ddr: altera: Clean up scc_mgr_apply_group_dq_out1_delay()
[oweals/u-boot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15
16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
17         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
18
19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
20         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
21
22 static struct socfpga_sdr_reg_file *sdr_reg_file =
23         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
24
25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
26         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
27
28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
29         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
30
31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
32         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
33
34 static struct socfpga_data_mgr *data_mgr =
35         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
36
37 static struct socfpga_sdr_ctrl *sdr_ctrl =
38         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
39
40 #define DELTA_D         1
41
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59         STATIC_SKIP_DELAY_LOOPS)
60
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72
73 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
74
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76         ((non_skip_value) & skip_delay_mask)
77
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83         uint32_t write_group, uint32_t use_dm,
84         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85
86 static void set_failing_group_stage(uint32_t group, uint32_t stage,
87         uint32_t substage)
88 {
89         /*
90          * Only set the global stage if there was not been any other
91          * failing group
92          */
93         if (gbl->error_stage == CAL_STAGE_NIL)  {
94                 gbl->error_substage = substage;
95                 gbl->error_stage = stage;
96                 gbl->error_group = group;
97         }
98 }
99
100 static void reg_file_set_group(u16 set_group)
101 {
102         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
103 }
104
105 static void reg_file_set_stage(u8 set_stage)
106 {
107         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
108 }
109
110 static void reg_file_set_sub_stage(u8 set_sub_stage)
111 {
112         set_sub_stage &= 0xff;
113         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
114 }
115
116 static void initialize(void)
117 {
118         debug("%s:%d\n", __func__, __LINE__);
119         /* USER calibration has control over path to memory */
120         /*
121          * In Hard PHY this is a 2-bit control:
122          * 0: AFI Mux Select
123          * 1: DDIO Mux Select
124          */
125         writel(0x3, &phy_mgr_cfg->mux_sel);
126
127         /* USER memory clock is not stable we begin initialization  */
128         writel(0, &phy_mgr_cfg->reset_mem_stbl);
129
130         /* USER calibration status all set to zero */
131         writel(0, &phy_mgr_cfg->cal_status);
132
133         writel(0, &phy_mgr_cfg->cal_debug_info);
134
135         if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
136                 param->read_correct_mask_vg  = ((uint32_t)1 <<
137                         (RW_MGR_MEM_DQ_PER_READ_DQS /
138                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
139                 param->write_correct_mask_vg = ((uint32_t)1 <<
140                         (RW_MGR_MEM_DQ_PER_READ_DQS /
141                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
142                 param->read_correct_mask     = ((uint32_t)1 <<
143                         RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
144                 param->write_correct_mask    = ((uint32_t)1 <<
145                         RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
146                 param->dm_correct_mask       = ((uint32_t)1 <<
147                         (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
148                         - 1;
149         }
150 }
151
152 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
153 {
154         uint32_t odt_mask_0 = 0;
155         uint32_t odt_mask_1 = 0;
156         uint32_t cs_and_odt_mask;
157
158         if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
159                 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
160                         /*
161                          * 1 Rank
162                          * Read: ODT = 0
163                          * Write: ODT = 1
164                          */
165                         odt_mask_0 = 0x0;
166                         odt_mask_1 = 0x1;
167                 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
168                         /* 2 Ranks */
169                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
170                                 /* - Dual-Slot , Single-Rank
171                                  * (1 chip-select per DIMM)
172                                  * OR
173                                  * - RDIMM, 4 total CS (2 CS per DIMM)
174                                  * means 2 DIMM
175                                  * Since MEM_NUMBER_OF_RANKS is 2 they are
176                                  * both single rank
177                                  * with 2 CS each (special for RDIMM)
178                                  * Read: Turn on ODT on the opposite rank
179                                  * Write: Turn on ODT on all ranks
180                                  */
181                                 odt_mask_0 = 0x3 & ~(1 << rank);
182                                 odt_mask_1 = 0x3;
183                         } else {
184                                 /*
185                                  * USER - Single-Slot , Dual-rank DIMMs
186                                  * (2 chip-selects per DIMM)
187                                  * USER Read: Turn on ODT off on all ranks
188                                  * USER Write: Turn on ODT on active rank
189                                  */
190                                 odt_mask_0 = 0x0;
191                                 odt_mask_1 = 0x3 & (1 << rank);
192                         }
193                 } else {
194                         /* 4 Ranks
195                          * Read:
196                          * ----------+-----------------------+
197                          *           |                       |
198                          *           |         ODT           |
199                          * Read From +-----------------------+
200                          *   Rank    |  3  |  2  |  1  |  0  |
201                          * ----------+-----+-----+-----+-----+
202                          *     0     |  0  |  1  |  0  |  0  |
203                          *     1     |  1  |  0  |  0  |  0  |
204                          *     2     |  0  |  0  |  0  |  1  |
205                          *     3     |  0  |  0  |  1  |  0  |
206                          * ----------+-----+-----+-----+-----+
207                          *
208                          * Write:
209                          * ----------+-----------------------+
210                          *           |                       |
211                          *           |         ODT           |
212                          * Write To  +-----------------------+
213                          *   Rank    |  3  |  2  |  1  |  0  |
214                          * ----------+-----+-----+-----+-----+
215                          *     0     |  0  |  1  |  0  |  1  |
216                          *     1     |  1  |  0  |  1  |  0  |
217                          *     2     |  0  |  1  |  0  |  1  |
218                          *     3     |  1  |  0  |  1  |  0  |
219                          * ----------+-----+-----+-----+-----+
220                          */
221                         switch (rank) {
222                         case 0:
223                                 odt_mask_0 = 0x4;
224                                 odt_mask_1 = 0x5;
225                                 break;
226                         case 1:
227                                 odt_mask_0 = 0x8;
228                                 odt_mask_1 = 0xA;
229                                 break;
230                         case 2:
231                                 odt_mask_0 = 0x1;
232                                 odt_mask_1 = 0x5;
233                                 break;
234                         case 3:
235                                 odt_mask_0 = 0x2;
236                                 odt_mask_1 = 0xA;
237                                 break;
238                         }
239                 }
240         } else {
241                 odt_mask_0 = 0x0;
242                 odt_mask_1 = 0x0;
243         }
244
245         cs_and_odt_mask =
246                 (0xFF & ~(1 << rank)) |
247                 ((0xFF & odt_mask_0) << 8) |
248                 ((0xFF & odt_mask_1) << 16);
249         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
250                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
251 }
252
253 /**
254  * scc_mgr_set() - Set SCC Manager register
255  * @off:        Base offset in SCC Manager space
256  * @grp:        Read/Write group
257  * @val:        Value to be set
258  *
259  * This function sets the SCC Manager (Scan Chain Control Manager) register.
260  */
261 static void scc_mgr_set(u32 off, u32 grp, u32 val)
262 {
263         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
264 }
265
266 /**
267  * scc_mgr_initialize() - Initialize SCC Manager registers
268  *
269  * Initialize SCC Manager registers.
270  */
271 static void scc_mgr_initialize(void)
272 {
273         /*
274          * Clear register file for HPS. 16 (2^4) is the size of the
275          * full register file in the scc mgr:
276          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
277          *                             MEM_IF_READ_DQS_WIDTH - 1);
278          */
279         int i;
280
281         for (i = 0; i < 16; i++) {
282                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
283                            __func__, __LINE__, i);
284                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
285         }
286 }
287
288 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
289 {
290         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
291 }
292
293 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
294 {
295         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
296 }
297
298 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
299 {
300         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
301 }
302
303 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
304 {
305         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
306 }
307
308 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group, uint32_t delay)
309 {
310         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
311                     delay);
312 }
313
314 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
315 {
316         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
317 }
318
319 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
322 }
323
324 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group,
325                                               uint32_t delay)
326 {
327         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
328                     delay);
329 }
330
331 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
332 {
333         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
334                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
335                     delay);
336 }
337
338 /* load up dqs config settings */
339 static void scc_mgr_load_dqs(uint32_t dqs)
340 {
341         writel(dqs, &sdr_scc_mgr->dqs_ena);
342 }
343
344 /* load up dqs io config settings */
345 static void scc_mgr_load_dqs_io(void)
346 {
347         writel(0, &sdr_scc_mgr->dqs_io_ena);
348 }
349
350 /* load up dq config settings */
351 static void scc_mgr_load_dq(uint32_t dq_in_group)
352 {
353         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
354 }
355
356 /* load up dm config settings */
357 static void scc_mgr_load_dm(uint32_t dm)
358 {
359         writel(dm, &sdr_scc_mgr->dm_ena);
360 }
361
362 /**
363  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
364  * @off:        Base offset in SCC Manager space
365  * @grp:        Read/Write group
366  * @val:        Value to be set
367  * @update:     If non-zero, trigger SCC Manager update for all ranks
368  *
369  * This function sets the SCC Manager (Scan Chain Control Manager) register
370  * and optionally triggers the SCC update for all ranks.
371  */
372 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
373                                   const int update)
374 {
375         u32 r;
376
377         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
378              r += NUM_RANKS_PER_SHADOW_REG) {
379                 scc_mgr_set(off, grp, val);
380
381                 if (update || (r == 0)) {
382                         writel(grp, &sdr_scc_mgr->dqs_ena);
383                         writel(0, &sdr_scc_mgr->update);
384                 }
385         }
386 }
387
388 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
389 {
390         /*
391          * USER although the h/w doesn't support different phases per
392          * shadow register, for simplicity our scc manager modeling
393          * keeps different phase settings per shadow reg, and it's
394          * important for us to keep them in sync to match h/w.
395          * for efficiency, the scan chain update should occur only
396          * once to sr0.
397          */
398         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
399                               read_group, phase, 0);
400 }
401
402 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
403                                                      uint32_t phase)
404 {
405         /*
406          * USER although the h/w doesn't support different phases per
407          * shadow register, for simplicity our scc manager modeling
408          * keeps different phase settings per shadow reg, and it's
409          * important for us to keep them in sync to match h/w.
410          * for efficiency, the scan chain update should occur only
411          * once to sr0.
412          */
413         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
414                               write_group, phase, 0);
415 }
416
417 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
418                                                uint32_t delay)
419 {
420         /*
421          * In shadow register mode, the T11 settings are stored in
422          * registers in the core, which are updated by the DQS_ENA
423          * signals. Not issuing the SCC_MGR_UPD command allows us to
424          * save lots of rank switching overhead, by calling
425          * select_shadow_regs_for_update with update_scan_chains
426          * set to 0.
427          */
428         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
429                               read_group, delay, 1);
430         writel(0, &sdr_scc_mgr->update);
431 }
432
433 /**
434  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
435  * @write_group:        Write group
436  * @delay:              Delay value
437  *
438  * This function sets the OCT output delay in SCC manager.
439  */
440 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
441 {
442         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
443                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
444         const int base = write_group * ratio;
445         int i;
446         /*
447          * Load the setting in the SCC manager
448          * Although OCT affects only write data, the OCT delay is controlled
449          * by the DQS logic block which is instantiated once per read group.
450          * For protocols where a write group consists of multiple read groups,
451          * the setting must be set multiple times.
452          */
453         for (i = 0; i < ratio; i++)
454                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
455 }
456
457 static void scc_mgr_set_hhp_extras(void)
458 {
459         /*
460          * Load the fixed setting in the SCC manager
461          * bits: 0:0 = 1'b1   - dqs bypass
462          * bits: 1:1 = 1'b1   - dq bypass
463          * bits: 4:2 = 3'b001   - rfifo_mode
464          * bits: 6:5 = 2'b01  - rfifo clock_select
465          * bits: 7:7 = 1'b0  - separate gating from ungating setting
466          * bits: 8:8 = 1'b0  - separate OE from Output delay setting
467          */
468         uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
469         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET;
470
471         writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET);
472 }
473
474 /*
475  * USER Zero all DQS config
476  * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
477  */
478 static void scc_mgr_zero_all(void)
479 {
480         uint32_t i, r;
481
482         /*
483          * USER Zero all DQS config settings, across all groups and all
484          * shadow registers
485          */
486         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
487              NUM_RANKS_PER_SHADOW_REG) {
488                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
489                         /*
490                          * The phases actually don't exist on a per-rank basis,
491                          * but there's no harm updating them several times, so
492                          * let's keep the code simple.
493                          */
494                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
495                         scc_mgr_set_dqs_en_phase(i, 0);
496                         scc_mgr_set_dqs_en_delay(i, 0);
497                 }
498
499                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
500                         scc_mgr_set_dqdqs_output_phase(i, 0);
501                         /* av/cv don't have out2 */
502                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
503                 }
504         }
505
506         /* multicast to all DQS group enables */
507         writel(0xff, &sdr_scc_mgr->dqs_ena);
508         writel(0, &sdr_scc_mgr->update);
509 }
510
511 /**
512  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
513  * @write_group:        Write group
514  *
515  * Set bypass mode and trigger SCC update.
516  */
517 static void scc_set_bypass_mode(const u32 write_group)
518 {
519         /* Only needed once to set all groups, pins, DQ, DQS, DM. */
520         if (write_group == 0) {
521                 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__,
522                            __LINE__);
523                 scc_mgr_set_hhp_extras();
524                 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
525                           __func__, __LINE__);
526         }
527
528         /* Multicast to all DQ enables. */
529         writel(0xff, &sdr_scc_mgr->dq_ena);
530         writel(0xff, &sdr_scc_mgr->dm_ena);
531
532         /* Update current DQS IO enable. */
533         writel(0, &sdr_scc_mgr->dqs_io_ena);
534
535         /* Update the DQS logic. */
536         writel(write_group, &sdr_scc_mgr->dqs_ena);
537
538         /* Hit update. */
539         writel(0, &sdr_scc_mgr->update);
540 }
541
542 /**
543  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
544  * @write_group:        Write group
545  *
546  * Load DQS settings for Write Group, do not trigger SCC update.
