3a95a53360f7c489038d665726576eb68eacb229
[oweals/u-boot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15
16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
17         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
18
19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
20         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
21
22 static struct socfpga_sdr_reg_file *sdr_reg_file =
23         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
24
25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
26         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
27
28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
29         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
30
31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
32         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
33
34 static struct socfpga_data_mgr *data_mgr =
35         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
36
37 static struct socfpga_sdr_ctrl *sdr_ctrl =
38         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
39
40 #define DELTA_D         1
41
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59         STATIC_SKIP_DELAY_LOOPS)
60
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72
73 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
74
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76         ((non_skip_value) & skip_delay_mask)
77
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83         uint32_t write_group, uint32_t use_dm,
84         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85
86 static void set_failing_group_stage(uint32_t group, uint32_t stage,
87         uint32_t substage)
88 {
89         /*
90          * Only set the global stage if there was not been any other
91          * failing group
92          */
93         if (gbl->error_stage == CAL_STAGE_NIL)  {
94                 gbl->error_substage = substage;
95                 gbl->error_stage = stage;
96                 gbl->error_group = group;
97         }
98 }
99
100 static void reg_file_set_group(u16 set_group)
101 {
102         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
103 }
104
105 static void reg_file_set_stage(u8 set_stage)
106 {
107         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
108 }
109
110 static void reg_file_set_sub_stage(u8 set_sub_stage)
111 {
112         set_sub_stage &= 0xff;
113         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
114 }
115
116 static void initialize(void)
117 {
118         debug("%s:%d\n", __func__, __LINE__);
119         /* USER calibration has control over path to memory */
120         /*
121          * In Hard PHY this is a 2-bit control:
122          * 0: AFI Mux Select
123          * 1: DDIO Mux Select
124          */
125         writel(0x3, &phy_mgr_cfg->mux_sel);
126
127         /* USER memory clock is not stable we begin initialization  */
128         writel(0, &phy_mgr_cfg->reset_mem_stbl);
129
130         /* USER calibration status all set to zero */
131         writel(0, &phy_mgr_cfg->cal_status);
132
133         writel(0, &phy_mgr_cfg->cal_debug_info);
134
135         if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
136                 param->read_correct_mask_vg  = ((uint32_t)1 <<
137                         (RW_MGR_MEM_DQ_PER_READ_DQS /
138                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
139                 param->write_correct_mask_vg = ((uint32_t)1 <<
140                         (RW_MGR_MEM_DQ_PER_READ_DQS /
141                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
142                 param->read_correct_mask     = ((uint32_t)1 <<
143                         RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
144                 param->write_correct_mask    = ((uint32_t)1 <<
145                         RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
146                 param->dm_correct_mask       = ((uint32_t)1 <<
147                         (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
148                         - 1;
149         }
150 }
151
152 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
153 {
154         uint32_t odt_mask_0 = 0;
155         uint32_t odt_mask_1 = 0;
156         uint32_t cs_and_odt_mask;
157
158         if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
159                 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
160                         /*
161                          * 1 Rank
162                          * Read: ODT = 0
163                          * Write: ODT = 1
164                          */
165                         odt_mask_0 = 0x0;
166                         odt_mask_1 = 0x1;
167                 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
168                         /* 2 Ranks */
169                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
170                                 /* - Dual-Slot , Single-Rank
171                                  * (1 chip-select per DIMM)
172                                  * OR
173                                  * - RDIMM, 4 total CS (2 CS per DIMM)
174                                  * means 2 DIMM
175                                  * Since MEM_NUMBER_OF_RANKS is 2 they are
176                                  * both single rank
177                                  * with 2 CS each (special for RDIMM)
178                                  * Read: Turn on ODT on the opposite rank
179                                  * Write: Turn on ODT on all ranks
180                                  */
181                                 odt_mask_0 = 0x3 & ~(1 << rank);
182                                 odt_mask_1 = 0x3;
183                         } else {
184                                 /*
185                                  * USER - Single-Slot , Dual-rank DIMMs
186                                  * (2 chip-selects per DIMM)
187                                  * USER Read: Turn on ODT off on all ranks
188                                  * USER Write: Turn on ODT on active rank
189                                  */
190                                 odt_mask_0 = 0x0;
191                                 odt_mask_1 = 0x3 & (1 << rank);
192                         }
193                 } else {
194                         /* 4 Ranks
195                          * Read:
196                          * ----------+-----------------------+
197                          *           |                       |
198                          *           |         ODT           |
199                          * Read From +-----------------------+
200                          *   Rank    |  3  |  2  |  1  |  0  |
201                          * ----------+-----+-----+-----+-----+
202                          *     0     |  0  |  1  |  0  |  0  |
203                          *     1     |  1  |  0  |  0  |  0  |
204                          *     2     |  0  |  0  |  0  |  1  |
205                          *     3     |  0  |  0  |  1  |  0  |
206                          * ----------+-----+-----+-----+-----+
207                          *
208                          * Write:
209                          * ----------+-----------------------+
210                          *           |                       |
211                          *           |         ODT           |
212                          * Write To  +-----------------------+
213                          *   Rank    |  3  |  2  |  1  |  0  |
214                          * ----------+-----+-----+-----+-----+
215                          *     0     |  0  |  1  |  0  |  1  |
216                          *     1     |  1  |  0  |  1  |  0  |
217                          *     2     |  0  |  1  |  0  |  1  |
218                          *     3     |  1  |  0  |  1  |  0  |
219                          * ----------+-----+-----+-----+-----+
220                          */
221                         switch (rank) {
222                         case 0:
223                                 odt_mask_0 = 0x4;
224                                 odt_mask_1 = 0x5;
225                                 break;
226                         case 1:
227                                 odt_mask_0 = 0x8;
228                                 odt_mask_1 = 0xA;
229                                 break;
230                         case 2:
231                                 odt_mask_0 = 0x1;
232                                 odt_mask_1 = 0x5;
233                                 break;
234                         case 3:
235                                 odt_mask_0 = 0x2;
236                                 odt_mask_1 = 0xA;
237                                 break;
238                         }
239                 }
240         } else {
241                 odt_mask_0 = 0x0;
242                 odt_mask_1 = 0x0;
243         }
244
245         cs_and_odt_mask =
246                 (0xFF & ~(1 << rank)) |
247                 ((0xFF & odt_mask_0) << 8) |
248                 ((0xFF & odt_mask_1) << 16);
249         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
250                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
251 }
252
253 /**
254  * scc_mgr_set() - Set SCC Manager register
255  * @off:        Base offset in SCC Manager space
256  * @grp:        Read/Write group
257  * @val:        Value to be set
258  *
259  * This function sets the SCC Manager (Scan Chain Control Manager) register.
260  */
261 static void scc_mgr_set(u32 off, u32 grp, u32 val)
262 {
263         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
264 }
265
266 /**
267  * scc_mgr_initialize() - Initialize SCC Manager registers
268  *
269  * Initialize SCC Manager registers.
270  */
271 static void scc_mgr_initialize(void)
272 {
273         /*
274          * Clear register file for HPS. 16 (2^4) is the size of the
275          * full register file in the scc mgr:
276          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
277          *                             MEM_IF_READ_DQS_WIDTH - 1);
278          */
279         int i;
280
281         for (i = 0; i < 16; i++) {
282                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
283                            __func__, __LINE__, i);
284                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
285         }
286 }
287
288 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
289 {
290         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
291 }
292
293 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
294 {
295         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
296 }
297
298 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
299 {
300         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
301 }
302
303 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
304 {
305         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
306 }
307
308 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
309 {
310         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
311                     delay);
312 }
313
314 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
315 {
316         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
317 }
318
319 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
322 }
323
324 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
325 {
326         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
327                     delay);
328 }
329
330 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
331 {
332         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
333                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
334                     delay);
335 }
336
337 /* load up dqs config settings */
338 static void scc_mgr_load_dqs(uint32_t dqs)
339 {
340         writel(dqs, &sdr_scc_mgr->dqs_ena);
341 }
342
343 /* load up dqs io config settings */
344 static void scc_mgr_load_dqs_io(void)
345 {
346         writel(0, &sdr_scc_mgr->dqs_io_ena);
347 }
348
349 /* load up dq config settings */
350 static void scc_mgr_load_dq(uint32_t dq_in_group)
351 {
352         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
353 }
354
355 /* load up dm config settings */
356 static void scc_mgr_load_dm(uint32_t dm)
357 {
358         writel(dm, &sdr_scc_mgr->dm_ena);
359 }
360
361 /**
362  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
363  * @off:        Base offset in SCC Manager space
364  * @grp:        Read/Write group
365  * @val:        Value to be set
366  * @update:     If non-zero, trigger SCC Manager update for all ranks
367  *
368  * This function sets the SCC Manager (Scan Chain Control Manager) register
369  * and optionally triggers the SCC update for all ranks.
370  */
371 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
372                                   const int update)
373 {
374         u32 r;
375
376         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
377              r += NUM_RANKS_PER_SHADOW_REG) {
378                 scc_mgr_set(off, grp, val);
379
380                 if (update || (r == 0)) {
381                         writel(grp, &sdr_scc_mgr->dqs_ena);
382                         writel(0, &sdr_scc_mgr->update);
383                 }
384         }
385 }
386
387 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
388 {
389         /*
390          * USER although the h/w doesn't support different phases per
391          * shadow register, for simplicity our scc manager modeling
392          * keeps different phase settings per shadow reg, and it's
393          * important for us to keep them in sync to match h/w.
394          * for efficiency, the scan chain update should occur only
395          * once to sr0.
396          */
397         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
398                               read_group, phase, 0);
399 }
400
401 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
402                                                      uint32_t phase)
403 {
404         /*
405          * USER although the h/w doesn't support different phases per
406          * shadow register, for simplicity our scc manager modeling
407          * keeps different phase settings per shadow reg, and it's
408          * important for us to keep them in sync to match h/w.
409          * for efficiency, the scan chain update should occur only
410          * once to sr0.
411          */
412         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
413                               write_group, phase, 0);
414 }
415
416 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
417                                                uint32_t delay)
418 {
419         /*
420          * In shadow register mode, the T11 settings are stored in
421          * registers in the core, which are updated by the DQS_ENA
422          * signals. Not issuing the SCC_MGR_UPD command allows us to
423          * save lots of rank switching overhead, by calling
424          * select_shadow_regs_for_update with update_scan_chains
425          * set to 0.
426          */
427         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
428                               read_group, delay, 1);
429         writel(0, &sdr_scc_mgr->update);
430 }
431
432 /**
433  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
434  * @write_group:        Write group
435  * @delay:              Delay value
436  *
437  * This function sets the OCT output delay in SCC manager.
438  */
439 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
440 {
441         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
442                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
443         const int base = write_group * ratio;
444         int i;
445         /*
446          * Load the setting in the SCC manager
447          * Although OCT affects only write data, the OCT delay is controlled
448          * by the DQS logic block which is instantiated once per read group.
449          * For protocols where a write group consists of multiple read groups,
450          * the setting must be set multiple times.
451          */
452         for (i = 0; i < ratio; i++)
453                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
454 }
455
456 /**
457  * scc_mgr_set_hhp_extras() - Set HHP extras.
458  *
459  * Load the fixed setting in the SCC manager HHP extras.
460  */
461 static void scc_mgr_set_hhp_extras(void)
462 {
463         /*
464          * Load the fixed setting in the SCC manager
465          * bits: 0:0 = 1'b1     - DQS bypass
466          * bits: 1:1 = 1'b1     - DQ bypass
467          * bits: 4:2 = 3'b001   - rfifo_mode
468          * bits: 6:5 = 2'b01    - rfifo clock_select
469          * bits: 7:7 = 1'b0     - separate gating from ungating setting
470          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
471          */
472         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
473                           (1 << 2) | (1 << 1) | (1 << 0);
474         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
475                          SCC_MGR_HHP_GLOBALS_OFFSET |
476                          SCC_MGR_HHP_EXTRAS_OFFSET;
477
478         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
479                    __func__, __LINE__);
480         writel(value, addr);
481         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
482                    __func__, __LINE__);
483 }
484
485 /**
486  * scc_mgr_zero_all() - Zero all DQS config
487  *
488  * Zero all DQS config.
489  */
490 static void scc_mgr_zero_all(void)
491 {
492         int i, r;
493
494         /*
495          * USER Zero all DQS config settings, across all groups and all
496          * shadow registers
497          */
498         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
499              r += NUM_RANKS_PER_SHADOW_REG) {
500                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
501                         /*
502                          * The phases actually don't exist on a per-rank basis,
503                          * but there's no harm updating them several times, so
504                          * let's keep the code simple.
505                          */
506                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
507                         scc_mgr_set_dqs_en_phase(i, 0);
508                         scc_mgr_set_dqs_en_delay(i, 0);
509                 }
510
511                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
512                         scc_mgr_set_dqdqs_output_phase(i, 0);
513                         /* Arria V/Cyclone V don't have out2. */
514                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
515                 }
516         }
517
518         /* Multicast to all DQS group enables. */
519         writel(0xff, &sdr_scc_mgr->dqs_ena);
520         writel(0, &sdr_scc_mgr->update);
521 }
522
523 /**
524  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
525  * @write_group:        Write group
526  *
527  * Set bypass mode and trigger SCC update.
