Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / cpufreq / powernv-cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * POWERNV cpufreq driver for the IBM POWER processors
4  *
5  * (C) Copyright IBM 2014
6  *
7  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
8  */
9
10 #define pr_fmt(fmt)     "powernv-cpufreq: " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/sysfs.h>
14 #include <linux/cpumask.h>
15 #include <linux/module.h>
16 #include <linux/cpufreq.h>
17 #include <linux/smp.h>
18 #include <linux/of.h>
19 #include <linux/reboot.h>
20 #include <linux/slab.h>
21 #include <linux/cpu.h>
22 #include <linux/hashtable.h>
23 #include <trace/events/power.h>
24
25 #include <asm/cputhreads.h>
26 #include <asm/firmware.h>
27 #include <asm/reg.h>
28 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
29 #include <asm/opal.h>
30 #include <linux/timer.h>
31
32 #define POWERNV_MAX_PSTATES_ORDER  8
33 #define POWERNV_MAX_PSTATES     (1UL << (POWERNV_MAX_PSTATES_ORDER))
34 #define PMSR_PSAFE_ENABLE       (1UL << 30)
35 #define PMSR_SPR_EM_DISABLE     (1UL << 31)
36 #define MAX_PSTATE_SHIFT        32
37 #define LPSTATE_SHIFT           48
38 #define GPSTATE_SHIFT           56
39
40 #define MAX_RAMP_DOWN_TIME                              5120
41 /*
42  * On an idle system we want the global pstate to ramp-down from max value to
43  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
44  * then ramp-down rapidly later on.
45  *
46  * This gives a percentage rampdown for time elapsed in milliseconds.
47  * ramp_down_percentage = ((ms * ms) >> 18)
48  *                      ~= 3.8 * (sec * sec)
49  *
50  * At 0 ms      ramp_down_percent = 0
51  * At 5120 ms   ramp_down_percent = 100
52  */
53 #define ramp_down_percent(time)         ((time * time) >> 18)
54
55 /* Interval after which the timer is queued to bring down global pstate */
56 #define GPSTATE_TIMER_INTERVAL                          2000
57
58 /**
59  * struct global_pstate_info -  Per policy data structure to maintain history of
60  *                              global pstates
61  * @highest_lpstate_idx:        The local pstate index from which we are
62  *                              ramping down
63  * @elapsed_time:               Time in ms spent in ramping down from
64  *                              highest_lpstate_idx
65  * @last_sampled_time:          Time from boot in ms when global pstates were
66  *                              last set
67  * @last_lpstate_idx,           Last set value of local pstate and global
68  * last_gpstate_idx             pstate in terms of cpufreq table index
69  * @timer:                      Is used for ramping down if cpu goes idle for
70  *                              a long time with global pstate held high
71  * @gpstate_lock:               A spinlock to maintain synchronization between
72  *                              routines called by the timer handler and
73  *                              governer's target_index calls
74  */
75 struct global_pstate_info {
76         int highest_lpstate_idx;
77         unsigned int elapsed_time;
78         unsigned int last_sampled_time;
79         int last_lpstate_idx;
80         int last_gpstate_idx;
81         spinlock_t gpstate_lock;
82         struct timer_list timer;
83         struct cpufreq_policy *policy;
84 };
85
86 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
87
88 DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
89 /**
90  * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
91  *                                indexed by a function of pstate id.
92  *
93  * @pstate_id: pstate id for this entry.
94  *
95  * @cpufreq_table_idx: Index into the powernv_freqs
96  *                     cpufreq_frequency_table for frequency
97  *                     corresponding to pstate_id.