547  */
548 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
549 {
550         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
551                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
552         const int base = write_group * ratio;
553         int i;
554         /*
555          * Load the setting in the SCC manager
556          * Although OCT affects only write data, the OCT delay is controlled
557          * by the DQS logic block which is instantiated once per read group.
558          * For protocols where a write group consists of multiple read groups,
559          * the setting must be set multiple times.
560          */
561         for (i = 0; i < ratio; i++)
562                 writel(base + i, &sdr_scc_mgr->dqs_ena);
563 }
564
565 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
566                                int32_t out_only)
567 {
568         uint32_t i, r;
569
570         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
571                 NUM_RANKS_PER_SHADOW_REG) {
572                 /* Zero all DQ config settings */
573                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
574                         scc_mgr_set_dq_out1_delay(i, 0);
575                         if (!out_only)
576                                 scc_mgr_set_dq_in_delay(i, 0);
577                 }
578
579                 /* multicast to all DQ enables */
580                 writel(0xff, &sdr_scc_mgr->dq_ena);
581
582                 /* Zero all DM config settings */
583                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
584                         scc_mgr_set_dm_out1_delay(i, 0);
585                 }
586
587                 /* multicast to all DM enables */
588                 writel(0xff, &sdr_scc_mgr->dm_ena);
589
590                 /* zero all DQS io settings */
591                 if (!out_only)
592                         scc_mgr_set_dqs_io_in_delay(write_group, 0);
593                 /* av/cv don't have out2 */
594                 scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
595                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
596                 scc_mgr_load_dqs_for_write_group(write_group);
597
598                 /* multicast to all DQS IO enables (only 1) */
599                 writel(0, &sdr_scc_mgr->dqs_io_ena);
600
601                 /* hit update to zero everything */
602                 writel(0, &sdr_scc_mgr->update);
603         }
604 }
605
606 /*
607  * apply and load a particular input delay for the DQ pins in a group
608  * group_bgn is the index of the first dq pin (in the write group)
609  */
610 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group,
611                                             uint32_t group_bgn, uint32_t delay)
612 {
613         uint32_t i, p;
614
615         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
616                 scc_mgr_set_dq_in_delay(p, delay);
617                 scc_mgr_load_dq(p);
618         }
619 }
620
621 /**
622  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
623  * @delay:              Delay value
624  *
625  * Apply and load a particular output delay for the DQ pins in a group.
626  */
627 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
628 {
629         int i;
630
631         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
632                 scc_mgr_set_dq_out1_delay(i, delay);
633                 scc_mgr_load_dq(i);
634         }
635 }
636
637 /* apply and load a particular output delay for the DM pins in a group */
638 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group,
639                                               uint32_t delay1)
640 {
641         uint32_t i;
642
643         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
644                 scc_mgr_set_dm_out1_delay(i, delay1);
645                 scc_mgr_load_dm(i);
646         }
647 }
648
649
650 /* apply and load delay on both DQS and OCT out1 */
651 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
652                                                     uint32_t delay)
653 {
654         scc_mgr_set_dqs_out1_delay(write_group, delay);
655         scc_mgr_load_dqs_io();
656
657         scc_mgr_set_oct_out1_delay(write_group, delay);
658         scc_mgr_load_dqs_for_write_group(write_group);
659 }
660
661 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */
662 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
663                                                   uint32_t group_bgn,
664                                                   uint32_t delay)
665 {
666         uint32_t i, p, new_delay;
667
668         /* dq shift */
669         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
670                 new_delay = READ_SCC_DQ_OUT2_DELAY;
671                 new_delay += delay;
672
673                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
674                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
675                                    %u > %lu => %lu", __func__, __LINE__,
676                                    write_group, group_bgn, delay, i, p, new_delay,
677                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
678                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
679                         new_delay = IO_IO_OUT2_DELAY_MAX;
680                 }
681
682                 scc_mgr_load_dq(i);
683         }
684
685         /* dm shift */
686         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
687                 new_delay = READ_SCC_DM_IO_OUT2_DELAY;
688                 new_delay += delay;
689
690                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
691                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
692                                    %u > %lu => %lu\n",  __func__, __LINE__,
693                                    write_group, group_bgn, delay, i, new_delay,
694                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
695                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
696                         new_delay = IO_IO_OUT2_DELAY_MAX;
697                 }
698
699                 scc_mgr_load_dm(i);
700         }
701
702         /* dqs shift */
703         new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
704         new_delay += delay;
705
706         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
707                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
708                            " adding %u to OUT1\n", __func__, __LINE__,
709                            write_group, group_bgn, delay, new_delay,
710                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
711                            new_delay - IO_IO_OUT2_DELAY_MAX);
712                 scc_mgr_set_dqs_out1_delay(write_group, new_delay -
713                                            IO_IO_OUT2_DELAY_MAX);
714                 new_delay = IO_IO_OUT2_DELAY_MAX;
715         }
716
717         scc_mgr_load_dqs_io();
718
719         /* oct shift */
720         new_delay = READ_SCC_OCT_OUT2_DELAY;
721         new_delay += delay;
722
723         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
724                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
725                            " adding %u to OUT1\n", __func__, __LINE__,
726                            write_group, group_bgn, delay, new_delay,
727                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
728                            new_delay - IO_IO_OUT2_DELAY_MAX);
729                 scc_mgr_set_oct_out1_delay(write_group, new_delay -
730                                            IO_IO_OUT2_DELAY_MAX);
731                 new_delay = IO_IO_OUT2_DELAY_MAX;
732         }
733
734         scc_mgr_load_dqs_for_write_group(write_group);
735 }
736
737 /*
738  * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
739  * and to all ranks
740  */
741 static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
742         uint32_t write_group, uint32_t group_bgn, uint32_t delay)
743 {
744         uint32_t r;
745
746         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
747                 r += NUM_RANKS_PER_SHADOW_REG) {
748                 scc_mgr_apply_group_all_out_delay_add(write_group,
749                                                       group_bgn, delay);
750                 writel(0, &sdr_scc_mgr->update);
751         }
752 }
753
754 /* optimization used to recover some slots in ddr3 inst_rom */
755 /* could be applied to other protocols if we wanted to */
756 static void set_jump_as_return(void)
757 {
758         /*
759          * to save space, we replace return with jump to special shared
760          * RETURN instruction so we set the counter to large value so that
761          * we always jump
762          */
763         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
764         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
765 }
766
767 /*
768  * should always use constants as argument to ensure all computations are
769  * performed at compile time
770  */
771 static void delay_for_n_mem_clocks(const uint32_t clocks)
772 {
773         uint32_t afi_clocks;
774         uint8_t inner = 0;
775         uint8_t outer = 0;
776         uint16_t c_loop = 0;
777
778         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
779
780
781         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
782         /* scale (rounding up) to get afi clocks */
783
784         /*
785          * Note, we don't bother accounting for being off a little bit
786          * because of a few extra instructions in outer loops
787          * Note, the loops have a test at the end, and do the test before
788          * the decrement, and so always perform the loop
789          * 1 time more than the counter value
790          */
791         if (afi_clocks == 0) {
792                 ;
793         } else if (afi_clocks <= 0x100) {
794                 inner = afi_clocks-1;
795                 outer = 0;
796                 c_loop = 0;
797         } else if (afi_clocks <= 0x10000) {
798                 inner = 0xff;
799                 outer = (afi_clocks-1) >> 8;
800                 c_loop = 0;
801         } else {
802                 inner = 0xff;
803                 outer = 0xff;
804                 c_loop = (afi_clocks-1) >> 16;
805         }
806
807         /*
808          * rom instructions are structured as follows:
809          *
810          *    IDLE_LOOP2: jnz cntr0, TARGET_A
811          *    IDLE_LOOP1: jnz cntr1, TARGET_B
812          *                return
813          *
814          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
815          * TARGET_B is set to IDLE_LOOP2 as well
816          *
817          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
818          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
819          *
820          * a little confusing, but it helps save precious space in the inst_rom
821          * and sequencer rom and keeps the delays more accurate and reduces
822          * overhead
823          */
824         if (afi_clocks <= 0x100) {
825                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
826                         &sdr_rw_load_mgr_regs->load_cntr1);
827
828                 writel(RW_MGR_IDLE_LOOP1,
829                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
830
831                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
832                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
833         } else {
834                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
835                         &sdr_rw_load_mgr_regs->load_cntr0);
836
837                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
838                         &sdr_rw_load_mgr_regs->load_cntr1);
839
840                 writel(RW_MGR_IDLE_LOOP2,
841                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
842
843                 writel(RW_MGR_IDLE_LOOP2,
844                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
845
846                 /* hack to get around compiler not being smart enough */
847                 if (afi_clocks <= 0x10000) {
848                         /* only need to run once */
849                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
850                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
851                 } else {
852                         do {
853                                 writel(RW_MGR_IDLE_LOOP2,
854                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
855                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
856                         } while (c_loop-- != 0);
857                 }
858         }
859         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
860 }
861
862 static void rw_mgr_mem_initialize(void)
863 {
864         uint32_t r;
865         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
866                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
867
868         debug("%s:%d\n", __func__, __LINE__);
869
870         /* The reset / cke part of initialization is broadcasted to all ranks */
871         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
872                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
873
874         /*
875          * Here's how you load register for a loop
876          * Counters are located @ 0x800
877          * Jump address are located @ 0xC00
878          * For both, registers 0 to 3 are selected using bits 3 and 2, like
879          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
880          * I know this ain't pretty, but Avalon bus throws away the 2 least
881          * significant bits
882          */
883
884         /* start with memory RESET activated */
885
886         /* tINIT = 200us */
887
888         /*
889          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
890          * If a and b are the number of iteration in 2 nested loops
891          * it takes the following number of cycles to complete the operation:
892          * number_of_cycles = ((2 + n) * a + 2) * b
893          * where n is the number of instruction in the inner loop
894          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
895          * b = 6A
896          */
897
898         /* Load counters */
899         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
900                &sdr_rw_load_mgr_regs->load_cntr0);
901         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
902                &sdr_rw_load_mgr_regs->load_cntr1);
903         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
904                &sdr_rw_load_mgr_regs->load_cntr2);
905
906         /* Load jump address */
907         writel(RW_MGR_INIT_RESET_0_CKE_0,
908                 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
909         writel(RW_MGR_INIT_RESET_0_CKE_0,
910                 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
911         writel(RW_MGR_INIT_RESET_0_CKE_0,
912                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
913
914         /* Execute count instruction */
915         writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr);
916
917         /* indicate that memory is stable */
918         writel(1, &phy_mgr_cfg->reset_mem_stbl);
919
920         /*
921          * transition the RESET to high
922          * Wait for 500us
923          */
924
925         /*
926          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
927          * If a and b are the number of iteration in 2 nested loops
928          * it takes the following number of cycles to complete the operation
929          * number_of_cycles = ((2 + n) * a + 2) * b
930          * where n is the number of instruction in the inner loop
931          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
932          * b = FF
933          */
934
935         /* Load counters */
936         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
937                &sdr_rw_load_mgr_regs->load_cntr0);
938         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
939                &sdr_rw_load_mgr_regs->load_cntr1);
940         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
941                &sdr_rw_load_mgr_regs->load_cntr2);
942
943         /* Load jump address */
944         writel(RW_MGR_INIT_RESET_1_CKE_0,
945                 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
946         writel(RW_MGR_INIT_RESET_1_CKE_0,
947                 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
948         writel(RW_MGR_INIT_RESET_1_CKE_0,
949                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
950
951         writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr);
952
953         /* bring up clock enable */
954
955         /* tXRP < 250 ck cycles */
956         delay_for_n_mem_clocks(250);
957
958         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
959                 if (param->skip_ranks[r]) {
960                         /* request to skip the rank */
961                         continue;
962                 }
963
964                 /* set rank */
965                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
966
967                 /*
968                  * USER Use Mirror-ed commands for odd ranks if address
969                  * mirrorring is on
970                  */
971                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
972                         set_jump_as_return();
973                         writel(RW_MGR_MRS2_MIRR, grpaddr);
974                         delay_for_n_mem_clocks(4);
975                         set_jump_as_return();
976                         writel(RW_MGR_MRS3_MIRR, grpaddr);
977                         delay_for_n_mem_clocks(4);
978                         set_jump_as_return();
979                         writel(RW_MGR_MRS1_MIRR, grpaddr);
980                         delay_for_n_mem_clocks(4);
981                         set_jump_as_return();
982                         writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr);
983                 } else {
984                         set_jump_as_return();
985                         writel(RW_MGR_MRS2, grpaddr);
986                         delay_for_n_mem_clocks(4);
987                         set_jump_as_return();
988                         writel(RW_MGR_MRS3, grpaddr);
989                         delay_for_n_mem_clocks(4);
990                         set_jump_as_return();
991                         writel(RW_MGR_MRS1, grpaddr);
992                         set_jump_as_return();
993                         writel(RW_MGR_MRS0_DLL_RESET, grpaddr);
994                 }
995                 set_jump_as_return();
996                 writel(RW_MGR_ZQCL, grpaddr);
997
998                 /* tZQinit = tDLLK = 512 ck cycles */
999                 delay_for_n_mem_clocks(512);
1000         }
1001 }
1002
1003 /*
1004  * At the end of calibration we have to program the user settings in, and
1005  * USER  hand off the memory to the user.