528  */
529 static void scc_set_bypass_mode(const u32 write_group)
530 {
531         /* Multicast to all DQ enables. */
532         writel(0xff, &sdr_scc_mgr->dq_ena);
533         writel(0xff, &sdr_scc_mgr->dm_ena);
534
535         /* Update current DQS IO enable. */
536         writel(0, &sdr_scc_mgr->dqs_io_ena);
537
538         /* Update the DQS logic. */
539         writel(write_group, &sdr_scc_mgr->dqs_ena);
540
541         /* Hit update. */
542         writel(0, &sdr_scc_mgr->update);
543 }
544
545 /**
546  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
547  * @write_group:        Write group
548  *
549  * Load DQS settings for Write Group, do not trigger SCC update.
550  */
551 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
552 {
553         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
554                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
555         const int base = write_group * ratio;
556         int i;
557         /*
558          * Load the setting in the SCC manager
559          * Although OCT affects only write data, the OCT delay is controlled
560          * by the DQS logic block which is instantiated once per read group.
561          * For protocols where a write group consists of multiple read groups,
562          * the setting must be set multiple times.
563          */
564         for (i = 0; i < ratio; i++)
565                 writel(base + i, &sdr_scc_mgr->dqs_ena);
566 }
567
568 /**
569  * scc_mgr_zero_group() - Zero all configs for a group
570  *
571  * Zero DQ, DM, DQS and OCT configs for a group.
572  */
573 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
574 {
575         int i, r;
576
577         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
578              r += NUM_RANKS_PER_SHADOW_REG) {
579                 /* Zero all DQ config settings. */
580                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
581                         scc_mgr_set_dq_out1_delay(i, 0);
582                         if (!out_only)
583                                 scc_mgr_set_dq_in_delay(i, 0);
584                 }
585
586                 /* Multicast to all DQ enables. */
587                 writel(0xff, &sdr_scc_mgr->dq_ena);
588
589                 /* Zero all DM config settings. */
590                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
591                         scc_mgr_set_dm_out1_delay(i, 0);
592
593                 /* Multicast to all DM enables. */
594                 writel(0xff, &sdr_scc_mgr->dm_ena);
595
596                 /* Zero all DQS IO settings. */
597                 if (!out_only)
598                         scc_mgr_set_dqs_io_in_delay(0);
599
600                 /* Arria V/Cyclone V don't have out2. */
601                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
602                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
603                 scc_mgr_load_dqs_for_write_group(write_group);
604
605                 /* Multicast to all DQS IO enables (only 1 in total). */
606                 writel(0, &sdr_scc_mgr->dqs_io_ena);
607
608                 /* Hit update to zero everything. */
609                 writel(0, &sdr_scc_mgr->update);
610         }
611 }
612
613 /*
614  * apply and load a particular input delay for the DQ pins in a group
615  * group_bgn is the index of the first dq pin (in the write group)
616  */
617 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
618 {
619         uint32_t i, p;
620
621         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
622                 scc_mgr_set_dq_in_delay(p, delay);
623                 scc_mgr_load_dq(p);
624         }
625 }
626
627 /**
628  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
629  * @delay:              Delay value
630  *
631  * Apply and load a particular output delay for the DQ pins in a group.
632  */
633 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
634 {
635         int i;
636
637         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
638                 scc_mgr_set_dq_out1_delay(i, delay);
639                 scc_mgr_load_dq(i);
640         }
641 }
642
643 /* apply and load a particular output delay for the DM pins in a group */
644 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
645 {
646         uint32_t i;
647
648         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
649                 scc_mgr_set_dm_out1_delay(i, delay1);
650                 scc_mgr_load_dm(i);
651         }
652 }
653
654
655 /* apply and load delay on both DQS and OCT out1 */
656 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
657                                                     uint32_t delay)
658 {
659         scc_mgr_set_dqs_out1_delay(delay);
660         scc_mgr_load_dqs_io();
661
662         scc_mgr_set_oct_out1_delay(write_group, delay);
663         scc_mgr_load_dqs_for_write_group(write_group);
664 }
665
666 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */
667 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
668                                                   uint32_t group_bgn,
669                                                   uint32_t delay)
670 {
671         uint32_t i, p, new_delay;
672
673         /* dq shift */
674         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
675                 new_delay = READ_SCC_DQ_OUT2_DELAY;
676                 new_delay += delay;
677
678                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
679                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
680                                    %u > %lu => %lu", __func__, __LINE__,
681                                    write_group, group_bgn, delay, i, p, new_delay,
682                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
683                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
684                         new_delay = IO_IO_OUT2_DELAY_MAX;
685                 }
686
687                 scc_mgr_load_dq(i);
688         }
689
690         /* dm shift */
691         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
692                 new_delay = READ_SCC_DM_IO_OUT2_DELAY;
693                 new_delay += delay;
694
695                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
696                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
697                                    %u > %lu => %lu\n",  __func__, __LINE__,
698                                    write_group, group_bgn, delay, i, new_delay,
699                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
700                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
701                         new_delay = IO_IO_OUT2_DELAY_MAX;
702                 }
703
704                 scc_mgr_load_dm(i);
705         }
706
707         /* dqs shift */
708         new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
709         new_delay += delay;
710
711         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
713                            " adding %u to OUT1\n", __func__, __LINE__,
714                            write_group, group_bgn, delay, new_delay,
715                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
716                            new_delay - IO_IO_OUT2_DELAY_MAX);
717                 scc_mgr_set_dqs_out1_delay(new_delay -
718                                            IO_IO_OUT2_DELAY_MAX);
719                 new_delay = IO_IO_OUT2_DELAY_MAX;
720         }
721
722         scc_mgr_load_dqs_io();
723
724         /* oct shift */
725         new_delay = READ_SCC_OCT_OUT2_DELAY;
726         new_delay += delay;
727
728         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
729                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
730                            " adding %u to OUT1\n", __func__, __LINE__,
731                            write_group, group_bgn, delay, new_delay,
732                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
733                            new_delay - IO_IO_OUT2_DELAY_MAX);
734                 scc_mgr_set_oct_out1_delay(write_group, new_delay -
735                                            IO_IO_OUT2_DELAY_MAX);
736                 new_delay = IO_IO_OUT2_DELAY_MAX;
737         }
738
739         scc_mgr_load_dqs_for_write_group(write_group);
740 }
741
742 /*
743  * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
744  * and to all ranks
745  */
746 static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
747         uint32_t write_group, uint32_t group_bgn, uint32_t delay)
748 {
749         uint32_t r;
750
751         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
752                 r += NUM_RANKS_PER_SHADOW_REG) {
753                 scc_mgr_apply_group_all_out_delay_add(write_group,
754                                                       group_bgn, delay);
755                 writel(0, &sdr_scc_mgr->update);
756         }
757 }
758
759 /* optimization used to recover some slots in ddr3 inst_rom */
760 /* could be applied to other protocols if we wanted to */
761 static void set_jump_as_return(void)
762 {
763         /*
764          * to save space, we replace return with jump to special shared
765          * RETURN instruction so we set the counter to large value so that
766          * we always jump
767          */
768         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
769         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
770 }
771
772 /*
773  * should always use constants as argument to ensure all computations are
774  * performed at compile time
775  */
776 static void delay_for_n_mem_clocks(const uint32_t clocks)
777 {
778         uint32_t afi_clocks;
779         uint8_t inner = 0;
780         uint8_t outer = 0;
781         uint16_t c_loop = 0;
782
783         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
784
785
786         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
787         /* scale (rounding up) to get afi clocks */
788
789         /*
790          * Note, we don't bother accounting for being off a little bit
791          * because of a few extra instructions in outer loops
792          * Note, the loops have a test at the end, and do the test before
793          * the decrement, and so always perform the loop
794          * 1 time more than the counter value
795          */
796         if (afi_clocks == 0) {
797                 ;
798         } else if (afi_clocks <= 0x100) {
799                 inner = afi_clocks-1;
800                 outer = 0;
801                 c_loop = 0;
802         } else if (afi_clocks <= 0x10000) {
803                 inner = 0xff;
804                 outer = (afi_clocks-1) >> 8;
805                 c_loop = 0;
806         } else {
807                 inner = 0xff;
808                 outer = 0xff;
809                 c_loop = (afi_clocks-1) >> 16;
810         }
811
812         /*
813          * rom instructions are structured as follows:
814          *
815          *    IDLE_LOOP2: jnz cntr0, TARGET_A
816          *    IDLE_LOOP1: jnz cntr1, TARGET_B
817          *                return
818          *
819          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
820          * TARGET_B is set to IDLE_LOOP2 as well
821          *
822          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
823          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
824          *
825          * a little confusing, but it helps save precious space in the inst_rom
826          * and sequencer rom and keeps the delays more accurate and reduces
827          * overhead
828          */
829         if (afi_clocks <= 0x100) {
830                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
831                         &sdr_rw_load_mgr_regs->load_cntr1);
832
833                 writel(RW_MGR_IDLE_LOOP1,
834                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
835
836                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
837                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
838         } else {
839                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
840                         &sdr_rw_load_mgr_regs->load_cntr0);
841
842                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
843                         &sdr_rw_load_mgr_regs->load_cntr1);
844
845                 writel(RW_MGR_IDLE_LOOP2,
846                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
847
848                 writel(RW_MGR_IDLE_LOOP2,
849                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
850
851                 /* hack to get around compiler not being smart enough */
852                 if (afi_clocks <= 0x10000) {
853                         /* only need to run once */
854                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
855                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
856                 } else {
857                         do {
858                                 writel(RW_MGR_IDLE_LOOP2,
859                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
860                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
861                         } while (c_loop-- != 0);
862                 }
863         }
864         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
865 }
866
867 static void rw_mgr_mem_initialize(void)
868 {
869         uint32_t r;
870         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
871                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
872
873         debug("%s:%d\n", __func__, __LINE__);
874
875         /* The reset / cke part of initialization is broadcasted to all ranks */
876         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
877                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
878
879         /*
880          * Here's how you load register for a loop
881          * Counters are located @ 0x800
882          * Jump address are located @ 0xC00
883          * For both, registers 0 to 3 are selected using bits 3 and 2, like
884          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
885          * I know this ain't pretty, but Avalon bus throws away the 2 least
886          * significant bits
887          */
888
889         /* start with memory RESET activated */
890
891         /* tINIT = 200us */
892
893         /*
894          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
895          * If a and b are the number of iteration in 2 nested loops
896          * it takes the following number of cycles to complete the operation:
897          * number_of_cycles = ((2 + n) * a + 2) * b
898          * where n is the number of instruction in the inner loop
899          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
900          * b = 6A
901          */
902
903         /* Load counters */
904         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
905                &sdr_rw_load_mgr_regs->load_cntr0);
906         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
907                &sdr_rw_load_mgr_regs->load_cntr1);
908         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
909                &sdr_rw_load_mgr_regs->load_cntr2);
910
911         /* Load jump address */
912         writel(RW_MGR_INIT_RESET_0_CKE_0,
913                 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
914         writel(RW_MGR_INIT_RESET_0_CKE_0,
915                 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
916         writel(RW_MGR_INIT_RESET_0_CKE_0,
917                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
918
919         /* Execute count instruction */
920         writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr);
921
922         /* indicate that memory is stable */
923         writel(1, &phy_mgr_cfg->reset_mem_stbl);
924
925         /*
926          * transition the RESET to high
927          * Wait for 500us
928          */
929
930         /*
931          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
932          * If a and b are the number of iteration in 2 nested loops
933          * it takes the following number of cycles to complete the operation
934          * number_of_cycles = ((2 + n) * a + 2) * b
935          * where n is the number of instruction in the inner loop
936          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
937          * b = FF
938          */
939
940         /* Load counters */
941         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
942                &sdr_rw_load_mgr_regs->load_cntr0);
943         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
944                &sdr_rw_load_mgr_regs->load_cntr1);
945         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
946                &sdr_rw_load_mgr_regs->load_cntr2);
947
948         /* Load jump address */
949         writel(RW_MGR_INIT_RESET_1_CKE_0,
950                 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
951         writel(RW_MGR_INIT_RESET_1_CKE_0,
952                 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
953         writel(RW_MGR_INIT_RESET_1_CKE_0,
954                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
955
956         writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr);
957
958         /* bring up clock enable */
959
960         /* tXRP < 250 ck cycles */
961         delay_for_n_mem_clocks(250);
962
963         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
964                 if (param->skip_ranks[r]) {
965                         /* request to skip the rank */
966                         continue;
967                 }
968
969                 /* set rank */
970                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
971
972                 /*
973                  * USER Use Mirror-ed commands for odd ranks if address
974                  * mirrorring is on
975                  */
976                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
977                         set_jump_as_return();
978                         writel(RW_MGR_MRS2_MIRR, grpaddr);
979                         delay_for_n_mem_clocks(4);
980                         set_jump_as_return();
981                         writel(RW_MGR_MRS3_MIRR, grpaddr);
982                         delay_for_n_mem_clocks(4);
983                         set_jump_as_return();
984                         writel(RW_MGR_MRS1_MIRR, grpaddr);
985                         delay_for_n_mem_clocks(4);
986                         set_jump_as_return();
987                         writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr);
988                 } else {
989                         set_jump_as_return();
990                         writel(RW_MGR_MRS2, grpaddr);
991                         delay_for_n_mem_clocks(4);
992                         set_jump_as_return();
993                         writel(RW_MGR_MRS3, grpaddr);
994                         delay_for_n_mem_clocks(4);
995                         set_jump_as_return();
996                         writel(RW_MGR_MRS1, grpaddr);
997                         set_jump_as_return();
998                         writel(RW_MGR_MRS0_DLL_RESET, grpaddr);
999                 }
1000                 set_jump_as_return();
1001                 writel(RW_MGR_ZQCL, grpaddr);
1002
1003                 /* tZQinit = tDLLK = 512 ck cycles */
1004                 delay_for_n_mem_clocks(512);
1005         }
1006 }
1007
1008 /*
1009  * At the end of calibration we have to program the user settings in, and
1010  * USER  hand off the memory to the user.