98  *
99  * @hentry: hlist_node that hooks this entry into the pstate_revmap
100  *          hashtable
101  */
102 struct pstate_idx_revmap_data {
103         u8 pstate_id;
104         unsigned int cpufreq_table_idx;
105         struct hlist_node hentry;
106 };
107
108 static bool rebooting, throttled, occ_reset;
109
110 static const char * const throttle_reason[] = {
111         "No throttling",
112         "Power Cap",
113         "Processor Over Temperature",
114         "Power Supply Failure",
115         "Over Current",
116         "OCC Reset"
117 };
118
119 enum throttle_reason_type {
120         NO_THROTTLE = 0,
121         POWERCAP,
122         CPU_OVERTEMP,
123         POWER_SUPPLY_FAILURE,
124         OVERCURRENT,
125         OCC_RESET_THROTTLE,
126         OCC_MAX_REASON
127 };
128
129 static struct chip {
130         unsigned int id;
131         bool throttled;
132         bool restore;
133         u8 throttle_reason;
134         cpumask_t mask;
135         struct work_struct throttle;
136         int throttle_turbo;
137         int throttle_sub_turbo;
138         int reason[OCC_MAX_REASON];
139 } *chips;
140
141 static int nr_chips;
142 static DEFINE_PER_CPU(struct chip *, chip_info);
143
144 /*
145  * Note:
146  * The set of pstates consists of contiguous integers.
147  * powernv_pstate_info stores the index of the frequency table for
148  * max, min and nominal frequencies. It also stores number of
149  * available frequencies.
150  *
151  * powernv_pstate_info.nominal indicates the index to the highest
152  * non-turbo frequency.
153  */
154 static struct powernv_pstate_info {
155         unsigned int min;
156         unsigned int max;
157         unsigned int nominal;
158         unsigned int nr_pstates;
159         bool wof_enabled;
160 } powernv_pstate_info;
161
162 static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
163 {
164         return ((pmsr_val >> shift) & 0xFF);
165 }
166
167 #define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
168 #define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
169 #define extract_max_pstate(x)  extract_pstate(x, MAX_PSTATE_SHIFT)
170
171 /* Use following functions for conversions between pstate_id and index */
172
173 /**
174  * idx_to_pstate : Returns the pstate id corresponding to the
175  *                 frequency in the cpufreq frequency table
176  *                 powernv_freqs indexed by @i.
177  *
178  *                 If @i is out of bound, this will return the pstate
179  *                 corresponding to the nominal frequency.
180  */
181 static inline u8 idx_to_pstate(unsigned int i)
182 {
183         if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
184                 pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
185                 return powernv_freqs[powernv_pstate_info.nominal].driver_data;
186         }
187
188         return powernv_freqs[i].driver_data;
189 }
190
191 /**
192  * pstate_to_idx : Returns the index in the cpufreq frequencytable
193  *                 powernv_freqs for the frequency whose corresponding
194  *                 pstate id is @pstate.
195  *
196  *                 If no frequency corresponding to @pstate is found,
197  *                 this will return the index of the nominal
198  *                 frequency.
199  */
200 static unsigned int pstate_to_idx(u8 pstate)
201 {
202         unsigned int key = pstate % POWERNV_MAX_PSTATES;
203         struct pstate_idx_revmap_data *revmap_data;
204
205         hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
206                 if (revmap_data->pstate_id == pstate)
207                         return revmap_data->cpufreq_table_idx;
208         }
209
210         pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
211         return powernv_pstate_info.nominal;
212 }
213
214 static inline void reset_gpstates(struct cpufreq_policy *policy)
215 {
216         struct global_pstate_info *gpstates = policy->driver_data;
217
218         gpstates->highest_lpstate_idx = 0;
219         gpstates->elapsed_time = 0;
220         gpstates->last_sampled_time = 0;
221         gpstates->last_lpstate_idx = 0;
222         gpstates->last_gpstate_idx = 0;
223 }
224
225 /*
226  * Initialize the freq table based on data obtained
227  * from the firmware passed via device-tree
228  */
229 static int init_powernv_pstates(void)
230 {
231         struct device_node *power_mgt;
232         int i, nr_pstates = 0;
233         const __be32 *pstate_ids, *pstate_freqs;
234         u32 len_ids, len_freqs;
235         u32 pstate_min, pstate_max, pstate_nominal;
236         u32 pstate_turbo, pstate_ultra_turbo;
237         int rc = -ENODEV;
238
239         power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
240         if (!power_mgt) {
