Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / crypto / n2_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3  *
4  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5  */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_device.h>
13 #include <linux/cpumask.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/crypto.h>
17 #include <crypto/md5.h>
18 #include <crypto/sha.h>
19 #include <crypto/aes.h>
20 #include <crypto/des.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24
25 #include <crypto/internal/hash.h>
26 #include <crypto/scatterwalk.h>
27 #include <crypto/algapi.h>
28
29 #include <asm/hypervisor.h>
30 #include <asm/mdesc.h>
31
32 #include "n2_core.h"
33
34 #define DRV_MODULE_NAME         "n2_crypto"
35 #define DRV_MODULE_VERSION      "0.2"
36 #define DRV_MODULE_RELDATE      "July 28, 2011"
37
38 static const char version[] =
39         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
40
41 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
42 MODULE_DESCRIPTION("Niagara2 Crypto driver");
43 MODULE_LICENSE("GPL");
44 MODULE_VERSION(DRV_MODULE_VERSION);
45
46 #define N2_CRA_PRIORITY         200
47
48 static DEFINE_MUTEX(spu_lock);
49
50 struct spu_queue {
51         cpumask_t               sharing;
52         unsigned long           qhandle;
53
54         spinlock_t              lock;
55         u8                      q_type;
56         void                    *q;
57         unsigned long           head;
58         unsigned long           tail;
59         struct list_head        jobs;
60
61         unsigned long           devino;
62
63         char                    irq_name[32];
64         unsigned int            irq;
65
66         struct list_head        list;
67 };
68
69 struct spu_qreg {
70         struct spu_queue        *queue;
71         unsigned long           type;
72 };
73
74 static struct spu_queue **cpu_to_cwq;
75 static struct spu_queue **cpu_to_mau;
76
77 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
78 {
79         if (q->q_type == HV_NCS_QTYPE_MAU) {
80                 off += MAU_ENTRY_SIZE;
81                 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
82                         off = 0;
83         } else {
84                 off += CWQ_ENTRY_SIZE;
85                 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
86                         off = 0;
87         }
88         return off;
89 }
90
91 struct n2_request_common {
92         struct list_head        entry;
93         unsigned int            offset;
94 };
95 #define OFFSET_NOT_RUNNING      (~(unsigned int)0)
96
97 /* An async job request records the final tail value it used in
98  * n2_request_common->offset, test to see if that offset is in
99  * the range old_head, new_head, inclusive.
100  */
101 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
102                                 unsigned long old_head, unsigned long new_head)
103 {
104         if (old_head <= new_head) {
105                 if (offset > old_head && offset <= new_head)
106                         return true;
107         } else {
108                 if (offset > old_head || offset <= new_head)
109                         return true;
110         }
111         return false;
112 }
113
114 /* When the HEAD marker is unequal to the actual HEAD, we get
115  * a virtual device INO interrupt.  We should process the
116  * completed CWQ entries and adjust the HEAD marker to clear
117  * the IRQ.
118  */
119 static irqreturn_t cwq_intr(int irq, void *dev_id)
120 {
121         unsigned long off, new_head, hv_ret;
122         struct spu_queue *q = dev_id;
123
124         pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
125                smp_processor_id(), q->qhandle);
126
127         spin_lock(&q->lock);
128
129         hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
130
131         pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
132                smp_processor_id(), new_head, hv_ret);
133
134         for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
135                 /* XXX ... XXX */
136         }
137
138         hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
139         if (hv_ret == HV_EOK)
140                 q->head = new_head;
141
142         spin_unlock(&q->lock);
143
144         return IRQ_HANDLED;
145 }
146
147 static irqreturn_t mau_intr(int irq, void *dev_id)
148 {
149         struct spu_queue *q = dev_id;
150         unsigned long head, hv_ret;
151
152         spin_lock(&q->lock);
153
154         pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
155                smp_processor_id(), q->qhandle);
156
157         hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
158
159         pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
160                smp_processor_id(), head, hv_ret);
161
162         sun4v_ncs_sethead_marker(q->qhandle, head);
163
164         spin_unlock(&q->lock);
165
166         return IRQ_HANDLED;
167 }
168
169 static void *spu_queue_next(struct spu_queue *q, void *cur)
170 {
171         return q->q + spu_next_offset(q, cur - q->q);
172 }
173
174 static int spu_queue_num_free(struct spu_queue *q)
175 {
176         unsigned long head = q->head;
177         unsigned long tail = q->tail;
178         unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
179         unsigned long diff;
180
181         if (head > tail)
182                 diff = head - tail;
183         else
184                 diff = (end - tail) + head;
185
186         return (diff / CWQ_ENTRY_SIZE) - 1;
187 }
188
189 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
190 {
191         int avail = spu_queue_num_free(q);
192
193         if (avail >= num_entries)
194                 return q->q + q->tail;
195
196         return NULL;
197 }
198
199 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
200 {
201         unsigned long hv_ret, new_tail;
202
203         new_tail = spu_next_offset(q, last - q->q);
204
205         hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
206         if (hv_ret == HV_EOK)
207                 q->tail = new_tail;
208         return hv_ret;
209 }
210
211 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
212                              int enc_type, int auth_type,
213                              unsigned int hash_len,
214                              bool sfas, bool sob, bool eob, bool encrypt,
215                              int opcode)
216 {
217         u64 word = (len - 1) & CONTROL_LEN;
218
219         word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
220         word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
221         word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
222         if (sfas)
223                 word |= CONTROL_STORE_FINAL_AUTH_STATE;
224         if (sob)
225                 word |= CONTROL_START_OF_BLOCK;
226         if (eob)
227                 word |= CONTROL_END_OF_BLOCK;
228         if (encrypt)
229                 word |= CONTROL_ENCRYPT;
230         if (hmac_key_len)
231                 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
232         if (hash_len)
233                 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
234
235         return word;
236 }
237
238 #if 0
239 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
240 {
241         if (this_len >= 64 ||
242             qp->head != qp->tail)
243                 return true;
244         return false;
245 }
246 #endif
247
248 struct n2_ahash_alg {
249         struct list_head        entry;
250         const u8                *hash_zero;
251         const u32               *hash_init;
252         u8                      hw_op_hashsz;
253         u8                      digest_size;
254         u8                      auth_type;
255         u8                      hmac_type;
256         struct ahash_alg        alg;
257 };
258
259 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
260 {
261         struct crypto_alg *alg = tfm->__crt_alg;
262         struct ahash_alg *ahash_alg;
263
264         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
265
266         return container_of(ahash_alg, struct n2_ahash_alg, alg);
267 }
268
269 struct n2_hmac_alg {
270         const char              *child_alg;
271         struct n2_ahash_alg     derived;
272 };
273
274 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
275 {
276         struct crypto_alg *alg = tfm->__crt_alg;
277         struct ahash_alg *ahash_alg;
278
279         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
280
281         return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
282 }
283
284 struct n2_hash_ctx {
285         struct crypto_ahash             *fallback_tfm;
286 };
287
288 #define N2_HASH_KEY_MAX                 32 /* HW limit for all HMAC requests */
289
290 struct n2_hmac_ctx {
291         struct n2_hash_ctx              base;
292
293         struct crypto_shash             *child_shash;
294
295         int                             hash_key_len;
296         unsigned char                   hash_key[N2_HASH_KEY_MAX];
297 };
298
299 struct n2_hash_req_ctx {
300         union {
301                 struct md5_state        md5;
302                 struct sha1_state       sha1;
303                 struct sha256_state     sha256;
304         } u;
305
306         struct ahash_request            fallback_req;
307 };
308
309 static int n2_hash_async_init(struct ahash_request *req)
310 {
311         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
312         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
313         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
314
315         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
316         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
317
318         return crypto_ahash_init(&rctx->fallback_req);
319 }
320
321 static int n2_hash_async_update(struct ahash_request *req)
322 {
323         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
324         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
325         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
326
327         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
328         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
329         rctx->fallback_req.nbytes = req->nbytes;
330         rctx->fallback_req.src = req->src;
331
332         return crypto_ahash_update(&rctx->fallback_req);
333 }
334
335 static int n2_hash_async_final(struct ahash_request *req)
336 {
337         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
338         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
339         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
340
341         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
342         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
343         rctx->fallback_req.result = req->result;
344
345         return crypto_ahash_final(&rctx->fallback_req);
346 }
347
348 static int n2_hash_async_finup(struct ahash_request *req)
349 {
350         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
351         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
352         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
353
354         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
355         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
356         rctx->fallback_req.nbytes = req->nbytes;
357         rctx->fallback_req.src = req->src;
358         rctx->fallback_req.result = req->result;
359
360         return crypto_ahash_finup(&rctx->fallback_req);
361 }
362
363 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
364 {
365         return -ENOSYS;
366 }
367
368 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
369 {
370         return -ENOSYS;
371 }
372
373 static int n2_hash_cra_init(struct crypto_tfm *tfm)
374 {
375         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
376         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
