mask_vg = param->read_correct_mask_vg;
1266
1267         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1268         int vg, r;
1269         int ret = 0;
1270
1271         bit_chk = param->read_correct_mask;
1272
1273         for (r = rank_bgn; r < rank_end; r++) {
1274                 /* Request to skip the rank */
1275                 if (param->skip_ranks[r])
1276                         continue;
1277
1278                 /* Set rank */
1279                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1280
1281                 /* Load up a constant bursts of read commands */
1282                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1283                 writel(RW_MGR_GUARANTEED_READ,
1284                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1285
1286                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1287                 writel(RW_MGR_GUARANTEED_READ_CONT,
1288                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1289
1290                 tmp_bit_chk = 0;
1291                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1292                      vg >= 0; vg--) {
1293                         /* Reset the FIFOs to get pointers to known state. */
1294                         writel(0, &phy_mgr_cmd->fifo_reset);
1295                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1296                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1297                         writel(RW_MGR_GUARANTEED_READ,
1298                                addr + addr_offset + (vg << 2));
1299
1300                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1301                         tmp_bit_chk <<= shift_ratio;
1302                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1303                 }
1304
1305                 bit_chk &= tmp_bit_chk;
1306         }
1307
1308         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1309
1310         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1311
1312         if (bit_chk != param->read_correct_mask)
1313                 ret = -EIO;
1314
1315         debug_cond(DLEVEL == 1,
1316                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1317                    __func__, __LINE__, group, bit_chk,
1318                    param->read_correct_mask, ret);
1319
1320         return ret;
1321 }
1322
1323 /**
1324  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1325  * @rank_bgn:   Rank number
1326  * @all_ranks:  Test all ranks
1327  *
1328  * Load up the patterns we are going to use during a read test.
1329  */
1330 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1331                                                     const int all_ranks)
1332 {
1333         const u32 rank_end = all_ranks ?
1334                         RW_MGR_MEM_NUMBER_OF_RANKS :
1335                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1336         u32 r;
1337
1338         debug("%s:%d\n", __func__, __LINE__);
1339
1340         for (r = rank_bgn; r < rank_end; r++) {
1341                 if (param->skip_ranks[r])
1342                         /* request to skip the rank */
1343                         continue;
1344
1345                 /* set rank */
1346                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1347
1348                 /* Load up a constant bursts */
1349                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1350
1351                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1352                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1353
1354                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1355
1356                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1357                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1358
1359                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1360
1361                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1362                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1363
1364                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1365
1366                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1367                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1368
1369                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1370                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1371         }
1372
1373         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1374 }
1375
1376 /**
1377  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1378  * @rank_bgn:           Rank number
1379  * @group:              Read/Write group
1380  * @num_tries:          Number of retries of the test
1381  * @all_correct:        All bits must be correct in the mask
1382  * @bit_chk:            Resulting bit mask after the test
1383  * @all_groups:         Test all R/W groups
1384  * @all_ranks:          Test all ranks
1385  *
1386  * Try a read and see if it returns correct data back. Test has dummy reads
1387  * inserted into the mix used to align DQS enable. Test has more thorough
1388  * checks than the regular read test.
1389  */
1390 static int
1391 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1392                                const u32 num_tries, const u32 all_correct,
1393                                u32 *bit_chk,
1394                                const u32 all_groups, const u32 all_ranks)
1395 {
1396         const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1397                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1398         const u32 quick_read_mode =
1399                 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1400                  ENABLE_SUPER_QUICK_CALIBRATION);
1401         u32 correct_mask_vg = param->read_correct_mask_vg;
1402         u32 tmp_bit_chk;
1403         u32 base_rw_mgr;
1404         u32 addr;
1405
1406         int r, vg, ret;
1407
1408         *bit_chk = param->read_correct_mask;
1409
1410         for (r = rank_bgn; r < rank_end; r++) {
1411                 if (param->skip_ranks[r])
1412                         /* request to skip the rank */
1413                         continue;
1414
1415                 /* set rank */
1416                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1417
1418                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1419
1420                 writel(RW_MGR_READ_B2B_WAIT1,
1421                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1422
1423                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1424                 writel(RW_MGR_READ_B2B_WAIT2,
1425                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1426
1427                 if (quick_read_mode)
1428                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1429                         /* need at least two (1+1) reads to capture failures */
1430                 else if (all_groups)
1431                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1432                 else
1433                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1434
1435                 writel(RW_MGR_READ_B2B,
1436                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1437                 if (all_groups)
1438                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1439                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1440                                &sdr_rw_load_mgr_regs->load_cntr3);
1441                 else
1442                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1443
1444                 writel(RW_MGR_READ_B2B,
1445                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1446
1447                 tmp_bit_chk = 0;
1448                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1449                      vg--) {
1450                         /* Reset the FIFOs to get pointers to known state. */
1451                         writel(0, &phy_mgr_cmd->fifo_reset);
1452                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1453                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1454
1455                         if (all_groups) {
1456                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1457                                        RW_MGR_RUN_ALL_GROUPS_OFFSET;
1458                         } else {
1459                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1460                                        RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1461                         }
1462
1463                         writel(RW_MGR_READ_B2B, addr +
1464                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1465                                vg) << 2));
1466
1467                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1468                         tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1469                                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1470                         tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1471                 }
1472
1473                 *bit_chk &= tmp_bit_chk;
1474         }
1475
1476         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1477         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1478
1479         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1480
1481         if (all_correct) {
1482                 ret = (*bit_chk == param->read_correct_mask);
1483                 debug_cond(DLEVEL == 2,
1484                            "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1485                            __func__, __LINE__, group, all_groups, *bit_chk,
1486                            param->read_correct_mask, ret);
1487         } else  {
1488                 ret = (*bit_chk != 0x00);
1489                 debug_cond(DLEVEL == 2,
1490                            "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1491                            __func__, __LINE__, group, all_groups, *bit_chk,
1492                            0, ret);
1493         }
1494
1495         return ret;
1496 }
1497
1498 /**
1499  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1500  * @grp:                Read/Write group
1501  * @num_tries:          Number of retries of the test
1502  * @all_correct:        All bits must be correct in the mask
1503  * @all_groups:         Test all R/W groups
1504  *
1505  * Perform a READ test across all memory ranks.
1506  */
1507 static int
1508 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1509                                          const u32 all_correct,
1510                                          const u32 all_groups)
1511 {
1512         u32 bit_chk;
1513         return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1514                                               &bit_chk, all_groups, 1);
1515 }
1516
1517 /**
1518  * rw_mgr_incr_vfifo() - Increase VFIFO value
1519  * @grp:        Read/Write group
1520  *
1521  * Increase VFIFO value.
1522  */
1523 static void rw_mgr_incr_vfifo(const u32 grp)
1524 {
1525         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1526 }
1527
1528 /**
1529  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1530  * @grp:        Read/Write group
1531  *
1532  * Decrease VFIFO value.
1533  */
1534 static void rw_mgr_decr_vfifo(const u32 grp)
1535 {
1536         u32 i;
1537
1538         for (i = 0; i < VFIFO_SIZE - 1; i++)
1539                 rw_mgr_incr_vfifo(grp);
1540 }
1541
1542 /**
1543  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1544  * @grp:        Read/Write group
1545  *
1546  * Push VFIFO until a failing read happens.
1547  */
1548 static int find_vfifo_failing_read(const u32 grp)
1549 {
1550         u32 v, ret, fail_cnt = 0;
1551
1552         for (v = 0; v < VFIFO_SIZE; v++) {
1553                 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1554                            __func__, __LINE__, v);
1555                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1556                                                 PASS_ONE_BIT, 0);
1557                 if (!ret) {
1558                         fail_cnt++;
1559
1560                         if (fail_cnt == 2)
1561                                 return v;
1562                 }
1563
1564                 /* Fiddle with FIFO. */
1565                 rw_mgr_incr_vfifo(grp);
1566         }
1567
1568         /* No failing read found! Something must have gone wrong. */
1569         debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1570         return 0;
1571 }
1572
1573 /**
1574  * sdr_find_phase_delay() - Find DQS enable phase or delay
1575  * @working:    If 1, look for working phase/delay, if 0, look for non-working
1576  * @delay:      If 1, look for delay, if 0, look for phase
1577  * @grp:        Read/Write group
1578  * @work:       Working window position
1579  * @work_inc:   Working window increment
1580  * @pd:         DQS Phase/Delay Iterator
1581  *
1582  * Find working or non-working DQS enable phase setting.
1583  */
1584 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1585                                 u32 *work, const u32 work_inc, u32 *pd)
1586 {
1587         const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1588         u32 ret;
1589
1590         for (; *pd <= max; (*pd)++) {
1591                 if (delay)
1592                         scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1593                 else
1594                         scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1595
1596                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1597                                         PASS_ONE_BIT, 0);
1598                 if (!working)
1599                         ret = !ret;
1600
1601                 if (ret)
1602                         return 0;
1603
1604                 if (work)
1605                         *work += work_inc;
1606         }
1607
1608         return -EINVAL;
1609 }
1610 /**
1611  * sdr_find_phase() - Find DQS enable phase
1612  * @working:    If 1, look for working phase, if 0, look for non-working phase
1613  * @grp:        Read/Write group
1614  * @work:       Working window position
1615  * @i:          Iterator
1616  * @p:          DQS Phase Iterator
1617  *
1618  * Find working or non-working DQS enable phase setting.