241                 pr_warn("power-mgt node not found\n");
242                 return -ENODEV;
243         }
244
245         if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
246                 pr_warn("ibm,pstate-min node not found\n");
247                 goto out;
248         }
249
250         if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
251                 pr_warn("ibm,pstate-max node not found\n");
252                 goto out;
253         }
254
255         if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
256                                  &pstate_nominal)) {
257                 pr_warn("ibm,pstate-nominal not found\n");
258                 goto out;
259         }
260
261         if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
262                                  &pstate_ultra_turbo)) {
263                 powernv_pstate_info.wof_enabled = false;
264                 goto next;
265         }
266
267         if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
268                                  &pstate_turbo)) {
269                 powernv_pstate_info.wof_enabled = false;
270                 goto next;
271         }
272
273         if (pstate_turbo == pstate_ultra_turbo)
274                 powernv_pstate_info.wof_enabled = false;
275         else
276                 powernv_pstate_info.wof_enabled = true;
277
278 next:
279         pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
280                 pstate_nominal, pstate_max);
281         pr_info("Workload Optimized Frequency is %s in the platform\n",
282                 (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
283
284         pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
285         if (!pstate_ids) {
286                 pr_warn("ibm,pstate-ids not found\n");
287                 goto out;
288         }
289
290         pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
291                                       &len_freqs);
292         if (!pstate_freqs) {
293                 pr_warn("ibm,pstate-frequencies-mhz not found\n");
294                 goto out;
295         }
296
297         if (len_ids != len_freqs) {
298                 pr_warn("Entries in ibm,pstate-ids and "
299                         "ibm,pstate-frequencies-mhz does not match\n");
300         }
301
302         nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
303         if (!nr_pstates) {
304                 pr_warn("No PStates found\n");
305                 goto out;
306         }
307
308         powernv_pstate_info.nr_pstates = nr_pstates;
309         pr_debug("NR PStates %d\n", nr_pstates);
310
311         for (i = 0; i < nr_pstates; i++) {
312                 u32 id = be32_to_cpu(pstate_ids[i]);
313                 u32 freq = be32_to_cpu(pstate_freqs[i]);
314                 struct pstate_idx_revmap_data *revmap_data;
315                 unsigned int key;
316
317                 pr_debug("PState id %d freq %d MHz\n", id, freq);
318                 powernv_freqs[i].frequency = freq * 1000; /* kHz */
319                 powernv_freqs[i].driver_data = id & 0xFF;
320
321                 revmap_data = kmalloc(sizeof(*revmap_data), GFP_KERNEL);
322                 if (!revmap_data) {
323                         rc = -ENOMEM;
324                         goto out;
325                 }
326
327                 revmap_data->pstate_id = id & 0xFF;
328                 revmap_data->cpufreq_table_idx = i;
329                 key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
330                 hash_add(pstate_revmap, &revmap_data->hentry, key);
331
332                 if (id == pstate_max)
333                         powernv_pstate_info.max = i;
334                 if (id == pstate_nominal)
335                         powernv_pstate_info.nominal = i;
336                 if (id == pstate_min)
337                         powernv_pstate_info.min = i;
338
339                 if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
340                         int j;
341
342                         for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
343                                 powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
344                 }
345         }
346
347         /* End of list marker entry */
348         powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
349
350         of_node_put(power_mgt);
351         return 0;
352 out:
353         of_node_put(power_mgt);
354         return rc;
355 }
356
357 /* Returns the CPU frequency corresponding to the pstate_id. */
358 static unsigned int pstate_id_to_freq(u8 pstate_id)
359 {
360         int i;
361
362         i = pstate_to_idx(pstate_id);
363         if (i >= powernv_pstate_info.nr_pstates || i < 0) {
364                 pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