377         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
378         struct crypto_ahash *fallback_tfm;
379         int err;
380
381         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
382                                           CRYPTO_ALG_NEED_FALLBACK);
383         if (IS_ERR(fallback_tfm)) {
384                 pr_warning("Fallback driver '%s' could not be loaded!\n",
385                            fallback_driver_name);
386                 err = PTR_ERR(fallback_tfm);
387                 goto out;
388         }
389
390         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
391                                          crypto_ahash_reqsize(fallback_tfm)));
392
393         ctx->fallback_tfm = fallback_tfm;
394         return 0;
395
396 out:
397         return err;
398 }
399
400 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
401 {
402         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
403         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
404
405         crypto_free_ahash(ctx->fallback_tfm);
406 }
407
408 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
409 {
410         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
411         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
412         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
413         struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
414         struct crypto_ahash *fallback_tfm;
415         struct crypto_shash *child_shash;
416         int err;
417
418         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
419                                           CRYPTO_ALG_NEED_FALLBACK);
420         if (IS_ERR(fallback_tfm)) {
421                 pr_warning("Fallback driver '%s' could not be loaded!\n",
422                            fallback_driver_name);
423                 err = PTR_ERR(fallback_tfm);
424                 goto out;
425         }
426
427         child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
428         if (IS_ERR(child_shash)) {
429                 pr_warning("Child shash '%s' could not be loaded!\n",
430                            n2alg->child_alg);
431                 err = PTR_ERR(child_shash);
432                 goto out_free_fallback;
433         }
434
435         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
436                                          crypto_ahash_reqsize(fallback_tfm)));
437
438         ctx->child_shash = child_shash;
439         ctx->base.fallback_tfm = fallback_tfm;
440         return 0;
441
442 out_free_fallback:
443         crypto_free_ahash(fallback_tfm);
444
445 out:
446         return err;
447 }
448
449 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
450 {
451         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
452         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
453
454         crypto_free_ahash(ctx->base.fallback_tfm);
455         crypto_free_shash(ctx->child_shash);
456 }
457
458 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
459                                 unsigned int keylen)
460 {
461         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
462         struct crypto_shash *child_shash = ctx->child_shash;
463         struct crypto_ahash *fallback_tfm;
464         SHASH_DESC_ON_STACK(shash, child_shash);
465         int err, bs, ds;
466
467         fallback_tfm = ctx->base.fallback_tfm;
468         err = crypto_ahash_setkey(fallback_tfm, key, keylen);
469         if (err)
470                 return err;
471
472         shash->tfm = child_shash;
473
474         bs = crypto_shash_blocksize(child_shash);
475         ds = crypto_shash_digestsize(child_shash);
476         BUG_ON(ds > N2_HASH_KEY_MAX);
477         if (keylen > bs) {
478                 err = crypto_shash_digest(shash, key, keylen,
479                                           ctx->hash_key);
480                 if (err)
481                         return err;
482                 keylen = ds;
483         } else if (keylen <= N2_HASH_KEY_MAX)
484                 memcpy(ctx->hash_key, key, keylen);
485
486         ctx->hash_key_len = keylen;
487
488         return err;
489 }
490
491 static unsigned long wait_for_tail(struct spu_queue *qp)
492 {
493         unsigned long head, hv_ret;
494
495         do {
496                 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
497                 if (hv_ret != HV_EOK) {
498                         pr_err("Hypervisor error on gethead\n");
499                         break;
500                 }
501                 if (head == qp->tail) {
502                         qp->head = head;
503                         break;
504                 }
505         } while (1);
506         return hv_ret;
507 }
508
509 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
510                                               struct cwq_initial_entry *ent)
511 {
512         unsigned long hv_ret = spu_queue_submit(qp, ent);
513
514         if (hv_ret == HV_EOK)
515                 hv_ret = wait_for_tail(qp);
516
517         return hv_ret;
518 }
519
520 static int n2_do_async_digest(struct ahash_request *req,
521                               unsigned int auth_type, unsigned int digest_size,
522                               unsigned int result_size, void *hash_loc,
523                               unsigned long auth_key, unsigned int auth_key_len)
524 {
525         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
526         struct cwq_initial_entry *ent;
527         struct crypto_hash_walk walk;
528         struct spu_queue *qp;
529         unsigned long flags;
530         int err = -ENODEV;
531         int nbytes, cpu;
532
533         /* The total effective length of the operation may not
534          * exceed 2^16.
535          */
536         if (unlikely(req->nbytes > (1 << 16))) {
537                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
538                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
539
540                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
541                 rctx->fallback_req.base.flags =
542                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
543                 rctx->fallback_req.nbytes = req->nbytes;
544                 rctx->fallback_req.src = req->src;
545                 rctx->fallback_req.result = req->result;
546
547                 return crypto_ahash_digest(&rctx->fallback_req);
548         }
549
550         nbytes = crypto_hash_walk_first(req, &walk);
551
552         cpu = get_cpu();
553         qp = cpu_to_cwq[cpu];
554         if (!qp)
555                 goto out;
556
557         spin_lock_irqsave(&qp->lock, flags);
558
559         /* XXX can do better, improve this later by doing a by-hand scatterlist
560          * XXX walk, etc.
561          */
562         ent = qp->q + qp->tail;
563
564         ent->control = control_word_base(nbytes, auth_key_len, 0,
565                                          auth_type, digest_size,
566                                          false, true, false, false,
567                                          OPCODE_INPLACE_BIT |
568                                          OPCODE_AUTH_MAC);
569         ent->src_addr = __pa(walk.data);
570         ent->auth_key_addr = auth_key;
571         ent->auth_iv_addr = __pa(hash_loc);
572         ent->final_auth_state_addr = 0UL;
573         ent->enc_key_addr = 0UL;
574         ent->enc_iv_addr = 0UL;
575         ent->dest_addr = __pa(hash_loc);
576
577         nbytes = crypto_hash_walk_done(&walk, 0);
578         while (nbytes > 0) {
579                 ent = spu_queue_next(qp, ent);
580
581                 ent->control = (nbytes - 1);
582                 ent->src_addr = __pa(walk.data);
583                 ent->auth_key_addr = 0UL;
584                 ent->auth_iv_addr = 0UL;
585                 ent->final_auth_state_addr = 0UL;
586                 ent->enc_key_addr = 0UL;
587                 ent->enc_iv_addr = 0UL;
588                 ent->dest_addr = 0UL;
589
590                 nbytes = crypto_hash_walk_done(&walk, 0);
591         }
592         ent->control |= CONTROL_END_OF_BLOCK;
593
594         if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
595                 err = -EINVAL;
596         else
597                 err = 0;
598
599         spin_unlock_irqrestore(&qp->lock, flags);
600
601         if (!err)
602                 memcpy(req->result, hash_loc, result_size);
603 out:
604         put_cpu();
605
606         return err;
607 }
608
609 static int n2_hash_async_digest(struct ahash_request *req)
610 {
611         struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
612         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
613         int ds;
614
615         ds = n2alg->digest_size;
616         if (unlikely(req->nbytes == 0)) {
617                 memcpy(req->result, n2alg->hash_zero, ds);
618                 return 0;
619         }
620         memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
621
622         return n2_do_async_digest(req, n2alg->auth_type,
623                                   n2alg->hw_op_hashsz, ds,
624                                   &rctx->u, 0UL, 0);
625 }
626
627 static int n2_hmac_async_digest(struct ahash_request *req)
628 {
629         struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
630         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
631         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
632         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
633         int ds;
634
635         ds = n2alg->derived.digest_size;
636         if (unlikely(req->nbytes == 0) ||
637             unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
638                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
639                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
640
641                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
642                 rctx->fallback_req.base.flags =
643                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
644                 rctx->fallback_req.nbytes = req->nbytes;
645                 rctx->fallback_req.src = req->src;
646                 rctx->fallback_req.result = req->result;
647
648                 return crypto_ahash_digest(&rctx->fallback_req);
649         }
650         memcpy(&rctx->u, n2alg->derived.hash_init,
651                n2alg->derived.hw_op_hashsz);
652
653         return n2_do_async_digest(req, n2alg->derived.hmac_type,
654                                   n2alg->derived.hw_op_hashsz, ds,
655                                   &rctx->u,
656                                   __pa(&ctx->hash_key),
657                                   ctx->hash_key_len);
658 }
659
660 struct n2_cipher_context {
661         int                     key_len;
662         int                     enc_type;
663         union {
664                 u8              aes[AES_MAX_KEY_SIZE];
665                 u8              des[DES_KEY_SIZE];
666                 u8              des3[3 * DES_KEY_SIZE];
667                 u8              arc4[258]; /* S-box, X, Y */
668         } key;
669 };
670
671 #define N2_CHUNK_ARR_LEN        16
672
673 struct n2_crypto_chunk {
674         struct list_head        entry;
675         unsigned long           iv_paddr : 44;
676         unsigned long           arr_len : 20;
677         unsigned long           dest_paddr;
678         unsigned long           dest_final;
679         struct {
680                 unsigned long   src_paddr : 44;
681                 unsigned long   src_len : 20;
682         } arr[N2_CHUNK_ARR_LEN];
683 };
684
685 struct n2_request_context {
686         struct ablkcipher_walk  walk;
687         struct list_head        chunk_list;
688         struct n2_crypto_chunk  chunk;
689         u8                      temp_iv[16];
690 };
691
692 /* The SPU allows some level of flexibility for partial cipher blocks
693  * being specified in a descriptor.