1619  */
1620 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1621                           u32 *i, u32 *p)
1622 {
1623         const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1624         int ret;
1625
1626         for (; *i < end; (*i)++) {
1627                 if (working)
1628                         *p = 0;
1629
1630                 ret = sdr_find_phase_delay(working, 0, grp, work,
1631                                            IO_DELAY_PER_OPA_TAP, p);
1632                 if (!ret)
1633                         return 0;
1634
1635                 if (*p > IO_DQS_EN_PHASE_MAX) {
1636                         /* Fiddle with FIFO. */
1637                         rw_mgr_incr_vfifo(grp);
1638                         if (!working)
1639                                 *p = 0;
1640                 }
1641         }
1642
1643         return -EINVAL;
1644 }
1645
1646 /**
1647  * sdr_working_phase() - Find working DQS enable phase
1648  * @grp:        Read/Write group
1649  * @work_bgn:   Working window start position
1650  * @d:          dtaps output value
1651  * @p:          DQS Phase Iterator
1652  * @i:          Iterator
1653  *
1654  * Find working DQS enable phase setting.
1655  */
1656 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1657                              u32 *p, u32 *i)
1658 {
1659         const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1660                                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1661         int ret;
1662
1663         *work_bgn = 0;
1664
1665         for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1666                 *i = 0;
1667                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1668                 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1669                 if (!ret)
1670                         return 0;
1671                 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1672         }
1673
1674         /* Cannot find working solution */
1675         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1676                    __func__, __LINE__);
1677         return -EINVAL;
1678 }
1679
1680 /**
1681  * sdr_backup_phase() - Find DQS enable backup phase
1682  * @grp:        Read/Write group
1683  * @work_bgn:   Working window start position
1684  * @p:          DQS Phase Iterator
1685  *
1686  * Find DQS enable backup phase setting.
1687  */
1688 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1689 {
1690         u32 tmp_delay, d;
1691         int ret;
1692
1693         /* Special case code for backing up a phase */
1694         if (*p == 0) {
1695                 *p = IO_DQS_EN_PHASE_MAX;
1696                 rw_mgr_decr_vfifo(grp);
1697         } else {
1698                 (*p)--;
1699         }
1700         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1701         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1702
1703         for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1704                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1705
1706                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1707                                         PASS_ONE_BIT, 0);
1708                 if (ret) {
1709                         *work_bgn = tmp_delay;
1710                         break;
1711                 }
1712
1713                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1714         }
1715
1716         /* Restore VFIFO to old state before we decremented it (if needed). */
1717         (*p)++;
1718         if (*p > IO_DQS_EN_PHASE_MAX) {
1719                 *p = 0;
1720                 rw_mgr_incr_vfifo(grp);
1721         }
1722
1723         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1724 }
1725
1726 /**
1727  * sdr_nonworking_phase() - Find non-working DQS enable phase
1728  * @grp:        Read/Write group
1729  * @work_end:   Working window end position
1730  * @p:          DQS Phase Iterator
1731  * @i:          Iterator
1732  *
1733  * Find non-working DQS enable phase setting.
1734  */
1735 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1736 {
1737         int ret;
1738
1739         (*p)++;
1740         *work_end += IO_DELAY_PER_OPA_TAP;
1741         if (*p > IO_DQS_EN_PHASE_MAX) {
1742                 /* Fiddle with FIFO. */
1743                 *p = 0;
1744                 rw_mgr_incr_vfifo(grp);
1745         }
1746
1747         ret = sdr_find_phase(0, grp, work_end, i, p);
1748         if (ret) {
1749                 /* Cannot see edge of failing read. */
1750                 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1751                            __func__, __LINE__);
1752         }
1753
1754         return ret;
1755 }
1756
1757 /**
1758  * sdr_find_window_center() - Find center of the working DQS window.
1759  * @grp:        Read/Write group
1760  * @work_bgn:   First working settings
1761  * @work_end:   Last working settings
1762  *
1763  * Find center of the working DQS enable window.
1764  */
1765 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1766                                   const u32 work_end)
1767 {
1768         u32 work_mid;
1769         int tmp_delay = 0;
1770         int i, p, d;
1771
1772         work_mid = (work_bgn + work_end) / 2;
1773
1774         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1775                    work_bgn, work_end, work_mid);
1776         /* Get the middle delay to be less than a VFIFO delay */
1777         tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1778
1779         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1780         work_mid %= tmp_delay;
1781         debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1782
1783         tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1784         if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1785                 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1786         p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1787
1788         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1789
1790         d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1791         if (d > IO_DQS_EN_DELAY_MAX)
1792                 d = IO_DQS_EN_DELAY_MAX;
1793         tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1794
1795         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1796
1797         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1798         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1799
1800         /*
1801          * push vfifo until we can successfully calibrate. We can do this
1802          * because the largest possible margin in 1 VFIFO cycle.
1803          */
1804         for (i = 0; i < VFIFO_SIZE; i++) {
1805                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1806                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1807                                                              PASS_ONE_BIT,
1808                                                              0)) {
1809                         debug_cond(DLEVEL == 2,
1810                                    "%s:%d center: found: ptap=%u dtap=%u\n",
1811                                    __func__, __LINE__, p, d);
1812                         return 0;
1813                 }
1814
1815                 /* Fiddle with FIFO. */
1816                 rw_mgr_incr_vfifo(grp);
1817         }
1818
1819         debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1820                    __func__, __LINE__);
1821         return -EINVAL;
1822 }
1823
1824 /**
1825  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1826  * @grp:        Read/Write Group
1827  *
1828  * Find a good DQS enable to use.
1829  */
1830 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1831 {
1832         u32 d, p, i;
1833         u32 dtaps_per_ptap;
1834         u32 work_bgn, work_end;
1835         u32 found_passing_read, found_failing_read, initial_failing_dtap;
1836         int ret;
1837
1838         debug("%s:%d %u\n", __func__, __LINE__, grp);
1839
1840         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1841
1842         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1843         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1844
1845         /* Step 0: Determine number of delay taps for each phase tap. */
1846         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1847
1848         /* Step 1: First push vfifo until we get a failing read. */
1849         find_vfifo_failing_read(grp);
1850
1851         /* Step 2: Find first working phase, increment in ptaps. */
1852         work_bgn = 0;
1853         ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1854         if (ret)
1855                 return ret;
1856
1857         work_end = work_bgn;
1858
1859         /*
1860          * If d is 0 then the working window covers a phase tap and we can
1861          * follow the old procedure. Otherwise, we've found the beginning
1862          * and we need to increment the dtaps until we find the end.
1863          */
1864         if (d == 0) {
1865                 /*
1866                  * Step 3a: If we have room, back off by one and
1867                  *          increment in dtaps.
1868                  */
1869                 sdr_backup_phase(grp, &work_bgn, &p);
1870
1871                 /*
1872                  * Step 4a: go forward from working phase to non working
1873                  * phase, increment in ptaps.
1874                  */
1875                 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1876                 if (ret)
1877                         return ret;
1878
1879                 /* Step 5a: Back off one from last, increment in dtaps. */
1880
1881                 /* Special case code for backing up a phase */
1882                 if (p == 0) {
1883                         p = IO_DQS_EN_PHASE_MAX;
1884                         rw_mgr_decr_vfifo(grp);
1885                 } else {
1886                         p = p - 1;
1887                 }
1888
1889                 work_end -= IO_DELAY_PER_OPA_TAP;
1890                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1891
1892                 d = 0;
1893
1894                 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1895                            __func__, __LINE__, p);
1896         }
1897
1898         /* The dtap increment to find the failing edge is done here. */
1899         sdr_find_phase_delay(0, 1, grp, &work_end,
1900                              IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1901
1902         /* Go back to working dtap */
1903         if (d != 0)
1904                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1905
1906         debug_cond(DLEVEL == 2,
1907                    "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1908                    __func__, __LINE__, p, d - 1, work_end);
1909
1910         if (work_end < work_bgn) {
1911                 /* nil range */
1912                 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1913                            __func__, __LINE__);
1914                 return -EINVAL;
1915         }
1916
1917         debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1918                    __func__, __LINE__, work_bgn, work_end);
1919
1920         /*
1921          * We need to calculate the number of dtaps that equal a ptap.
1922          * To do that we'll back up a ptap and re-find the edge of the
1923          * window using dtaps
1924          */
1925         debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1926                    __func__, __LINE__);
1927
1928         /* Special case code for backing up a phase */
1929         if (p == 0) {
1930                 p = IO_DQS_EN_PHASE_MAX;
1931                 rw_mgr_decr_vfifo(grp);
1932                 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1933                            __func__, __LINE__, p);
1934         } else {
1935                 p = p - 1;
1936                 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1937                            __func__, __LINE__, p);
1938         }
1939
1940         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1941
1942         /*
1943          * Increase dtap until we first see a passing read (in case the
1944          * window is smaller than a ptap), and then a failing read to
1945          * mark the edge of the window again.