1011  */
1012 static void rw_mgr_mem_handoff(void)
1013 {
1014         uint32_t r;
1015         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1016                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1017
1018         debug("%s:%d\n", __func__, __LINE__);
1019         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1020                 if (param->skip_ranks[r])
1021                         /* request to skip the rank */
1022                         continue;
1023                 /* set rank */
1024                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1025
1026                 /* precharge all banks ... */
1027                 writel(RW_MGR_PRECHARGE_ALL, grpaddr);
1028
1029                 /* load up MR settings specified by user */
1030
1031                 /*
1032                  * Use Mirror-ed commands for odd ranks if address
1033                  * mirrorring is on
1034                  */
1035                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1036                         set_jump_as_return();
1037                         writel(RW_MGR_MRS2_MIRR, grpaddr);
1038                         delay_for_n_mem_clocks(4);
1039                         set_jump_as_return();
1040                         writel(RW_MGR_MRS3_MIRR, grpaddr);
1041                         delay_for_n_mem_clocks(4);
1042                         set_jump_as_return();
1043                         writel(RW_MGR_MRS1_MIRR, grpaddr);
1044                         delay_for_n_mem_clocks(4);
1045                         set_jump_as_return();
1046                         writel(RW_MGR_MRS0_USER_MIRR, grpaddr);
1047                 } else {
1048                         set_jump_as_return();
1049                         writel(RW_MGR_MRS2, grpaddr);
1050                         delay_for_n_mem_clocks(4);
1051                         set_jump_as_return();
1052                         writel(RW_MGR_MRS3, grpaddr);
1053                         delay_for_n_mem_clocks(4);
1054                         set_jump_as_return();
1055                         writel(RW_MGR_MRS1, grpaddr);
1056                         delay_for_n_mem_clocks(4);
1057                         set_jump_as_return();
1058                         writel(RW_MGR_MRS0_USER, grpaddr);
1059                 }
1060                 /*
1061                  * USER  need to wait tMOD (12CK or 15ns) time before issuing
1062                  * other commands, but we will have plenty of NIOS cycles before
1063                  * actual handoff so its okay.
1064                  */
1065         }
1066 }
1067
1068 /*
1069  * performs a guaranteed read on the patterns we are going to use during a
1070  * read test to ensure memory works
1071  */
1072 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1073         uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1074         uint32_t all_ranks)
1075 {
1076         uint32_t r, vg;
1077         uint32_t correct_mask_vg;
1078         uint32_t tmp_bit_chk;
1079         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1080                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1081         uint32_t addr;
1082         uint32_t base_rw_mgr;
1083
1084         *bit_chk = param->read_correct_mask;
1085         correct_mask_vg = param->read_correct_mask_vg;
1086
1087         for (r = rank_bgn; r < rank_end; r++) {
1088                 if (param->skip_ranks[r])
1089                         /* request to skip the rank */
1090                         continue;
1091
1092                 /* set rank */
1093                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1094
1095                 /* Load up a constant bursts of read commands */
1096                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1097                 writel(RW_MGR_GUARANTEED_READ,
1098                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1099
1100                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1101                 writel(RW_MGR_GUARANTEED_READ_CONT,
1102                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1103
1104                 tmp_bit_chk = 0;
1105                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1106                         /* reset the fifos to get pointers to known state */
1107
1108                         writel(0, &phy_mgr_cmd->fifo_reset);
1109                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1110                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1111
1112                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1113                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1114
1115                         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1116                         writel(RW_MGR_GUARANTEED_READ, addr +
1117                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1118                                 vg) << 2));
1119
1120                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1121                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1122
1123                         if (vg == 0)
1124                                 break;
1125                 }
1126                 *bit_chk &= tmp_bit_chk;
1127         }
1128
1129         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1130         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1131
1132         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1133         debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1134                    %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1135                    (long unsigned int)(*bit_chk == param->read_correct_mask));
1136         return *bit_chk == param->read_correct_mask;
1137 }
1138
1139 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1140         (uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1141 {
1142         return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1143                 num_tries, bit_chk, 1);
1144 }
1145
1146 /* load up the patterns we are going to use during a read test */
1147 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1148         uint32_t all_ranks)
1149 {
1150         uint32_t r;
1151         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1152                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1153
1154         debug("%s:%d\n", __func__, __LINE__);
1155         for (r = rank_bgn; r < rank_end; r++) {
1156                 if (param->skip_ranks[r])
1157                         /* request to skip the rank */
1158                         continue;
1159
1160                 /* set rank */
1161                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1162
1163                 /* Load up a constant bursts */
1164                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1165
1166                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1167                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1168
1169                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1170
1171                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1172                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1173
1174                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1175
1176                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1177                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1178
1179                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1180
1181                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1182                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1183
1184                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1185                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1186         }
1187
1188         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1189 }
1190
1191 /*
1192  * try a read and see if it returns correct data back. has dummy reads
1193  * inserted into the mix used to align dqs enable. has more thorough checks
1194  * than the regular read test.
1195  */
1196 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1197         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1198         uint32_t all_groups, uint32_t all_ranks)
1199 {
1200         uint32_t r, vg;
1201         uint32_t correct_mask_vg;
1202         uint32_t tmp_bit_chk;
1203         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1204                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1205         uint32_t addr;
1206         uint32_t base_rw_mgr;
1207
1208         *bit_chk = param->read_correct_mask;
1209         correct_mask_vg = param->read_correct_mask_vg;
1210
1211         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1212                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1213
1214         for (r = rank_bgn; r < rank_end; r++) {
1215                 if (param->skip_ranks[r])
1216                         /* request to skip the rank */
1217                         continue;
1218
1219                 /* set rank */
1220                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1221
1222                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1223
1224                 writel(RW_MGR_READ_B2B_WAIT1,
1225                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1226
1227                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1228                 writel(RW_MGR_READ_B2B_WAIT2,
1229                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1230
1231                 if (quick_read_mode)
1232                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1233                         /* need at least two (1+1) reads to capture failures */
1234                 else if (all_groups)
1235                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1236                 else
1237                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1238
1239                 writel(RW_MGR_READ_B2B,
1240                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1241                 if (all_groups)
1242                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1243                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1244                                &sdr_rw_load_mgr_regs->load_cntr3);
1245                 else
1246                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1247
1248                 writel(RW_MGR_READ_B2B,
1249                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1250
1251                 tmp_bit_chk = 0;
1252                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1253                         /* reset the fifos to get pointers to known state */
1254                         writel(0, &phy_mgr_cmd->fifo_reset);
1255                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1256                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1257
1258                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1259                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1260
1261                         if (all_groups)
1262                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1263                         else
1264                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1265
1266                         writel(RW_MGR_READ_B2B, addr +
1267                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1268                                vg) << 2));
1269
1270                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1271                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1272
1273                         if (vg == 0)
1274                                 break;
1275                 }
1276                 *bit_chk &= tmp_bit_chk;
1277         }
1278
1279         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1280         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1281
1282         if (all_correct) {
1283                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1284                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1285                            (%u == %u) => %lu", __func__, __LINE__, group,
1286                            all_groups, *bit_chk, param->read_correct_mask,
1287                            (long unsigned int)(*bit_chk ==
1288                            param->read_correct_mask));
1289                 return *bit_chk == param->read_correct_mask;
1290         } else  {
1291                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1292                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1293                            (%u != %lu) => %lu\n", __func__, __LINE__,
1294                            group, all_groups, *bit_chk, (long unsigned int)0,
1295                            (long unsigned int)(*bit_chk != 0x00));
1296                 return *bit_chk != 0x00;
1297         }
1298 }
1299
1300 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1301         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1302         uint32_t all_groups)
1303 {
1304         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1305                                               bit_chk, all_groups, 1);
1306 }
1307
1308 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1309 {
1310         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1311         (*v)++;
1312 }
1313
1314 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1315 {
1316         uint32_t i;
1317
1318         for (i = 0; i < VFIFO_SIZE-1; i++)
1319                 rw_mgr_incr_vfifo(grp, v);
1320 }
1321
1322 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1323 {
1324         uint32_t  v;
1325         uint32_t fail_cnt = 0;
1326         uint32_t test_status;
1327
1328         for (v = 0; v < VFIFO_SIZE; ) {
1329                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1330                            __func__, __LINE__, v);
1331                 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1332                         (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1333                 if (!test_status) {
1334                         fail_cnt++;
1335
1336                         if (fail_cnt == 2)
1337                                 break;
1338                 }
1339
1340                 /* fiddle with FIFO */
1341                 rw_mgr_incr_vfifo(grp, &v);
1342         }
1343
1344         if (v >= VFIFO_SIZE) {
1345                 /* no failing read found!! Something must have gone wrong */
1346                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1347                            __func__, __LINE__);
1348                 return 0;
1349         } else {
1350                 return v;
1351         }
1352 }
1353
1354 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1355                               uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1356                               uint32_t *v, uint32_t *d, uint32_t *p,
1357                               uint32_t *i, uint32_t *max_working_cnt)
1358 {
1359         uint32_t found_begin = 0;
1360         uint32_t tmp_delay = 0;
1361         uint32_t test_status;
1362
1363         for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1364                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1365                 *work_bgn = tmp_delay;
1366                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1367
1368                 for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1369                         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1370                                 IO_DELAY_PER_OPA_TAP) {
1371                                 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1372
1373                                 test_status =
1374                                 rw_mgr_mem_calibrate_read_test_all_ranks
1375                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1376
1377                                 if (test_status) {
1378                                         *max_working_cnt = 1;
1379                                         found_begin = 1;
1380                                         break;
1381                                 }
1382                         }
1383
1384                         if (found_begin)
1385                                 break;
1386
1387                         if (*p > IO_DQS_EN_PHASE_MAX)
1388                                 /* fiddle with FIFO */
1389                                 rw_mgr_incr_vfifo(*grp, v);
1390                 }
1391
1392                 if (found_begin)
1393                         break;
1394         }
1395
1396         if (*i >= VFIFO_SIZE) {
1397                 /* cannot find working solution */
1398                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1399                            ptap/dtap\n", __func__, __LINE__);
1400                 return 0;
1401         } else {
1402                 return 1;
1403         }
1404 }
1405
1406 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1407                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1408                              uint32_t *p, uint32_t *max_working_cnt)
1409 {
1410         uint32_t found_begin = 0;
1411         uint32_t tmp_delay;
1412
1413         /* Special case code for backing up a phase */
1414         if (*p == 0) {
1415                 *p = IO_DQS_EN_PHASE_MAX;
1416                 rw_mgr_decr_vfifo(*grp, v);
1417         } else {
1418                 (*p)--;
1419         }
1420         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1421         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1422
1423         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1424                 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1425                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1426
1427                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1428                                                              PASS_ONE_BIT,
1429                                                              bit_chk, 0)) {
1430                         found_begin = 1;
1431                         *work_bgn = tmp_delay;
1432                         break;
1433                 }
1434         }
1435
1436         /* We have found a working dtap before the ptap found above */
1437         if (found_begin == 1)
1438                 (*max_working_cnt)++;
1439
1440         /*
1441          * Restore VFIFO to old state before we decremented it
1442          * (if needed).
1443          */
1444         (*p)++;
1445         if (*p > IO_DQS_EN_PHASE_MAX) {
1446                 *p = 0;
1447                 rw_mgr_incr_vfifo(*grp, v);
1448         }
1449
1450         scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1451 }
1452
1453 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1454                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1455                              uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1456                              uint32_t *work_end)
1457 {
1458         uint32_t found_end = 0;
1459
1460         (*p)++;
1461         *work_end += IO_DELAY_PER_OPA_TAP;
1462         if (*p > IO_DQS_EN_PHASE_MAX) {
1463                 /* fiddle with FIFO */
1464                 *p = 0;
1465                 rw_mgr_incr_vfifo(*grp, v);
1466         }
1467
1468         for (; *i < VFIFO_SIZE + 1; (*i)++) {
1469                 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1470                         += IO_DELAY_PER_OPA_TAP) {
1471                         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1472
1473                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1474                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1475                                 found_end = 1;
1476                                 break;
1477                         } else {
1478                                 (*max_working_cnt)++;
1479                         }
1480                 }
1481
1482                 if (found_end)
1483                         break;
1484
1485                 if (*p > IO_DQS_EN_PHASE_MAX) {
1486                         /* fiddle with FIFO */
1487                         rw_mgr_incr_vfifo(*grp, v);
1488                         *p = 0;
1489                 }
1490         }
1491
1492         if (*i >= VFIFO_SIZE + 1) {
1493                 /* cannot see edge of failing read */
1494                 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1495                            failed\n", __func__, __LINE__);
1496                 return 0;
1497         } else {
1498                 return 1;
1499         }
1500 }
1501
1502 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1503                                   uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1504                                   uint32_t *p, uint32_t *work_mid,
1505                                   uint32_t *work_end)
1506 {
1507         int i;
1508         int tmp_delay = 0;
1509
1510         *work_mid = (*work_bgn + *work_end) / 2;
1511
1512         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1513                    *work_bgn, *work_end, *work_mid);
1514         /* Get the middle delay to be less than a VFIFO delay */
1515         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1516                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1517                 ;
1518         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1519         while (*work_mid > tmp_delay)
1520                 *work_mid -= tmp_delay;
1521         debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1522
1523         tmp_delay = 0;
1524         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1525                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1526                 ;
1527         tmp_delay -= IO_DELAY_PER_OPA_TAP;
1528         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1529         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1530                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1531                 ;
1532         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1533
1534         scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1535         scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1536
1537         /*
1538          * push vfifo until we can successfully calibrate. We can do this
1539          * because the largest possible margin in 1 VFIFO cycle.