694  *
695  * It merely requires that every descriptor's length field is at least
696  * as large as the cipher block size.  This means that a cipher block
697  * can span at most 2 descriptors.  However, this does not allow a
698  * partial block to span into the final descriptor as that would
699  * violate the rule (since every descriptor's length must be at lest
700  * the block size).  So, for example, assuming an 8 byte block size:
701  *
702  *      0xe --> 0xa --> 0x8
703  *
704  * is a valid length sequence, whereas:
705  *
706  *      0xe --> 0xb --> 0x7
707  *
708  * is not a valid sequence.
709  */
710
711 struct n2_cipher_alg {
712         struct list_head        entry;
713         u8                      enc_type;
714         struct crypto_alg       alg;
715 };
716
717 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
718 {
719         struct crypto_alg *alg = tfm->__crt_alg;
720
721         return container_of(alg, struct n2_cipher_alg, alg);
722 }
723
724 struct n2_cipher_request_context {
725         struct ablkcipher_walk  walk;
726 };
727
728 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
729                          unsigned int keylen)
730 {
731         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
732         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
733         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
734
735         ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
736
737         switch (keylen) {
738         case AES_KEYSIZE_128:
739                 ctx->enc_type |= ENC_TYPE_ALG_AES128;
740                 break;
741         case AES_KEYSIZE_192:
742                 ctx->enc_type |= ENC_TYPE_ALG_AES192;
743                 break;
744         case AES_KEYSIZE_256:
745                 ctx->enc_type |= ENC_TYPE_ALG_AES256;
746                 break;
747         default:
748                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
749                 return -EINVAL;
750         }
751
752         ctx->key_len = keylen;
753         memcpy(ctx->key.aes, key, keylen);
754         return 0;
755 }
756
757 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
758                          unsigned int keylen)
759 {
760         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
761         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
762         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
763         u32 tmp[DES_EXPKEY_WORDS];
764         int err;
765
766         ctx->enc_type = n2alg->enc_type;
767
768         if (keylen != DES_KEY_SIZE) {
769                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
770                 return -EINVAL;
771         }
772
773         err = des_ekey(tmp, key);
774         if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) {
775                 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
776                 return -EINVAL;
777         }
778
779         ctx->key_len = keylen;
780         memcpy(ctx->key.des, key, keylen);
781         return 0;
782 }
783
784 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
785                           unsigned int keylen)
786 {
787         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
788         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
789         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
790         u32 flags;
791         int err;
792
793         flags = crypto_ablkcipher_get_flags(cipher);
794         err = __des3_verify_key(&flags, key);
795         if (unlikely(err)) {
796                 crypto_ablkcipher_set_flags(cipher, flags);
797                 return err;
798         }
799
800         ctx->enc_type = n2alg->enc_type;
801
802         ctx->key_len = keylen;
803         memcpy(ctx->key.des3, key, keylen);
804         return 0;
805 }
806
807 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
808                           unsigned int keylen)
809 {
810         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
811         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
812         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
813         u8 *s = ctx->key.arc4;
814         u8 *x = s + 256;
815         u8 *y = x + 1;
816         int i, j, k;
817
818         ctx->enc_type = n2alg->enc_type;
819
820         j = k = 0;
821         *x = 0;
822         *y = 0;
823         for (i = 0; i < 256; i++)
824                 s[i] = i;
825         for (i = 0; i < 256; i++) {
826                 u8 a = s[i];
827                 j = (j + key[k] + a) & 0xff;
828                 s[i] = s[j];
829                 s[j] = a;
830                 if (++k >= keylen)
831                         k = 0;
832         }
833
834         return 0;
835 }
836
837 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
838 {
839         int this_len = nbytes;
840
841         this_len -= (nbytes & (block_size - 1));
842         return this_len > (1 << 16) ? (1 << 16) : this_len;
843 }
844
845 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
846                             struct spu_queue *qp, bool encrypt)
847 {
848         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
849         struct cwq_initial_entry *ent;
850         bool in_place;
851         int i;
852
853         ent = spu_queue_alloc(qp, cp->arr_len);
854         if (!ent) {
855                 pr_info("queue_alloc() of %d fails\n",
856                         cp->arr_len);
857                 return -EBUSY;
858         }
859
860         in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
861
862         ent->control = control_word_base(cp->arr[0].src_len,
863                                          0, ctx->enc_type, 0, 0,
864                                          false, true, false, encrypt,
865                                          OPCODE_ENCRYPT |
866                                          (in_place ? OPCODE_INPLACE_BIT : 0));
867         ent->src_addr = cp->arr[0].src_paddr;
868         ent->auth_key_addr = 0UL;
869         ent->auth_iv_addr = 0UL;
870         ent->final_auth_state_addr = 0UL;
871         ent->enc_key_addr = __pa(&ctx->key);
872         ent->enc_iv_addr = cp->iv_paddr;
873         ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
874
875         for (i = 1; i < cp->arr_len; i++) {
876                 ent = spu_queue_next(qp, ent);
877
878                 ent->control = cp->arr[i].src_len - 1;
879                 ent->src_addr = cp->arr[i].src_paddr;
880                 ent->auth_key_addr = 0UL;
881                 ent->auth_iv_addr = 0UL;
882                 ent->final_auth_state_addr = 0UL;
883                 ent->enc_key_addr = 0UL;
884                 ent->enc_iv_addr = 0UL;
885                 ent->dest_addr = 0UL;
886         }
887         ent->control |= CONTROL_END_OF_BLOCK;
888
889         return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
890 }
891
892 static int n2_compute_chunks(struct ablkcipher_request *req)
893 {
894         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
895         struct ablkcipher_walk *walk = &rctx->walk;
896         struct n2_crypto_chunk *chunk;
897         unsigned long dest_prev;
898         unsigned int tot_len;
899         bool prev_in_place;
900         int err, nbytes;
901
902         ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
903         err = ablkcipher_walk_phys(req, walk);
904         if (err)
905                 return err;
906
907         INIT_LIST_HEAD(&rctx->chunk_list);
908
909         chunk = &rctx->chunk;
910         INIT_LIST_HEAD(&chunk->entry);
911
912         chunk->iv_paddr = 0UL;
913         chunk->arr_len = 0;
914         chunk->dest_paddr = 0UL;
915
916         prev_in_place = false;
917         dest_prev = ~0UL;
918         tot_len = 0;
919
920         while ((nbytes = walk->nbytes) != 0) {
921                 unsigned long dest_paddr, src_paddr;
922                 bool in_place;
923                 int this_len;
924
925                 src_paddr = (page_to_phys(walk->src.page) +
926                              walk->src.offset);
927                 dest_paddr = (page_to_phys(walk->dst.page) +
928                               walk->dst.offset);
929                 in_place = (src_paddr == dest_paddr);
930                 this_len = cipher_descriptor_len(nbytes, walk->blocksize);
931
932                 if (chunk->arr_len != 0) {
933                         if (in_place != prev_in_place ||
934                             (!prev_in_place &&
935                              dest_paddr != dest_prev) ||