1006  */
1007 static void rw_mgr_mem_handoff(void)
1008 {
1009         uint32_t r;
1010         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1011                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1012
1013         debug("%s:%d\n", __func__, __LINE__);
1014         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1015                 if (param->skip_ranks[r])
1016                         /* request to skip the rank */
1017                         continue;
1018                 /* set rank */
1019                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1020
1021                 /* precharge all banks ... */
1022                 writel(RW_MGR_PRECHARGE_ALL, grpaddr);
1023
1024                 /* load up MR settings specified by user */
1025
1026                 /*
1027                  * Use Mirror-ed commands for odd ranks if address
1028                  * mirrorring is on
1029                  */
1030                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1031                         set_jump_as_return();
1032                         writel(RW_MGR_MRS2_MIRR, grpaddr);
1033                         delay_for_n_mem_clocks(4);
1034                         set_jump_as_return();
1035                         writel(RW_MGR_MRS3_MIRR, grpaddr);
1036                         delay_for_n_mem_clocks(4);
1037                         set_jump_as_return();
1038                         writel(RW_MGR_MRS1_MIRR, grpaddr);
1039                         delay_for_n_mem_clocks(4);
1040                         set_jump_as_return();
1041                         writel(RW_MGR_MRS0_USER_MIRR, grpaddr);
1042                 } else {
1043                         set_jump_as_return();
1044                         writel(RW_MGR_MRS2, grpaddr);
1045                         delay_for_n_mem_clocks(4);
1046                         set_jump_as_return();
1047                         writel(RW_MGR_MRS3, grpaddr);
1048                         delay_for_n_mem_clocks(4);
1049                         set_jump_as_return();
1050                         writel(RW_MGR_MRS1, grpaddr);
1051                         delay_for_n_mem_clocks(4);
1052                         set_jump_as_return();
1053                         writel(RW_MGR_MRS0_USER, grpaddr);
1054                 }
1055                 /*
1056                  * USER  need to wait tMOD (12CK or 15ns) time before issuing
1057                  * other commands, but we will have plenty of NIOS cycles before
1058                  * actual handoff so its okay.
1059                  */
1060         }
1061 }
1062
1063 /*
1064  * performs a guaranteed read on the patterns we are going to use during a
1065  * read test to ensure memory works
1066  */
1067 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1068         uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1069         uint32_t all_ranks)
1070 {
1071         uint32_t r, vg;
1072         uint32_t correct_mask_vg;
1073         uint32_t tmp_bit_chk;
1074         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1075                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1076         uint32_t addr;
1077         uint32_t base_rw_mgr;
1078
1079         *bit_chk = param->read_correct_mask;
1080         correct_mask_vg = param->read_correct_mask_vg;
1081
1082         for (r = rank_bgn; r < rank_end; r++) {
1083                 if (param->skip_ranks[r])
1084                         /* request to skip the rank */
1085                         continue;
1086
1087                 /* set rank */
1088                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1089
1090                 /* Load up a constant bursts of read commands */
1091                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1092                 writel(RW_MGR_GUARANTEED_READ,
1093                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1094
1095                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1096                 writel(RW_MGR_GUARANTEED_READ_CONT,
1097                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1098
1099                 tmp_bit_chk = 0;
1100                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1101                         /* reset the fifos to get pointers to known state */
1102
1103                         writel(0, &phy_mgr_cmd->fifo_reset);
1104                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1105                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1106
1107                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1108                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1109
1110                         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1111                         writel(RW_MGR_GUARANTEED_READ, addr +
1112                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1113                                 vg) << 2));
1114
1115                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1116                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1117
1118                         if (vg == 0)
1119                                 break;
1120                 }
1121                 *bit_chk &= tmp_bit_chk;
1122         }
1123
1124         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1125         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1126
1127         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1128         debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1129                    %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1130                    (long unsigned int)(*bit_chk == param->read_correct_mask));
1131         return *bit_chk == param->read_correct_mask;
1132 }
1133
1134 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1135         (uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1136 {
1137         return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1138                 num_tries, bit_chk, 1);
1139 }
1140
1141 /* load up the patterns we are going to use during a read test */
1142 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1143         uint32_t all_ranks)
1144 {
1145         uint32_t r;
1146         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1147                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1148
1149         debug("%s:%d\n", __func__, __LINE__);
1150         for (r = rank_bgn; r < rank_end; r++) {
1151                 if (param->skip_ranks[r])
1152                         /* request to skip the rank */
1153                         continue;
1154
1155                 /* set rank */
1156                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1157
1158                 /* Load up a constant bursts */
1159                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1160
1161                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1162                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1163
1164                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1165
1166                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1167                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1168
1169                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1170
1171                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1172                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1173
1174                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1175
1176                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1177                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1178
1179                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1180                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1181         }
1182
1183         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1184 }
1185
1186 /*
1187  * try a read and see if it returns correct data back. has dummy reads
1188  * inserted into the mix used to align dqs enable. has more thorough checks
1189  * than the regular read test.
1190  */
1191 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1192         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1193         uint32_t all_groups, uint32_t all_ranks)
1194 {
1195         uint32_t r, vg;
1196         uint32_t correct_mask_vg;
1197         uint32_t tmp_bit_chk;
1198         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1199                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1200         uint32_t addr;
1201         uint32_t base_rw_mgr;
1202
1203         *bit_chk = param->read_correct_mask;
1204         correct_mask_vg = param->read_correct_mask_vg;
1205
1206         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1207                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1208
1209         for (r = rank_bgn; r < rank_end; r++) {
1210                 if (param->skip_ranks[r])
1211                         /* request to skip the rank */
1212                         continue;
1213
1214                 /* set rank */
1215                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1216
1217                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1218
1219                 writel(RW_MGR_READ_B2B_WAIT1,
1220                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1221
1222                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1223                 writel(RW_MGR_READ_B2B_WAIT2,
1224                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1225
1226                 if (quick_read_mode)
1227                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1228                         /* need at least two (1+1) reads to capture failures */
1229                 else if (all_groups)
1230                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1231                 else
1232                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1233
1234                 writel(RW_MGR_READ_B2B,
1235                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1236                 if (all_groups)
1237                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1238                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1239                                &sdr_rw_load_mgr_regs->load_cntr3);
1240                 else
1241                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1242
1243                 writel(RW_MGR_READ_B2B,
1244                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1245
1246                 tmp_bit_chk = 0;
1247                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1248                         /* reset the fifos to get pointers to known state */
1249                         writel(0, &phy_mgr_cmd->fifo_reset);
1250                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1251                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1252
1253                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1254                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1255
1256                         if (all_groups)
1257                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1258                         else
1259                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1260
1261                         writel(RW_MGR_READ_B2B, addr +
1262                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1263                                vg) << 2));
1264
1265                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1266                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1267
1268                         if (vg == 0)
1269                                 break;
1270                 }
1271                 *bit_chk &= tmp_bit_chk;
1272         }
1273
1274         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1275         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1276
1277         if (all_correct) {
1278                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1279                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1280                            (%u == %u) => %lu", __func__, __LINE__, group,
1281                            all_groups, *bit_chk, param->read_correct_mask,
1282                            (long unsigned int)(*bit_chk ==
1283                            param->read_correct_mask));
1284                 return *bit_chk == param->read_correct_mask;
1285         } else  {
1286                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1287                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1288                            (%u != %lu) => %lu\n", __func__, __LINE__,
1289                            group, all_groups, *bit_chk, (long unsigned int)0,
1290                            (long unsigned int)(*bit_chk != 0x00));
1291                 return *bit_chk != 0x00;
1292         }
1293 }
1294
1295 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1296         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1297         uint32_t all_groups)
1298 {
1299         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1300                                               bit_chk, all_groups, 1);
1301 }
1302
1303 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1304 {
1305         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1306         (*v)++;
1307 }
1308
1309 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1310 {
1311         uint32_t i;
1312
1313         for (i = 0; i < VFIFO_SIZE-1; i++)
1314                 rw_mgr_incr_vfifo(grp, v);
1315 }
1316
1317 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1318 {
1319         uint32_t  v;
1320         uint32_t fail_cnt = 0;
1321         uint32_t test_status;
1322
1323         for (v = 0; v < VFIFO_SIZE; ) {
1324                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1325                            __func__, __LINE__, v);
1326                 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1327                         (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1328                 if (!test_status) {
1329                         fail_cnt++;
1330
1331                         if (fail_cnt == 2)
1332                                 break;
1333                 }
1334
1335                 /* fiddle with FIFO */
1336                 rw_mgr_incr_vfifo(grp, &v);
1337         }
1338
1339         if (v >= VFIFO_SIZE) {
1340                 /* no failing read found!! Something must have gone wrong */
1341                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1342                            __func__, __LINE__);
1343                 return 0;
1344         } else {
1345                 return v;
1346         }
1347 }
1348
1349 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1350                               uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1351                               uint32_t *v, uint32_t *d, uint32_t *p,
1352                               uint32_t *i, uint32_t *max_working_cnt)
1353 {
1354         uint32_t found_begin = 0;
1355         uint32_t tmp_delay = 0;
1356         uint32_t test_status;
1357
1358         for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1359                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1360                 *work_bgn = tmp_delay;
1361                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1362
1363                 for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1364                         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1365                                 IO_DELAY_PER_OPA_TAP) {
1366                                 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1367
1368                                 test_status =
1369                                 rw_mgr_mem_calibrate_read_test_all_ranks
1370                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1371
1372                                 if (test_status) {
1373                                         *max_working_cnt = 1;
1374                                         found_begin = 1;
1375                                         break;
1376                                 }
1377                         }
1378
1379                         if (found_begin)
1380                                 break;
1381
1382                         if (*p > IO_DQS_EN_PHASE_MAX)
1383                                 /* fiddle with FIFO */
1384                                 rw_mgr_incr_vfifo(*grp, v);
1385                 }
1386
1387                 if (found_begin)
1388                         break;
1389         }
1390
1391         if (*i >= VFIFO_SIZE) {
1392                 /* cannot find working solution */
1393                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1394                            ptap/dtap\n", __func__, __LINE__);
1395                 return 0;
1396         } else {
1397                 return 1;
1398         }
1399 }
1400
1401 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1402                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1403                              uint32_t *p, uint32_t *max_working_cnt)
1404 {
1405         uint32_t found_begin = 0;
1406         uint32_t tmp_delay;
1407
1408         /* Special case code for backing up a phase */
1409         if (*p == 0) {
1410                 *p = IO_DQS_EN_PHASE_MAX;
1411                 rw_mgr_decr_vfifo(*grp, v);
1412         } else {
1413                 (*p)--;
1414         }
1415         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1416         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1417
1418         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1419                 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1420                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1421
1422                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1423                                                              PASS_ONE_BIT,
1424                                                              bit_chk, 0)) {
1425                         found_begin = 1;
1426                         *work_bgn = tmp_delay;
1427                         break;
1428                 }
1429         }
1430
1431         /* We have found a working dtap before the ptap found above */
1432         if (found_begin == 1)
1433                 (*max_working_cnt)++;
1434
1435         /*
1436          * Restore VFIFO to old state before we decremented it
1437          * (if needed).
1438          */
1439         (*p)++;
1440         if (*p > IO_DQS_EN_PHASE_MAX) {
1441                 *p = 0;
1442                 rw_mgr_incr_vfifo(*grp, v);
1443         }
1444
1445         scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1446 }
1447
1448 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1449                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1450                              uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1451                              uint32_t *work_end)
1452 {
1453         uint32_t found_end = 0;
1454
1455         (*p)++;
1456         *work_end += IO_DELAY_PER_OPA_TAP;
1457         if (*p > IO_DQS_EN_PHASE_MAX) {
1458                 /* fiddle with FIFO */
1459                 *p = 0;
1460                 rw_mgr_incr_vfifo(*grp, v);
1461         }
1462
1463         for (; *i < VFIFO_SIZE + 1; (*i)++) {
1464                 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1465                         += IO_DELAY_PER_OPA_TAP) {
1466                         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1467
1468                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1469                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1470                                 found_end = 1;
1471                                 break;
1472                         } else {
1473                                 (*max_working_cnt)++;
1474                         }
1475                 }
1476
1477                 if (found_end)
1478                         break;
1479
1480                 if (*p > IO_DQS_EN_PHASE_MAX) {
1481                         /* fiddle with FIFO */
1482                         rw_mgr_incr_vfifo(*grp, v);
1483                         *p = 0;
1484                 }
1485         }
1486
1487         if (*i >= VFIFO_SIZE + 1) {
1488                 /* cannot see edge of failing read */
1489                 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1490                            failed\n", __func__, __LINE__);
1491                 return 0;
1492         } else {
1493                 return 1;
1494         }
1495 }
1496
1497 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1498                                   uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1499                                   uint32_t *p, uint32_t *work_mid,
1500                                   uint32_t *work_end)
1501 {
1502         int i;
1503         int tmp_delay = 0;
1504
1505         *work_mid = (*work_bgn + *work_end) / 2;
1506
1507         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1508                    *work_bgn, *work_end, *work_mid);
1509         /* Get the middle delay to be less than a VFIFO delay */
1510         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1511                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1512                 ;
1513         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1514         while (*work_mid > tmp_delay)
1515                 *work_mid -= tmp_delay;
1516         debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1517
1518         tmp_delay = 0;
1519         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1520                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1521                 ;
1522         tmp_delay -= IO_DELAY_PER_OPA_TAP;
1523         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1524         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1525                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1526                 ;
1527         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1528
1529         scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1530         scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1531
1532         /*
1533          * push vfifo until we can successfully calibrate. We can do this
1534          * because the largest possible margin in 1 VFIFO cycle.