1540          */
1541         for (i = 0; i < VFIFO_SIZE; i++) {
1542                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1543                            *v);
1544                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1545                                                              PASS_ONE_BIT,
1546                                                              bit_chk, 0)) {
1547                         break;
1548                 }
1549
1550                 /* fiddle with FIFO */
1551                 rw_mgr_incr_vfifo(*grp, v);
1552         }
1553
1554         if (i >= VFIFO_SIZE) {
1555                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1556                            failed\n", __func__, __LINE__);
1557                 return 0;
1558         } else {
1559                 return 1;
1560         }
1561 }
1562
1563 /* find a good dqs enable to use */
1564 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1565 {
1566         uint32_t v, d, p, i;
1567         uint32_t max_working_cnt;
1568         uint32_t bit_chk;
1569         uint32_t dtaps_per_ptap;
1570         uint32_t work_bgn, work_mid, work_end;
1571         uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1572
1573         debug("%s:%d %u\n", __func__, __LINE__, grp);
1574
1575         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1576
1577         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1578         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1579
1580         /* ************************************************************** */
1581         /* * Step 0 : Determine number of delay taps for each phase tap * */
1582         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1583
1584         /* ********************************************************* */
1585         /* * Step 1 : First push vfifo until we get a failing read * */
1586         v = find_vfifo_read(grp, &bit_chk);
1587
1588         max_working_cnt = 0;
1589
1590         /* ******************************************************** */
1591         /* * step 2: find first working phase, increment in ptaps * */
1592         work_bgn = 0;
1593         if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1594                                 &p, &i, &max_working_cnt) == 0)
1595                 return 0;
1596
1597         work_end = work_bgn;
1598
1599         /*
1600          * If d is 0 then the working window covers a phase tap and
1601          * we can follow the old procedure otherwise, we've found the beginning,
1602          * and we need to increment the dtaps until we find the end.
1603          */
1604         if (d == 0) {
1605                 /* ********************************************************* */
1606                 /* * step 3a: if we have room, back off by one and
1607                 increment in dtaps * */
1608
1609                 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1610                                  &max_working_cnt);
1611
1612                 /* ********************************************************* */
1613                 /* * step 4a: go forward from working phase to non working
1614                 phase, increment in ptaps * */
1615                 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1616                                          &i, &max_working_cnt, &work_end) == 0)
1617                         return 0;
1618
1619                 /* ********************************************************* */
1620                 /* * step 5a:  back off one from last, increment in dtaps  * */
1621
1622                 /* Special case code for backing up a phase */
1623                 if (p == 0) {
1624                         p = IO_DQS_EN_PHASE_MAX;
1625                         rw_mgr_decr_vfifo(grp, &v);
1626                 } else {
1627                         p = p - 1;
1628                 }
1629
1630                 work_end -= IO_DELAY_PER_OPA_TAP;
1631                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1632
1633                 /* * The actual increment of dtaps is done outside of
1634                 the if/else loop to share code */
1635                 d = 0;
1636
1637                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1638                            vfifo=%u ptap=%u\n", __func__, __LINE__,
1639                            v, p);
1640         } else {
1641                 /* ******************************************************* */
1642                 /* * step 3-5b:  Find the right edge of the window using
1643                 delay taps   * */
1644                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1645                            ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1646                            v, p, d, work_bgn);
1647
1648                 work_end = work_bgn;
1649
1650                 /* * The actual increment of dtaps is done outside of the
1651                 if/else loop to share code */
1652
1653                 /* Only here to counterbalance a subtract later on which is
1654                 not needed if this branch of the algorithm is taken */
1655                 max_working_cnt++;
1656         }
1657
1658         /* The dtap increment to find the failing edge is done here */
1659         for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1660                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1661                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1662                                    end-2: dtap=%u\n", __func__, __LINE__, d);
1663                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1664
1665                         if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1666                                                                       PASS_ONE_BIT,
1667                                                                       &bit_chk, 0)) {
1668                                 break;
1669                         }
1670         }
1671
1672         /* Go back to working dtap */
1673         if (d != 0)
1674                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1675
1676         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1677                    ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1678                    v, p, d-1, work_end);
1679
1680         if (work_end < work_bgn) {
1681                 /* nil range */
1682                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1683                            failed\n", __func__, __LINE__);
1684                 return 0;
1685         }
1686
1687         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1688                    __func__, __LINE__, work_bgn, work_end);
1689
1690         /* *************************************************************** */
1691         /*
1692          * * We need to calculate the number of dtaps that equal a ptap
1693          * * To do that we'll back up a ptap and re-find the edge of the
1694          * * window using dtaps
1695          */
1696
1697         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1698                    for tracking\n", __func__, __LINE__);
1699
1700         /* Special case code for backing up a phase */
1701         if (p == 0) {
1702                 p = IO_DQS_EN_PHASE_MAX;
1703                 rw_mgr_decr_vfifo(grp, &v);
1704                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1705                            cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1706                            v, p);
1707         } else {
1708                 p = p - 1;
1709                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1710                            phase only: v=%u p=%u", __func__, __LINE__,
1711                            v, p);
1712         }
1713
1714         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1715
1716         /*
1717          * Increase dtap until we first see a passing read (in case the
1718          * window is smaller than a ptap),
1719          * and then a failing read to mark the edge of the window again
1720          */
1721
1722         /* Find a passing read */
1723         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1724                    __func__, __LINE__);
1725         found_passing_read = 0;
1726         found_failing_read = 0;
1727         initial_failing_dtap = d;
1728         for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1729                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1730                            read d=%u\n", __func__, __LINE__, d);
1731                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1732
1733                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1734                                                              PASS_ONE_BIT,
1735                                                              &bit_chk, 0)) {
1736                         found_passing_read = 1;
1737                         break;
1738                 }
1739         }
1740
1741         if (found_passing_read) {
1742                 /* Find a failing read */
1743                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1744                            read\n", __func__, __LINE__);
1745                 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1746                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1747                                    testing read d=%u\n", __func__, __LINE__, d);
1748                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1749
1750                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1751                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1752                                 found_failing_read = 1;
1753                                 break;
1754                         }
1755                 }
1756         } else {
1757                 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1758                            calculate dtaps", __func__, __LINE__);
1759                 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1760         }
1761
1762         /*
1763          * The dynamically calculated dtaps_per_ptap is only valid if we
1764          * found a passing/failing read. If we didn't, it means d hit the max
1765          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1766          * statically calculated value.
1767          */
1768         if (found_passing_read && found_failing_read)
1769                 dtaps_per_ptap = d - initial_failing_dtap;
1770
1771         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1772         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1773                    - %u = %u",  __func__, __LINE__, d,
1774                    initial_failing_dtap, dtaps_per_ptap);
1775
1776         /* ******************************************** */
1777         /* * step 6:  Find the centre of the window   * */
1778         if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1779                                    &work_mid, &work_end) == 0)
1780                 return 0;
1781
1782         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1783                    vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1784                    v, p-1, d);
1785         return 1;
1786 }
1787
1788 /*
1789  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1790  * dq_in_delay values
1791  */
1792 static uint32_t
1793 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1794 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1795 {
1796         uint32_t found;
1797         uint32_t i;
1798         uint32_t p;
1799         uint32_t d;
1800         uint32_t r;
1801
1802         const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1803                 (RW_MGR_MEM_DQ_PER_READ_DQS-1);
1804                 /* we start at zero, so have one less dq to devide among */
1805
1806         debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1807               test_bgn);
1808
1809         /* try different dq_in_delays since the dq path is shorter than dqs */
1810
1811         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1812              r += NUM_RANKS_PER_SHADOW_REG) {
1813                 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1814                         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1815                                    vfifo_find_dqs_", __func__, __LINE__);
1816                         debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1817                                write_group, read_group);
1818                         debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1819                         scc_mgr_set_dq_in_delay(p, d);
1820                         scc_mgr_load_dq(p);
1821                 }
1822                 writel(0, &sdr_scc_mgr->update);
1823         }
1824
1825         found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1826
1827         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1828                    en_phase_sweep_dq", __func__, __LINE__);
1829         debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1830                    chain to zero\n", write_group, read_group, found);
1831
1832         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1833              r += NUM_RANKS_PER_SHADOW_REG) {
1834                 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1835                         i++, p++) {
1836                         scc_mgr_set_dq_in_delay(p, 0);
1837                         scc_mgr_load_dq(p);
1838                 }
1839                 writel(0, &sdr_scc_mgr->update);
1840         }
1841
1842         return found;
1843 }
1844
1845 /* per-bit deskew DQ and center */
1846 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1847         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1848         uint32_t use_read_test, uint32_t update_fom)
1849 {
1850         uint32_t i, p, d, min_index;
1851         /*
1852          * Store these as signed since there are comparisons with
1853          * signed numbers.
1854          */
1855         uint32_t bit_chk;
1856         uint32_t sticky_bit_chk;
1857         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1858         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1859         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1860         int32_t mid;
1861         int32_t orig_mid_min, mid_min;
1862         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1863                 final_dqs_en;
1864         int32_t dq_margin, dqs_margin;
1865         uint32_t stop;
1866         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1867         uint32_t addr;
1868
1869         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1870
1871         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1872         start_dqs = readl(addr + (read_group << 2));
1873         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1874                 start_dqs_en = readl(addr + ((read_group << 2)
1875                                      - IO_DQS_EN_DELAY_OFFSET));
1876
1877         /* set the left and right edge of each bit to an illegal value */
1878         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1879         sticky_bit_chk = 0;
1880         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1881                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1882                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1883         }
1884
1885         /* Search for the left edge of the window for each bit */
1886         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1887                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1888
1889                 writel(0, &sdr_scc_mgr->update);
1890
1891                 /*
1892                  * Stop searching when the read test doesn't pass AND when
1893                  * we've seen a passing read on every bit.
1894                  */
1895                 if (use_read_test) {
1896                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1897                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1898                                 &bit_chk, 0, 0);
1899                 } else {
1900                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1901                                                         0, PASS_ONE_BIT,
1902                                                         &bit_chk, 0);
1903                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1904                                 (read_group - (write_group *
1905                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1906                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1907                         stop = (bit_chk == 0);
1908                 }
1909                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1910                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1911                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1912                            && %u", __func__, __LINE__, d,
1913                            sticky_bit_chk,
1914                         param->read_correct_mask, stop);
1915
1916                 if (stop == 1) {
1917                         break;
1918                 } else {
1919                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1920                                 if (bit_chk & 1) {
1921                                         /* Remember a passing test as the
1922                                         left_edge */
1923                                         left_edge[i] = d;
1924                                 } else {
1925                                         /* If a left edge has not been seen yet,
1926                                         then a future passing test will mark
1927                                         this edge as the right edge */
1928                                         if (left_edge[i] ==
1929                                                 IO_IO_IN_DELAY_MAX + 1) {
1930                                                 right_edge[i] = -(d + 1);
1931                                         }
1932                                 }
1933                                 bit_chk = bit_chk >> 1;
1934                         }
1935                 }
1936         }
1937
1938         /* Reset DQ delay chains to 0 */
1939         scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1940         sticky_bit_chk = 0;
1941         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1942                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1943                            %d right_edge[%u]: %d\n", __func__, __LINE__,
1944                            i, left_edge[i], i, right_edge[i]);
1945
1946                 /*
1947                  * Check for cases where we haven't found the left edge,
1948                  * which makes our assignment of the the right edge invalid.
1949                  * Reset it to the illegal value.
1950                  */
1951                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1952                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1953                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1954                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1955                                    right_edge[%u]: %d\n", __func__, __LINE__,
1956                                    i, right_edge[i]);
1957                 }
1958
1959                 /*
1960                  * Reset sticky bit (except for bits where we have seen
1961                  * both the left and right edge).
1962                  */
1963                 sticky_bit_chk = sticky_bit_chk << 1;
1964                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1965                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1966                         sticky_bit_chk = sticky_bit_chk | 1;
1967                 }
1968
1969                 if (i == 0)
1970                         break;
1971         }
1972
1973         /* Search for the right edge of the window for each bit */
1974         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1975                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1976                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1977                         uint32_t delay = d + start_dqs_en;
1978                         if (delay > IO_DQS_EN_DELAY_MAX)
1979                                 delay = IO_DQS_EN_DELAY_MAX;
1980                         scc_mgr_set_dqs_en_delay(read_group, delay);
1981                 }
1982                 scc_mgr_load_dqs(read_group);
1983
1984                 writel(0, &sdr_scc_mgr->update);
1985
1986                 /*
1987                  * Stop searching when the read test doesn't pass AND when
1988                  * we've seen a passing read on every bit.