936                             chunk->arr_len == N2_CHUNK_ARR_LEN ||
937                             tot_len + this_len > (1 << 16)) {
938                                 chunk->dest_final = dest_prev;
939                                 list_add_tail(&chunk->entry,
940                                               &rctx->chunk_list);
941                                 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
942                                 if (!chunk) {
943                                         err = -ENOMEM;
944                                         break;
945                                 }
946                                 INIT_LIST_HEAD(&chunk->entry);
947                         }
948                 }
949                 if (chunk->arr_len == 0) {
950                         chunk->dest_paddr = dest_paddr;
951                         tot_len = 0;
952                 }
953                 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
954                 chunk->arr[chunk->arr_len].src_len = this_len;
955                 chunk->arr_len++;
956
957                 dest_prev = dest_paddr + this_len;
958                 prev_in_place = in_place;
959                 tot_len += this_len;
960
961                 err = ablkcipher_walk_done(req, walk, nbytes - this_len);
962                 if (err)
963                         break;
964         }
965         if (!err && chunk->arr_len != 0) {
966                 chunk->dest_final = dest_prev;
967                 list_add_tail(&chunk->entry, &rctx->chunk_list);
968         }
969
970         return err;
971 }
972
973 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
974 {
975         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
976         struct n2_crypto_chunk *c, *tmp;
977
978         if (final_iv)
979                 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
980
981         ablkcipher_walk_complete(&rctx->walk);
982         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
983                 list_del(&c->entry);
984                 if (unlikely(c != &rctx->chunk))
985                         kfree(c);
986         }
987
988 }
989
990 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
991 {
992         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
993         struct crypto_tfm *tfm = req->base.tfm;
994         int err = n2_compute_chunks(req);
995         struct n2_crypto_chunk *c, *tmp;
996         unsigned long flags, hv_ret;
997         struct spu_queue *qp;
998
999         if (err)
1000                 return err;
1001
1002         qp = cpu_to_cwq[get_cpu()];
1003         err = -ENODEV;
1004         if (!qp)
1005                 goto out;
1006
1007         spin_lock_irqsave(&qp->lock, flags);
1008
1009         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
1010                 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
1011                 if (err)
1012                         break;
1013                 list_del(&c->entry);
1014                 if (unlikely(c != &rctx->chunk))
1015                         kfree(c);
1016         }
1017         if (!err) {
1018                 hv_ret = wait_for_tail(qp);
1019                 if (hv_ret != HV_EOK)
1020                         err = -EINVAL;
1021         }
1022
1023         spin_unlock_irqrestore(&qp->lock, flags);
1024
1025 out:
1026         put_cpu();
1027
1028         n2_chunk_complete(req, NULL);
1029         return err;
1030 }
1031
1032 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1033 {
1034         return n2_do_ecb(req, true);
1035 }
1036
1037 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1038 {
1039         return n2_do_ecb(req, false);
1040 }
1041
1042 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1043 {
1044         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1045         struct crypto_tfm *tfm = req->base.tfm;
1046         unsigned long flags, hv_ret, iv_paddr;
1047         int err = n2_compute_chunks(req);
1048         struct n2_crypto_chunk *c, *tmp;
1049         struct spu_queue *qp;
1050         void *final_iv_addr;
1051
1052         final_iv_addr = NULL;
1053
1054         if (err)
1055                 return err;
1056
1057         qp = cpu_to_cwq[get_cpu()];
1058         err = -ENODEV;
1059         if (!qp)
1060                 goto out;
1061
1062         spin_lock_irqsave(&qp->lock, flags);
1063
1064         if (encrypt) {
1065                 iv_paddr = __pa(rctx->walk.iv);
1066                 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1067                                          entry) {
1068                         c->iv_paddr = iv_paddr;
1069                         err = __n2_crypt_chunk(tfm, c, qp, true);
1070                         if (err)
1071                                 break;
1072                         iv_paddr = c->dest_final - rctx->walk.blocksize;
1073                         list_del(&c->entry);
1074                         if (unlikely(c != &rctx->chunk))
1075                                 kfree(c);
1076                 }
1077                 final_iv_addr = __va(iv_paddr);
1078         } else {
1079                 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1080                                                  entry) {
1081                         if (c == &rctx->chunk) {
1082                                 iv_paddr = __pa(rctx->walk.iv);
1083                         } else {
1084                                 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1085                                             tmp->arr[tmp->arr_len-1].src_len -
1086                                             rctx->walk.blocksize);
1087                         }
1088                         if (!final_iv_addr) {
1089                                 unsigned long pa;
1090
1091                                 pa = (c->arr[c->arr_len-1].src_paddr +
1092                                       c->arr[c->arr_len-1].src_len -
1093                                       rctx->walk.blocksize);
1094                                 final_iv_addr = rctx->temp_iv;
1095                                 memcpy(rctx->temp_iv, __va(pa),
1096                                        rctx->walk.blocksize);
1097                         }
1098                         c->iv_paddr = iv_paddr;
1099                         err = __n2_crypt_chunk(tfm, c, qp, false);
1100                         if (err)
1101                                 break;
1102                         list_del(&c->entry);
1103                         if (unlikely(c != &rctx->chunk))
1104                                 kfree(c);
1105                 }
1106         }
1107         if (!err) {
1108                 hv_ret = wait_for_tail(qp);
1109                 if (hv_ret != HV_EOK)
1110                         err = -EINVAL;
1111         }
1112
1113         spin_unlock_irqrestore(&qp->lock, flags);
1114
1115 out:
1116         put_cpu();
1117
1118         n2_chunk_complete(req, err ? NULL : final_iv_addr);
1119         return err;
1120 }
1121
1122 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1123 {
1124         return n2_do_chaining(req, true);
1125 }
1126
1127 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1128 {
1129         return n2_do_chaining(req, false);
1130 }
1131
1132 struct n2_cipher_tmpl {
1133         const char              *name;
1134         const char              *drv_name;
1135         u8                      block_size;
1136         u8                      enc_type;
1137         struct ablkcipher_alg   ablkcipher;
1138 };
1139
1140 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1141         /* ARC4: only ECB is supported (chaining bits ignored) */
1142         {       .name           = "ecb(arc4)",
1143                 .drv_name       = "ecb-arc4",
1144                 .block_size     = 1,
1145                 .enc_type       = (ENC_TYPE_ALG_RC4_STREAM |
1146                                    ENC_TYPE_CHAINING_ECB),
1147                 .ablkcipher     = {
1148                         .min_keysize    = 1,
1149                         .max_keysize    = 256,
1150                         .setkey         = n2_arc4_setkey,
1151                         .encrypt        = n2_encrypt_ecb,
1152                         .decrypt        = n2_decrypt_ecb,
1153                 },
1154         },
1155
1156         /* DES: ECB CBC and CFB are supported */
1157         {       .name           = "ecb(des)",
1158                 .drv_name       = "ecb-des",
1159                 .block_size     = DES_BLOCK_SIZE,