1946          */
1947
1948         /* Find a passing read. */
1949         debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1950                    __func__, __LINE__);
1951
1952         initial_failing_dtap = d;
1953
1954         found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1955         if (found_passing_read) {
1956                 /* Find a failing read. */
1957                 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1958                            __func__, __LINE__);
1959                 d++;
1960                 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1961                                                            &d);
1962         } else {
1963                 debug_cond(DLEVEL == 1,
1964                            "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1965                            __func__, __LINE__);
1966         }
1967
1968         /*
1969          * The dynamically calculated dtaps_per_ptap is only valid if we
1970          * found a passing/failing read. If we didn't, it means d hit the max
1971          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1972          * statically calculated value.
1973          */
1974         if (found_passing_read && found_failing_read)
1975                 dtaps_per_ptap = d - initial_failing_dtap;
1976
1977         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1978         debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1979                    __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1980
1981         /* Step 6: Find the centre of the window. */
1982         ret = sdr_find_window_center(grp, work_bgn, work_end);
1983
1984         return ret;
1985 }
1986
1987 /**
1988  * search_stop_check() - Check if the detected edge is valid
1989  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
1990  * @d:                  DQS delay
1991  * @rank_bgn:           Rank number
1992  * @write_group:        Write Group
1993  * @read_group:         Read Group
1994  * @bit_chk:            Resulting bit mask after the test
1995  * @sticky_bit_chk:     Resulting sticky bit mask after the test
1996  * @use_read_test:      Perform read test
1997  *
1998  * Test if the found edge is valid.
1999  */
2000 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
2001                              const u32 write_group, const u32 read_group,
2002                              u32 *bit_chk, u32 *sticky_bit_chk,
2003                              const u32 use_read_test)
2004 {
2005         const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
2006                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
2007         const u32 correct_mask = write ? param->write_correct_mask :
2008                                          param->read_correct_mask;
2009         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2010                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2011         u32 ret;
2012         /*
2013          * Stop searching when the read test doesn't pass AND when
2014          * we've seen a passing read on every bit.
2015          */
2016         if (write) {                    /* WRITE-ONLY */
2017                 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2018                                                          0, PASS_ONE_BIT,
2019                                                          bit_chk, 0);
2020         } else if (use_read_test) {     /* READ-ONLY */
2021                 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
2022                                                         NUM_READ_PB_TESTS,
2023                                                         PASS_ONE_BIT, bit_chk,
2024                                                         0, 0);
2025         } else {                        /* READ-ONLY */
2026                 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2027                                                 PASS_ONE_BIT, bit_chk, 0);
2028                 *bit_chk = *bit_chk >> (per_dqs *
2029                         (read_group - (write_group * ratio)));
2030                 ret = (*bit_chk == 0);
2031         }
2032         *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2033         ret = ret && (*sticky_bit_chk == correct_mask);
2034         debug_cond(DLEVEL == 2,
2035                    "%s:%d center(left): dtap=%u => %u == %u && %u",
2036                    __func__, __LINE__, d,
2037                    *sticky_bit_chk, correct_mask, ret);
2038         return ret;
2039 }
2040
2041 /**
2042  * search_left_edge() - Find left edge of DQ/DQS working phase
2043  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2044  * @rank_bgn:           Rank number
2045  * @write_group:        Write Group
2046  * @read_group:         Read Group
2047  * @test_bgn:           Rank number to begin the test
2048  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2049  * @left_edge:          Left edge of the DQ/DQS phase
2050  * @right_edge:         Right edge of the DQ/DQS phase
2051  * @use_read_test:      Perform read test
2052  *
2053  * Find left edge of DQ/DQS working phase.
2054  */
2055 static void search_left_edge(const int write, const int rank_bgn,
2056         const u32 write_group, const u32 read_group, const u32 test_bgn,
2057         u32 *sticky_bit_chk,
2058         int *left_edge, int *right_edge, const u32 use_read_test)
2059 {
2060         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2061         const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2062         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2063                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2064         u32 stop, bit_chk;
2065         int i, d;
2066
2067         for (d = 0; d <= dqs_max; d++) {
2068                 if (write)
2069                         scc_mgr_apply_group_dq_out1_delay(d);
2070                 else
2071                         scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2072
2073                 writel(0, &sdr_scc_mgr->update);
2074
2075                 stop = search_stop_check(write, d, rank_bgn, write_group,
2076                                          read_group, &bit_chk, sticky_bit_chk,
2077                                          use_read_test);
2078                 if (stop == 1)
2079                         break;
2080
2081                 /* stop != 1 */
2082                 for (i = 0; i < per_dqs; i++) {
2083                         if (bit_chk & 1) {
2084                                 /*
2085                                  * Remember a passing test as
2086                                  * the left_edge.
2087                                  */
2088                                 left_edge[i] = d;
2089                         } else {
2090                                 /*
2091                                  * If a left edge has not been seen
2092                                  * yet, then a future passing test
2093                                  * will mark this edge as the right
2094                                  * edge.
2095                                  */
2096                                 if (left_edge[i] == delay_max + 1)
2097                                         right_edge[i] = -(d + 1);
2098                         }
2099                         bit_chk >>= 1;
2100                 }
2101         }
2102
2103         /* Reset DQ delay chains to 0 */
2104         if (write)
2105                 scc_mgr_apply_group_dq_out1_delay(0);
2106         else
2107                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2108
2109         *sticky_bit_chk = 0;
2110         for (i = per_dqs - 1; i >= 0; i--) {
2111                 debug_cond(DLEVEL == 2,
2112                            "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2113                            __func__, __LINE__, i, left_edge[i],
2114                            i, right_edge[i]);
2115
2116                 /*
2117                  * Check for cases where we haven't found the left edge,
2118                  * which makes our assignment of the the right edge invalid.
2119                  * Reset it to the illegal value.
2120                  */
2121                 if ((left_edge[i] == delay_max + 1) &&
2122                     (right_edge[i] != delay_max + 1)) {
2123                         right_edge[i] = delay_max + 1;
2124                         debug_cond(DLEVEL == 2,
2125                                    "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2126                                    __func__, __LINE__, i, right_edge[i]);
2127                 }
2128
2129                 /*
2130                  * Reset sticky bit
2131                  * READ: except for bits where we have seen both
2132                  *       the left and right edge.
2133                  * WRITE: except for bits where we have seen the
2134                  *        left edge.
2135                  */
2136                 *sticky_bit_chk <<= 1;
2137                 if (write) {
2138                         if (left_edge[i] != delay_max + 1)
2139                                 *sticky_bit_chk |= 1;
2140                 } else {
2141                         if ((left_edge[i] != delay_max + 1) &&
2142                             (right_edge[i] != delay_max + 1))
2143                                 *sticky_bit_chk |= 1;
2144                 }
2145         }
2146
2147
2148 }
2149
2150 /**
2151  * search_right_edge() - Find right edge of DQ/DQS working phase
2152  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2153  * @rank_bgn:           Rank number
2154  * @write_group:        Write Group
2155  * @read_group:         Read Group
2156  * @start_dqs:          DQS start phase
2157  * @start_dqs_en:       DQS enable start phase
2158  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2159  * @left_edge:          Left edge of the DQ/DQS phase
2160  * @right_edge:         Right edge of the DQ/DQS phase
2161  * @use_read_test:      Perform read test
2162  *
2163  * Find right edge of DQ/DQS working phase.
2164  */
2165 static int search_right_edge(const int write, const int rank_bgn,
2166         const u32 write_group, const u32 read_group,
2167         const int start_dqs, const int start_dqs_en,
2168         u32 *sticky_bit_chk,
2169         int *left_edge, int *right_edge, const u32 use_read_test)
2170 {
2171         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2172         const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2173         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2174                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2175         u32 stop, bit_chk;
2176         int i, d;
2177
2178         for (d = 0; d <= dqs_max - start_dqs; d++) {
2179                 if (write) {    /* WRITE-ONLY */
2180                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2181                                                                 d + start_dqs);
2182                 } else {        /* READ-ONLY */
2183                         scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2184                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2185                                 uint32_t delay = d + start_dqs_en;
2186                                 if (delay > IO_DQS_EN_DELAY_MAX)
2187                                         delay = IO_DQS_EN_DELAY_MAX;
2188                                 scc_mgr_set_dqs_en_delay(read_group, delay);
2189                         }
2190                         scc_mgr_load_dqs(read_group);
2191                 }
2192
2193                 writel(0, &sdr_scc_mgr->update);
2194
2195                 stop = search_stop_check(write, d, rank_bgn, write_group,
2196                                          read_group, &bit_chk, sticky_bit_chk,
2197                                          use_read_test);
2198                 if (stop == 1) {
2199                         if (write && (d == 0)) {        /* WRITE-ONLY */
2200                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2201                                         /*
2202                                          * d = 0 failed, but it passed when
2203                                          * testing the left edge, so it must be
2204                                          * marginal, set it to -1
2205                                          */
2206                                         if (right_edge[i] == delay_max + 1 &&
2207                                             left_edge[i] != delay_max + 1)
2208                                                 right_edge[i] = -1;
2209                                 }
2210                         }
2211                         break;
2212                 }
2213
2214                 /* stop != 1 */
2215                 for (i = 0; i < per_dqs; i++) {
2216                         if (bit_chk & 1) {
2217                                 /*
2218                                  * Remember a passing test as
2219                                  * the right_edge.
2220                                  */
2221                                 right_edge[i] = d;
2222                         } else {
2223                                 if (d != 0) {
2224                                         /*
2225                                          * If a right edge has not
2226                                          * been seen yet, then a future
2227                                          * passing test will mark this
2228                                          * edge as the left edge.