1989                  */
1990                 if (use_read_test) {
1991                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1992                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1993                                 &bit_chk, 0, 0);
1994                 } else {
1995                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1996                                                         0, PASS_ONE_BIT,
1997                                                         &bit_chk, 0);
1998                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1999                                 (read_group - (write_group *
2000                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
2001                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
2002                         stop = (bit_chk == 0);
2003                 }
2004                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2005                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
2006
2007                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
2008                            %u && %u", __func__, __LINE__, d,
2009                            sticky_bit_chk, param->read_correct_mask, stop);
2010
2011                 if (stop == 1) {
2012                         break;
2013                 } else {
2014                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2015                                 if (bit_chk & 1) {
2016                                         /* Remember a passing test as
2017                                         the right_edge */
2018                                         right_edge[i] = d;
2019                                 } else {
2020                                         if (d != 0) {
2021                                                 /* If a right edge has not been
2022                                                 seen yet, then a future passing
2023                                                 test will mark this edge as the
2024                                                 left edge */
2025                                                 if (right_edge[i] ==
2026                                                 IO_IO_IN_DELAY_MAX + 1) {
2027                                                         left_edge[i] = -(d + 1);
2028                                                 }
2029                                         } else {
2030                                                 /* d = 0 failed, but it passed
2031                                                 when testing the left edge,
2032                                                 so it must be marginal,
2033                                                 set it to -1 */
2034                                                 if (right_edge[i] ==
2035                                                         IO_IO_IN_DELAY_MAX + 1 &&
2036                                                         left_edge[i] !=
2037                                                         IO_IO_IN_DELAY_MAX
2038                                                         + 1) {
2039                                                         right_edge[i] = -1;
2040                                                 }
2041                                                 /* If a right edge has not been
2042                                                 seen yet, then a future passing
2043                                                 test will mark this edge as the
2044                                                 left edge */
2045                                                 else if (right_edge[i] ==
2046                                                         IO_IO_IN_DELAY_MAX +
2047                                                         1) {
2048                                                         left_edge[i] = -(d + 1);
2049                                                 }
2050                                         }
2051                                 }
2052
2053                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2054                                            d=%u]: ", __func__, __LINE__, d);
2055                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2056                                            (int)(bit_chk & 1), i, left_edge[i]);
2057                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2058                                            right_edge[i]);
2059                                 bit_chk = bit_chk >> 1;
2060                         }
2061                 }
2062         }
2063
2064         /* Check that all bits have a window */
2065         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2066                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2067                            %d right_edge[%u]: %d", __func__, __LINE__,
2068                            i, left_edge[i], i, right_edge[i]);
2069                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2070                         == IO_IO_IN_DELAY_MAX + 1)) {
2071                         /*
2072                          * Restore delay chain settings before letting the loop
2073                          * in rw_mgr_mem_calibrate_vfifo to retry different
2074                          * dqs/ck relationships.
2075                          */
2076                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2077                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2078                                 scc_mgr_set_dqs_en_delay(read_group,
2079                                                          start_dqs_en);
2080                         }
2081                         scc_mgr_load_dqs(read_group);
2082                         writel(0, &sdr_scc_mgr->update);
2083
2084                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2085                                    find edge [%u]: %d %d", __func__, __LINE__,
2086                                    i, left_edge[i], right_edge[i]);
2087                         if (use_read_test) {
2088                                 set_failing_group_stage(read_group *
2089                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2090                                         CAL_STAGE_VFIFO,
2091                                         CAL_SUBSTAGE_VFIFO_CENTER);
2092                         } else {
2093                                 set_failing_group_stage(read_group *
2094                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2095                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2096                                         CAL_SUBSTAGE_VFIFO_CENTER);
2097                         }
2098                         return 0;
2099                 }
2100         }
2101
2102         /* Find middle of window for each DQ bit */
2103         mid_min = left_edge[0] - right_edge[0];
2104         min_index = 0;
2105         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2106                 mid = left_edge[i] - right_edge[i];
2107                 if (mid < mid_min) {
2108                         mid_min = mid;
2109                         min_index = i;
2110                 }
2111         }
2112
2113         /*
2114          * -mid_min/2 represents the amount that we need to move DQS.
2115          * If mid_min is odd and positive we'll need to add one to
2116          * make sure the rounding in further calculations is correct
2117          * (always bias to the right), so just add 1 for all positive values.
2118          */
2119         if (mid_min > 0)
2120                 mid_min++;
2121
2122         mid_min = mid_min / 2;
2123
2124         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2125                    __func__, __LINE__, mid_min, min_index);
2126
2127         /* Determine the amount we can change DQS (which is -mid_min) */
2128         orig_mid_min = mid_min;
2129         new_dqs = start_dqs - mid_min;
2130         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2131                 new_dqs = IO_DQS_IN_DELAY_MAX;
2132         else if (new_dqs < 0)
2133                 new_dqs = 0;
2134
2135         mid_min = start_dqs - new_dqs;
2136         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2137                    mid_min, new_dqs);
2138
2139         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2140                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2141                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2142                 else if (start_dqs_en - mid_min < 0)
2143                         mid_min += start_dqs_en - mid_min;
2144         }
2145         new_dqs = start_dqs - mid_min;
2146
2147         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2148                    new_dqs=%d mid_min=%d\n", start_dqs,
2149                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2150                    new_dqs, mid_min);
2151
2152         /* Initialize data for export structures */
2153         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2154         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2155
2156         /* add delay to bring centre of all DQ windows to the same "level" */
2157         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2158                 /* Use values before divide by 2 to reduce round off error */
2159                 shift_dq = (left_edge[i] - right_edge[i] -
2160                         (left_edge[min_index] - right_edge[min_index]))/2  +
2161                         (orig_mid_min - mid_min);
2162
2163                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2164                            shift_dq[%u]=%d\n", i, shift_dq);
2165
2166                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2167                 temp_dq_in_delay1 = readl(addr + (p << 2));
2168                 temp_dq_in_delay2 = readl(addr + (i << 2));
2169
2170                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2171                         (int32_t)IO_IO_IN_DELAY_MAX) {
2172                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2173                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2174                         shift_dq = -(int32_t)temp_dq_in_delay1;
2175                 }
2176                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2177                            shift_dq[%u]=%d\n", i, shift_dq);
2178                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2179                 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2180                 scc_mgr_load_dq(p);
2181
2182                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2183                            left_edge[i] - shift_dq + (-mid_min),
2184                            right_edge[i] + shift_dq - (-mid_min));
2185                 /* To determine values for export structures */
2186                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2187                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2188
2189                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2190                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2191         }
2192
2193         final_dqs = new_dqs;
2194         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2195                 final_dqs_en = start_dqs_en - mid_min;
2196
2197         /* Move DQS-en */
2198         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2199                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2200                 scc_mgr_load_dqs(read_group);
2201         }
2202
2203         /* Move DQS */
2204         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2205         scc_mgr_load_dqs(read_group);
2206         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2207                    dqs_margin=%d", __func__, __LINE__,
2208                    dq_margin, dqs_margin);
2209
2210         /*
2211          * Do not remove this line as it makes sure all of our decisions
2212          * have been applied. Apply the update bit.
2213          */
2214         writel(0, &sdr_scc_mgr->update);
2215
2216         return (dq_margin >= 0) && (dqs_margin >= 0);
2217 }
2218
2219 /*
2220  * calibrate the read valid prediction FIFO.
2221  *
2222  *  - read valid prediction will consist of finding a good DQS enable phase,
2223  * DQS enable delay, DQS input phase, and DQS input delay.
2224  *  - we also do a per-bit deskew on the DQ lines.
2225  */
2226 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2227                                            uint32_t test_bgn)
2228 {
2229         uint32_t p, d, rank_bgn, sr;
2230         uint32_t dtaps_per_ptap;
2231         uint32_t tmp_delay;
2232         uint32_t bit_chk;
2233         uint32_t grp_calibrated;
2234         uint32_t write_group, write_test_bgn;
2235         uint32_t failed_substage;
2236
2237         debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2238
2239         /* update info for sims */
2240         reg_file_set_stage(CAL_STAGE_VFIFO);
2241
2242         write_group = read_group;
2243         write_test_bgn = test_bgn;
2244
2245         /* USER Determine number of delay taps for each phase tap */
2246         dtaps_per_ptap = 0;
2247         tmp_delay = 0;
2248         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2249                 dtaps_per_ptap++;
2250                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2251         }
2252         dtaps_per_ptap--;
2253         tmp_delay = 0;
2254
2255         /* update info for sims */
2256         reg_file_set_group(read_group);
2257
2258         grp_calibrated = 0;
2259
2260         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2261         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2262
2263         for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2264                 /*
2265                  * In RLDRAMX we may be messing the delay of pins in
2266                  * the same write group but outside of the current read
2267                  * the group, but that's ok because we haven't
2268                  * calibrated output side yet.
2269                  */
2270                 if (d > 0) {
2271                         scc_mgr_apply_group_all_out_delay_add_all_ranks
2272                         (write_group, write_test_bgn, d);
2273                 }
2274
2275                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2276                         p++) {
2277                         /* set a particular dqdqs phase */
2278                         scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2279
2280                         debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2281                                    p=%u d=%u\n", __func__, __LINE__,
2282                                    read_group, p, d);
2283
2284                         /*
2285                          * Load up the patterns used by read calibration
2286                          * using current DQDQS phase.
2287                          */
2288                         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2289                         if (!(gbl->phy_debug_mode_flags &
2290                                 PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2291                                 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2292                                     (read_group, 1, &bit_chk)) {
2293                                         debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2294                                                    __func__, __LINE__);
2295                                         debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2296                                                    read_group, p, d);
2297                                         break;
2298                                 }
2299                         }
2300
2301 /* case:56390 */
2302                         grp_calibrated = 1;
2303                 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2304                     (write_group, read_group, test_bgn)) {
2305                                 /*
2306                                  * USER Read per-bit deskew can be done on a
2307                                  * per shadow register basis.
2308                                  */
2309                                 for (rank_bgn = 0, sr = 0;
2310                                         rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2311                                         rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2312                                         ++sr) {
2313                                         /*
2314                                          * Determine if this set of ranks
2315                                          * should be skipped entirely.
2316                                          */
2317                                         if (!param->skip_shadow_regs[sr]) {
2318                                                 /*
2319                                                  * If doing read after write
2320                                                  * calibration, do not update
2321                                                  * FOM, now - do it then.
2322                                                  */
2323                                         if (!rw_mgr_mem_calibrate_vfifo_center
2324                                                 (rank_bgn, write_group,
2325                                                 read_group, test_bgn, 1, 0)) {
2326                                                         grp_calibrated = 0;
2327                                                         failed_substage =
2328                                                 CAL_SUBSTAGE_VFIFO_CENTER;
2329                                                 }
2330                                         }
2331                                 }
2332                         } else {
2333                                 grp_calibrated = 0;
2334                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2335                         }
2336                 }
2337         }
2338
2339         if (grp_calibrated == 0) {
2340                 set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2341                                         failed_substage);
2342                 return 0;
2343         }
2344
2345         /*
2346          * Reset the delay chains back to zero if they have moved > 1
2347          * (check for > 1 because loop will increase d even when pass in
2348          * first case).
2349          */
2350         if (d > 2)
2351                 scc_mgr_zero_group(write_group, 1);
2352
2353         return 1;
2354 }
2355
2356 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2357 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2358                                                uint32_t test_bgn)
2359 {
2360         uint32_t rank_bgn, sr;
2361         uint32_t grp_calibrated;
2362         uint32_t write_group;
2363
2364         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2365
2366         /* update info for sims */
2367
2368         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2369         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2370
2371         write_group = read_group;
2372
2373         /* update info for sims */
2374         reg_file_set_group(read_group);
2375
2376         grp_calibrated = 1;
2377         /* Read per-bit deskew can be done on a per shadow register basis */
2378         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2379                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2380                 /* Determine if this set of ranks should be skipped entirely */
2381                 if (!param->skip_shadow_regs[sr]) {
2382                 /* This is the last calibration round, update FOM here */
2383                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2384                                                                 write_group,
2385                                                                 read_group,
2386                                                                 test_bgn, 0,
2387                                                                 1)) {
2388                                 grp_calibrated = 0;
2389                         }
2390                 }
2391         }
2392
2393
2394         if (grp_calibrated == 0) {
2395                 set_failing_group_stage(write_group,
2396                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2397                                         CAL_SUBSTAGE_VFIFO_CENTER);
2398                 return 0;
2399         }
2400
2401         return 1;
2402 }
2403
2404 /* Calibrate LFIFO to find smallest read latency */
2405 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2406 {
2407         uint32_t found_one;
2408         uint32_t bit_chk;
2409
2410         debug("%s:%d\n", __func__, __LINE__);
2411
2412         /* update info for sims */
2413         reg_file_set_stage(CAL_STAGE_LFIFO);
2414         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2415
2416         /* Load up the patterns used by read calibration for all ranks */
2417         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2418         found_one = 0;
2419
2420         do {
2421                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2422                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2423                            __func__, __LINE__, gbl->curr_read_lat);
2424
2425                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2426                                                               NUM_READ_TESTS,
2427                                                               PASS_ALL_BITS,
2428                                                               &bit_chk, 1)) {
2429                         break;
2430                 }
2431
2432                 found_one = 1;
2433                 /* reduce read latency and see if things are working */
2434                 /* correctly */
2435                 gbl->curr_read_lat--;
2436         } while (gbl->curr_read_lat > 0);
2437
2438         /* reset the fifos to get pointers to known state */
2439
2440         writel(0, &phy_mgr_cmd->fifo_reset);
2441
2442         if (found_one) {
2443                 /* add a fudge factor to the read latency that was determined */
2444                 gbl->curr_read_lat += 2;
2445                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2446                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2447                            read_lat=%u\n", __func__, __LINE__,
2448                            gbl->curr_read_lat);
2449                 return 1;
2450         } else {
2451                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2452                                         CAL_SUBSTAGE_READ_LATENCY);
2453
2454                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2455                            read_lat=%u\n", __func__, __LINE__,
2456                            gbl->curr_read_lat);
2457                 return 0;
2458         }
2459 }
2460
2461 /*
2462  * issue write test command.