1160                 .enc_type       = (ENC_TYPE_ALG_DES |
1161                                    ENC_TYPE_CHAINING_ECB),
1162                 .ablkcipher     = {
1163                         .min_keysize    = DES_KEY_SIZE,
1164                         .max_keysize    = DES_KEY_SIZE,
1165                         .setkey         = n2_des_setkey,
1166                         .encrypt        = n2_encrypt_ecb,
1167                         .decrypt        = n2_decrypt_ecb,
1168                 },
1169         },
1170         {       .name           = "cbc(des)",
1171                 .drv_name       = "cbc-des",
1172                 .block_size     = DES_BLOCK_SIZE,
1173                 .enc_type       = (ENC_TYPE_ALG_DES |
1174                                    ENC_TYPE_CHAINING_CBC),
1175                 .ablkcipher     = {
1176                         .ivsize         = DES_BLOCK_SIZE,
1177                         .min_keysize    = DES_KEY_SIZE,
1178                         .max_keysize    = DES_KEY_SIZE,
1179                         .setkey         = n2_des_setkey,
1180                         .encrypt        = n2_encrypt_chaining,
1181                         .decrypt        = n2_decrypt_chaining,
1182                 },
1183         },
1184         {       .name           = "cfb(des)",
1185                 .drv_name       = "cfb-des",
1186                 .block_size     = DES_BLOCK_SIZE,
1187                 .enc_type       = (ENC_TYPE_ALG_DES |
1188                                    ENC_TYPE_CHAINING_CFB),
1189                 .ablkcipher     = {
1190                         .min_keysize    = DES_KEY_SIZE,
1191                         .max_keysize    = DES_KEY_SIZE,
1192                         .setkey         = n2_des_setkey,
1193                         .encrypt        = n2_encrypt_chaining,
1194                         .decrypt        = n2_decrypt_chaining,
1195                 },
1196         },
1197
1198         /* 3DES: ECB CBC and CFB are supported */
1199         {       .name           = "ecb(des3_ede)",
1200                 .drv_name       = "ecb-3des",
1201                 .block_size     = DES_BLOCK_SIZE,
1202                 .enc_type       = (ENC_TYPE_ALG_3DES |
1203                                    ENC_TYPE_CHAINING_ECB),
1204                 .ablkcipher     = {
1205                         .min_keysize    = 3 * DES_KEY_SIZE,
1206                         .max_keysize    = 3 * DES_KEY_SIZE,
1207                         .setkey         = n2_3des_setkey,
1208                         .encrypt        = n2_encrypt_ecb,
1209                         .decrypt        = n2_decrypt_ecb,
1210                 },
1211         },
1212         {       .name           = "cbc(des3_ede)",
1213                 .drv_name       = "cbc-3des",
1214                 .block_size     = DES_BLOCK_SIZE,
1215                 .enc_type       = (ENC_TYPE_ALG_3DES |
1216                                    ENC_TYPE_CHAINING_CBC),
1217                 .ablkcipher     = {
1218                         .ivsize         = DES_BLOCK_SIZE,
1219                         .min_keysize    = 3 * DES_KEY_SIZE,
1220                         .max_keysize    = 3 * DES_KEY_SIZE,
1221                         .setkey         = n2_3des_setkey,
1222                         .encrypt        = n2_encrypt_chaining,
1223                         .decrypt        = n2_decrypt_chaining,
1224                 },
1225         },
1226         {       .name           = "cfb(des3_ede)",
1227                 .drv_name       = "cfb-3des",
1228                 .block_size     = DES_BLOCK_SIZE,
1229                 .enc_type       = (ENC_TYPE_ALG_3DES |
1230                                    ENC_TYPE_CHAINING_CFB),
1231                 .ablkcipher     = {
1232                         .min_keysize    = 3 * DES_KEY_SIZE,
1233                         .max_keysize    = 3 * DES_KEY_SIZE,
1234                         .setkey         = n2_3des_setkey,
1235                         .encrypt        = n2_encrypt_chaining,
1236                         .decrypt        = n2_decrypt_chaining,
1237                 },
1238         },
1239         /* AES: ECB CBC and CTR are supported */
1240         {       .name           = "ecb(aes)",
1241                 .drv_name       = "ecb-aes",
1242                 .block_size     = AES_BLOCK_SIZE,
1243                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1244                                    ENC_TYPE_CHAINING_ECB),
1245                 .ablkcipher     = {
1246                         .min_keysize    = AES_MIN_KEY_SIZE,
1247                         .max_keysize    = AES_MAX_KEY_SIZE,
1248                         .setkey         = n2_aes_setkey,
1249                         .encrypt        = n2_encrypt_ecb,
1250                         .decrypt        = n2_decrypt_ecb,
1251                 },
1252         },
1253         {       .name           = "cbc(aes)",
1254                 .drv_name       = "cbc-aes",
1255                 .block_size     = AES_BLOCK_SIZE,
1256                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1257                                    ENC_TYPE_CHAINING_CBC),
1258                 .ablkcipher     = {
1259                         .ivsize         = AES_BLOCK_SIZE,
1260                         .min_keysize    = AES_MIN_KEY_SIZE,
1261                         .max_keysize    = AES_MAX_KEY_SIZE,
1262                         .setkey         = n2_aes_setkey,
1263                         .encrypt        = n2_encrypt_chaining,
1264                         .decrypt        = n2_decrypt_chaining,
1265                 },
1266         },
1267         {       .name           = "ctr(aes)",
1268                 .drv_name       = "ctr-aes",
1269                 .block_size     = AES_BLOCK_SIZE,
1270                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1271                                    ENC_TYPE_CHAINING_COUNTER),
1272                 .ablkcipher     = {
1273                         .ivsize         = AES_BLOCK_SIZE,
1274                         .min_keysize    = AES_MIN_KEY_SIZE,
1275                         .max_keysize    = AES_MAX_KEY_SIZE,
1276                         .setkey         = n2_aes_setkey,
1277                         .encrypt        = n2_encrypt_chaining,
1278                         .decrypt        = n2_encrypt_chaining,
1279                 },
1280         },
1281
1282 };
1283 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1284
1285 static LIST_HEAD(cipher_algs);
1286
1287 struct n2_hash_tmpl {
1288         const char      *name;
1289         const u8        *hash_zero;
1290         const u32       *hash_init;
1291         u8              hw_op_hashsz;
1292         u8              digest_size;
1293         u8              block_size;
1294         u8              auth_type;
1295         u8              hmac_type;
1296 };
1297
1298 static const u32 md5_init[MD5_HASH_WORDS] = {
1299         cpu_to_le32(MD5_H0),
1300         cpu_to_le32(MD5_H1),
1301         cpu_to_le32(MD5_H2),
1302         cpu_to_le32(MD5_H3),
1303 };
1304 static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1305         SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1306 };
1307 static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1308         SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1309         SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1310 };
1311 static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1312         SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1313         SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1314 };
1315
1316 static const struct n2_hash_tmpl hash_tmpls[] = {
1317         { .name         = "md5",
1318           .hash_zero    = md5_zero_message_hash,
1319           .hash_init    = md5_init,
1320           .auth_type    = AUTH_TYPE_MD5,
1321           .hmac_type    = AUTH_TYPE_HMAC_MD5,
1322           .hw_op_hashsz = MD5_DIGEST_SIZE,
1323           .digest_size  = MD5_DIGEST_SIZE,
1324           .block_size   = MD5_HMAC_BLOCK_SIZE },
1325         { .name         = "sha1",
1326           .hash_zero    = sha1_zero_message_hash,
1327           .hash_init    = sha1_init,
1328           .auth_type    = AUTH_TYPE_SHA1,
1329           .hmac_type    = AUTH_TYPE_HMAC_SHA1,
1330           .hw_op_hashsz = SHA1_DIGEST_SIZE,
1331           .digest_size  = SHA1_DIGEST_SIZE,
1332           .block_size   = SHA1_BLOCK_SIZE },
1333         { .name         = "sha256",
1334           .hash_zero    = sha256_zero_message_hash,
1335           .hash_init    = sha256_init,