365                         pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
366                 i = powernv_pstate_info.nominal;
367         }
368
369         return powernv_freqs[i].frequency;
370 }
371
372 /*
373  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
374  * the firmware
375  */
376 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
377                                         char *buf)
378 {
379         return sprintf(buf, "%u\n",
380                 powernv_freqs[powernv_pstate_info.nominal].frequency);
381 }
382
383 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
384         __ATTR_RO(cpuinfo_nominal_freq);
385
386 #define SCALING_BOOST_FREQS_ATTR_INDEX          2
387
388 static struct freq_attr *powernv_cpu_freq_attr[] = {
389         &cpufreq_freq_attr_scaling_available_freqs,
390         &cpufreq_freq_attr_cpuinfo_nominal_freq,
391         &cpufreq_freq_attr_scaling_boost_freqs,
392         NULL,
393 };
394
395 #define throttle_attr(name, member)                                     \
396 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)    \
397 {                                                                       \
398         struct chip *chip = per_cpu(chip_info, policy->cpu);            \
399                                                                         \
400         return sprintf(buf, "%u\n", chip->member);                      \
401 }                                                                       \
402                                                                         \
403 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)          \
404
405 throttle_attr(unthrottle, reason[NO_THROTTLE]);
406 throttle_attr(powercap, reason[POWERCAP]);
407 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
408 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
409 throttle_attr(overcurrent, reason[OVERCURRENT]);
410 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
411 throttle_attr(turbo_stat, throttle_turbo);
412 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
413
414 static struct attribute *throttle_attrs[] = {
415         &throttle_attr_unthrottle.attr,
416         &throttle_attr_powercap.attr,
417         &throttle_attr_overtemp.attr,
418         &throttle_attr_supply_fault.attr,
419         &throttle_attr_overcurrent.attr,
420         &throttle_attr_occ_reset.attr,
421         &throttle_attr_turbo_stat.attr,
422         &throttle_attr_sub_turbo_stat.attr,
423         NULL,
424 };
425
426 static const struct attribute_group throttle_attr_grp = {
427         .name   = "throttle_stats",
428         .attrs  = throttle_attrs,
429 };
430
431 /* Helper routines */
432
433 /* Access helpers to power mgt SPR */
434
435 static inline unsigned long get_pmspr(unsigned long sprn)
436 {
437         switch (sprn) {
438         case SPRN_PMCR:
439                 return mfspr(SPRN_PMCR);
440
441         case SPRN_PMICR:
442                 return mfspr(SPRN_PMICR);
443
444         case SPRN_PMSR:
445                 return mfspr(SPRN_PMSR);
446         }
447         BUG();
448 }
449
450 static inline void set_pmspr(unsigned long sprn, unsigned long val)
451 {
452         switch (sprn) {
453         case SPRN_PMCR:
454                 mtspr(SPRN_PMCR, val);
455                 return;
456
457         case SPRN_PMICR:
458                 mtspr(SPRN_PMICR, val);
459                 return;
460         }
461         BUG();
462 }
463
464 /*
465  * Use objects of this type to query/update
466  * pstates on a remote CPU via smp_call_function.
467  */
468 struct powernv_smp_call_data {
469         unsigned int freq;
470         u8 pstate_id;
471         u8 gpstate_id;
472 };
473
474 /*
475  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
476  *
477  * Called via smp_call_function.
478  *
479  * Note: The caller of the smp_call_function should pass an argument of
480  * the type 'struct powernv_smp_call_data *' along with this function.
481  *
482  * The current frequency on this CPU will be returned via
483  * ((struct powernv_smp_call_data *)arg)->freq;
484  */
485 static void powernv_read_cpu_freq(void *arg)
486 {
487         unsigned long pmspr_val;
488         struct powernv_smp_call_data *freq_data = arg;
489
490         pmspr_val = get_pmspr(SPRN_PMSR);
491         freq_data->pstate_id = extract_local_pstate(pmspr_val);
492         freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
493
494         pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
495                  raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
496                  freq_data->freq);
497 }
498
499 /*
500  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
501  * firmware for CPU 'cpu'. This value is reported through the sysfs
502  * file cpuinfo_cur_freq.