2463  * two variants are provided. one that just tests a write pattern and
2464  * another that tests datamask functionality.
2465  */
2466 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2467                                                   uint32_t test_dm)
2468 {
2469         uint32_t mcc_instruction;
2470         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2471                 ENABLE_SUPER_QUICK_CALIBRATION);
2472         uint32_t rw_wl_nop_cycles;
2473         uint32_t addr;
2474
2475         /*
2476          * Set counter and jump addresses for the right
2477          * number of NOP cycles.
2478          * The number of supported NOP cycles can range from -1 to infinity
2479          * Three different cases are handled:
2480          *
2481          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2482          *    mechanism will be used to insert the right number of NOPs
2483          *
2484          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2485          *    issuing the write command will jump straight to the
2486          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2487          *    data (for RLD), skipping
2488          *    the NOP micro-instruction all together
2489          *
2490          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2491          *    turned on in the same micro-instruction that issues the write
2492          *    command. Then we need
2493          *    to directly jump to the micro-instruction that sends out the data
2494          *
2495          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2496          *       (2 and 3). One jump-counter (0) is used to perform multiple
2497          *       write-read operations.
2498          *       one counter left to issue this command in "multiple-group" mode
2499          */
2500
2501         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2502
2503         if (rw_wl_nop_cycles == -1) {
2504                 /*
2505                  * CNTR 2 - We want to execute the special write operation that
2506                  * turns on DQS right away and then skip directly to the
2507                  * instruction that sends out the data. We set the counter to a
2508                  * large number so that the jump is always taken.
2509                  */
2510                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2511
2512                 /* CNTR 3 - Not used */
2513                 if (test_dm) {
2514                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2515                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2516                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2517                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2518                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2519                 } else {
2520                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2521                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2522                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2523                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2524                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2525                 }
2526         } else if (rw_wl_nop_cycles == 0) {
2527                 /*
2528                  * CNTR 2 - We want to skip the NOP operation and go straight
2529                  * to the DQS enable instruction. We set the counter to a large
2530                  * number so that the jump is always taken.
2531                  */
2532                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2533
2534                 /* CNTR 3 - Not used */
2535                 if (test_dm) {
2536                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2537                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2538                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2539                 } else {
2540                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2541                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2542                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2543                 }
2544         } else {
2545                 /*
2546                  * CNTR 2 - In this case we want to execute the next instruction
2547                  * and NOT take the jump. So we set the counter to 0. The jump
2548                  * address doesn't count.
2549                  */
2550                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2551                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2552
2553                 /*
2554                  * CNTR 3 - Set the nop counter to the number of cycles we
2555                  * need to loop for, minus 1.
2556                  */
2557                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2558                 if (test_dm) {
2559                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2560                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2561                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2562                 } else {
2563                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2564                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2565                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2566                 }
2567         }
2568
2569         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2570                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2571
2572         if (quick_write_mode)
2573                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2574         else
2575                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2576
2577         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2578
2579         /*
2580          * CNTR 1 - This is used to ensure enough time elapses
2581          * for read data to come back.
2582          */
2583         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2584
2585         if (test_dm) {
2586                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2587                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2588         } else {
2589                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2590                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2591         }
2592
2593         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2594         writel(mcc_instruction, addr + (group << 2));
2595 }
2596
2597 /* Test writes, can check for a single bit pass or multiple bit pass */
2598 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2599         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2600         uint32_t *bit_chk, uint32_t all_ranks)
2601 {
2602         uint32_t r;
2603         uint32_t correct_mask_vg;
2604         uint32_t tmp_bit_chk;
2605         uint32_t vg;
2606         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2607                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2608         uint32_t addr_rw_mgr;
2609         uint32_t base_rw_mgr;
2610
2611         *bit_chk = param->write_correct_mask;
2612         correct_mask_vg = param->write_correct_mask_vg;
2613
2614         for (r = rank_bgn; r < rank_end; r++) {
2615                 if (param->skip_ranks[r]) {
2616                         /* request to skip the rank */
2617                         continue;
2618                 }
2619
2620                 /* set rank */
2621                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2622
2623                 tmp_bit_chk = 0;
2624                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2625                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2626                         /* reset the fifos to get pointers to known state */
2627                         writel(0, &phy_mgr_cmd->fifo_reset);
2628
2629                         tmp_bit_chk = tmp_bit_chk <<
2630                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2631                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2632                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2633                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2634                                 use_dm);
2635
2636                         base_rw_mgr = readl(addr_rw_mgr);
2637                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2638                         if (vg == 0)
2639                                 break;
2640                 }
2641                 *bit_chk &= tmp_bit_chk;
2642         }
2643
2644         if (all_correct) {
2645                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2646                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2647                            %u => %lu", write_group, use_dm,
2648                            *bit_chk, param->write_correct_mask,
2649                            (long unsigned int)(*bit_chk ==
2650                            param->write_correct_mask));
2651                 return *bit_chk == param->write_correct_mask;
2652         } else {
2653                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2654                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2655                        write_group, use_dm, *bit_chk);
2656                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2657                         (long unsigned int)(*bit_chk != 0));
2658                 return *bit_chk != 0x00;
2659         }
2660 }
2661
2662 /*
2663  * center all windows. do per-bit-deskew to possibly increase size of
2664  * certain windows.
2665  */
2666 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2667         uint32_t write_group, uint32_t test_bgn)
2668 {
2669         uint32_t i, p, min_index;
2670         int32_t d;
2671         /*
2672          * Store these as signed since there are comparisons with
2673          * signed numbers.
2674          */
2675         uint32_t bit_chk;
2676         uint32_t sticky_bit_chk;
2677         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2678         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2679         int32_t mid;
2680         int32_t mid_min, orig_mid_min;
2681         int32_t new_dqs, start_dqs, shift_dq;
2682         int32_t dq_margin, dqs_margin, dm_margin;
2683         uint32_t stop;
2684         uint32_t temp_dq_out1_delay;
2685         uint32_t addr;
2686
2687         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2688
2689         dm_margin = 0;
2690
2691         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2692         start_dqs = readl(addr +
2693                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2694
2695         /* per-bit deskew */
2696
2697         /*
2698          * set the left and right edge of each bit to an illegal value
2699          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2700          */
2701         sticky_bit_chk = 0;
2702         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2703                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2704                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2705         }
2706
2707         /* Search for the left edge of the window for each bit */
2708         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2709                 scc_mgr_apply_group_dq_out1_delay(write_group, d);
2710
2711                 writel(0, &sdr_scc_mgr->update);
2712
2713                 /*
2714                  * Stop searching when the read test doesn't pass AND when
2715                  * we've seen a passing read on every bit.
2716                  */
2717                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2718                         0, PASS_ONE_BIT, &bit_chk, 0);
2719                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2720                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2721                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2722                            == %u && %u [bit_chk= %u ]\n",
2723                         d, sticky_bit_chk, param->write_correct_mask,
2724                         stop, bit_chk);
2725
2726                 if (stop == 1) {
2727                         break;
2728                 } else {
2729                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2730                                 if (bit_chk & 1) {
2731                                         /*
2732                                          * Remember a passing test as the
2733                                          * left_edge.
2734                                          */
2735                                         left_edge[i] = d;
2736                                 } else {
2737                                         /*
2738                                          * If a left edge has not been seen
2739                                          * yet, then a future passing test will
2740                                          * mark this edge as the right edge.
2741                                          */
2742                                         if (left_edge[i] ==
2743                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2744                                                 right_edge[i] = -(d + 1);
2745                                         }
2746                                 }
2747                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2748                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2749                                            (int)(bit_chk & 1), i, left_edge[i]);
2750                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2751                                        right_edge[i]);
2752                                 bit_chk = bit_chk >> 1;
2753                         }
2754                 }
2755         }
2756
2757         /* Reset DQ delay chains to 0 */
2758         scc_mgr_apply_group_dq_out1_delay(0);
2759         sticky_bit_chk = 0;
2760         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2761                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2762                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2763                            i, left_edge[i], i, right_edge[i]);
2764
2765                 /*
2766                  * Check for cases where we haven't found the left edge,
2767                  * which makes our assignment of the the right edge invalid.
2768                  * Reset it to the illegal value.
2769                  */
2770                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2771                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2772                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2773                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2774                                    right_edge[%u]: %d\n", __func__, __LINE__,
2775                                    i, right_edge[i]);
2776                 }
2777
2778                 /*
2779                  * Reset sticky bit (except for bits where we have
2780                  * seen the left edge).
2781                  */
2782                 sticky_bit_chk = sticky_bit_chk << 1;
2783                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2784                         sticky_bit_chk = sticky_bit_chk | 1;
2785
2786                 if (i == 0)
2787                         break;
2788         }
2789
2790         /* Search for the right edge of the window for each bit */
2791         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2792                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2793                                                         d + start_dqs);
2794
2795                 writel(0, &sdr_scc_mgr->update);
2796
2797                 /*
2798                  * Stop searching when the read test doesn't pass AND when
2799                  * we've seen a passing read on every bit.
2800                  */
2801                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2802                         0, PASS_ONE_BIT, &bit_chk, 0);
2803
2804                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2805                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2806
2807                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2808                            %u && %u\n", d, sticky_bit_chk,
2809                            param->write_correct_mask, stop);
2810
2811                 if (stop == 1) {
2812                         if (d == 0) {
2813                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2814                                         i++) {
2815                                         /* d = 0 failed, but it passed when
2816                                         testing the left edge, so it must be
2817                                         marginal, set it to -1 */
2818                                         if (right_edge[i] ==
2819                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2820                                                 left_edge[i] !=
2821                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2822                                                 right_edge[i] = -1;
2823                                         }
2824                                 }
2825                         }
2826                         break;
2827                 } else {
2828                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2829                                 if (bit_chk & 1) {
2830                                         /*
2831                                          * Remember a passing test as
2832                                          * the right_edge.
2833                                          */
2834                                         right_edge[i] = d;
2835                                 } else {
2836                                         if (d != 0) {
2837                                                 /*
2838                                                  * If a right edge has not
2839                                                  * been seen yet, then a future
2840                                                  * passing test will mark this
2841                                                  * edge as the left edge.
2842                                                  */
2843                                                 if (right_edge[i] ==
2844                                                     IO_IO_OUT1_DELAY_MAX + 1)
2845                                                         left_edge[i] = -(d + 1);
2846                                         } else {
2847                                                 /*
2848                                                  * d = 0 failed, but it passed
2849                                                  * when testing the left edge,
2850                                                  * so it must be marginal, set
2851                                                  * it to -1.
2852                                                  */
2853                                                 if (right_edge[i] ==
2854                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
2855                                                     left_edge[i] !=
2856                                                     IO_IO_OUT1_DELAY_MAX + 1)
2857                                                         right_edge[i] = -1;
2858                                                 /*
2859                                                  * If a right edge has not been
2860                                                  * seen yet, then a future
2861                                                  * passing test will mark this
2862                                                  * edge as the left edge.
2863                                                  */
2864                                                 else if (right_edge[i] ==
2865                                                         IO_IO_OUT1_DELAY_MAX +
2866                                                         1)
2867                                                         left_edge[i] = -(d + 1);
2868                                         }
2869                                 }
2870                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2871                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2872                                            (int)(bit_chk & 1), i, left_edge[i]);
2873                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2874                                            right_edge[i]);
2875                                 bit_chk = bit_chk >> 1;
2876                         }
2877                 }
2878         }
2879
2880         /* Check that all bits have a window */
2881         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2882                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2883                            %d right_edge[%u]: %d", __func__, __LINE__,
2884                            i, left_edge[i], i, right_edge[i]);
2885                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2886                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2887                         set_failing_group_stage(test_bgn + i,
2888                                                 CAL_STAGE_WRITES,
2889                                                 CAL_SUBSTAGE_WRITES_CENTER);
2890                         return 0;
2891                 }
2892         }
2893
2894         /* Find middle of window for each DQ bit */
2895         mid_min = left_edge[0] - right_edge[0];
2896         min_index = 0;
2897         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2898                 mid = left_edge[i] - right_edge[i];
2899                 if (mid < mid_min) {
2900                         mid_min = mid;
2901                         min_index = i;
2902                 }
2903         }
2904
2905         /*
2906          * -mid_min/2 represents the amount that we need to move DQS.
2907          * If mid_min is odd and positive we'll need to add one to
2908          * make sure the rounding in further calculations is correct
2909          * (always bias to the right), so just add 1 for all positive values.