1336           .auth_type    = AUTH_TYPE_SHA256,
1337           .hmac_type    = AUTH_TYPE_HMAC_SHA256,
1338           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1339           .digest_size  = SHA256_DIGEST_SIZE,
1340           .block_size   = SHA256_BLOCK_SIZE },
1341         { .name         = "sha224",
1342           .hash_zero    = sha224_zero_message_hash,
1343           .hash_init    = sha224_init,
1344           .auth_type    = AUTH_TYPE_SHA256,
1345           .hmac_type    = AUTH_TYPE_RESERVED,
1346           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1347           .digest_size  = SHA224_DIGEST_SIZE,
1348           .block_size   = SHA224_BLOCK_SIZE },
1349 };
1350 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1351
1352 static LIST_HEAD(ahash_algs);
1353 static LIST_HEAD(hmac_algs);
1354
1355 static int algs_registered;
1356
1357 static void __n2_unregister_algs(void)
1358 {
1359         struct n2_cipher_alg *cipher, *cipher_tmp;
1360         struct n2_ahash_alg *alg, *alg_tmp;
1361         struct n2_hmac_alg *hmac, *hmac_tmp;
1362
1363         list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1364                 crypto_unregister_alg(&cipher->alg);
1365                 list_del(&cipher->entry);
1366                 kfree(cipher);
1367         }
1368         list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1369                 crypto_unregister_ahash(&hmac->derived.alg);
1370                 list_del(&hmac->derived.entry);
1371                 kfree(hmac);
1372         }
1373         list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1374                 crypto_unregister_ahash(&alg->alg);
1375                 list_del(&alg->entry);
1376                 kfree(alg);
1377         }
1378 }
1379
1380 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1381 {
1382         tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1383         return 0;
1384 }
1385
1386 static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1387 {
1388         struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1389         struct crypto_alg *alg;
1390         int err;
1391
1392         if (!p)
1393                 return -ENOMEM;
1394
1395         alg = &p->alg;
1396
1397         snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1398         snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1399         alg->cra_priority = N2_CRA_PRIORITY;
1400         alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1401                          CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1402         alg->cra_blocksize = tmpl->block_size;
1403         p->enc_type = tmpl->enc_type;
1404         alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1405         alg->cra_type = &crypto_ablkcipher_type;
1406         alg->cra_u.ablkcipher = tmpl->ablkcipher;
1407         alg->cra_init = n2_cipher_cra_init;
1408         alg->cra_module = THIS_MODULE;
1409
1410         list_add(&p->entry, &cipher_algs);
1411         err = crypto_register_alg(alg);
1412         if (err) {
1413                 pr_err("%s alg registration failed\n", alg->cra_name);
1414                 list_del(&p->entry);
1415                 kfree(p);
1416         } else {
1417                 pr_info("%s alg registered\n", alg->cra_name);
1418         }
1419         return err;
1420 }
1421
1422 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1423 {
1424         struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1425         struct ahash_alg *ahash;
1426         struct crypto_alg *base;
1427         int err;
1428
1429         if (!p)
1430                 return -ENOMEM;
1431
1432         p->child_alg = n2ahash->alg.halg.base.cra_name;
1433         memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1434         INIT_LIST_HEAD(&p->derived.entry);
1435
1436         ahash = &p->derived.alg;
1437         ahash->digest = n2_hmac_async_digest;
1438         ahash->setkey = n2_hmac_async_setkey;
1439
1440         base = &ahash->halg.base;
1441         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1442         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1443
1444         base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1445         base->cra_init = n2_hmac_cra_init;
1446         base->cra_exit = n2_hmac_cra_exit;
1447
1448         list_add(&p->derived.entry, &hmac_algs);
1449         err = crypto_register_ahash(ahash);
1450         if (err) {
1451                 pr_err("%s alg registration failed\n", base->cra_name);
1452                 list_del(&p->derived.entry);
1453                 kfree(p);
1454         } else {
1455                 pr_info("%s alg registered\n", base->cra_name);
1456         }
1457         return err;
1458 }
1459
1460 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1461 {
1462         struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1463         struct hash_alg_common *halg;
1464         struct crypto_alg *base;
1465         struct ahash_alg *ahash;
1466         int err;
1467
1468         if (!p)
1469                 return -ENOMEM;
1470
1471         p->hash_zero = tmpl->hash_zero;
1472         p->hash_init = tmpl->hash_init;
1473         p->auth_type = tmpl->auth_type;
1474         p->hmac_type = tmpl->hmac_type;
1475         p->hw_op_hashsz = tmpl->hw_op_hashsz;
1476         p->digest_size = tmpl->digest_size;
1477
1478         ahash = &p->alg;
1479         ahash->init = n2_hash_async_init;
1480         ahash->update = n2_hash_async_update;
1481         ahash->final = n2_hash_async_final;
1482         ahash->finup = n2_hash_async_finup;
1483         ahash->digest = n2_hash_async_digest;
1484         ahash->export = n2_hash_async_noexport;
1485         ahash->import = n2_hash_async_noimport;
1486
1487         halg = &ahash->halg;
1488         halg->digestsize = tmpl->digest_size;
1489
1490         base = &halg->base;
1491         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1492         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1493         base->cra_priority = N2_CRA_PRIORITY;
1494         base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1495                           CRYPTO_ALG_NEED_FALLBACK;
1496         base->cra_blocksize = tmpl->block_size;
1497         base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1498         base->cra_module = THIS_MODULE;
1499         base->cra_init = n2_hash_cra_init;
1500         base->cra_exit = n2_hash_cra_exit;
1501
1502         list_add(&p->entry, &ahash_algs);
1503         err = crypto_register_ahash(ahash);
1504         if (err) {
1505                 pr_err("%s alg registration failed\n", base->cra_name);
1506                 list_del(&p->entry);
1507                 kfree(p);
1508         } else {
1509                 pr_info("%s alg registered\n", base->cra_name);
1510         }
1511         if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1512                 err = __n2_register_one_hmac(p);
1513         return err;
1514 }
1515
1516 static int n2_register_algs(void)
1517 {
1518         int i, err = 0;
1519
1520         mutex_lock(&spu_lock);
1521         if (algs_registered++)
1522                 goto out;
1523
1524         for (i = 0; i < NUM_HASH_TMPLS; i++) {
1525                 err = __n2_register_one_ahash(&hash_tmpls[i]);
1526                 if (err) {
1527                         __n2_unregister_algs();
1528                         goto out;
1529                 }
1530         }
1531         for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1532                 err = __n2_register_one_cipher(&cipher_tmpls[i]);
1533                 if (err) {
1534                         __n2_unregister_algs();
1535                         goto out;
1536                 }
1537         }
1538
1539 out:
1540         mutex_unlock(&spu_lock);
1541         return err;
1542 }
1543
1544 static void n2_unregister_algs(void)
1545 {
1546         mutex_lock(&spu_lock);
1547         if (!--algs_registered)
1548                 __n2_unregister_algs();
1549         mutex_unlock(&spu_lock);
1550 }
1551
1552 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1553  * a devino.  This isn't very useful to us because all of the
1554  * interrupts listed in the device_node have been translated to
1555  * Linux virtual IRQ cookie numbers.
1556  *
1557  * So we have to back-translate, going through the 'intr' and 'ino'
1558  * property tables of the n2cp MDESC node, matching it with the OF
1559  * 'interrupts' property entries, in order to to figure out which
1560  * devino goes to which already-translated IRQ.