2229                                          */
2230                                         if (right_edge[i] == delay_max + 1)
2231                                                 left_edge[i] = -(d + 1);
2232                                 } else {
2233                                         /*
2234                                          * d = 0 failed, but it passed
2235                                          * when testing the left edge,
2236                                          * so it must be marginal, set
2237                                          * it to -1
2238                                          */
2239                                         if (right_edge[i] == delay_max + 1 &&
2240                                             left_edge[i] != delay_max + 1)
2241                                                 right_edge[i] = -1;
2242                                         /*
2243                                          * If a right edge has not been
2244                                          * seen yet, then a future
2245                                          * passing test will mark this
2246                                          * edge as the left edge.
2247                                          */
2248                                         else if (right_edge[i] == delay_max + 1)
2249                                                 left_edge[i] = -(d + 1);
2250                                 }
2251                         }
2252
2253                         debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2254                                    __func__, __LINE__, d);
2255                         debug_cond(DLEVEL == 2,
2256                                    "bit_chk_test=%i left_edge[%u]: %d ",
2257                                    bit_chk & 1, i, left_edge[i]);
2258                         debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2259                                    right_edge[i]);
2260                         bit_chk >>= 1;
2261                 }
2262         }
2263
2264         /* Check that all bits have a window */
2265         for (i = 0; i < per_dqs; i++) {
2266                 debug_cond(DLEVEL == 2,
2267                            "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2268                            __func__, __LINE__, i, left_edge[i],
2269                            i, right_edge[i]);
2270                 if ((left_edge[i] == dqs_max + 1) ||
2271                     (right_edge[i] == dqs_max + 1))
2272                         return i + 1;   /* FIXME: If we fail, retval > 0 */
2273         }
2274
2275         return 0;
2276 }
2277
2278 /**
2279  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2280  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2281  * @left_edge:          Left edge of the DQ/DQS phase
2282  * @right_edge:         Right edge of the DQ/DQS phase
2283  * @mid_min:            Best DQ/DQS phase middle setting
2284  *
2285  * Find index and value of the middle of the DQ/DQS working phase.
2286  */
2287 static int get_window_mid_index(const int write, int *left_edge,
2288                                 int *right_edge, int *mid_min)
2289 {
2290         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2291                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2292         int i, mid, min_index;
2293
2294         /* Find middle of window for each DQ bit */
2295         *mid_min = left_edge[0] - right_edge[0];
2296         min_index = 0;
2297         for (i = 1; i < per_dqs; i++) {
2298                 mid = left_edge[i] - right_edge[i];
2299                 if (mid < *mid_min) {
2300                         *mid_min = mid;
2301                         min_index = i;
2302                 }
2303         }
2304
2305         /*
2306          * -mid_min/2 represents the amount that we need to move DQS.
2307          * If mid_min is odd and positive we'll need to add one to make
2308          * sure the rounding in further calculations is correct (always
2309          * bias to the right), so just add 1 for all positive values.
2310          */
2311         if (*mid_min > 0)
2312                 (*mid_min)++;
2313         *mid_min = *mid_min / 2;
2314
2315         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2316                    __func__, __LINE__, *mid_min, min_index);
2317         return min_index;
2318 }
2319
2320 /**
2321  * center_dq_windows() - Center the DQ/DQS windows
2322  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2323  * @left_edge:          Left edge of the DQ/DQS phase
2324  * @right_edge:         Right edge of the DQ/DQS phase
2325  * @mid_min:            Adjusted DQ/DQS phase middle setting
2326  * @orig_mid_min:       Original DQ/DQS phase middle setting
2327  * @min_index:          DQ/DQS phase middle setting index
2328  * @test_bgn:           Rank number to begin the test
2329  * @dq_margin:          Amount of shift for the DQ
2330  * @dqs_margin:         Amount of shift for the DQS
2331  *
2332  * Align the DQ/DQS windows in each group.
2333  */
2334 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2335                               const int mid_min, const int orig_mid_min,
2336                               const int min_index, const int test_bgn,
2337                               int *dq_margin, int *dqs_margin)
2338 {
2339         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2340         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2341                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2342         const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2343                                       SCC_MGR_IO_IN_DELAY_OFFSET;
2344         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2345
2346         u32 temp_dq_io_delay1, temp_dq_io_delay2;
2347         int shift_dq, i, p;
2348
2349         /* Initialize data for export structures */
2350         *dqs_margin = delay_max + 1;
2351         *dq_margin  = delay_max + 1;
2352
2353         /* add delay to bring centre of all DQ windows to the same "level" */
2354         for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2355                 /* Use values before divide by 2 to reduce round off error */
2356                 shift_dq = (left_edge[i] - right_edge[i] -
2357                         (left_edge[min_index] - right_edge[min_index]))/2  +
2358                         (orig_mid_min - mid_min);
2359
2360                 debug_cond(DLEVEL == 2,
2361                            "vfifo_center: before: shift_dq[%u]=%d\n",
2362                            i, shift_dq);
2363
2364                 temp_dq_io_delay1 = readl(addr + (p << 2));
2365                 temp_dq_io_delay2 = readl(addr + (i << 2));
2366
2367                 if (shift_dq + temp_dq_io_delay1 > delay_max)
2368                         shift_dq = delay_max - temp_dq_io_delay2;
2369                 else if (shift_dq + temp_dq_io_delay1 < 0)
2370                         shift_dq = -temp_dq_io_delay1;
2371
2372                 debug_cond(DLEVEL == 2,
2373                            "vfifo_center: after: shift_dq[%u]=%d\n",
2374                            i, shift_dq);
2375
2376                 if (write)
2377                         scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2378                 else
2379                         scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2380
2381                 scc_mgr_load_dq(p);
2382
2383                 debug_cond(DLEVEL == 2,
2384                            "vfifo_center: margin[%u]=[%d,%d]\n", i,
2385                            left_edge[i] - shift_dq + (-mid_min),
2386                            right_edge[i] + shift_dq - (-mid_min));
2387
2388                 /* To determine values for export structures */
2389                 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2390                         *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2391
2392                 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2393                         *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2394         }
2395
2396 }
2397
2398 /**
2399  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2400  * @rank_bgn:           Rank number
2401  * @rw_group:           Read/Write Group
2402  * @test_bgn:           Rank at which the test begins
2403  * @use_read_test:      Perform a read test
2404  * @update_fom:         Update FOM
2405  *
2406  * Per-bit deskew DQ and centering.
2407  */
2408 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2409                         const u32 rw_group, const u32 test_bgn,
2410                         const int use_read_test, const int update_fom)
2411 {
2412         const u32 addr =
2413                 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2414                 (rw_group << 2);
2415         /*
2416          * Store these as signed since there are comparisons with
2417          * signed numbers.
2418          */
2419         uint32_t sticky_bit_chk;
2420         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2421         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2422         int32_t orig_mid_min, mid_min;
2423         int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2424         int32_t dq_margin, dqs_margin;
2425         int i, min_index;
2426         int ret;
2427
2428         debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2429
2430         start_dqs = readl(addr);
2431         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2432                 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2433
2434         /* set the left and right edge of each bit to an illegal value */
2435         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2436         sticky_bit_chk = 0;
2437         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2438                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2439                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2440         }
2441
2442         /* Search for the left edge of the window for each bit */
2443         search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2444                          &sticky_bit_chk,
2445                          left_edge, right_edge, use_read_test);
2446
2447
2448         /* Search for the right edge of the window for each bit */
2449         ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2450                                 start_dqs, start_dqs_en,
2451                                 &sticky_bit_chk,
2452                                 left_edge, right_edge, use_read_test);
2453         if (ret) {
2454                 /*
2455                  * Restore delay chain settings before letting the loop
2456                  * in rw_mgr_mem_calibrate_vfifo to retry different
2457                  * dqs/ck relationships.
2458                  */
2459                 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2460                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2461                         scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2462
2463                 scc_mgr_load_dqs(rw_group);
2464                 writel(0, &sdr_scc_mgr->update);
2465
2466                 debug_cond(DLEVEL == 1,
2467                            "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2468                            __func__, __LINE__, i, left_edge[i], right_edge[i]);
2469                 if (use_read_test) {
2470                         set_failing_group_stage(rw_group *
2471                                 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2472                                 CAL_STAGE_VFIFO,
2473                                 CAL_SUBSTAGE_VFIFO_CENTER);
2474                 } else {
2475                         set_failing_group_stage(rw_group *
2476                                 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2477                                 CAL_STAGE_VFIFO_AFTER_WRITES,
2478                                 CAL_SUBSTAGE_VFIFO_CENTER);
2479                 }
2480                 return -EIO;
2481         }
2482
2483         min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2484
2485         /* Determine the amount we can change DQS (which is -mid_min) */
2486         orig_mid_min = mid_min;
2487         new_dqs = start_dqs - mid_min;
2488         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2489                 new_dqs = IO_DQS_IN_DELAY_MAX;
2490         else if (new_dqs < 0)
2491                 new_dqs = 0;
2492
2493         mid_min = start_dqs - new_dqs;
2494         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2495                    mid_min, new_dqs);
2496
2497         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2498                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2499                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2500                 else if (start_dqs_en - mid_min < 0)
2501                         mid_min += start_dqs_en - mid_min;
2502         }
2503         new_dqs = start_dqs - mid_min;
2504
2505         debug_cond(DLEVEL == 1,
2506                    "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2507                    start_dqs,
2508                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2509                    new_dqs, mid_min);
2510
2511         /* Add delay to bring centre of all DQ windows to the same "level". */
2512         center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2513                           min_index, test_bgn, &dq_margin, &dqs_margin);
2514
2515         /* Move DQS-en */
2516         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2517                 final_dqs_en = start_dqs_en - mid_min;
2518                 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2519                 scc_mgr_load_dqs(rw_group);
2520         }
2521
2522         /* Move DQS */
2523         scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2524         scc_mgr_load_dqs(rw_group);
2525         debug_cond(DLEVEL == 2,
2526                    "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2527                    __func__, __LINE__, dq_margin, dqs_margin);
2528
2529         /*
2530          * Do not remove this line as it makes sure all of our decisions
2531          * have been applied. Apply the update bit.