2910          */
2911         if (mid_min > 0)
2912                 mid_min++;
2913         mid_min = mid_min / 2;
2914         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2915                    __LINE__, mid_min);
2916
2917         /* Determine the amount we can change DQS (which is -mid_min) */
2918         orig_mid_min = mid_min;
2919         new_dqs = start_dqs;
2920         mid_min = 0;
2921         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2922                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2923         /* Initialize data for export structures */
2924         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2925         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2926
2927         /* add delay to bring centre of all DQ windows to the same "level" */
2928         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2929                 /* Use values before divide by 2 to reduce round off error */
2930                 shift_dq = (left_edge[i] - right_edge[i] -
2931                         (left_edge[min_index] - right_edge[min_index]))/2  +
2932                 (orig_mid_min - mid_min);
2933
2934                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2935                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2936
2937                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2938                 temp_dq_out1_delay = readl(addr + (i << 2));
2939                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2940                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2941                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2942                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2943                         shift_dq = -(int32_t)temp_dq_out1_delay;
2944                 }
2945                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2946                            i, shift_dq);
2947                 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2948                 scc_mgr_load_dq(i);
2949
2950                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2951                            left_edge[i] - shift_dq + (-mid_min),
2952                            right_edge[i] + shift_dq - (-mid_min));
2953                 /* To determine values for export structures */
2954                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2955                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2956
2957                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2958                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2959         }
2960
2961         /* Move DQS */
2962         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2963         writel(0, &sdr_scc_mgr->update);
2964
2965         /* Centre DM */
2966         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2967
2968         /*
2969          * set the left and right edge of each bit to an illegal value,
2970          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2971          */
2972         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2973         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2974         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2975         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2976         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2977         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2978         int32_t win_best = 0;
2979
2980         /* Search for the/part of the window with DM shift */
2981         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2982                 scc_mgr_apply_group_dm_out1_delay(d);
2983                 writel(0, &sdr_scc_mgr->update);
2984
2985                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2986                                                     PASS_ALL_BITS, &bit_chk,
2987                                                     0)) {
2988                         /* USE Set current end of the window */
2989                         end_curr = -d;
2990                         /*
2991                          * If a starting edge of our window has not been seen
2992                          * this is our current start of the DM window.
2993                          */
2994                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2995                                 bgn_curr = -d;
2996
2997                         /*
2998                          * If current window is bigger than best seen.
2999                          * Set best seen to be current window.
3000                          */
3001                         if ((end_curr-bgn_curr+1) > win_best) {
3002                                 win_best = end_curr-bgn_curr+1;
3003                                 bgn_best = bgn_curr;
3004                                 end_best = end_curr;
3005                         }
3006                 } else {
3007                         /* We just saw a failing test. Reset temp edge */
3008                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3009                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3010                         }
3011                 }
3012
3013
3014         /* Reset DM delay chains to 0 */
3015         scc_mgr_apply_group_dm_out1_delay(0);
3016
3017         /*
3018          * Check to see if the current window nudges up aganist 0 delay.
3019          * If so we need to continue the search by shifting DQS otherwise DQS
3020          * search begins as a new search. */
3021         if (end_curr != 0) {
3022                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3023                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3024         }
3025
3026         /* Search for the/part of the window with DQS shifts */
3027         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3028                 /*
3029                  * Note: This only shifts DQS, so are we limiting ourselve to
3030                  * width of DQ unnecessarily.
3031                  */
3032                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3033                                                         d + new_dqs);
3034
3035                 writel(0, &sdr_scc_mgr->update);
3036                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3037                                                     PASS_ALL_BITS, &bit_chk,
3038                                                     0)) {
3039                         /* USE Set current end of the window */
3040                         end_curr = d;
3041                         /*
3042                          * If a beginning edge of our window has not been seen
3043                          * this is our current begin of the DM window.
3044                          */
3045                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3046                                 bgn_curr = d;
3047
3048                         /*
3049                          * If current window is bigger than best seen. Set best
3050                          * seen to be current window.
3051                          */
3052                         if ((end_curr-bgn_curr+1) > win_best) {
3053                                 win_best = end_curr-bgn_curr+1;
3054                                 bgn_best = bgn_curr;
3055                                 end_best = end_curr;
3056                         }
3057                 } else {
3058                         /* We just saw a failing test. Reset temp edge */
3059                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3060                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3061
3062                         /* Early exit optimization: if ther remaining delay
3063                         chain space is less than already seen largest window
3064                         we can exit */
3065                         if ((win_best-1) >
3066                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3067                                         break;
3068                                 }
3069                         }
3070                 }
3071
3072         /* assign left and right edge for cal and reporting; */
3073         left_edge[0] = -1*bgn_best;
3074         right_edge[0] = end_best;
3075
3076         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3077                    __LINE__, left_edge[0], right_edge[0]);
3078
3079         /* Move DQS (back to orig) */
3080         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3081
3082         /* Move DM */
3083
3084         /* Find middle of window for the DM bit */
3085         mid = (left_edge[0] - right_edge[0]) / 2;
3086
3087         /* only move right, since we are not moving DQS/DQ */
3088         if (mid < 0)
3089                 mid = 0;
3090
3091         /* dm_marign should fail if we never find a window */
3092         if (win_best == 0)
3093                 dm_margin = -1;
3094         else
3095                 dm_margin = left_edge[0] - mid;
3096
3097         scc_mgr_apply_group_dm_out1_delay(mid);
3098         writel(0, &sdr_scc_mgr->update);
3099
3100         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3101                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3102                    right_edge[0], mid, dm_margin);
3103         /* Export values */
3104         gbl->fom_out += dq_margin + dqs_margin;
3105
3106         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3107                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3108                    dq_margin, dqs_margin, dm_margin);
3109
3110         /*
3111          * Do not remove this line as it makes sure all of our
3112          * decisions have been applied.
3113          */
3114         writel(0, &sdr_scc_mgr->update);
3115         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3116 }
3117
3118 /* calibrate the write operations */
3119 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3120         uint32_t test_bgn)
3121 {
3122         /* update info for sims */
3123         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3124
3125         reg_file_set_stage(CAL_STAGE_WRITES);
3126         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3127
3128         reg_file_set_group(g);
3129
3130         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3131                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3132                                         CAL_SUBSTAGE_WRITES_CENTER);
3133                 return 0;
3134         }
3135
3136         return 1;
3137 }
3138
3139 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3140 static void mem_precharge_and_activate(void)
3141 {
3142         uint32_t r;
3143
3144         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3145                 if (param->skip_ranks[r]) {
3146                         /* request to skip the rank */
3147                         continue;
3148                 }
3149
3150                 /* set rank */
3151                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3152
3153                 /* precharge all banks ... */
3154                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3155                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3156
3157                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3158                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3159                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3160
3161                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3162                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3163                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3164
3165                 /* activate rows */
3166                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3167                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3168         }
3169 }
3170
3171 /* Configure various memory related parameters. */
3172 static void mem_config(void)
3173 {
3174         uint32_t rlat, wlat;
3175         uint32_t rw_wl_nop_cycles;
3176         uint32_t max_latency;
3177
3178         debug("%s:%d\n", __func__, __LINE__);
3179         /* read in write and read latency */
3180         wlat = readl(&data_mgr->t_wl_add);
3181         wlat += readl(&data_mgr->mem_t_add);
3182
3183         /* WL for hard phy does not include additive latency */
3184
3185         /*
3186          * add addtional write latency to offset the address/command extra
3187          * clock cycle. We change the AC mux setting causing AC to be delayed
3188          * by one mem clock cycle. Only do this for DDR3
3189          */
3190         wlat = wlat + 1;
3191
3192         rlat = readl(&data_mgr->t_rl_add);
3193
3194         rw_wl_nop_cycles = wlat - 2;
3195         gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3196
3197         /*
3198          * For AV/CV, lfifo is hardened and always runs at full rate so
3199          * max latency in AFI clocks, used here, is correspondingly smaller.
3200          */
3201         max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3202         /* configure for a burst length of 8 */
3203
3204         /* write latency */
3205         /* Adjust Write Latency for Hard PHY */
3206         wlat = wlat + 1;
3207
3208         /* set a pretty high read latency initially */
3209         gbl->curr_read_lat = rlat + 16;
3210
3211         if (gbl->curr_read_lat > max_latency)
3212                 gbl->curr_read_lat = max_latency;
3213
3214         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3215
3216         /* advertise write latency */
3217         gbl->curr_write_lat = wlat;
3218         writel(wlat - 2, &phy_mgr_cfg->afi_wlat);
3219
3220         /* initialize bit slips */
3221         mem_precharge_and_activate();
3222 }
3223
3224 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3225 static void mem_skip_calibrate(void)
3226 {
3227         uint32_t vfifo_offset;
3228         uint32_t i, j, r;
3229
3230         debug("%s:%d\n", __func__, __LINE__);
3231         /* Need to update every shadow register set used by the interface */
3232         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3233                 r += NUM_RANKS_PER_SHADOW_REG) {
3234                 /*
3235                  * Set output phase alignment settings appropriate for
3236                  * skip calibration.
3237                  */
3238                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3239                         scc_mgr_set_dqs_en_phase(i, 0);
3240 #if IO_DLL_CHAIN_LENGTH == 6
3241                         scc_mgr_set_dqdqs_output_phase(i, 6);
3242 #else
3243                         scc_mgr_set_dqdqs_output_phase(i, 7);
3244 #endif
3245                         /*
3246                          * Case:33398
3247                          *
3248                          * Write data arrives to the I/O two cycles before write
3249                          * latency is reached (720 deg).
3250                          *   -> due to bit-slip in a/c bus
3251                          *   -> to allow board skew where dqs is longer than ck
3252                          *      -> how often can this happen!?
3253                          *      -> can claim back some ptaps for high freq
3254                          *       support if we can relax this, but i digress...
3255                          *
3256                          * The write_clk leads mem_ck by 90 deg
3257                          * The minimum ptap of the OPA is 180 deg
3258                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3259                          * The write_clk is always delayed by 2 ptaps
3260                          *
3261                          * Hence, to make DQS aligned to CK, we need to delay
3262                          * DQS by:
3263                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3264                          *
3265                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3266                          * gives us the number of ptaps, which simplies to:
3267                          *
3268                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3269                          */
3270                         scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3271                                 IO_DLL_CHAIN_LENGTH - 2));
3272                 }
3273                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3274                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3275
3276                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3277                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3278                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3279                 }
3280                 writel(0xff, &sdr_scc_mgr->dq_ena);
3281                 writel(0xff, &sdr_scc_mgr->dm_ena);
3282                 writel(0, &sdr_scc_mgr->update);
3283         }
3284
3285         /* Compensate for simulation model behaviour */
3286         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3287                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3288                 scc_mgr_load_dqs(i);
3289         }
3290         writel(0, &sdr_scc_mgr->update);
3291
3292         /*
3293          * ArriaV has hard FIFOs that can only be initialized by incrementing
3294          * in sequencer.
3295          */
3296         vfifo_offset = CALIB_VFIFO_OFFSET;
3297         for (j = 0; j < vfifo_offset; j++) {
3298                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3299         }
3300         writel(0, &phy_mgr_cmd->fifo_reset);
3301
3302         /*
3303          * For ACV with hard lfifo, we get the skip-cal setting from
3304          * generation-time constant.
3305          */
3306         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3307         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3308 }
3309
3310 /* Memory calibration entry point */
3311 static uint32_t mem_calibrate(void)
3312 {
3313         uint32_t i;
3314         uint32_t rank_bgn, sr;
3315         uint32_t write_group, write_test_bgn;
3316         uint32_t read_group, read_test_bgn;
3317         uint32_t run_groups, current_run;
3318         uint32_t failing_groups = 0;
3319         uint32_t group_failed = 0;
3320         uint32_t sr_failed = 0;
3321
3322         debug("%s:%d\n", __func__, __LINE__);
3323         /* Initialize the data settings */
3324
3325         gbl->error_substage = CAL_SUBSTAGE_NIL;
3326         gbl->error_stage = CAL_STAGE_NIL;
3327         gbl->error_group = 0xff;
3328         gbl->fom_in = 0;
3329         gbl->fom_out = 0;
3330
3331         mem_config();
3332
3333         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3334                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3335                           SCC_MGR_GROUP_COUNTER_OFFSET);
3336                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3337                 if (i == 0)
3338                         scc_mgr_set_hhp_extras();
3339
3340                 scc_set_bypass_mode(i);
3341         }
3342
3343         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3344                 /*
3345                  * Set VFIFO and LFIFO to instant-on settings in skip
3346                  * calibration mode.
3347                  */
3348                 mem_skip_calibrate();
3349         } else {
3350                 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3351                         /*
3352                          * Zero all delay chain/phase settings for all
3353                          * groups and all shadow register sets.