1535          */
1536         for (i = 0; i < VFIFO_SIZE; i++) {
1537                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1538                            *v);
1539                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1540                                                              PASS_ONE_BIT,
1541                                                              bit_chk, 0)) {
1542                         break;
1543                 }
1544
1545                 /* fiddle with FIFO */
1546                 rw_mgr_incr_vfifo(*grp, v);
1547         }
1548
1549         if (i >= VFIFO_SIZE) {
1550                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1551                            failed\n", __func__, __LINE__);
1552                 return 0;
1553         } else {
1554                 return 1;
1555         }
1556 }
1557
1558 /* find a good dqs enable to use */
1559 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1560 {
1561         uint32_t v, d, p, i;
1562         uint32_t max_working_cnt;
1563         uint32_t bit_chk;
1564         uint32_t dtaps_per_ptap;
1565         uint32_t work_bgn, work_mid, work_end;
1566         uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1567
1568         debug("%s:%d %u\n", __func__, __LINE__, grp);
1569
1570         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1571
1572         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1573         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1574
1575         /* ************************************************************** */
1576         /* * Step 0 : Determine number of delay taps for each phase tap * */
1577         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1578
1579         /* ********************************************************* */
1580         /* * Step 1 : First push vfifo until we get a failing read * */
1581         v = find_vfifo_read(grp, &bit_chk);
1582
1583         max_working_cnt = 0;
1584
1585         /* ******************************************************** */
1586         /* * step 2: find first working phase, increment in ptaps * */
1587         work_bgn = 0;
1588         if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1589                                 &p, &i, &max_working_cnt) == 0)
1590                 return 0;
1591
1592         work_end = work_bgn;
1593
1594         /*
1595          * If d is 0 then the working window covers a phase tap and
1596          * we can follow the old procedure otherwise, we've found the beginning,
1597          * and we need to increment the dtaps until we find the end.
1598          */
1599         if (d == 0) {
1600                 /* ********************************************************* */
1601                 /* * step 3a: if we have room, back off by one and
1602                 increment in dtaps * */
1603
1604                 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1605                                  &max_working_cnt);
1606
1607                 /* ********************************************************* */
1608                 /* * step 4a: go forward from working phase to non working
1609                 phase, increment in ptaps * */
1610                 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1611                                          &i, &max_working_cnt, &work_end) == 0)
1612                         return 0;
1613
1614                 /* ********************************************************* */
1615                 /* * step 5a:  back off one from last, increment in dtaps  * */
1616
1617                 /* Special case code for backing up a phase */
1618                 if (p == 0) {
1619                         p = IO_DQS_EN_PHASE_MAX;
1620                         rw_mgr_decr_vfifo(grp, &v);
1621                 } else {
1622                         p = p - 1;
1623                 }
1624
1625                 work_end -= IO_DELAY_PER_OPA_TAP;
1626                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1627
1628                 /* * The actual increment of dtaps is done outside of
1629                 the if/else loop to share code */
1630                 d = 0;
1631
1632                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1633                            vfifo=%u ptap=%u\n", __func__, __LINE__,
1634                            v, p);
1635         } else {
1636                 /* ******************************************************* */
1637                 /* * step 3-5b:  Find the right edge of the window using
1638                 delay taps   * */
1639                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1640                            ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1641                            v, p, d, work_bgn);
1642
1643                 work_end = work_bgn;
1644
1645                 /* * The actual increment of dtaps is done outside of the
1646                 if/else loop to share code */
1647
1648                 /* Only here to counterbalance a subtract later on which is
1649                 not needed if this branch of the algorithm is taken */
1650                 max_working_cnt++;
1651         }
1652
1653         /* The dtap increment to find the failing edge is done here */
1654         for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1655                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1656                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1657                                    end-2: dtap=%u\n", __func__, __LINE__, d);
1658                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1659
1660                         if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1661                                                                       PASS_ONE_BIT,
1662                                                                       &bit_chk, 0)) {
1663                                 break;
1664                         }
1665         }
1666
1667         /* Go back to working dtap */
1668         if (d != 0)
1669                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1670
1671         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1672                    ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1673                    v, p, d-1, work_end);
1674
1675         if (work_end < work_bgn) {
1676                 /* nil range */
1677                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1678                            failed\n", __func__, __LINE__);
1679                 return 0;
1680         }
1681
1682         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1683                    __func__, __LINE__, work_bgn, work_end);
1684
1685         /* *************************************************************** */
1686         /*
1687          * * We need to calculate the number of dtaps that equal a ptap
1688          * * To do that we'll back up a ptap and re-find the edge of the
1689          * * window using dtaps
1690          */
1691
1692         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1693                    for tracking\n", __func__, __LINE__);
1694
1695         /* Special case code for backing up a phase */
1696         if (p == 0) {
1697                 p = IO_DQS_EN_PHASE_MAX;
1698                 rw_mgr_decr_vfifo(grp, &v);
1699                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1700                            cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1701                            v, p);
1702         } else {
1703                 p = p - 1;
1704                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1705                            phase only: v=%u p=%u", __func__, __LINE__,
1706                            v, p);
1707         }
1708
1709         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1710
1711         /*
1712          * Increase dtap until we first see a passing read (in case the
1713          * window is smaller than a ptap),
1714          * and then a failing read to mark the edge of the window again
1715          */
1716
1717         /* Find a passing read */
1718         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1719                    __func__, __LINE__);
1720         found_passing_read = 0;
1721         found_failing_read = 0;
1722         initial_failing_dtap = d;
1723         for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1724                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1725                            read d=%u\n", __func__, __LINE__, d);
1726                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1727
1728                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1729                                                              PASS_ONE_BIT,
1730                                                              &bit_chk, 0)) {
1731                         found_passing_read = 1;
1732                         break;
1733                 }
1734         }
1735
1736         if (found_passing_read) {
1737                 /* Find a failing read */
1738                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1739                            read\n", __func__, __LINE__);
1740                 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1741                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1742                                    testing read d=%u\n", __func__, __LINE__, d);
1743                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1744
1745                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1746                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1747                                 found_failing_read = 1;
1748                                 break;
1749                         }
1750                 }
1751         } else {
1752                 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1753                            calculate dtaps", __func__, __LINE__);
1754                 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1755         }
1756
1757         /*
1758          * The dynamically calculated dtaps_per_ptap is only valid if we
1759          * found a passing/failing read. If we didn't, it means d hit the max
1760          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1761          * statically calculated value.
1762          */
1763         if (found_passing_read && found_failing_read)
1764                 dtaps_per_ptap = d - initial_failing_dtap;
1765
1766         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1767         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1768                    - %u = %u",  __func__, __LINE__, d,
1769                    initial_failing_dtap, dtaps_per_ptap);
1770
1771         /* ******************************************** */
1772         /* * step 6:  Find the centre of the window   * */
1773         if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1774                                    &work_mid, &work_end) == 0)
1775                 return 0;
1776
1777         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1778                    vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1779                    v, p-1, d);
1780         return 1;
1781 }
1782
1783 /*
1784  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1785  * dq_in_delay values
1786  */
1787 static uint32_t
1788 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1789 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1790 {
1791         uint32_t found;
1792         uint32_t i;
1793         uint32_t p;
1794         uint32_t d;
1795         uint32_t r;
1796
1797         const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1798                 (RW_MGR_MEM_DQ_PER_READ_DQS-1);
1799                 /* we start at zero, so have one less dq to devide among */
1800
1801         debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1802               test_bgn);
1803
1804         /* try different dq_in_delays since the dq path is shorter than dqs */
1805
1806         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1807              r += NUM_RANKS_PER_SHADOW_REG) {
1808                 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1809                         i++, p++, d += delay_step) {
1810                         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1811                                    vfifo_find_dqs_", __func__, __LINE__);
1812                         debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1813                                write_group, read_group);
1814                         debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1815                         scc_mgr_set_dq_in_delay(p, d);
1816                         scc_mgr_load_dq(p);
1817                 }
1818                 writel(0, &sdr_scc_mgr->update);
1819         }
1820
1821         found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1822
1823         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1824                    en_phase_sweep_dq", __func__, __LINE__);
1825         debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1826                    chain to zero\n", write_group, read_group, found);
1827
1828         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1829              r += NUM_RANKS_PER_SHADOW_REG) {
1830                 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1831                         i++, p++) {
1832                         scc_mgr_set_dq_in_delay(p, 0);
1833                         scc_mgr_load_dq(p);
1834                 }
1835                 writel(0, &sdr_scc_mgr->update);
1836         }
1837
1838         return found;
1839 }
1840
1841 /* per-bit deskew DQ and center */
1842 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1843         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1844         uint32_t use_read_test, uint32_t update_fom)
1845 {
1846         uint32_t i, p, d, min_index;
1847         /*
1848          * Store these as signed since there are comparisons with
1849          * signed numbers.
1850          */
1851         uint32_t bit_chk;
1852         uint32_t sticky_bit_chk;
1853         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1854         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1855         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1856         int32_t mid;
1857         int32_t orig_mid_min, mid_min;
1858         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1859                 final_dqs_en;
1860         int32_t dq_margin, dqs_margin;
1861         uint32_t stop;
1862         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1863         uint32_t addr;
1864
1865         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1866
1867         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1868         start_dqs = readl(addr + (read_group << 2));
1869         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1870                 start_dqs_en = readl(addr + ((read_group << 2)
1871                                      - IO_DQS_EN_DELAY_OFFSET));
1872
1873         /* set the left and right edge of each bit to an illegal value */
1874         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1875         sticky_bit_chk = 0;
1876         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1877                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1878                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1879         }
1880
1881         /* Search for the left edge of the window for each bit */
1882         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1883                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1884
1885                 writel(0, &sdr_scc_mgr->update);
1886
1887                 /*
1888                  * Stop searching when the read test doesn't pass AND when
1889                  * we've seen a passing read on every bit.
1890                  */
1891                 if (use_read_test) {
1892                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1893                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1894                                 &bit_chk, 0, 0);
1895                 } else {
1896                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1897                                                         0, PASS_ONE_BIT,
1898                                                         &bit_chk, 0);
1899                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1900                                 (read_group - (write_group *
1901                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1902                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1903                         stop = (bit_chk == 0);
1904                 }
1905                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1906                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1907                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1908                            && %u", __func__, __LINE__, d,
1909                            sticky_bit_chk,
1910                         param->read_correct_mask, stop);
1911
1912                 if (stop == 1) {
1913                         break;
1914                 } else {
1915                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1916                                 if (bit_chk & 1) {
1917                                         /* Remember a passing test as the
1918                                         left_edge */
1919                                         left_edge[i] = d;
1920                                 } else {
1921                                         /* If a left edge has not been seen yet,
1922                                         then a future passing test will mark
1923                                         this edge as the right edge */
1924                                         if (left_edge[i] ==
1925                                                 IO_IO_IN_DELAY_MAX + 1) {
1926                                                 right_edge[i] = -(d + 1);
1927                                         }
1928                                 }
1929                                 bit_chk = bit_chk >> 1;
1930                         }
1931                 }
1932         }
1933
1934         /* Reset DQ delay chains to 0 */
1935         scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0);
1936         sticky_bit_chk = 0;
1937         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1938                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1939                            %d right_edge[%u]: %d\n", __func__, __LINE__,
1940                            i, left_edge[i], i, right_edge[i]);
1941
1942                 /*
1943                  * Check for cases where we haven't found the left edge,
1944                  * which makes our assignment of the the right edge invalid.
1945                  * Reset it to the illegal value.
1946                  */
1947                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1948                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1949                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1950                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1951                                    right_edge[%u]: %d\n", __func__, __LINE__,
1952                                    i, right_edge[i]);
1953                 }
1954
1955                 /*
1956                  * Reset sticky bit (except for bits where we have seen
1957                  * both the left and right edge).
1958                  */
1959                 sticky_bit_chk = sticky_bit_chk << 1;
1960                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1961                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1962                         sticky_bit_chk = sticky_bit_chk | 1;
1963                 }
1964
1965                 if (i == 0)
1966                         break;
1967         }
1968
1969         /* Search for the right edge of the window for each bit */
1970         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1971                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1972                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1973                         uint32_t delay = d + start_dqs_en;
1974                         if (delay > IO_DQS_EN_DELAY_MAX)
1975                                 delay = IO_DQS_EN_DELAY_MAX;
1976                         scc_mgr_set_dqs_en_delay(read_group, delay);
1977                 }
1978                 scc_mgr_load_dqs(read_group);
1979
1980                 writel(0, &sdr_scc_mgr->update);
1981
1982                 /*
1983                  * Stop searching when the read test doesn't pass AND when
1984                  * we've seen a passing read on every bit.