2532          */
2533         writel(0, &sdr_scc_mgr->update);
2534
2535         if ((dq_margin < 0) || (dqs_margin < 0))
2536                 return -EINVAL;
2537
2538         return 0;
2539 }
2540
2541 /**
2542  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2543  * @rw_group:   Read/Write Group
2544  * @phase:      DQ/DQS phase
2545  *
2546  * Because initially no communication ca be reliably performed with the memory
2547  * device, the sequencer uses a guaranteed write mechanism to write data into
2548  * the memory device.
2549  */
2550 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2551                                                  const u32 phase)
2552 {
2553         int ret;
2554
2555         /* Set a particular DQ/DQS phase. */
2556         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2557
2558         debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2559                    __func__, __LINE__, rw_group, phase);
2560
2561         /*
2562          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2563          * Load up the patterns used by read calibration using the
2564          * current DQDQS phase.
2565          */
2566         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2567
2568         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2569                 return 0;
2570
2571         /*
2572          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2573          * Back-to-Back reads of the patterns used for calibration.
2574          */
2575         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2576         if (ret)
2577                 debug_cond(DLEVEL == 1,
2578                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2579                            __func__, __LINE__, rw_group, phase);
2580         return ret;
2581 }
2582
2583 /**
2584  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2585  * @rw_group:   Read/Write Group
2586  * @test_bgn:   Rank at which the test begins
2587  *
2588  * DQS enable calibration ensures reliable capture of the DQ signal without
2589  * glitches on the DQS line.
2590  */
2591 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2592                                                        const u32 test_bgn)
2593 {
2594         /*
2595          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2596          * DQS and DQS Eanble Signal Relationships.
2597          */
2598
2599         /* We start at zero, so have one less dq to devide among */
2600         const u32 delay_step = IO_IO_IN_DELAY_MAX /
2601                                (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2602         int ret;
2603         u32 i, p, d, r;
2604
2605         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2606
2607         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2608         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2609              r += NUM_RANKS_PER_SHADOW_REG) {
2610                 for (i = 0, p = test_bgn, d = 0;
2611                      i < RW_MGR_MEM_DQ_PER_READ_DQS;
2612                      i++, p++, d += delay_step) {
2613                         debug_cond(DLEVEL == 1,
2614                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2615                                    __func__, __LINE__, rw_group, r, i, p, d);
2616
2617                         scc_mgr_set_dq_in_delay(p, d);
2618                         scc_mgr_load_dq(p);
2619                 }
2620
2621                 writel(0, &sdr_scc_mgr->update);
2622         }
2623
2624         /*
2625          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2626          * dq_in_delay values
2627          */
2628         ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2629
2630         debug_cond(DLEVEL == 1,
2631                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2632                    __func__, __LINE__, rw_group, !ret);
2633
2634         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2635              r += NUM_RANKS_PER_SHADOW_REG) {
2636                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2637                 writel(0, &sdr_scc_mgr->update);
2638         }
2639
2640         return ret;
2641 }
2642
2643 /**
2644  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2645  * @rw_group:           Read/Write Group
2646  * @test_bgn:           Rank at which the test begins
2647  * @use_read_test:      Perform a read test
2648  * @update_fom:         Update FOM
2649  *
2650  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2651  * within a group.
2652  */
2653 static int
2654 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2655                                       const int use_read_test,
2656                                       const int update_fom)
2657
2658 {
2659         int ret, grp_calibrated;
2660         u32 rank_bgn, sr;
2661
2662         /*
2663          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2664          * Read per-bit deskew can be done on a per shadow register basis.
2665          */
2666         grp_calibrated = 1;
2667         for (rank_bgn = 0, sr = 0;
2668              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2669              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2670                 /* Check if this set of ranks should be skipped entirely. */
2671                 if (param->skip_shadow_regs[sr])
2672                         continue;
2673
2674                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2675                                                         test_bgn,
2676                                                         use_read_test,
2677                                                         update_fom);
2678                 if (!ret)
2679                         continue;
2680
2681                 grp_calibrated = 0;
2682         }
2683
2684         if (!grp_calibrated)
2685                 return -EIO;
2686
2687         return 0;
2688 }
2689
2690 /**
2691  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2692  * @rw_group:           Read/Write Group
2693  * @test_bgn:           Rank at which the test begins
2694  *
2695  * Stage 1: Calibrate the read valid prediction FIFO.
2696  *
2697  * This function implements UniPHY calibration Stage 1, as explained in
2698  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2699  *
2700  * - read valid prediction will consist of finding:
2701  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2702  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2703  *  - we also do a per-bit deskew on the DQ lines.
2704  */
2705 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2706 {
2707         uint32_t p, d;
2708         uint32_t dtaps_per_ptap;
2709         uint32_t failed_substage;
2710
2711         int ret;
2712
2713         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2714
2715         /* Update info for sims */
2716         reg_file_set_group(rw_group);
2717         reg_file_set_stage(CAL_STAGE_VFIFO);
2718         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2719
2720         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2721
2722         /* USER Determine number of delay taps for each phase tap. */
2723         dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2724                                       IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2725
2726         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2727                 /*
2728                  * In RLDRAMX we may be messing the delay of pins in
2729                  * the same write rw_group but outside of the current read
2730                  * the rw_group, but that's ok because we haven't calibrated
2731                  * output side yet.
2732                  */
2733                 if (d > 0) {
2734                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2735                                                                 rw_group, d);
2736                 }
2737
2738                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2739                         /* 1) Guaranteed Write */
2740                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2741                         if (ret)
2742                                 break;
2743
2744                         /* 2) DQS Enable Calibration */
2745                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2746                                                                           test_bgn);
2747                         if (ret) {
2748                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2749                                 continue;
2750                         }
2751
2752                         /* 3) Centering DQ/DQS */
2753                         /*
2754                          * If doing read after write calibration, do not update
2755                          * FOM now. Do it then.
2756                          */
2757                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2758                                                                 test_bgn, 1, 0);
2759                         if (ret) {
2760                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2761                                 continue;
2762                         }
2763
2764                         /* All done. */
2765                         goto cal_done_ok;
2766                 }
2767         }
2768
2769         /* Calibration Stage 1 failed. */
2770         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2771         return 0;
2772
2773         /* Calibration Stage 1 completed OK. */
2774 cal_done_ok:
2775         /*
2776          * Reset the delay chains back to zero if they have moved > 1
2777          * (check for > 1 because loop will increase d even when pass in
2778          * first case).
2779          */
2780         if (d > 2)
2781                 scc_mgr_zero_group(rw_group, 1);
2782
2783         return 1;
2784 }
2785
2786 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2787 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2788                                                uint32_t test_bgn)
2789 {
2790         uint32_t rank_bgn, sr;
2791         uint32_t grp_calibrated;
2792         uint32_t write_group;
2793
2794         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2795
2796         /* update info for sims */
2797
2798         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2799         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2800
2801         write_group = read_group;
2802
2803         /* update info for sims */
2804         reg_file_set_group(read_group);
2805
2806         grp_calibrated = 1;
2807         /* Read per-bit deskew can be done on a per shadow register basis */
2808         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2809                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2810                 /* Determine if this set of ranks should be skipped entirely */
2811                 if (!param->skip_shadow_regs[sr]) {
2812                 /* This is the last calibration round, update FOM here */
2813                         if (rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2814                                                                 read_group,
2815                                                                 test_bgn, 0,
2816                                                                 1)) {
2817                                 grp_calibrated = 0;
2818                         }
2819                 }
2820         }
2821
2822
2823         if (grp_calibrated == 0) {
2824                 set_failing_group_stage(write_group,
2825                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2826                                         CAL_SUBSTAGE_VFIFO_CENTER);
2827                 return 0;
2828         }
2829
2830         return 1;
2831 }
2832
2833 /* Calibrate LFIFO to find smallest read latency */
2834 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2835 {
2836         uint32_t found_one;
2837
2838         debug("%s:%d\n", __func__, __LINE__);
2839
2840         /* update info for sims */
2841         reg_file_set_stage(CAL_STAGE_LFIFO);
2842         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2843
2844         /* Load up the patterns used by read calibration for all ranks */
2845         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2846         found_one = 0;
2847
2848         do {
2849                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2850                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2851                            __func__, __LINE__, gbl->curr_read_lat);
2852
2853                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2854                                                               NUM_READ_TESTS,
2855                                                               PASS_ALL_BITS,
2856                                                               1)) {
2857                         break;
2858                 }
2859
2860                 found_one = 1;
2861                 /* reduce read latency and see if things are working */
2862                 /* correctly */
2863                 gbl->curr_read_lat--;
2864         } while (gbl->curr_read_lat > 0);
2865
2866         /* reset the fifos to get pointers to known state */
2867
2868         writel(0, &phy_mgr_cmd->fifo_reset);
2869
2870         if (found_one) {
2871                 /* add a fudge factor to the read latency that was determined */
2872                 gbl->curr_read_lat += 2;
2873                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2874                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2875                            read_lat=%u\n", __func__, __LINE__,
2876                            gbl->curr_read_lat);
2877                 return 1;
2878         } else {
2879                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2880                                         CAL_SUBSTAGE_READ_LATENCY);
2881
2882                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2883                            read_lat=%u\n", __func__, __LINE__,
2884                            gbl->curr_read_lat);
2885                 return 0;
2886         }
2887 }
2888
2889 /**
2890  * search_window() - Search for the/part of the window with DM/DQS shift
2891  * @search_dm:          If 1, search for the DM shift, if 0, search for DQS shift
2892  * @rank_bgn:           Rank number
2893  * @write_group:        Write Group
2894  * @bgn_curr:           Current window begin
2895  * @end_curr:           Current window end
2896  * @bgn_best:           Current best window begin
2897  * @end_best:           Current best window end
2898  * @win_best:           Size of the best window
2899  * @new_dqs:            New DQS value (only applicable if search_dm = 0).