3354                          */
3355                         scc_mgr_zero_all();
3356
3357                         run_groups = ~param->skip_groups;
3358
3359                         for (write_group = 0, write_test_bgn = 0; write_group
3360                                 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3361                                 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3362                                 /* Initialized the group failure */
3363                                 group_failed = 0;
3364
3365                                 current_run = run_groups & ((1 <<
3366                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3367                                 run_groups = run_groups >>
3368                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3369
3370                                 if (current_run == 0)
3371                                         continue;
3372
3373                                 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3374                                                     SCC_MGR_GROUP_COUNTER_OFFSET);
3375                                 scc_mgr_zero_group(write_group, 0);
3376
3377                                 for (read_group = write_group *
3378                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3379                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3380                                         read_test_bgn = 0;
3381                                         read_group < (write_group + 1) *
3382                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3383                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3384                                         group_failed == 0;
3385                                         read_group++, read_test_bgn +=
3386                                         RW_MGR_MEM_DQ_PER_READ_DQS) {
3387                                         /* Calibrate the VFIFO */
3388                                         if (!((STATIC_CALIB_STEPS) &
3389                                                 CALIB_SKIP_VFIFO)) {
3390                                                 if (!rw_mgr_mem_calibrate_vfifo
3391                                                         (read_group,
3392                                                         read_test_bgn)) {
3393                                                         group_failed = 1;
3394
3395                                                         if (!(gbl->
3396                                                         phy_debug_mode_flags &
3397                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3398                                                                 return 0;
3399                                                         }
3400                                                 }
3401                                         }
3402                                 }
3403
3404                                 /* Calibrate the output side */
3405                                 if (group_failed == 0)  {
3406                                         for (rank_bgn = 0, sr = 0; rank_bgn
3407                                                 < RW_MGR_MEM_NUMBER_OF_RANKS;
3408                                                 rank_bgn +=
3409                                                 NUM_RANKS_PER_SHADOW_REG,
3410                                                 ++sr) {
3411                                                 sr_failed = 0;
3412                                                 if (!((STATIC_CALIB_STEPS) &
3413                                                 CALIB_SKIP_WRITES)) {
3414                                                         if ((STATIC_CALIB_STEPS)
3415                                                 & CALIB_SKIP_DELAY_SWEEPS) {
3416                                                 /* not needed in quick mode! */
3417                                                         } else {
3418                                                 /*
3419                                                  * Determine if this set of
3420                                                  * ranks should be skipped
3421                                                  * entirely.
3422                                                  */
3423                                         if (!param->skip_shadow_regs[sr]) {
3424                                                 if (!rw_mgr_mem_calibrate_writes
3425                                                 (rank_bgn, write_group,
3426                                                 write_test_bgn)) {
3427                                                         sr_failed = 1;
3428                                                         if (!(gbl->
3429                                                         phy_debug_mode_flags &
3430                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3431                                                                 return 0;
3432                                                                         }
3433                                                                         }
3434                                                                 }
3435                                                         }
3436                                                 }
3437                                                 if (sr_failed != 0)
3438                                                         group_failed = 1;
3439                                         }
3440                                 }
3441
3442                                 if (group_failed == 0) {
3443                                         for (read_group = write_group *
3444                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3445                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3446                                         read_test_bgn = 0;
3447                                                 read_group < (write_group + 1)
3448                                                 * RW_MGR_MEM_IF_READ_DQS_WIDTH
3449                                                 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3450                                                 group_failed == 0;
3451                                                 read_group++, read_test_bgn +=
3452                                                 RW_MGR_MEM_DQ_PER_READ_DQS) {
3453                                                 if (!((STATIC_CALIB_STEPS) &
3454                                                         CALIB_SKIP_WRITES)) {
3455                                         if (!rw_mgr_mem_calibrate_vfifo_end
3456                                                 (read_group, read_test_bgn)) {
3457                                                         group_failed = 1;
3458
3459                                                 if (!(gbl->phy_debug_mode_flags
3460                                                 & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3461                                                                 return 0;
3462                                                                 }
3463                                                         }
3464                                                 }
3465                                         }
3466                                 }
3467
3468                                 if (group_failed != 0)
3469                                         failing_groups++;
3470                         }
3471
3472                         /*
3473                          * USER If there are any failing groups then report
3474                          * the failure.
3475                          */
3476                         if (failing_groups != 0)
3477                                 return 0;
3478
3479                         /* Calibrate the LFIFO */
3480                         if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3481                                 /*
3482                                  * If we're skipping groups as part of debug,
3483                                  * don't calibrate LFIFO.
3484                                  */
3485                                 if (param->skip_groups == 0) {
3486                                         if (!rw_mgr_mem_calibrate_lfifo())
3487                                                 return 0;
3488                                 }
3489                         }
3490                 }
3491         }
3492
3493         /*
3494          * Do not remove this line as it makes sure all of our decisions
3495          * have been applied.
3496          */
3497         writel(0, &sdr_scc_mgr->update);
3498         return 1;
3499 }
3500
3501 static uint32_t run_mem_calibrate(void)
3502 {
3503         uint32_t pass;
3504         uint32_t debug_info;
3505
3506         debug("%s:%d\n", __func__, __LINE__);
3507
3508         /* Reset pass/fail status shown on afi_cal_success/fail */
3509         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3510
3511         /* stop tracking manger */
3512         uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg);
3513
3514         writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg);
3515
3516         initialize();
3517         rw_mgr_mem_initialize();
3518
3519         pass = mem_calibrate();
3520
3521         mem_precharge_and_activate();
3522         writel(0, &phy_mgr_cmd->fifo_reset);
3523
3524         /*
3525          * Handoff:
3526          * Don't return control of the PHY back to AFI when in debug mode.
3527          */
3528         if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3529                 rw_mgr_mem_handoff();
3530                 /*
3531                  * In Hard PHY this is a 2-bit control:
3532                  * 0: AFI Mux Select
3533                  * 1: DDIO Mux Select
3534                  */
3535                 writel(0x2, &phy_mgr_cfg->mux_sel);
3536         }
3537
3538         writel(ctrlcfg, &sdr_ctrl->ctrl_cfg);
3539
3540         if (pass) {
3541                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3542
3543                 gbl->fom_in /= 2;
3544                 gbl->fom_out /= 2;
3545
3546                 if (gbl->fom_in > 0xff)
3547                         gbl->fom_in = 0xff;
3548
3549                 if (gbl->fom_out > 0xff)
3550                         gbl->fom_out = 0xff;
3551
3552                 /* Update the FOM in the register file */
3553                 debug_info = gbl->fom_in;
3554                 debug_info |= gbl->fom_out << 8;
3555                 writel(debug_info, &sdr_reg_file->fom);
3556
3557                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3558                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3559         } else {
3560                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3561
3562                 debug_info = gbl->error_stage;
3563                 debug_info |= gbl->error_substage << 8;
3564                 debug_info |= gbl->error_group << 16;
3565
3566                 writel(debug_info, &sdr_reg_file->failing_stage);
3567                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3568                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3569
3570                 /* Update the failing group/stage in the register file */
3571                 debug_info = gbl->error_stage;
3572                 debug_info |= gbl->error_substage << 8;
3573                 debug_info |= gbl->error_group << 16;
3574                 writel(debug_info, &sdr_reg_file->failing_stage);
3575         }
3576
3577         return pass;
3578 }
3579
3580 /**
3581  * hc_initialize_rom_data() - Initialize ROM data
3582  *
3583  * Initialize ROM data.
3584  */
3585 static void hc_initialize_rom_data(void)
3586 {
3587         u32 i, addr;
3588
3589         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3590         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3591                 writel(inst_rom_init[i], addr + (i << 2));
3592
3593         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3594         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3595                 writel(ac_rom_init[i], addr + (i << 2));
3596 }
3597
3598 /**
3599  * initialize_reg_file() - Initialize SDR register file
3600  *
3601  * Initialize SDR register file.
3602  */
3603 static void initialize_reg_file(void)
3604 {
3605         /* Initialize the register file with the correct data */
3606         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3607         writel(0, &sdr_reg_file->debug_data_addr);
3608         writel(0, &sdr_reg_file->cur_stage);
3609         writel(0, &sdr_reg_file->fom);
3610         writel(0, &sdr_reg_file->failing_stage);
3611         writel(0, &sdr_reg_file->debug1);
3612         writel(0, &sdr_reg_file->debug2);
3613 }
3614
3615 /**
3616  * initialize_hps_phy() - Initialize HPS PHY
3617  *
3618  * Initialize HPS PHY.
3619  */
3620 static void initialize_hps_phy(void)
3621 {
3622         uint32_t reg;
3623         /*
3624          * Tracking also gets configured here because it's in the
3625          * same register.
3626          */
3627         uint32_t trk_sample_count = 7500;
3628         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3629         /*
3630          * Format is number of outer loops in the 16 MSB, sample
3631          * count in 16 LSB.
3632          */
3633
3634         reg = 0;
3635         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3636         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3637         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3638         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3639         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3640         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3641         /*
3642          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3643          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3644          */
3645         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3646         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3647                 trk_sample_count);
3648         writel(reg, &sdr_ctrl->phy_ctrl0);
3649
3650         reg = 0;
3651         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3652                 trk_sample_count >>
3653                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3654         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3655                 trk_long_idle_sample_count);
3656         writel(reg, &sdr_ctrl->phy_ctrl1);
3657
3658         reg = 0;
3659         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3660                 trk_long_idle_sample_count >>
3661                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3662         writel(reg, &sdr_ctrl->phy_ctrl2);
3663 }
3664
3665 static void initialize_tracking(void)
3666 {
3667         uint32_t concatenated_longidle = 0x0;
3668         uint32_t concatenated_delays = 0x0;
3669         uint32_t concatenated_rw_addr = 0x0;
3670         uint32_t concatenated_refresh = 0x0;
3671         uint32_t trk_sample_count = 7500;
3672         uint32_t dtaps_per_ptap;
3673         uint32_t tmp_delay;
3674
3675         /*
3676          * compute usable version of value in case we skip full
3677          * computation later
3678          */
3679         dtaps_per_ptap = 0;
3680         tmp_delay = 0;
3681         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3682                 dtaps_per_ptap++;
3683                 tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3684         }
3685         dtaps_per_ptap--;
3686
3687         concatenated_longidle = concatenated_longidle ^ 10;
3688                 /*longidle outer loop */
3689         concatenated_longidle = concatenated_longidle << 16;
3690         concatenated_longidle = concatenated_longidle ^ 100;
3691                 /*longidle sample count */
3692         concatenated_delays = concatenated_delays ^ 243;
3693                 /* trfc, worst case of 933Mhz 4Gb */
3694         concatenated_delays = concatenated_delays << 8;
3695         concatenated_delays = concatenated_delays ^ 14;
3696                 /* trcd, worst case */
3697         concatenated_delays = concatenated_delays << 8;
3698         concatenated_delays = concatenated_delays ^ 10;
3699                 /* vfifo wait */
3700         concatenated_delays = concatenated_delays << 8;
3701         concatenated_delays = concatenated_delays ^ 4;
3702                 /* mux delay */
3703
3704         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3705         concatenated_rw_addr = concatenated_rw_addr << 8;
3706         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3707         concatenated_rw_addr = concatenated_rw_addr << 8;
3708         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3709         concatenated_rw_addr = concatenated_rw_addr << 8;
3710         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3711
3712         concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3713         concatenated_refresh = concatenated_refresh << 24;
3714         concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3715
3716         /* Initialize the register file with the correct data */
3717         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
3718         writel(trk_sample_count, &sdr_reg_file->trk_sample_count);
3719         writel(concatenated_longidle, &sdr_reg_file->trk_longidle);
3720         writel(concatenated_delays, &sdr_reg_file->delays);
3721         writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr);
3722         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width);
3723         writel(concatenated_refresh, &sdr_reg_file->trk_rfsh);
3724 }
3725
3726 int sdram_calibration_full(void)
3727 {
3728         struct param_type my_param;
3729         struct gbl_type my_gbl;
3730         uint32_t pass;
3731         uint32_t i;
3732
3733         param = &my_param;
3734         gbl = &my_gbl;
3735
3736         /* Initialize the debug mode flags */
3737         gbl->phy_debug_mode_flags = 0;
3738         /* Set the calibration enabled by default */
3739         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3740         /*
3741          * Only sweep all groups (regardless of fail state) by default
3742          * Set enabled read test by default.
3743          */
3744 #if DISABLE_GUARANTEED_READ
3745         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3746 #endif
3747         /* Initialize the register file */
3748         initialize_reg_file();
3749
3750         /* Initialize any PHY CSR */
3751         initialize_hps_phy();
3752
3753         scc_mgr_initialize();
3754
3755         initialize_tracking();
3756
3757         /* USER Enable all ranks, groups */
3758         for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3759                 param->skip_ranks[i] = 0;
3760         for (i = 0; i < NUM_SHADOW_REGS; ++i)
3761                 param->skip_shadow_regs[i] = 0;
3762         param->skip_groups = 0;
3763
3764         printf("%s: Preparing to start memory calibration\n", __FILE__);
3765
3766         debug("%s:%d\n", __func__, __LINE__);
3767         debug_cond(DLEVEL == 1,
3768                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3769                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3770                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3771                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3772                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3773         debug_cond(DLEVEL == 1,
3774                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3775                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3776                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3777                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3778         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3779                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3780         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3781                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3782                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3783         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3784                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3785                    IO_IO_OUT2_DELAY_MAX);
3786         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3787                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3788
3789         hc_initialize_rom_data();
3790
3791         /* update info for sims */
3792         reg_file_set_stage(CAL_STAGE_NIL);
3793         reg_file_set_group(0);
3794
3795         /*
3796          * Load global needed for those actions that require
3797          * some dynamic calibration support.
3798          */
3799         dyn_calib_steps = STATIC_CALIB_STEPS;
3800         /*
3801          * Load global to allow dynamic selection of delay loop settings
3802          * based on calibration mode.
3803          */
3804         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3805                 skip_delay_mask = 0xff;
3806         else
3807                 skip_delay_mask = 0x0;
3808
3809         pass = run_mem_calibrate();
3810
3811         printf("%s: Calibration complete\n", __FILE__);
3812         return pass;
3813 }