1985                  */
1986                 if (use_read_test) {
1987                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1988                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1989                                 &bit_chk, 0, 0);
1990                 } else {
1991                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1992                                                         0, PASS_ONE_BIT,
1993                                                         &bit_chk, 0);
1994                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1995                                 (read_group - (write_group *
1996                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1997                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1998                         stop = (bit_chk == 0);
1999                 }
2000                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2001                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
2002
2003                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
2004                            %u && %u", __func__, __LINE__, d,
2005                            sticky_bit_chk, param->read_correct_mask, stop);
2006
2007                 if (stop == 1) {
2008                         break;
2009                 } else {
2010                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2011                                 if (bit_chk & 1) {
2012                                         /* Remember a passing test as
2013                                         the right_edge */
2014                                         right_edge[i] = d;
2015                                 } else {
2016                                         if (d != 0) {
2017                                                 /* If a right edge has not been
2018                                                 seen yet, then a future passing
2019                                                 test will mark this edge as the
2020                                                 left edge */
2021                                                 if (right_edge[i] ==
2022                                                 IO_IO_IN_DELAY_MAX + 1) {
2023                                                         left_edge[i] = -(d + 1);
2024                                                 }
2025                                         } else {
2026                                                 /* d = 0 failed, but it passed
2027                                                 when testing the left edge,
2028                                                 so it must be marginal,
2029                                                 set it to -1 */
2030                                                 if (right_edge[i] ==
2031                                                         IO_IO_IN_DELAY_MAX + 1 &&
2032                                                         left_edge[i] !=
2033                                                         IO_IO_IN_DELAY_MAX
2034                                                         + 1) {
2035                                                         right_edge[i] = -1;
2036                                                 }
2037                                                 /* If a right edge has not been
2038                                                 seen yet, then a future passing
2039                                                 test will mark this edge as the
2040                                                 left edge */
2041                                                 else if (right_edge[i] ==
2042                                                         IO_IO_IN_DELAY_MAX +
2043                                                         1) {
2044                                                         left_edge[i] = -(d + 1);
2045                                                 }
2046                                         }
2047                                 }
2048
2049                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2050                                            d=%u]: ", __func__, __LINE__, d);
2051                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2052                                            (int)(bit_chk & 1), i, left_edge[i]);
2053                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2054                                            right_edge[i]);
2055                                 bit_chk = bit_chk >> 1;
2056                         }
2057                 }
2058         }
2059
2060         /* Check that all bits have a window */
2061         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2062                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2063                            %d right_edge[%u]: %d", __func__, __LINE__,
2064                            i, left_edge[i], i, right_edge[i]);
2065                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2066                         == IO_IO_IN_DELAY_MAX + 1)) {
2067                         /*
2068                          * Restore delay chain settings before letting the loop
2069                          * in rw_mgr_mem_calibrate_vfifo to retry different
2070                          * dqs/ck relationships.
2071                          */
2072                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2073                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2074                                 scc_mgr_set_dqs_en_delay(read_group,
2075                                                          start_dqs_en);
2076                         }
2077                         scc_mgr_load_dqs(read_group);
2078                         writel(0, &sdr_scc_mgr->update);
2079
2080                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2081                                    find edge [%u]: %d %d", __func__, __LINE__,
2082                                    i, left_edge[i], right_edge[i]);
2083                         if (use_read_test) {
2084                                 set_failing_group_stage(read_group *
2085                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2086                                         CAL_STAGE_VFIFO,
2087                                         CAL_SUBSTAGE_VFIFO_CENTER);
2088                         } else {
2089                                 set_failing_group_stage(read_group *
2090                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2091                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2092                                         CAL_SUBSTAGE_VFIFO_CENTER);
2093                         }
2094                         return 0;
2095                 }
2096         }
2097
2098         /* Find middle of window for each DQ bit */
2099         mid_min = left_edge[0] - right_edge[0];
2100         min_index = 0;
2101         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2102                 mid = left_edge[i] - right_edge[i];
2103                 if (mid < mid_min) {
2104                         mid_min = mid;
2105                         min_index = i;
2106                 }
2107         }
2108
2109         /*
2110          * -mid_min/2 represents the amount that we need to move DQS.
2111          * If mid_min is odd and positive we'll need to add one to
2112          * make sure the rounding in further calculations is correct
2113          * (always bias to the right), so just add 1 for all positive values.
2114          */
2115         if (mid_min > 0)
2116                 mid_min++;
2117
2118         mid_min = mid_min / 2;
2119
2120         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2121                    __func__, __LINE__, mid_min, min_index);
2122
2123         /* Determine the amount we can change DQS (which is -mid_min) */
2124         orig_mid_min = mid_min;
2125         new_dqs = start_dqs - mid_min;
2126         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2127                 new_dqs = IO_DQS_IN_DELAY_MAX;
2128         else if (new_dqs < 0)
2129                 new_dqs = 0;
2130
2131         mid_min = start_dqs - new_dqs;
2132         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2133                    mid_min, new_dqs);
2134
2135         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2136                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2137                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2138                 else if (start_dqs_en - mid_min < 0)
2139                         mid_min += start_dqs_en - mid_min;
2140         }
2141         new_dqs = start_dqs - mid_min;
2142
2143         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2144                    new_dqs=%d mid_min=%d\n", start_dqs,
2145                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2146                    new_dqs, mid_min);
2147
2148         /* Initialize data for export structures */
2149         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2150         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2151
2152         /* add delay to bring centre of all DQ windows to the same "level" */
2153         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2154                 /* Use values before divide by 2 to reduce round off error */
2155                 shift_dq = (left_edge[i] - right_edge[i] -
2156                         (left_edge[min_index] - right_edge[min_index]))/2  +
2157                         (orig_mid_min - mid_min);
2158
2159                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2160                            shift_dq[%u]=%d\n", i, shift_dq);
2161
2162                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2163                 temp_dq_in_delay1 = readl(addr + (p << 2));
2164                 temp_dq_in_delay2 = readl(addr + (i << 2));
2165
2166                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2167                         (int32_t)IO_IO_IN_DELAY_MAX) {
2168                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2169                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2170                         shift_dq = -(int32_t)temp_dq_in_delay1;
2171                 }
2172                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2173                            shift_dq[%u]=%d\n", i, shift_dq);
2174                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2175                 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2176                 scc_mgr_load_dq(p);
2177
2178                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2179                            left_edge[i] - shift_dq + (-mid_min),
2180                            right_edge[i] + shift_dq - (-mid_min));
2181                 /* To determine values for export structures */
2182                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2183                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2184
2185                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2186                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2187         }
2188
2189         final_dqs = new_dqs;
2190         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2191                 final_dqs_en = start_dqs_en - mid_min;
2192
2193         /* Move DQS-en */
2194         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2195                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2196                 scc_mgr_load_dqs(read_group);
2197         }
2198
2199         /* Move DQS */
2200         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2201         scc_mgr_load_dqs(read_group);
2202         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2203                    dqs_margin=%d", __func__, __LINE__,
2204                    dq_margin, dqs_margin);
2205
2206         /*
2207          * Do not remove this line as it makes sure all of our decisions
2208          * have been applied. Apply the update bit.
2209          */
2210         writel(0, &sdr_scc_mgr->update);
2211
2212         return (dq_margin >= 0) && (dqs_margin >= 0);
2213 }
2214
2215 /*
2216  * calibrate the read valid prediction FIFO.
2217  *
2218  *  - read valid prediction will consist of finding a good DQS enable phase,
2219  * DQS enable delay, DQS input phase, and DQS input delay.
2220  *  - we also do a per-bit deskew on the DQ lines.
2221  */
2222 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2223                                            uint32_t test_bgn)
2224 {
2225         uint32_t p, d, rank_bgn, sr;
2226         uint32_t dtaps_per_ptap;
2227         uint32_t tmp_delay;
2228         uint32_t bit_chk;
2229         uint32_t grp_calibrated;
2230         uint32_t write_group, write_test_bgn;
2231         uint32_t failed_substage;
2232
2233         debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2234
2235         /* update info for sims */
2236         reg_file_set_stage(CAL_STAGE_VFIFO);
2237
2238         write_group = read_group;
2239         write_test_bgn = test_bgn;
2240
2241         /* USER Determine number of delay taps for each phase tap */
2242         dtaps_per_ptap = 0;
2243         tmp_delay = 0;
2244         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2245                 dtaps_per_ptap++;
2246                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2247         }
2248         dtaps_per_ptap--;
2249         tmp_delay = 0;
2250
2251         /* update info for sims */
2252         reg_file_set_group(read_group);
2253
2254         grp_calibrated = 0;
2255
2256         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2257         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2258
2259         for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2260                 /*
2261                  * In RLDRAMX we may be messing the delay of pins in
2262                  * the same write group but outside of the current read
2263                  * the group, but that's ok because we haven't
2264                  * calibrated output side yet.
2265                  */
2266                 if (d > 0) {
2267                         scc_mgr_apply_group_all_out_delay_add_all_ranks
2268                         (write_group, write_test_bgn, d);
2269                 }
2270
2271                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2272                         p++) {
2273                         /* set a particular dqdqs phase */
2274                         scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2275
2276                         debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2277                                    p=%u d=%u\n", __func__, __LINE__,
2278                                    read_group, p, d);
2279
2280                         /*
2281                          * Load up the patterns used by read calibration
2282                          * using current DQDQS phase.
2283                          */
2284                         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2285                         if (!(gbl->phy_debug_mode_flags &
2286                                 PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2287                                 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2288                                     (read_group, 1, &bit_chk)) {
2289                                         debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2290                                                    __func__, __LINE__);
2291                                         debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2292                                                    read_group, p, d);
2293                                         break;
2294                                 }
2295                         }
2296
2297 /* case:56390 */
2298                         grp_calibrated = 1;
2299                 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2300                     (write_group, read_group, test_bgn)) {
2301                                 /*
2302                                  * USER Read per-bit deskew can be done on a
2303                                  * per shadow register basis.
2304                                  */
2305                                 for (rank_bgn = 0, sr = 0;
2306                                         rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2307                                         rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2308                                         ++sr) {
2309                                         /*
2310                                          * Determine if this set of ranks
2311                                          * should be skipped entirely.
2312                                          */
2313                                         if (!param->skip_shadow_regs[sr]) {
2314                                                 /*
2315                                                  * If doing read after write
2316                                                  * calibration, do not update
2317                                                  * FOM, now - do it then.
2318                                                  */
2319                                         if (!rw_mgr_mem_calibrate_vfifo_center
2320                                                 (rank_bgn, write_group,
2321                                                 read_group, test_bgn, 1, 0)) {
2322                                                         grp_calibrated = 0;
2323                                                         failed_substage =
2324                                                 CAL_SUBSTAGE_VFIFO_CENTER;
2325                                                 }
2326                                         }
2327                                 }
2328                         } else {
2329                                 grp_calibrated = 0;
2330                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2331                         }
2332                 }
2333         }
2334
2335         if (grp_calibrated == 0) {
2336                 set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2337                                         failed_substage);
2338                 return 0;
2339         }
2340
2341         /*
2342          * Reset the delay chains back to zero if they have moved > 1
2343          * (check for > 1 because loop will increase d even when pass in
2344          * first case).
2345          */
2346         if (d > 2)
2347                 scc_mgr_zero_group(write_group, write_test_bgn, 1);
2348
2349         return 1;
2350 }
2351
2352 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2353 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2354                                                uint32_t test_bgn)
2355 {
2356         uint32_t rank_bgn, sr;
2357         uint32_t grp_calibrated;
2358         uint32_t write_group;
2359
2360         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2361
2362         /* update info for sims */
2363
2364         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2365         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2366
2367         write_group = read_group;
2368
2369         /* update info for sims */
2370         reg_file_set_group(read_group);
2371
2372         grp_calibrated = 1;
2373         /* Read per-bit deskew can be done on a per shadow register basis */
2374         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2375                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2376                 /* Determine if this set of ranks should be skipped entirely */
2377                 if (!param->skip_shadow_regs[sr]) {
2378                 /* This is the last calibration round, update FOM here */
2379                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2380                                                                 write_group,
2381                                                                 read_group,
2382                                                                 test_bgn, 0,
2383                                                                 1)) {
2384                                 grp_calibrated = 0;
2385                         }
2386                 }
2387         }
2388
2389
2390         if (grp_calibrated == 0) {
2391                 set_failing_group_stage(write_group,
2392                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2393                                         CAL_SUBSTAGE_VFIFO_CENTER);
2394                 return 0;
2395         }
2396
2397         return 1;
2398 }
2399
2400 /* Calibrate LFIFO to find smallest read latency */
2401 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2402 {
2403         uint32_t found_one;
2404         uint32_t bit_chk;
2405
2406         debug("%s:%d\n", __func__, __LINE__);
2407
2408         /* update info for sims */
2409         reg_file_set_stage(CAL_STAGE_LFIFO);
2410         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2411
2412         /* Load up the patterns used by read calibration for all ranks */
2413         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2414         found_one = 0;
2415
2416         do {
2417                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2418                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2419                            __func__, __LINE__, gbl->curr_read_lat);
2420
2421                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2422                                                               NUM_READ_TESTS,
2423                                                               PASS_ALL_BITS,
2424                                                               &bit_chk, 1)) {
2425                         break;
2426                 }
2427
2428                 found_one = 1;
2429                 /* reduce read latency and see if things are working */
2430                 /* correctly */
2431                 gbl->curr_read_lat--;
2432         } while (gbl->curr_read_lat > 0);
2433
2434         /* reset the fifos to get pointers to known state */
2435
2436         writel(0, &phy_mgr_cmd->fifo_reset);
2437
2438         if (found_one) {
2439                 /* add a fudge factor to the read latency that was determined */
2440                 gbl->curr_read_lat += 2;
2441                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2442                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2443                            read_lat=%u\n", __func__, __LINE__,
2444                            gbl->curr_read_lat);
2445                 return 1;
2446         } else {
2447                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2448                                         CAL_SUBSTAGE_READ_LATENCY);
2449
2450                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2451                            read_lat=%u\n", __func__, __LINE__,
2452                            gbl->curr_read_lat);
2453                 return 0;
2454         }
2455 }
2456
2457 /*
2458  * issue write test command.