2900  *
2901  * Search for the/part of the window with DM/DQS shift.
2902  */
2903 static void search_window(const int search_dm,
2904                           const u32 rank_bgn, const u32 write_group,
2905                           int *bgn_curr, int *end_curr, int *bgn_best,
2906                           int *end_best, int *win_best, int new_dqs)
2907 {
2908         u32 bit_chk;
2909         const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
2910         int d, di;
2911
2912         /* Search for the/part of the window with DM/DQS shift. */
2913         for (di = max; di >= 0; di -= DELTA_D) {
2914                 if (search_dm) {
2915                         d = di;
2916                         scc_mgr_apply_group_dm_out1_delay(d);
2917                 } else {
2918                         /* For DQS, we go from 0...max */
2919                         d = max - di;
2920                         /*
2921                          * Note: This only shifts DQS, so are we limiting ourselve to
2922                          * width of DQ unnecessarily.
2923                          */
2924                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2925                                                                 d + new_dqs);
2926                 }
2927
2928                 writel(0, &sdr_scc_mgr->update);
2929
2930                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2931                                                     PASS_ALL_BITS, &bit_chk,
2932                                                     0)) {
2933                         /* Set current end of the window. */
2934                         *end_curr = search_dm ? -d : d;
2935
2936                         /*
2937                          * If a starting edge of our window has not been seen
2938                          * this is our current start of the DM window.
2939                          */
2940                         if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2941                                 *bgn_curr = search_dm ? -d : d;
2942
2943                         /*
2944                          * If current window is bigger than best seen.
2945                          * Set best seen to be current window.
2946                          */
2947                         if ((*end_curr - *bgn_curr + 1) > *win_best) {
2948                                 *win_best = *end_curr - *bgn_curr + 1;
2949                                 *bgn_best = *bgn_curr;
2950                                 *end_best = *end_curr;
2951                         }
2952                 } else {
2953                         /* We just saw a failing test. Reset temp edge. */
2954                         *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2955                         *end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2956
2957                         /* Early exit is only applicable to DQS. */
2958                         if (search_dm)
2959                                 continue;
2960
2961                         /*
2962                          * Early exit optimization: if the remaining delay
2963                          * chain space is less than already seen largest
2964                          * window we can exit.
2965                          */
2966                         if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
2967                                 break;
2968                 }
2969         }
2970 }
2971
2972 /*
2973  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2974  * @rank_bgn:           Rank number
2975  * @write_group:        Write group
2976  * @test_bgn:           Rank at which the test begins
2977  *
2978  * Center all windows. Do per-bit-deskew to possibly increase size of
2979  * certain windows.
2980  */
2981 static int
2982 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2983                                    const u32 test_bgn)
2984 {
2985         int i;
2986         u32 sticky_bit_chk;
2987         u32 min_index;
2988         int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2989         int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2990         int mid;
2991         int mid_min, orig_mid_min;
2992         int new_dqs, start_dqs;
2993         int dq_margin, dqs_margin, dm_margin;
2994         int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2995         int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2996         int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2997         int end_best = IO_IO_OUT1_DELAY_MAX + 1;
2998         int win_best = 0;
2999
3000         int ret;
3001
3002         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
3003
3004         dm_margin = 0;
3005
3006         start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
3007                           SCC_MGR_IO_OUT1_DELAY_OFFSET) +
3008                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
3009
3010         /* Per-bit deskew. */
3011
3012         /*
3013          * Set the left and right edge of each bit to an illegal value.
3014          * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3015          */
3016         sticky_bit_chk = 0;
3017         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3018                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
3019                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
3020         }
3021
3022         /* Search for the left edge of the window for each bit. */
3023         search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
3024                          &sticky_bit_chk,
3025                          left_edge, right_edge, 0);
3026
3027         /* Search for the right edge of the window for each bit. */
3028         ret = search_right_edge(1, rank_bgn, write_group, 0,
3029                                 start_dqs, 0,
3030                                 &sticky_bit_chk,
3031                                 left_edge, right_edge, 0);
3032         if (ret) {
3033                 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
3034                                         CAL_SUBSTAGE_WRITES_CENTER);
3035                 return -EINVAL;
3036         }
3037
3038         min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3039
3040         /* Determine the amount we can change DQS (which is -mid_min). */
3041         orig_mid_min = mid_min;
3042         new_dqs = start_dqs;
3043         mid_min = 0;
3044         debug_cond(DLEVEL == 1,
3045                    "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3046                    __func__, __LINE__, start_dqs, new_dqs, mid_min);
3047
3048         /* Add delay to bring centre of all DQ windows to the same "level". */
3049         center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3050                           min_index, 0, &dq_margin, &dqs_margin);
3051
3052         /* Move DQS */
3053         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3054         writel(0, &sdr_scc_mgr->update);
3055
3056         /* Centre DM */
3057         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3058
3059         /*
3060          * Set the left and right edge of each bit to an illegal value.
3061          * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3062          */
3063         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3064         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3065
3066         /* Search for the/part of the window with DM shift. */
3067         search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3068                       &bgn_best, &end_best, &win_best, 0);
3069
3070         /* Reset DM delay chains to 0. */
3071         scc_mgr_apply_group_dm_out1_delay(0);
3072
3073         /*
3074          * Check to see if the current window nudges up aganist 0 delay.
3075          * If so we need to continue the search by shifting DQS otherwise DQS
3076          * search begins as a new search.
3077          */
3078         if (end_curr != 0) {
3079                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3080                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3081         }
3082
3083         /* Search for the/part of the window with DQS shifts. */
3084         search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3085                       &bgn_best, &end_best, &win_best, new_dqs);
3086
3087         /* Assign left and right edge for cal and reporting. */
3088         left_edge[0] = -1 * bgn_best;
3089         right_edge[0] = end_best;
3090
3091         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3092                    __func__, __LINE__, left_edge[0], right_edge[0]);
3093
3094         /* Move DQS (back to orig). */
3095         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3096
3097         /* Move DM */
3098
3099         /* Find middle of window for the DM bit. */
3100         mid = (left_edge[0] - right_edge[0]) / 2;
3101
3102         /* Only move right, since we are not moving DQS/DQ. */
3103         if (mid < 0)
3104                 mid = 0;
3105
3106         /* dm_marign should fail if we never find a window. */
3107         if (win_best == 0)
3108                 dm_margin = -1;
3109         else
3110                 dm_margin = left_edge[0] - mid;
3111
3112         scc_mgr_apply_group_dm_out1_delay(mid);
3113         writel(0, &sdr_scc_mgr->update);
3114
3115         debug_cond(DLEVEL == 2,
3116                    "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3117                    __func__, __LINE__, left_edge[0], right_edge[0],
3118                    mid, dm_margin);
3119         /* Export values. */
3120         gbl->fom_out += dq_margin + dqs_margin;
3121
3122         debug_cond(DLEVEL == 2,
3123                    "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3124                    __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3125
3126         /*
3127          * Do not remove this line as it makes sure all of our
3128          * decisions have been applied.
3129          */
3130         writel(0, &sdr_scc_mgr->update);
3131
3132         if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3133                 return -EINVAL;
3134
3135         return 0;
3136 }
3137
3138 /**
3139  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3140  * @rank_bgn:           Rank number
3141  * @group:              Read/Write Group
3142  * @test_bgn:           Rank at which the test begins
3143  *
3144  * Stage 2: Write Calibration Part One.