1561  */
1562 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1563                              unsigned long dev_ino)
1564 {
1565         const unsigned int *dev_intrs;
1566         unsigned int intr;
1567         int i;
1568
1569         for (i = 0; i < ip->num_intrs; i++) {
1570                 if (ip->ino_table[i].ino == dev_ino)
1571                         break;
1572         }
1573         if (i == ip->num_intrs)
1574                 return -ENODEV;
1575
1576         intr = ip->ino_table[i].intr;
1577
1578         dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1579         if (!dev_intrs)
1580                 return -ENODEV;
1581
1582         for (i = 0; i < dev->archdata.num_irqs; i++) {
1583                 if (dev_intrs[i] == intr)
1584                         return i;
1585         }
1586
1587         return -ENODEV;
1588 }
1589
1590 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1591                        const char *irq_name, struct spu_queue *p,
1592                        irq_handler_t handler)
1593 {
1594         unsigned long herr;
1595         int index;
1596
1597         herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1598         if (herr)
1599                 return -EINVAL;
1600
1601         index = find_devino_index(dev, ip, p->devino);
1602         if (index < 0)
1603                 return index;
1604
1605         p->irq = dev->archdata.irqs[index];
1606
1607         sprintf(p->irq_name, "%s-%d", irq_name, index);
1608
1609         return request_irq(p->irq, handler, 0, p->irq_name, p);
1610 }
1611
1612 static struct kmem_cache *queue_cache[2];
1613
1614 static void *new_queue(unsigned long q_type)
1615 {
1616         return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1617 }
1618
1619 static void free_queue(void *p, unsigned long q_type)
1620 {
1621         kmem_cache_free(queue_cache[q_type - 1], p);
1622 }
1623
1624 static int queue_cache_init(void)
1625 {
1626         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1627                 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1628                         kmem_cache_create("mau_queue",
1629                                           (MAU_NUM_ENTRIES *
1630                                            MAU_ENTRY_SIZE),
1631                                           MAU_ENTRY_SIZE, 0, NULL);
1632         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1633                 return -ENOMEM;
1634
1635         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1636                 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1637                         kmem_cache_create("cwq_queue",
1638                                           (CWQ_NUM_ENTRIES *
1639                                            CWQ_ENTRY_SIZE),
1640                                           CWQ_ENTRY_SIZE, 0, NULL);
1641         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1642                 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1643                 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1644                 return -ENOMEM;
1645         }
1646         return 0;
1647 }
1648
1649 static void queue_cache_destroy(void)
1650 {
1651         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1652         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1653         queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1654         queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1655 }
1656
1657 static long spu_queue_register_workfn(void *arg)
1658 {
1659         struct spu_qreg *qr = arg;
1660         struct spu_queue *p = qr->queue;
1661         unsigned long q_type = qr->type;
1662         unsigned long hv_ret;
1663
1664         hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1665                                  CWQ_NUM_ENTRIES, &p->qhandle);
1666         if (!hv_ret)
1667                 sun4v_ncs_sethead_marker(p->qhandle, 0);
1668
1669         return hv_ret ? -EINVAL : 0;
1670 }
1671
1672 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1673 {
1674         int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1675         struct spu_qreg qr = { .queue = p, .type = q_type };
1676
1677         return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1678 }
1679
1680 static int spu_queue_setup(struct spu_queue *p)
1681 {
1682         int err;
1683
1684         p->q = new_queue(p->q_type);
1685         if (!p->q)
1686                 return -ENOMEM;
1687
1688         err = spu_queue_register(p, p->q_type);
1689         if (err) {
1690                 free_queue(p->q, p->q_type);
1691                 p->q = NULL;
1692         }
1693
1694         return err;
1695 }
1696
1697 static void spu_queue_destroy(struct spu_queue *p)
1698 {
1699         unsigned long hv_ret;
1700
1701         if (!p->q)
1702                 return;
1703
1704         hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1705
1706         if (!hv_ret)
1707                 free_queue(p->q, p->q_type);
1708 }
1709
1710 static void spu_list_destroy(struct list_head *list)
1711 {
1712         struct spu_queue *p, *n;
1713
1714         list_for_each_entry_safe(p, n, list, list) {
1715                 int i;
1716
1717                 for (i = 0; i < NR_CPUS; i++) {
1718                         if (cpu_to_cwq[i] == p)
1719                                 cpu_to_cwq[i] = NULL;
1720                 }
1721
1722                 if (p->irq) {
1723                         free_irq(p->irq, p);
1724                         p->irq = 0;
1725                 }
1726                 spu_queue_destroy(p);
1727                 list_del(&p->list);
1728                 kfree(p);
1729         }
1730 }
1731
1732 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1733  * gathering cpu membership information.
1734  */
1735 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1736                                struct platform_device *dev,
1737                                u64 node, struct spu_queue *p,
1738                                struct spu_queue **table)
1739 {
1740         u64 arc;
1741
1742         mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1743                 u64 tgt = mdesc_arc_target(mdesc, arc);
1744                 const char *name = mdesc_node_name(mdesc, tgt);
1745                 const u64 *id;
1746
1747                 if (strcmp(name, "cpu"))
1748                         continue;
1749                 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1750                 if (table[*id] != NULL) {
1751                         dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1752                                 dev->dev.of_node);
1753                         return -EINVAL;
1754                 }
1755                 cpumask_set_cpu(*id, &p->sharing);
1756                 table[*id] = p;
1757         }
1758         return 0;
1759 }
1760
1761 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1762 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1763                             struct platform_device *dev, struct mdesc_handle *mdesc,
1764                             u64 node, const char *iname, unsigned long q_type,
1765                             irq_handler_t handler, struct spu_queue **table)
1766 {
1767         struct spu_queue *p;
1768         int err;
1769
1770         p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1771         if (!p) {
1772                 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1773                         dev->dev.of_node);
1774                 return -ENOMEM;
1775         }
1776
1777         cpumask_clear(&p->sharing);
1778         spin_lock_init(&p->lock);
1779         p->q_type = q_type;
1780         INIT_LIST_HEAD(&p->jobs);
1781         list_add(&p->list, list);
1782
1783         err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1784         if (err)
1785                 return err;
1786
1787         err = spu_queue_setup(p);
1788         if (err)
1789                 return err;
1790
1791         return spu_map_ino(dev, ip, iname, p, handler);
1792 }
1793
1794 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1795                           struct spu_mdesc_info *ip, struct list_head *list,
1796                           const char *exec_name, unsigned long q_type,
1797                           irq_handler_t handler, struct spu_queue **table)
1798 {
1799         int err = 0;
1800         u64 node;
1801
1802         mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1803                 const char *type;
1804
1805                 type = mdesc_get_property(mdesc, node, "type", NULL);
1806                 if (!type || strcmp(type, exec_name))
1807                         continue;
1808
1809                 err = handle_exec_unit(ip, list, dev, mdesc, node,
1810                                        exec_name, q_type, handler, table);
1811                 if (err) {
1812                         spu_list_destroy(list);
1813                         break;
1814                 }
1815         }
1816
1817         return err;
1818 }
1819
1820 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1821                          struct spu_mdesc_info *ip)
1822 {
1823         const u64 *ino;
1824         int ino_len;
1825         int i;
1826
1827         ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1828         if (!ino) {
1829                 printk("NO 'ino'\n");
1830                 return -ENODEV;
1831         }
1832
1833         ip->num_intrs = ino_len / sizeof(u64);
1834         ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1835                                  ip->num_intrs),
1836                                 GFP_KERNEL);
1837         if (!ip->ino_table)
1838                 return -ENOMEM;
1839
1840         for (i = 0; i < ip->num_intrs; i++) {
1841                 struct ino_blob *b = &ip->ino_table[i];
1842                 b->intr = i + 1;
1843                 b->ino = ino[i];
1844         }
1845
1846         return 0;
1847 }
1848
1849 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1850                                 struct platform_device *dev,
1851                                 struct spu_mdesc_info *ip,
1852                                 const char *node_name)
1853 {
1854         const unsigned int *reg;
1855         u64 node;
1856
1857         reg = of_get_property(dev->dev.of_node, "reg", NULL);
1858         if (!reg)
1859                 return -ENODEV;
1860
1861         mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1862                 const char *name;
1863                 const u64 *chdl;
1864
1865                 name = mdesc_get_property(mdesc, node, "name", NULL);
1866                 if (!name || strcmp(name, node_name))
1867                         continue;
1868                 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1869                 if (!chdl || (*chdl != *reg))