2459  * two variants are provided. one that just tests a write pattern and
2460  * another that tests datamask functionality.
2461  */
2462 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2463                                                   uint32_t test_dm)
2464 {
2465         uint32_t mcc_instruction;
2466         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2467                 ENABLE_SUPER_QUICK_CALIBRATION);
2468         uint32_t rw_wl_nop_cycles;
2469         uint32_t addr;
2470
2471         /*
2472          * Set counter and jump addresses for the right
2473          * number of NOP cycles.
2474          * The number of supported NOP cycles can range from -1 to infinity
2475          * Three different cases are handled:
2476          *
2477          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2478          *    mechanism will be used to insert the right number of NOPs
2479          *
2480          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2481          *    issuing the write command will jump straight to the
2482          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2483          *    data (for RLD), skipping
2484          *    the NOP micro-instruction all together
2485          *
2486          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2487          *    turned on in the same micro-instruction that issues the write
2488          *    command. Then we need
2489          *    to directly jump to the micro-instruction that sends out the data
2490          *
2491          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2492          *       (2 and 3). One jump-counter (0) is used to perform multiple
2493          *       write-read operations.
2494          *       one counter left to issue this command in "multiple-group" mode
2495          */
2496
2497         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2498
2499         if (rw_wl_nop_cycles == -1) {
2500                 /*
2501                  * CNTR 2 - We want to execute the special write operation that
2502                  * turns on DQS right away and then skip directly to the
2503                  * instruction that sends out the data. We set the counter to a
2504                  * large number so that the jump is always taken.
2505                  */
2506                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2507
2508                 /* CNTR 3 - Not used */
2509                 if (test_dm) {
2510                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2511                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2512                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2513                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2514                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2515                 } else {
2516                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2517                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2518                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2519                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2520                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2521                 }
2522         } else if (rw_wl_nop_cycles == 0) {
2523                 /*
2524                  * CNTR 2 - We want to skip the NOP operation and go straight
2525                  * to the DQS enable instruction. We set the counter to a large
2526                  * number so that the jump is always taken.
2527                  */
2528                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2529
2530                 /* CNTR 3 - Not used */
2531                 if (test_dm) {
2532                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2533                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2534                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2535                 } else {
2536                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2537                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2538                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2539                 }
2540         } else {
2541                 /*
2542                  * CNTR 2 - In this case we want to execute the next instruction
2543                  * and NOT take the jump. So we set the counter to 0. The jump
2544                  * address doesn't count.
2545                  */
2546                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2547                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2548
2549                 /*
2550                  * CNTR 3 - Set the nop counter to the number of cycles we
2551                  * need to loop for, minus 1.
2552                  */
2553                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2554                 if (test_dm) {
2555                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2556                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2557                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2558                 } else {
2559                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2560                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2561                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2562                 }
2563         }
2564
2565         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2566                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2567
2568         if (quick_write_mode)
2569                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2570         else
2571                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2572
2573         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2574
2575         /*
2576          * CNTR 1 - This is used to ensure enough time elapses
2577          * for read data to come back.
2578          */
2579         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2580
2581         if (test_dm) {
2582                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2583                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2584         } else {
2585                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2586                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2587         }
2588
2589         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2590         writel(mcc_instruction, addr + (group << 2));
2591 }
2592
2593 /* Test writes, can check for a single bit pass or multiple bit pass */
2594 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2595         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2596         uint32_t *bit_chk, uint32_t all_ranks)
2597 {
2598         uint32_t r;
2599         uint32_t correct_mask_vg;
2600         uint32_t tmp_bit_chk;
2601         uint32_t vg;
2602         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2603                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2604         uint32_t addr_rw_mgr;
2605         uint32_t base_rw_mgr;
2606
2607         *bit_chk = param->write_correct_mask;
2608         correct_mask_vg = param->write_correct_mask_vg;
2609
2610         for (r = rank_bgn; r < rank_end; r++) {
2611                 if (param->skip_ranks[r]) {
2612                         /* request to skip the rank */
2613                         continue;
2614                 }
2615
2616                 /* set rank */
2617                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2618
2619                 tmp_bit_chk = 0;
2620                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2621                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2622                         /* reset the fifos to get pointers to known state */
2623                         writel(0, &phy_mgr_cmd->fifo_reset);
2624
2625                         tmp_bit_chk = tmp_bit_chk <<
2626                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2627                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2628                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2629                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2630                                 use_dm);
2631
2632                         base_rw_mgr = readl(addr_rw_mgr);
2633                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2634                         if (vg == 0)
2635                                 break;
2636                 }
2637                 *bit_chk &= tmp_bit_chk;
2638         }
2639
2640         if (all_correct) {
2641                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2642                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2643                            %u => %lu", write_group, use_dm,
2644                            *bit_chk, param->write_correct_mask,
2645                            (long unsigned int)(*bit_chk ==
2646                            param->write_correct_mask));
2647                 return *bit_chk == param->write_correct_mask;
2648         } else {
2649                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2650                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2651                        write_group, use_dm, *bit_chk);
2652                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2653                         (long unsigned int)(*bit_chk != 0));
2654                 return *bit_chk != 0x00;
2655         }
2656 }
2657
2658 /*
2659  * center all windows. do per-bit-deskew to possibly increase size of
2660  * certain windows.
2661  */
2662 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2663         uint32_t write_group, uint32_t test_bgn)
2664 {
2665         uint32_t i, p, min_index;
2666         int32_t d;
2667         /*
2668          * Store these as signed since there are comparisons with
2669          * signed numbers.
2670          */
2671         uint32_t bit_chk;
2672         uint32_t sticky_bit_chk;
2673         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2674         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2675         int32_t mid;
2676         int32_t mid_min, orig_mid_min;
2677         int32_t new_dqs, start_dqs, shift_dq;
2678         int32_t dq_margin, dqs_margin, dm_margin;
2679         uint32_t stop;
2680         uint32_t temp_dq_out1_delay;
2681         uint32_t addr;
2682
2683         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2684
2685         dm_margin = 0;
2686
2687         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2688         start_dqs = readl(addr +
2689                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2690
2691         /* per-bit deskew */
2692
2693         /*
2694          * set the left and right edge of each bit to an illegal value
2695          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2696          */
2697         sticky_bit_chk = 0;
2698         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2699                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2700                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2701         }
2702
2703         /* Search for the left edge of the window for each bit */
2704         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2705                 scc_mgr_apply_group_dq_out1_delay(write_group, d);
2706
2707                 writel(0, &sdr_scc_mgr->update);
2708
2709                 /*
2710                  * Stop searching when the read test doesn't pass AND when
2711                  * we've seen a passing read on every bit.
2712                  */
2713                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2714                         0, PASS_ONE_BIT, &bit_chk, 0);
2715                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2716                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2717                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2718                            == %u && %u [bit_chk= %u ]\n",
2719                         d, sticky_bit_chk, param->write_correct_mask,
2720                         stop, bit_chk);
2721
2722                 if (stop == 1) {
2723                         break;
2724                 } else {
2725                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2726                                 if (bit_chk & 1) {
2727                                         /*
2728                                          * Remember a passing test as the
2729                                          * left_edge.
2730                                          */
2731                                         left_edge[i] = d;
2732                                 } else {
2733                                         /*
2734                                          * If a left edge has not been seen
2735                                          * yet, then a future passing test will
2736                                          * mark this edge as the right edge.
2737                                          */
2738                                         if (left_edge[i] ==
2739                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2740                                                 right_edge[i] = -(d + 1);
2741                                         }
2742                                 }
2743                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2744                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2745                                            (int)(bit_chk & 1), i, left_edge[i]);
2746                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2747                                        right_edge[i]);
2748                                 bit_chk = bit_chk >> 1;
2749                         }
2750                 }
2751         }
2752
2753         /* Reset DQ delay chains to 0 */
2754         scc_mgr_apply_group_dq_out1_delay(write_group, 0);
2755         sticky_bit_chk = 0;
2756         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2757                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2758                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2759                            i, left_edge[i], i, right_edge[i]);
2760
2761                 /*
2762                  * Check for cases where we haven't found the left edge,
2763                  * which makes our assignment of the the right edge invalid.
2764                  * Reset it to the illegal value.
2765                  */
2766                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2767                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2768                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2769                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2770                                    right_edge[%u]: %d\n", __func__, __LINE__,
2771                                    i, right_edge[i]);
2772                 }
2773
2774                 /*
2775                  * Reset sticky bit (except for bits where we have
2776                  * seen the left edge).
2777                  */
2778                 sticky_bit_chk = sticky_bit_chk << 1;
2779                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2780                         sticky_bit_chk = sticky_bit_chk | 1;
2781
2782                 if (i == 0)
2783                         break;
2784         }
2785
2786         /* Search for the right edge of the window for each bit */
2787         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2788                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2789                                                         d + start_dqs);
2790
2791                 writel(0, &sdr_scc_mgr->update);
2792
2793                 /*
2794                  * Stop searching when the read test doesn't pass AND when
2795                  * we've seen a passing read on every bit.
2796                  */
2797                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2798                         0, PASS_ONE_BIT, &bit_chk, 0);
2799
2800                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2801                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2802
2803                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2804                            %u && %u\n", d, sticky_bit_chk,
2805                            param->write_correct_mask, stop);
2806
2807                 if (stop == 1) {
2808                         if (d == 0) {
2809                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2810                                         i++) {
2811                                         /* d = 0 failed, but it passed when
2812                                         testing the left edge, so it must be
2813                                         marginal, set it to -1 */
2814                                         if (right_edge[i] ==
2815                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2816                                                 left_edge[i] !=
2817                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2818                                                 right_edge[i] = -1;
2819                                         }
2820                                 }
2821                         }
2822                         break;
2823                 } else {
2824                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2825                                 if (bit_chk & 1) {
2826                                         /*
2827                                          * Remember a passing test as
2828                                          * the right_edge.
2829                                          */
2830                                         right_edge[i] = d;
2831                                 } else {
2832                                         if (d != 0) {
2833                                                 /*
2834                                                  * If a right edge has not
2835                                                  * been seen yet, then a future
2836                                                  * passing test will mark this
2837                                                  * edge as the left edge.
2838                                                  */
2839                                                 if (right_edge[i] ==
2840                                                     IO_IO_OUT1_DELAY_MAX + 1)
2841                                                         left_edge[i] = -(d + 1);
2842                                         } else {
2843                                                 /*
2844                                                  * d = 0 failed, but it passed
2845                                                  * when testing the left edge,
2846                                                  * so it must be marginal, set
2847                                                  * it to -1.
2848                                                  */
2849                                                 if (right_edge[i] ==
2850                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
2851                                                     left_edge[i] !=
2852                                                     IO_IO_OUT1_DELAY_MAX + 1)
2853                                                         right_edge[i] = -1;
2854                                                 /*
2855                                                  * If a right edge has not been
2856                                                  * seen yet, then a future
2857                                                  * passing test will mark this
2858                                                  * edge as the left edge.
2859                                                  */
2860                                                 else if (right_edge[i] ==
2861                                                         IO_IO_OUT1_DELAY_MAX +
2862                                                         1)
2863                                                         left_edge[i] = -(d + 1);
2864                                         }
2865                                 }
2866                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2867                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2868                                            (int)(bit_chk & 1), i, left_edge[i]);
2869                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2870                                            right_edge[i]);
2871                                 bit_chk = bit_chk >> 1;
2872                         }
2873                 }
2874         }
2875
2876         /* Check that all bits have a window */
2877         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2878                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2879                            %d right_edge[%u]: %d", __func__, __LINE__,
2880                            i, left_edge[i], i, right_edge[i]);
2881                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2882                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2883                         set_failing_group_stage(test_bgn + i,
2884                                                 CAL_STAGE_WRITES,
2885                                                 CAL_SUBSTAGE_WRITES_CENTER);
2886                         return 0;
2887                 }
2888         }
2889
2890         /* Find middle of window for each DQ bit */
2891         mid_min = left_edge[0] - right_edge[0];
2892         min_index = 0;
2893         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2894                 mid = left_edge[i] - right_edge[i];
2895                 if (mid < mid_min) {
2896                         mid_min = mid;
2897                         min_index = i;
2898                 }
2899         }
2900
2901         /*
2902          * -mid_min/2 represents the amount that we need to move DQS.
2903          * If mid_min is odd and positive we'll need to add one to
2904          * make sure the rounding in further calculations is correct
2905          * (always bias to the right), so just add 1 for all positive values.