3145  *
3146  * This function implements UniPHY calibration Stage 2, as explained in
3147  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3148  */
3149 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3150                                        const u32 test_bgn)
3151 {
3152         int ret;
3153
3154         /* Update info for sims */
3155         debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3156
3157         reg_file_set_group(group);
3158         reg_file_set_stage(CAL_STAGE_WRITES);
3159         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3160
3161         ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3162         if (ret)
3163                 set_failing_group_stage(group, CAL_STAGE_WRITES,
3164                                         CAL_SUBSTAGE_WRITES_CENTER);
3165
3166         return ret;
3167 }
3168
3169 /**
3170  * mem_precharge_and_activate() - Precharge all banks and activate
3171  *
3172  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3173  */
3174 static void mem_precharge_and_activate(void)
3175 {
3176         int r;
3177
3178         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3179                 /* Test if the rank should be skipped. */
3180                 if (param->skip_ranks[r])
3181                         continue;
3182
3183                 /* Set rank. */
3184                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3185
3186                 /* Precharge all banks. */
3187                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3188                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3189
3190                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3191                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3192                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3193
3194                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3195                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3196                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3197
3198                 /* Activate rows. */
3199                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3200                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3201         }
3202 }
3203
3204 /**
3205  * mem_init_latency() - Configure memory RLAT and WLAT settings
3206  *
3207  * Configure memory RLAT and WLAT parameters.
3208  */
3209 static void mem_init_latency(void)
3210 {
3211         /*
3212          * For AV/CV, LFIFO is hardened and always runs at full rate
3213          * so max latency in AFI clocks, used here, is correspondingly
3214          * smaller.
3215          */
3216         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3217         u32 rlat, wlat;
3218
3219         debug("%s:%d\n", __func__, __LINE__);
3220
3221         /*
3222          * Read in write latency.
3223          * WL for Hard PHY does not include additive latency.
3224          */
3225         wlat = readl(&data_mgr->t_wl_add);
3226         wlat += readl(&data_mgr->mem_t_add);
3227
3228         gbl->rw_wl_nop_cycles = wlat - 1;
3229
3230         /* Read in readl latency. */
3231         rlat = readl(&data_mgr->t_rl_add);
3232
3233         /* Set a pretty high read latency initially. */
3234         gbl->curr_read_lat = rlat + 16;
3235         if (gbl->curr_read_lat > max_latency)
3236                 gbl->curr_read_lat = max_latency;
3237
3238         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3239
3240         /* Advertise write latency. */
3241         writel(wlat, &phy_mgr_cfg->afi_wlat);
3242 }
3243
3244 /**
3245  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3246  *
3247  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3248  */
3249 static void mem_skip_calibrate(void)
3250 {
3251         uint32_t vfifo_offset;
3252         uint32_t i, j, r;
3253
3254         debug("%s:%d\n", __func__, __LINE__);
3255         /* Need to update every shadow register set used by the interface */
3256         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3257              r += NUM_RANKS_PER_SHADOW_REG) {
3258                 /*
3259                  * Set output phase alignment settings appropriate for
3260                  * skip calibration.
3261                  */
3262                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3263                         scc_mgr_set_dqs_en_phase(i, 0);
3264 #if IO_DLL_CHAIN_LENGTH == 6
3265                         scc_mgr_set_dqdqs_output_phase(i, 6);
3266 #else
3267                         scc_mgr_set_dqdqs_output_phase(i, 7);
3268 #endif
3269                         /*
3270                          * Case:33398
3271                          *
3272                          * Write data arrives to the I/O two cycles before write
3273                          * latency is reached (720 deg).
3274                          *   -> due to bit-slip in a/c bus
3275                          *   -> to allow board skew where dqs is longer than ck
3276                          *      -> how often can this happen!?
3277                          *      -> can claim back some ptaps for high freq
3278                          *       support if we can relax this, but i digress...
3279                          *
3280                          * The write_clk leads mem_ck by 90 deg
3281                          * The minimum ptap of the OPA is 180 deg
3282                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3283                          * The write_clk is always delayed by 2 ptaps
3284                          *
3285                          * Hence, to make DQS aligned to CK, we need to delay
3286                          * DQS by:
3287                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3288                          *
3289                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3290                          * gives us the number of ptaps, which simplies to:
3291                          *
3292                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3293                          */
3294                         scc_mgr_set_dqdqs_output_phase(i,
3295                                         1.25 * IO_DLL_CHAIN_LENGTH - 2);
3296                 }
3297                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3298                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3299
3300                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3301                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3302                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3303                 }
3304                 writel(0xff, &sdr_scc_mgr->dq_ena);
3305                 writel(0xff, &sdr_scc_mgr->dm_ena);
3306                 writel(0, &sdr_scc_mgr->update);
3307         }
3308
3309         /* Compensate for simulation model behaviour */
3310         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3311                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3312                 scc_mgr_load_dqs(i);
3313         }
3314         writel(0, &sdr_scc_mgr->update);
3315
3316         /*
3317          * ArriaV has hard FIFOs that can only be initialized by incrementing
3318          * in sequencer.
3319          */
3320         vfifo_offset = CALIB_VFIFO_OFFSET;
3321         for (j = 0; j < vfifo_offset; j++)
3322                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3323         writel(0, &phy_mgr_cmd->fifo_reset);
3324
3325         /*
3326          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3327          * setting from generation-time constant.
3328          */
3329         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3330         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3331 }
3332
3333 /**
3334  * mem_calibrate() - Memory calibration entry point.
3335  *
3336  * Perform memory calibration.
3337  */
3338 static uint32_t mem_calibrate(void)
3339 {
3340         uint32_t i;
3341         uint32_t rank_bgn, sr;
3342         uint32_t write_group, write_test_bgn;
3343         uint32_t read_group, read_test_bgn;
3344         uint32_t run_groups, current_run;
3345         uint32_t failing_groups = 0;
3346         uint32_t group_failed = 0;
3347
3348         const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3349                                 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3350
3351         debug("%s:%d\n", __func__, __LINE__);
3352
3353         /* Initialize the data settings */
3354         gbl->error_substage = CAL_SUBSTAGE_NIL;
3355         gbl->error_stage = CAL_STAGE_NIL;
3356         gbl->error_group = 0xff;
3357         gbl->fom_in = 0;
3358         gbl->fom_out = 0;
3359
3360         /* Initialize WLAT and RLAT. */
3361         mem_init_latency();
3362
3363         /* Initialize bit slips. */
3364         mem_precharge_and_activate();
3365
3366         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3367                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3368                           SCC_MGR_GROUP_COUNTER_OFFSET);
3369                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3370                 if (i == 0)
3371                         scc_mgr_set_hhp_extras();
3372
3373                 scc_set_bypass_mode(i);
3374         }
3375
3376         /* Calibration is skipped. */
3377         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3378                 /*
3379                  * Set VFIFO and LFIFO to instant-on settings in skip
3380                  * calibration mode.
3381                  */
3382                 mem_skip_calibrate();
3383
3384                 /*
3385                  * Do not remove this line as it makes sure all of our
3386                  * decisions have been applied.
3387                  */
3388                 writel(0, &sdr_scc_mgr->update);
3389                 return 1;
3390         }
3391
3392         /* Calibration is not skipped. */
3393         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3394                 /*
3395                  * Zero all delay chain/phase settings for all
3396                  * groups and all shadow register sets.
3397                  */
3398                 scc_mgr_zero_all();
3399
3400                 run_groups = ~param->skip_groups;
3401
3402                 for (write_group = 0, write_test_bgn = 0; write_group
3403                         < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3404                         write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3405
3406                         /* Initialize the group failure */
3407                         group_failed = 0;
3408
3409                         current_run = run_groups & ((1 <<
3410                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3411                         run_groups = run_groups >>
3412                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3413
3414                         if (current_run == 0)
3415                                 continue;
3416
3417                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3418                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3419                         scc_mgr_zero_group(write_group, 0);
3420
3421                         for (read_group = write_group * rwdqs_ratio,
3422                              read_test_bgn = 0;
3423                              read_group < (write_group + 1) * rwdqs_ratio;
3424                              read_group++,
3425                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3426                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3427                                         continue;
3428
3429                                 /* Calibrate the VFIFO */
3430                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3431                                                                read_test_bgn))
3432                                         continue;
3433
3434                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3435                                         return 0;
3436
3437                                 /* The group failed, we're done. */
3438                                 goto grp_failed;
3439                         }
3440
3441                         /* Calibrate the output side */
3442                         for (rank_bgn = 0, sr = 0;
3443                              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3444                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3445                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3446                                         continue;
3447
3448                                 /* Not needed in quick mode! */
3449                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3450                                         continue;
3451
3452                                 /*
3453                                  * Determine if this set of ranks
3454                                  * should be skipped entirely.
3455                                  */
3456                                 if (param->skip_shadow_regs[sr])
3457                                         continue;
3458
3459                                 /* Calibrate WRITEs */
3460                                 if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3461                                                 write_group, write_test_bgn))
3462                                         continue;
3463
3464                                 group_failed = 1;
3465                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3466                                         return 0;
3467                         }
3468
3469                         /* Some group failed, we're done. */
3470                         if (group_failed)
3471                                 goto grp_failed;
3472
3473                         for (read_group = write_group * rwdqs_ratio,
3474                              read_test_bgn = 0;
3475                              read_group < (write_group + 1) * rwdqs_ratio;
3476                              read_group++,
3477                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3478                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3479                                         continue;
3480
3481                                 if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3482                                                                 read_test_bgn))
3483                                         continue;
3484
3485                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3486                                         return 0;
3487
3488                                 /* The group failed, we're done. */
3489                                 goto grp_failed;
3490                         }
3491
3492                         /* No group failed, continue as usual. */
3493                         continue;
3494
3495 grp_failed:             /* A group failed, increment the counter. */
3496                         failing_groups++;
3497                 }
3498
3499                 /*
3500                  * USER If there are any failing groups then report
3501                  * the failure.