1870                         continue;
1871                 ip->cfg_handle = *chdl;
1872                 return get_irq_props(mdesc, node, ip);
1873         }
1874
1875         return -ENODEV;
1876 }
1877
1878 static unsigned long n2_spu_hvapi_major;
1879 static unsigned long n2_spu_hvapi_minor;
1880
1881 static int n2_spu_hvapi_register(void)
1882 {
1883         int err;
1884
1885         n2_spu_hvapi_major = 2;
1886         n2_spu_hvapi_minor = 0;
1887
1888         err = sun4v_hvapi_register(HV_GRP_NCS,
1889                                    n2_spu_hvapi_major,
1890                                    &n2_spu_hvapi_minor);
1891
1892         if (!err)
1893                 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1894                         n2_spu_hvapi_major,
1895                         n2_spu_hvapi_minor);
1896
1897         return err;
1898 }
1899
1900 static void n2_spu_hvapi_unregister(void)
1901 {
1902         sun4v_hvapi_unregister(HV_GRP_NCS);
1903 }
1904
1905 static int global_ref;
1906
1907 static int grab_global_resources(void)
1908 {
1909         int err = 0;
1910
1911         mutex_lock(&spu_lock);
1912
1913         if (global_ref++)
1914                 goto out;
1915
1916         err = n2_spu_hvapi_register();
1917         if (err)
1918                 goto out;
1919
1920         err = queue_cache_init();
1921         if (err)
1922                 goto out_hvapi_release;
1923
1924         err = -ENOMEM;
1925         cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1926                              GFP_KERNEL);
1927         if (!cpu_to_cwq)
1928                 goto out_queue_cache_destroy;
1929
1930         cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1931                              GFP_KERNEL);
1932         if (!cpu_to_mau)
1933                 goto out_free_cwq_table;
1934
1935         err = 0;
1936
1937 out:
1938         if (err)
1939                 global_ref--;
1940         mutex_unlock(&spu_lock);
1941         return err;
1942
1943 out_free_cwq_table:
1944         kfree(cpu_to_cwq);
1945         cpu_to_cwq = NULL;
1946
1947 out_queue_cache_destroy:
1948         queue_cache_destroy();
1949
1950 out_hvapi_release:
1951         n2_spu_hvapi_unregister();
1952         goto out;
1953 }
1954
1955 static void release_global_resources(void)
1956 {
1957         mutex_lock(&spu_lock);
1958         if (!--global_ref) {
1959                 kfree(cpu_to_cwq);
1960                 cpu_to_cwq = NULL;
1961
1962                 kfree(cpu_to_mau);
1963                 cpu_to_mau = NULL;
1964
1965                 queue_cache_destroy();
1966                 n2_spu_hvapi_unregister();
1967         }
1968         mutex_unlock(&spu_lock);
1969 }
1970
1971 static struct n2_crypto *alloc_n2cp(void)
1972 {
1973         struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1974
1975         if (np)
1976                 INIT_LIST_HEAD(&np->cwq_list);
1977
1978         return np;
1979 }
1980
1981 static void free_n2cp(struct n2_crypto *np)
1982 {
1983         kfree(np->cwq_info.ino_table);
1984         np->cwq_info.ino_table = NULL;
1985
1986         kfree(np);
1987 }
1988
1989 static void n2_spu_driver_version(void)
1990 {
1991         static int n2_spu_version_printed;
1992
1993         if (n2_spu_version_printed++ == 0)
1994                 pr_info("%s", version);
1995 }
1996
1997 static int n2_crypto_probe(struct platform_device *dev)
1998 {
1999         struct mdesc_handle *mdesc;
2000         struct n2_crypto *np;
2001         int err;
2002
2003         n2_spu_driver_version();
2004
2005         pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
2006
2007         np = alloc_n2cp();
2008         if (!np) {
2009                 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
2010                         dev->dev.of_node);
2011                 return -ENOMEM;
2012         }
2013
2014         err = grab_global_resources();
2015         if (err) {
2016                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2017                         dev->dev.of_node);
2018                 goto out_free_n2cp;
2019         }
2020
2021         mdesc = mdesc_grab();
2022
2023         if (!mdesc) {
2024                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2025                         dev->dev.of_node);
2026                 err = -ENODEV;
2027                 goto out_free_global;
2028         }
2029         err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2030         if (err) {
2031                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2032                         dev->dev.of_node);
2033                 mdesc_release(mdesc);
2034                 goto out_free_global;
2035         }
2036
2037         err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2038                              "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2039                              cpu_to_cwq);
2040         mdesc_release(mdesc);
2041
2042         if (err) {
2043                 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2044                         dev->dev.of_node);
2045                 goto out_free_global;
2046         }
2047
2048         err = n2_register_algs();
2049         if (err) {
2050                 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2051                         dev->dev.of_node);
2052                 goto out_free_spu_list;
2053         }
2054
2055         dev_set_drvdata(&dev->dev, np);
2056
2057         return 0;
2058
2059 out_free_spu_list:
2060         spu_list_destroy(&np->cwq_list);
2061
2062 out_free_global:
2063         release_global_resources();
2064
2065 out_free_n2cp:
2066         free_n2cp(np);
2067
2068         return err;
2069 }
2070
2071 static int n2_crypto_remove(struct platform_device *dev)
2072 {
2073         struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2074
2075         n2_unregister_algs();
2076
2077         spu_list_destroy(&np->cwq_list);
2078
2079         release_global_resources();
2080
2081         free_n2cp(np);
2082
2083         return 0;
2084 }
2085
2086 static struct n2_mau *alloc_ncp(void)
2087 {
2088         struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2089
2090         if (mp)
2091                 INIT_LIST_HEAD(&mp->mau_list);
2092
2093         return mp;
2094 }
2095
2096 static void free_ncp(struct n2_mau *mp)
2097 {
2098         kfree(mp->mau_info.ino_table);
2099         mp->mau_info.ino_table = NULL;
2100
2101         kfree(mp);
2102 }
2103
2104 static int n2_mau_probe(struct platform_device *dev)
2105 {
2106         struct mdesc_handle *mdesc;
2107         struct n2_mau *mp;
2108         int err;
2109
2110         n2_spu_driver_version();
2111
2112         pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2113
2114         mp = alloc_ncp();
2115         if (!mp) {
2116                 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2117                         dev->dev.of_node);
2118                 return -ENOMEM;
2119         }
2120
2121         err = grab_global_resources();
2122         if (err) {
2123                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2124                         dev->dev.of_node);
2125                 goto out_free_ncp;
2126         }
2127
2128         mdesc = mdesc_grab();
2129
2130         if (!mdesc) {
2131                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2132                         dev->dev.of_node);
2133                 err = -ENODEV;
2134                 goto out_free_global;
2135         }
2136
2137         err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2138         if (err) {
2139                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2140                         dev->dev.of_node);
2141                 mdesc_release(mdesc);
2142                 goto out_free_global;
2143         }
2144
2145         err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2146                              "mau", HV_NCS_QTYPE_MAU, mau_intr,
2147                              cpu_to_mau);
2148         mdesc_release(mdesc);
2149
2150         if (err) {
2151                 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2152                         dev->dev.of_node);
2153                 goto out_free_global;
2154         }
2155
2156         dev_set_drvdata(&dev->dev, mp);
2157
2158         return 0;
2159
2160 out_free_global:
2161         release_global_resources();
2162
2163 out_free_ncp:
2164         free_ncp(mp);
2165
2166         return err;
2167 }
2168
2169 static int n2_mau_remove(struct platform_device *dev)
2170 {
2171         struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2172
2173         spu_list_destroy(&mp->mau_list);
2174
2175         release_global_resources();
2176
2177         free_ncp(mp);
2178
2179         return 0;
2180 }
2181
2182 static const struct of_device_id n2_crypto_match[] = {
2183         {
2184                 .name = "n2cp",
2185                 .compatible = "SUNW,n2-cwq",
2186         },
2187         {
2188                 .name = "n2cp",
2189                 .compatible = "SUNW,vf-cwq",
2190         },
2191         {
2192                 .name = "n2cp",
2193                 .compatible = "SUNW,kt-cwq",
2194         },
2195         {},
2196 };
2197
2198 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2199
2200 static struct platform_driver n2_crypto_driver = {
2201         .driver = {
2202                 .name           =       "n2cp",
2203                 .of_match_table =       n2_crypto_match,
2204         },
2205         .probe          =       n2_crypto_probe,
2206         .remove         =       n2_crypto_remove,
2207 };
2208
2209 static const struct of_device_id n2_mau_match[] = {
2210         {
2211                 .name = "ncp",
2212                 .compatible = "SUNW,n2-mau",
2213         },
2214         {
2215                 .name = "ncp",
2216                 .compatible = "SUNW,vf-mau",
2217         },
2218         {
2219                 .name = "ncp",
2220                 .compatible = "SUNW,kt-mau",
2221         },
2222         {},
2223 };
2224
2225 MODULE_DEVICE_TABLE(of, n2_mau_match);
2226
2227 static struct platform_driver n2_mau_driver = {
2228         .driver = {
2229                 .name           =       "ncp",
2230                 .of_match_table =       n2_mau_match,
2231         },
2232         .probe          =       n2_mau_probe,
2233         .remove         =       n2_mau_remove,
2234 };
2235
2236 static struct platform_driver * const drivers[] = {
2237         &n2_crypto_driver,
2238         &n2_mau_driver,
2239 };
2240
2241 static int __init n2_init(void)
2242 {
2243         return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2244 }
2245
2246 static void __exit n2_exit(void)
2247 {
2248         platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2249 }
2250
2251 module_init(n2_init);
2252 module_exit(n2_exit);