2906          */
2907         if (mid_min > 0)
2908                 mid_min++;
2909         mid_min = mid_min / 2;
2910         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2911                    __LINE__, mid_min);
2912
2913         /* Determine the amount we can change DQS (which is -mid_min) */
2914         orig_mid_min = mid_min;
2915         new_dqs = start_dqs;
2916         mid_min = 0;
2917         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2918                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2919         /* Initialize data for export structures */
2920         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2921         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2922
2923         /* add delay to bring centre of all DQ windows to the same "level" */
2924         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2925                 /* Use values before divide by 2 to reduce round off error */
2926                 shift_dq = (left_edge[i] - right_edge[i] -
2927                         (left_edge[min_index] - right_edge[min_index]))/2  +
2928                 (orig_mid_min - mid_min);
2929
2930                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2931                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2932
2933                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2934                 temp_dq_out1_delay = readl(addr + (i << 2));
2935                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2936                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2937                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2938                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2939                         shift_dq = -(int32_t)temp_dq_out1_delay;
2940                 }
2941                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2942                            i, shift_dq);
2943                 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2944                 scc_mgr_load_dq(i);
2945
2946                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2947                            left_edge[i] - shift_dq + (-mid_min),
2948                            right_edge[i] + shift_dq - (-mid_min));
2949                 /* To determine values for export structures */
2950                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2951                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2952
2953                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2954                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2955         }
2956
2957         /* Move DQS */
2958         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2959         writel(0, &sdr_scc_mgr->update);
2960
2961         /* Centre DM */
2962         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2963
2964         /*
2965          * set the left and right edge of each bit to an illegal value,
2966          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2967          */
2968         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2969         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2970         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2971         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2972         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2973         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2974         int32_t win_best = 0;
2975
2976         /* Search for the/part of the window with DM shift */
2977         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2978                 scc_mgr_apply_group_dm_out1_delay(write_group, d);
2979                 writel(0, &sdr_scc_mgr->update);
2980
2981                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2982                                                     PASS_ALL_BITS, &bit_chk,
2983                                                     0)) {
2984                         /* USE Set current end of the window */
2985                         end_curr = -d;
2986                         /*
2987                          * If a starting edge of our window has not been seen
2988                          * this is our current start of the DM window.
2989                          */
2990                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2991                                 bgn_curr = -d;
2992
2993                         /*
2994                          * If current window is bigger than best seen.
2995                          * Set best seen to be current window.
2996                          */
2997                         if ((end_curr-bgn_curr+1) > win_best) {
2998                                 win_best = end_curr-bgn_curr+1;
2999                                 bgn_best = bgn_curr;
3000                                 end_best = end_curr;
3001                         }
3002                 } else {
3003                         /* We just saw a failing test. Reset temp edge */
3004                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3005                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3006                         }
3007                 }
3008
3009
3010         /* Reset DM delay chains to 0 */
3011         scc_mgr_apply_group_dm_out1_delay(write_group, 0);
3012
3013         /*
3014          * Check to see if the current window nudges up aganist 0 delay.
3015          * If so we need to continue the search by shifting DQS otherwise DQS
3016          * search begins as a new search. */
3017         if (end_curr != 0) {
3018                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3019                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3020         }
3021
3022         /* Search for the/part of the window with DQS shifts */
3023         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3024                 /*
3025                  * Note: This only shifts DQS, so are we limiting ourselve to
3026                  * width of DQ unnecessarily.
3027                  */
3028                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3029                                                         d + new_dqs);
3030
3031                 writel(0, &sdr_scc_mgr->update);
3032                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3033                                                     PASS_ALL_BITS, &bit_chk,
3034                                                     0)) {
3035                         /* USE Set current end of the window */
3036                         end_curr = d;
3037                         /*
3038                          * If a beginning edge of our window has not been seen
3039                          * this is our current begin of the DM window.
3040                          */
3041                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3042                                 bgn_curr = d;
3043
3044                         /*
3045                          * If current window is bigger than best seen. Set best
3046                          * seen to be current window.
3047                          */
3048                         if ((end_curr-bgn_curr+1) > win_best) {
3049                                 win_best = end_curr-bgn_curr+1;
3050                                 bgn_best = bgn_curr;
3051                                 end_best = end_curr;
3052                         }
3053                 } else {
3054                         /* We just saw a failing test. Reset temp edge */
3055                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3056                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3057
3058                         /* Early exit optimization: if ther remaining delay
3059                         chain space is less than already seen largest window
3060                         we can exit */
3061                         if ((win_best-1) >
3062                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3063                                         break;
3064                                 }
3065                         }
3066                 }
3067
3068         /* assign left and right edge for cal and reporting; */
3069         left_edge[0] = -1*bgn_best;
3070         right_edge[0] = end_best;
3071
3072         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3073                    __LINE__, left_edge[0], right_edge[0]);
3074
3075         /* Move DQS (back to orig) */
3076         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3077
3078         /* Move DM */
3079
3080         /* Find middle of window for the DM bit */
3081         mid = (left_edge[0] - right_edge[0]) / 2;
3082
3083         /* only move right, since we are not moving DQS/DQ */
3084         if (mid < 0)
3085                 mid = 0;
3086
3087         /* dm_marign should fail if we never find a window */
3088         if (win_best == 0)
3089                 dm_margin = -1;
3090         else
3091                 dm_margin = left_edge[0] - mid;
3092
3093         scc_mgr_apply_group_dm_out1_delay(write_group, mid);
3094         writel(0, &sdr_scc_mgr->update);
3095
3096         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3097                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3098                    right_edge[0], mid, dm_margin);
3099         /* Export values */
3100         gbl->fom_out += dq_margin + dqs_margin;
3101
3102         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3103                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3104                    dq_margin, dqs_margin, dm_margin);
3105
3106         /*
3107          * Do not remove this line as it makes sure all of our
3108          * decisions have been applied.
3109          */
3110         writel(0, &sdr_scc_mgr->update);
3111         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3112 }
3113
3114 /* calibrate the write operations */
3115 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3116         uint32_t test_bgn)
3117 {
3118         /* update info for sims */
3119         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3120
3121         reg_file_set_stage(CAL_STAGE_WRITES);
3122         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3123
3124         reg_file_set_group(g);
3125
3126         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3127                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3128                                         CAL_SUBSTAGE_WRITES_CENTER);
3129                 return 0;
3130         }
3131
3132         return 1;
3133 }
3134
3135 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3136 static void mem_precharge_and_activate(void)
3137 {
3138         uint32_t r;
3139
3140         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3141                 if (param->skip_ranks[r]) {
3142                         /* request to skip the rank */
3143                         continue;
3144                 }
3145
3146                 /* set rank */
3147                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3148
3149                 /* precharge all banks ... */
3150                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3151                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3152
3153                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3154                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3155                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3156
3157                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3158                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3159                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3160
3161                 /* activate rows */
3162                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3163                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3164         }
3165 }
3166
3167 /* Configure various memory related parameters. */
3168 static void mem_config(void)
3169 {
3170         uint32_t rlat, wlat;
3171         uint32_t rw_wl_nop_cycles;
3172         uint32_t max_latency;
3173
3174         debug("%s:%d\n", __func__, __LINE__);
3175         /* read in write and read latency */
3176         wlat = readl(&data_mgr->t_wl_add);
3177         wlat += readl(&data_mgr->mem_t_add);
3178
3179         /* WL for hard phy does not include additive latency */
3180
3181         /*
3182          * add addtional write latency to offset the address/command extra
3183          * clock cycle. We change the AC mux setting causing AC to be delayed
3184          * by one mem clock cycle. Only do this for DDR3
3185          */
3186         wlat = wlat + 1;
3187
3188         rlat = readl(&data_mgr->t_rl_add);
3189
3190         rw_wl_nop_cycles = wlat - 2;
3191         gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3192
3193         /*
3194          * For AV/CV, lfifo is hardened and always runs at full rate so
3195          * max latency in AFI clocks, used here, is correspondingly smaller.
3196          */
3197         max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3198         /* configure for a burst length of 8 */
3199
3200         /* write latency */
3201         /* Adjust Write Latency for Hard PHY */
3202         wlat = wlat + 1;
3203
3204         /* set a pretty high read latency initially */
3205         gbl->curr_read_lat = rlat + 16;
3206
3207         if (gbl->curr_read_lat > max_latency)
3208                 gbl->curr_read_lat = max_latency;
3209
3210         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3211
3212         /* advertise write latency */
3213         gbl->curr_write_lat = wlat;
3214         writel(wlat - 2, &phy_mgr_cfg->afi_wlat);
3215
3216         /* initialize bit slips */
3217         mem_precharge_and_activate();
3218 }
3219
3220 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3221 static void mem_skip_calibrate(void)
3222 {
3223         uint32_t vfifo_offset;
3224         uint32_t i, j, r;
3225
3226         debug("%s:%d\n", __func__, __LINE__);
3227         /* Need to update every shadow register set used by the interface */
3228         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3229                 r += NUM_RANKS_PER_SHADOW_REG) {
3230                 /*
3231                  * Set output phase alignment settings appropriate for
3232                  * skip calibration.
3233                  */
3234                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3235                         scc_mgr_set_dqs_en_phase(i, 0);
3236 #if IO_DLL_CHAIN_LENGTH == 6
3237                         scc_mgr_set_dqdqs_output_phase(i, 6);
3238 #else
3239                         scc_mgr_set_dqdqs_output_phase(i, 7);
3240 #endif
3241                         /*
3242                          * Case:33398
3243                          *
3244                          * Write data arrives to the I/O two cycles before write
3245                          * latency is reached (720 deg).
3246                          *   -> due to bit-slip in a/c bus
3247                          *   -> to allow board skew where dqs is longer than ck
3248                          *      -> how often can this happen!?
3249                          *      -> can claim back some ptaps for high freq
3250                          *       support if we can relax this, but i digress...
3251                          *
3252                          * The write_clk leads mem_ck by 90 deg
3253                          * The minimum ptap of the OPA is 180 deg
3254                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3255                          * The write_clk is always delayed by 2 ptaps
3256                          *
3257                          * Hence, to make DQS aligned to CK, we need to delay
3258                          * DQS by:
3259                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3260                          *
3261                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3262                          * gives us the number of ptaps, which simplies to:
3263                          *
3264                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3265                          */
3266                         scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3267                                 IO_DLL_CHAIN_LENGTH - 2));
3268                 }
3269                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3270                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3271
3272                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3273                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3274                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3275                 }
3276                 writel(0xff, &sdr_scc_mgr->dq_ena);
3277                 writel(0xff, &sdr_scc_mgr->dm_ena);
3278                 writel(0, &sdr_scc_mgr->update);
3279         }
3280
3281         /* Compensate for simulation model behaviour */
3282         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3283                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3284                 scc_mgr_load_dqs(i);
3285         }
3286         writel(0, &sdr_scc_mgr->update);
3287
3288         /*
3289          * ArriaV has hard FIFOs that can only be initialized by incrementing
3290          * in sequencer.
3291          */
3292         vfifo_offset = CALIB_VFIFO_OFFSET;
3293         for (j = 0; j < vfifo_offset; j++) {
3294                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3295         }
3296         writel(0, &phy_mgr_cmd->fifo_reset);
3297
3298         /*
3299          * For ACV with hard lfifo, we get the skip-cal setting from
3300          * generation-time constant.
3301          */
3302         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3303         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3304 }
3305
3306 /* Memory calibration entry point */
3307 static uint32_t mem_calibrate(void)
3308 {
3309         uint32_t i;
3310         uint32_t rank_bgn, sr;
3311         uint32_t write_group, write_test_bgn;
3312         uint32_t read_group, read_test_bgn;
3313         uint32_t run_groups, current_run;
3314         uint32_t failing_groups = 0;
3315         uint32_t group_failed = 0;
3316         uint32_t sr_failed = 0;
3317
3318         debug("%s:%d\n", __func__, __LINE__);
3319         /* Initialize the data settings */
3320
3321         gbl->error_substage = CAL_SUBSTAGE_NIL;
3322         gbl->error_stage = CAL_STAGE_NIL;
3323         gbl->error_group = 0xff;
3324         gbl->fom_in = 0;
3325         gbl->fom_out = 0;
3326
3327         mem_config();
3328
3329         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3330                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3331                           SCC_MGR_GROUP_COUNTER_OFFSET);
3332                 scc_set_bypass_mode(i);
3333         }
3334
3335         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3336                 /*
3337                  * Set VFIFO and LFIFO to instant-on settings in skip
3338                  * calibration mode.
3339                  */
3340                 mem_skip_calibrate();
3341         } else {
3342                 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3343                         /*
3344                          * Zero all delay chain/phase settings for all
3345                          * groups and all shadow register sets.