3502                  */
3503                 if (failing_groups != 0)
3504                         return 0;
3505
3506                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3507                         continue;
3508
3509                 /*
3510                  * If we're skipping groups as part of debug,
3511                  * don't calibrate LFIFO.
3512                  */
3513                 if (param->skip_groups != 0)
3514                         continue;
3515
3516                 /* Calibrate the LFIFO */
3517                 if (!rw_mgr_mem_calibrate_lfifo())
3518                         return 0;
3519         }
3520
3521         /*
3522          * Do not remove this line as it makes sure all of our decisions
3523          * have been applied.
3524          */
3525         writel(0, &sdr_scc_mgr->update);
3526         return 1;
3527 }
3528
3529 /**
3530  * run_mem_calibrate() - Perform memory calibration
3531  *
3532  * This function triggers the entire memory calibration procedure.
3533  */
3534 static int run_mem_calibrate(void)
3535 {
3536         int pass;
3537
3538         debug("%s:%d\n", __func__, __LINE__);
3539
3540         /* Reset pass/fail status shown on afi_cal_success/fail */
3541         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3542
3543         /* Stop tracking manager. */
3544         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3545
3546         phy_mgr_initialize();
3547         rw_mgr_mem_initialize();
3548
3549         /* Perform the actual memory calibration. */
3550         pass = mem_calibrate();
3551
3552         mem_precharge_and_activate();
3553         writel(0, &phy_mgr_cmd->fifo_reset);
3554
3555         /* Handoff. */
3556         rw_mgr_mem_handoff();
3557         /*
3558          * In Hard PHY this is a 2-bit control:
3559          * 0: AFI Mux Select
3560          * 1: DDIO Mux Select
3561          */
3562         writel(0x2, &phy_mgr_cfg->mux_sel);
3563
3564         /* Start tracking manager. */
3565         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3566
3567         return pass;
3568 }
3569
3570 /**
3571  * debug_mem_calibrate() - Report result of memory calibration
3572  * @pass:       Value indicating whether calibration passed or failed
3573  *
3574  * This function reports the results of the memory calibration
3575  * and writes debug information into the register file.
3576  */
3577 static void debug_mem_calibrate(int pass)
3578 {
3579         uint32_t debug_info;
3580
3581         if (pass) {
3582                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3583
3584                 gbl->fom_in /= 2;
3585                 gbl->fom_out /= 2;
3586
3587                 if (gbl->fom_in > 0xff)
3588                         gbl->fom_in = 0xff;
3589
3590                 if (gbl->fom_out > 0xff)
3591                         gbl->fom_out = 0xff;
3592
3593                 /* Update the FOM in the register file */
3594                 debug_info = gbl->fom_in;
3595                 debug_info |= gbl->fom_out << 8;
3596                 writel(debug_info, &sdr_reg_file->fom);
3597
3598                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3599                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3600         } else {
3601                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3602
3603                 debug_info = gbl->error_stage;
3604                 debug_info |= gbl->error_substage << 8;
3605                 debug_info |= gbl->error_group << 16;
3606
3607                 writel(debug_info, &sdr_reg_file->failing_stage);
3608                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3609                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3610
3611                 /* Update the failing group/stage in the register file */
3612                 debug_info = gbl->error_stage;
3613                 debug_info |= gbl->error_substage << 8;
3614                 debug_info |= gbl->error_group << 16;
3615                 writel(debug_info, &sdr_reg_file->failing_stage);
3616         }
3617
3618         printf("%s: Calibration complete\n", __FILE__);
3619 }
3620
3621 /**
3622  * hc_initialize_rom_data() - Initialize ROM data
3623  *
3624  * Initialize ROM data.
3625  */
3626 static void hc_initialize_rom_data(void)
3627 {
3628         u32 i, addr;
3629
3630         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3631         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3632                 writel(inst_rom_init[i], addr + (i << 2));
3633
3634         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3635         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3636                 writel(ac_rom_init[i], addr + (i << 2));
3637 }
3638
3639 /**
3640  * initialize_reg_file() - Initialize SDR register file
3641  *
3642  * Initialize SDR register file.
3643  */
3644 static void initialize_reg_file(void)
3645 {
3646         /* Initialize the register file with the correct data */
3647         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3648         writel(0, &sdr_reg_file->debug_data_addr);
3649         writel(0, &sdr_reg_file->cur_stage);
3650         writel(0, &sdr_reg_file->fom);
3651         writel(0, &sdr_reg_file->failing_stage);
3652         writel(0, &sdr_reg_file->debug1);
3653         writel(0, &sdr_reg_file->debug2);
3654 }
3655
3656 /**
3657  * initialize_hps_phy() - Initialize HPS PHY
3658  *
3659  * Initialize HPS PHY.
3660  */
3661 static void initialize_hps_phy(void)
3662 {
3663         uint32_t reg;
3664         /*
3665          * Tracking also gets configured here because it's in the
3666          * same register.
3667          */
3668         uint32_t trk_sample_count = 7500;
3669         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3670         /*
3671          * Format is number of outer loops in the 16 MSB, sample
3672          * count in 16 LSB.
3673          */
3674
3675         reg = 0;
3676         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3677         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3678         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3679         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3680         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3681         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3682         /*
3683          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3684          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3685          */
3686         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3687         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3688                 trk_sample_count);
3689         writel(reg, &sdr_ctrl->phy_ctrl0);
3690
3691         reg = 0;
3692         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3693                 trk_sample_count >>
3694                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3695         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3696                 trk_long_idle_sample_count);
3697         writel(reg, &sdr_ctrl->phy_ctrl1);
3698
3699         reg = 0;
3700         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3701                 trk_long_idle_sample_count >>
3702                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3703         writel(reg, &sdr_ctrl->phy_ctrl2);
3704 }
3705
3706 /**
3707  * initialize_tracking() - Initialize tracking
3708  *
3709  * Initialize the register file with usable initial data.
3710  */
3711 static void initialize_tracking(void)
3712 {
3713         /*
3714          * Initialize the register file with the correct data.
3715          * Compute usable version of value in case we skip full
3716          * computation later.
3717          */
3718         writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3719                &sdr_reg_file->dtaps_per_ptap);
3720
3721         /* trk_sample_count */
3722         writel(7500, &sdr_reg_file->trk_sample_count);
3723
3724         /* longidle outer loop [15:0] */
3725         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3726
3727         /*
3728          * longidle sample count [31:24]
3729          * trfc, worst case of 933Mhz 4Gb [23:16]
3730          * trcd, worst case [15:8]
3731          * vfifo wait [7:0]
3732          */
3733         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3734                &sdr_reg_file->delays);
3735
3736         /* mux delay */
3737         writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3738                (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3739                &sdr_reg_file->trk_rw_mgr_addr);
3740
3741         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3742                &sdr_reg_file->trk_read_dqs_width);
3743
3744         /* trefi [7:0] */
3745         writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3746                &sdr_reg_file->trk_rfsh);
3747 }
3748
3749 int sdram_calibration_full(void)
3750 {
3751         struct param_type my_param;
3752         struct gbl_type my_gbl;
3753         uint32_t pass;
3754
3755         memset(&my_param, 0, sizeof(my_param));
3756         memset(&my_gbl, 0, sizeof(my_gbl));
3757
3758         param = &my_param;
3759         gbl = &my_gbl;
3760
3761         /* Set the calibration enabled by default */
3762         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3763         /*
3764          * Only sweep all groups (regardless of fail state) by default
3765          * Set enabled read test by default.
3766          */
3767 #if DISABLE_GUARANTEED_READ
3768         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3769 #endif
3770         /* Initialize the register file */
3771         initialize_reg_file();
3772
3773         /* Initialize any PHY CSR */
3774         initialize_hps_phy();
3775
3776         scc_mgr_initialize();
3777
3778         initialize_tracking();
3779
3780         printf("%s: Preparing to start memory calibration\n", __FILE__);
3781
3782         debug("%s:%d\n", __func__, __LINE__);
3783         debug_cond(DLEVEL == 1,
3784                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3785                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3786                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3787                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3788                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3789         debug_cond(DLEVEL == 1,
3790                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3791                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3792                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3793                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3794         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3795                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3796         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3797                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3798                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3799         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3800                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3801                    IO_IO_OUT2_DELAY_MAX);
3802         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3803                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3804
3805         hc_initialize_rom_data();
3806
3807         /* update info for sims */
3808         reg_file_set_stage(CAL_STAGE_NIL);
3809         reg_file_set_group(0);
3810
3811         /*
3812          * Load global needed for those actions that require
3813          * some dynamic calibration support.
3814          */
3815         dyn_calib_steps = STATIC_CALIB_STEPS;
3816         /*
3817          * Load global to allow dynamic selection of delay loop settings
3818          * based on calibration mode.
3819          */
3820         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3821                 skip_delay_mask = 0xff;
3822         else
3823                 skip_delay_mask = 0x0;
3824
3825         pass = run_mem_calibrate();
3826         debug_mem_calibrate(pass);
3827         return pass;
3828 }