3346                          */
3347                         scc_mgr_zero_all();
3348
3349                         run_groups = ~param->skip_groups;
3350
3351                         for (write_group = 0, write_test_bgn = 0; write_group
3352                                 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3353                                 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3354                                 /* Initialized the group failure */
3355                                 group_failed = 0;
3356
3357                                 current_run = run_groups & ((1 <<
3358                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3359                                 run_groups = run_groups >>
3360                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3361
3362                                 if (current_run == 0)
3363                                         continue;
3364
3365                                 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3366                                                     SCC_MGR_GROUP_COUNTER_OFFSET);
3367                                 scc_mgr_zero_group(write_group, write_test_bgn,
3368                                                    0);
3369
3370                                 for (read_group = write_group *
3371                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3372                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3373                                         read_test_bgn = 0;
3374                                         read_group < (write_group + 1) *
3375                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3376                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3377                                         group_failed == 0;
3378                                         read_group++, read_test_bgn +=
3379                                         RW_MGR_MEM_DQ_PER_READ_DQS) {
3380                                         /* Calibrate the VFIFO */
3381                                         if (!((STATIC_CALIB_STEPS) &
3382                                                 CALIB_SKIP_VFIFO)) {
3383                                                 if (!rw_mgr_mem_calibrate_vfifo
3384                                                         (read_group,
3385                                                         read_test_bgn)) {
3386                                                         group_failed = 1;
3387
3388                                                         if (!(gbl->
3389                                                         phy_debug_mode_flags &
3390                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3391                                                                 return 0;
3392                                                         }
3393                                                 }
3394                                         }
3395                                 }
3396
3397                                 /* Calibrate the output side */
3398                                 if (group_failed == 0)  {
3399                                         for (rank_bgn = 0, sr = 0; rank_bgn
3400                                                 < RW_MGR_MEM_NUMBER_OF_RANKS;
3401                                                 rank_bgn +=
3402                                                 NUM_RANKS_PER_SHADOW_REG,
3403                                                 ++sr) {
3404                                                 sr_failed = 0;
3405                                                 if (!((STATIC_CALIB_STEPS) &
3406                                                 CALIB_SKIP_WRITES)) {
3407                                                         if ((STATIC_CALIB_STEPS)
3408                                                 & CALIB_SKIP_DELAY_SWEEPS) {
3409                                                 /* not needed in quick mode! */
3410                                                         } else {
3411                                                 /*
3412                                                  * Determine if this set of
3413                                                  * ranks should be skipped
3414                                                  * entirely.
3415                                                  */
3416                                         if (!param->skip_shadow_regs[sr]) {
3417                                                 if (!rw_mgr_mem_calibrate_writes
3418                                                 (rank_bgn, write_group,
3419                                                 write_test_bgn)) {
3420                                                         sr_failed = 1;
3421                                                         if (!(gbl->
3422                                                         phy_debug_mode_flags &
3423                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3424                                                                 return 0;
3425                                                                         }
3426                                                                         }
3427                                                                 }
3428                                                         }
3429                                                 }
3430                                                 if (sr_failed != 0)
3431                                                         group_failed = 1;
3432                                         }
3433                                 }
3434
3435                                 if (group_failed == 0) {
3436                                         for (read_group = write_group *
3437                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3438                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3439                                         read_test_bgn = 0;
3440                                                 read_group < (write_group + 1)
3441                                                 * RW_MGR_MEM_IF_READ_DQS_WIDTH
3442                                                 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3443                                                 group_failed == 0;
3444                                                 read_group++, read_test_bgn +=
3445                                                 RW_MGR_MEM_DQ_PER_READ_DQS) {
3446                                                 if (!((STATIC_CALIB_STEPS) &
3447                                                         CALIB_SKIP_WRITES)) {
3448                                         if (!rw_mgr_mem_calibrate_vfifo_end
3449                                                 (read_group, read_test_bgn)) {
3450                                                         group_failed = 1;
3451
3452                                                 if (!(gbl->phy_debug_mode_flags
3453                                                 & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3454                                                                 return 0;
3455                                                                 }
3456                                                         }
3457                                                 }
3458                                         }
3459                                 }
3460
3461                                 if (group_failed != 0)
3462                                         failing_groups++;
3463                         }
3464
3465                         /*
3466                          * USER If there are any failing groups then report
3467                          * the failure.
3468                          */
3469                         if (failing_groups != 0)
3470                                 return 0;
3471
3472                         /* Calibrate the LFIFO */
3473                         if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3474                                 /*
3475                                  * If we're skipping groups as part of debug,
3476                                  * don't calibrate LFIFO.
3477                                  */
3478                                 if (param->skip_groups == 0) {
3479                                         if (!rw_mgr_mem_calibrate_lfifo())
3480                                                 return 0;
3481                                 }
3482                         }
3483                 }
3484         }
3485
3486         /*
3487          * Do not remove this line as it makes sure all of our decisions
3488          * have been applied.
3489          */
3490         writel(0, &sdr_scc_mgr->update);
3491         return 1;
3492 }
3493
3494 static uint32_t run_mem_calibrate(void)
3495 {
3496         uint32_t pass;
3497         uint32_t debug_info;
3498
3499         debug("%s:%d\n", __func__, __LINE__);
3500
3501         /* Reset pass/fail status shown on afi_cal_success/fail */
3502         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3503
3504         /* stop tracking manger */
3505         uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg);
3506
3507         writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg);
3508
3509         initialize();
3510         rw_mgr_mem_initialize();
3511
3512         pass = mem_calibrate();
3513
3514         mem_precharge_and_activate();
3515         writel(0, &phy_mgr_cmd->fifo_reset);
3516
3517         /*
3518          * Handoff:
3519          * Don't return control of the PHY back to AFI when in debug mode.
3520          */
3521         if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3522                 rw_mgr_mem_handoff();
3523                 /*
3524                  * In Hard PHY this is a 2-bit control:
3525                  * 0: AFI Mux Select
3526                  * 1: DDIO Mux Select
3527                  */
3528                 writel(0x2, &phy_mgr_cfg->mux_sel);
3529         }
3530
3531         writel(ctrlcfg, &sdr_ctrl->ctrl_cfg);
3532
3533         if (pass) {
3534                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3535
3536                 gbl->fom_in /= 2;
3537                 gbl->fom_out /= 2;
3538
3539                 if (gbl->fom_in > 0xff)
3540                         gbl->fom_in = 0xff;
3541
3542                 if (gbl->fom_out > 0xff)
3543                         gbl->fom_out = 0xff;
3544
3545                 /* Update the FOM in the register file */
3546                 debug_info = gbl->fom_in;
3547                 debug_info |= gbl->fom_out << 8;
3548                 writel(debug_info, &sdr_reg_file->fom);
3549
3550                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3551                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3552         } else {
3553                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3554
3555                 debug_info = gbl->error_stage;
3556                 debug_info |= gbl->error_substage << 8;
3557                 debug_info |= gbl->error_group << 16;
3558
3559                 writel(debug_info, &sdr_reg_file->failing_stage);
3560                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3561                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3562
3563                 /* Update the failing group/stage in the register file */
3564                 debug_info = gbl->error_stage;
3565                 debug_info |= gbl->error_substage << 8;
3566                 debug_info |= gbl->error_group << 16;
3567                 writel(debug_info, &sdr_reg_file->failing_stage);
3568         }
3569
3570         return pass;
3571 }
3572
3573 /**
3574  * hc_initialize_rom_data() - Initialize ROM data
3575  *
3576  * Initialize ROM data.
3577  */
3578 static void hc_initialize_rom_data(void)
3579 {
3580         u32 i, addr;
3581
3582         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3583         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3584                 writel(inst_rom_init[i], addr + (i << 2));
3585
3586         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3587         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3588                 writel(ac_rom_init[i], addr + (i << 2));
3589 }
3590
3591 /**
3592  * initialize_reg_file() - Initialize SDR register file
3593  *
3594  * Initialize SDR register file.
3595  */
3596 static void initialize_reg_file(void)
3597 {
3598         /* Initialize the register file with the correct data */
3599         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3600         writel(0, &sdr_reg_file->debug_data_addr);
3601         writel(0, &sdr_reg_file->cur_stage);
3602         writel(0, &sdr_reg_file->fom);
3603         writel(0, &sdr_reg_file->failing_stage);
3604         writel(0, &sdr_reg_file->debug1);
3605         writel(0, &sdr_reg_file->debug2);
3606 }
3607
3608 /**
3609  * initialize_hps_phy() - Initialize HPS PHY
3610  *
3611  * Initialize HPS PHY.
3612  */
3613 static void initialize_hps_phy(void)
3614 {
3615         uint32_t reg;
3616         /*
3617          * Tracking also gets configured here because it's in the
3618          * same register.
3619          */
3620         uint32_t trk_sample_count = 7500;
3621         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3622         /*
3623          * Format is number of outer loops in the 16 MSB, sample
3624          * count in 16 LSB.
3625          */
3626
3627         reg = 0;
3628         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3629         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3630         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3631         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3632         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3633         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3634         /*
3635          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3636          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3637          */
3638         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3639         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3640                 trk_sample_count);
3641         writel(reg, &sdr_ctrl->phy_ctrl0);
3642
3643         reg = 0;
3644         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3645                 trk_sample_count >>
3646                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3647         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3648                 trk_long_idle_sample_count);
3649         writel(reg, &sdr_ctrl->phy_ctrl1);
3650
3651         reg = 0;
3652         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3653                 trk_long_idle_sample_count >>
3654                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3655         writel(reg, &sdr_ctrl->phy_ctrl2);
3656 }
3657
3658 static void initialize_tracking(void)
3659 {
3660         uint32_t concatenated_longidle = 0x0;
3661         uint32_t concatenated_delays = 0x0;
3662         uint32_t concatenated_rw_addr = 0x0;
3663         uint32_t concatenated_refresh = 0x0;
3664         uint32_t trk_sample_count = 7500;
3665         uint32_t dtaps_per_ptap;
3666         uint32_t tmp_delay;
3667
3668         /*
3669          * compute usable version of value in case we skip full
3670          * computation later
3671          */
3672         dtaps_per_ptap = 0;
3673         tmp_delay = 0;
3674         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3675                 dtaps_per_ptap++;
3676                 tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3677         }
3678         dtaps_per_ptap--;
3679
3680         concatenated_longidle = concatenated_longidle ^ 10;
3681                 /*longidle outer loop */
3682         concatenated_longidle = concatenated_longidle << 16;
3683         concatenated_longidle = concatenated_longidle ^ 100;
3684                 /*longidle sample count */
3685         concatenated_delays = concatenated_delays ^ 243;
3686                 /* trfc, worst case of 933Mhz 4Gb */
3687         concatenated_delays = concatenated_delays << 8;
3688         concatenated_delays = concatenated_delays ^ 14;
3689                 /* trcd, worst case */
3690         concatenated_delays = concatenated_delays << 8;
3691         concatenated_delays = concatenated_delays ^ 10;
3692                 /* vfifo wait */
3693         concatenated_delays = concatenated_delays << 8;
3694         concatenated_delays = concatenated_delays ^ 4;
3695                 /* mux delay */
3696
3697         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3698         concatenated_rw_addr = concatenated_rw_addr << 8;
3699         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3700         concatenated_rw_addr = concatenated_rw_addr << 8;
3701         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3702         concatenated_rw_addr = concatenated_rw_addr << 8;
3703         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3704
3705         concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3706         concatenated_refresh = concatenated_refresh << 24;
3707         concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3708
3709         /* Initialize the register file with the correct data */
3710         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
3711         writel(trk_sample_count, &sdr_reg_file->trk_sample_count);
3712         writel(concatenated_longidle, &sdr_reg_file->trk_longidle);
3713         writel(concatenated_delays, &sdr_reg_file->delays);
3714         writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr);
3715         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width);
3716         writel(concatenated_refresh, &sdr_reg_file->trk_rfsh);
3717 }
3718
3719 int sdram_calibration_full(void)
3720 {
3721         struct param_type my_param;
3722         struct gbl_type my_gbl;
3723         uint32_t pass;
3724         uint32_t i;
3725
3726         param = &my_param;
3727         gbl = &my_gbl;
3728
3729         /* Initialize the debug mode flags */
3730         gbl->phy_debug_mode_flags = 0;
3731         /* Set the calibration enabled by default */
3732         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3733         /*
3734          * Only sweep all groups (regardless of fail state) by default
3735          * Set enabled read test by default.
3736          */
3737 #if DISABLE_GUARANTEED_READ
3738         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3739 #endif
3740         /* Initialize the register file */
3741         initialize_reg_file();
3742
3743         /* Initialize any PHY CSR */
3744         initialize_hps_phy();
3745
3746         scc_mgr_initialize();
3747
3748         initialize_tracking();
3749
3750         /* USER Enable all ranks, groups */
3751         for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3752                 param->skip_ranks[i] = 0;
3753         for (i = 0; i < NUM_SHADOW_REGS; ++i)
3754                 param->skip_shadow_regs[i] = 0;
3755         param->skip_groups = 0;
3756
3757         printf("%s: Preparing to start memory calibration\n", __FILE__);
3758
3759         debug("%s:%d\n", __func__, __LINE__);
3760         debug_cond(DLEVEL == 1,
3761                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3762                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3763                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3764                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3765                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3766         debug_cond(DLEVEL == 1,
3767                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3768                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3769                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3770                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3771         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3772                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3773         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3774                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3775                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3776         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3777                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3778                    IO_IO_OUT2_DELAY_MAX);
3779         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3780                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3781
3782         hc_initialize_rom_data();
3783
3784         /* update info for sims */
3785         reg_file_set_stage(CAL_STAGE_NIL);
3786         reg_file_set_group(0);
3787
3788         /*
3789          * Load global needed for those actions that require
3790          * some dynamic calibration support.
3791          */
3792         dyn_calib_steps = STATIC_CALIB_STEPS;
3793         /*
3794          * Load global to allow dynamic selection of delay loop settings
3795          * based on calibration mode.
3796          */
3797         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3798                 skip_delay_mask = 0xff;
3799         else
3800                 skip_delay_mask = 0x0;
3801
3802         pass = run_mem_calibrate();
3803
3804         printf("%s: Calibration complete\n", __FILE__);
3805         return pass;
3806 }