503  */
504 static unsigned int powernv_cpufreq_get(unsigned int cpu)
505 {
506         struct powernv_smp_call_data freq_data;
507
508         smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
509                         &freq_data, 1);
510
511         return freq_data.freq;
512 }
513
514 /*
515  * set_pstate: Sets the pstate on this CPU.
516  *
517  * This is called via an smp_call_function.
518  *
519  * The caller must ensure that freq_data is of the type
520  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
521  * on this CPU should be present in freq_data->pstate_id.
522  */
523 static void set_pstate(void *data)
524 {
525         unsigned long val;
526         struct powernv_smp_call_data *freq_data = data;
527         unsigned long pstate_ul = freq_data->pstate_id;
528         unsigned long gpstate_ul = freq_data->gpstate_id;
529
530         val = get_pmspr(SPRN_PMCR);
531         val = val & 0x0000FFFFFFFFFFFFULL;
532
533         pstate_ul = pstate_ul & 0xFF;
534         gpstate_ul = gpstate_ul & 0xFF;
535
536         /* Set both global(bits 56..63) and local(bits 48..55) PStates */
537         val = val | (gpstate_ul << 56) | (pstate_ul << 48);
538
539         pr_debug("Setting cpu %d pmcr to %016lX\n",
540                         raw_smp_processor_id(), val);
541         set_pmspr(SPRN_PMCR, val);
542 }
543
544 /*
545  * get_nominal_index: Returns the index corresponding to the nominal
546  * pstate in the cpufreq table
547  */
548 static inline unsigned int get_nominal_index(void)
549 {
550         return powernv_pstate_info.nominal;
551 }
552
553 static void powernv_cpufreq_throttle_check(void *data)
554 {
555         struct chip *chip;
556         unsigned int cpu = smp_processor_id();
557         unsigned long pmsr;
558         u8 pmsr_pmax;
559         unsigned int pmsr_pmax_idx;
560
561         pmsr = get_pmspr(SPRN_PMSR);
562         chip = this_cpu_read(chip_info);
563
564         /* Check for Pmax Capping */
565         pmsr_pmax = extract_max_pstate(pmsr);
566         pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
567         if (pmsr_pmax_idx != powernv_pstate_info.max) {
568                 if (chip->throttled)
569                         goto next;
570                 chip->throttled = true;
571                 if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
572                         pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
573                                      cpu, chip->id, pmsr_pmax,
574                                      idx_to_pstate(powernv_pstate_info.nominal));
575                         chip->throttle_sub_turbo++;
576                 } else {
577                         chip->throttle_turbo++;
578                 }
579                 trace_powernv_throttle(chip->id,
580                                       throttle_reason[chip->throttle_reason],
581                                       pmsr_pmax);
582         } else if (chip->throttled) {
583                 chip->throttled = false;
584                 trace_powernv_throttle(chip->id,
585                                       throttle_reason[chip->throttle_reason],
586                                       pmsr_pmax);
587         }
588
589         /* Check if Psafe_mode_active is set in PMSR. */
590 next:
591         if (pmsr & PMSR_PSAFE_ENABLE) {
592                 throttled = true;
593                 pr_info("Pstate set to safe frequency\n");
594         }
595
596         /* Check if SPR_EM_DISABLE is set in PMSR */
597         if (pmsr & PMSR_SPR_EM_DISABLE) {
598                 throttled = true;
599                 pr_info("Frequency Control disabled from OS\n");
600         }
601
602         if (throttled) {
603                 pr_info("PMSR = %16lx\n", pmsr);
604                 pr_warn("CPU Frequency could be throttled\n");
605         }
606 }
607
608 /**
609  * calc_global_pstate - Calculate global pstate
610  * @elapsed_time:               Elapsed time in milliseconds
611  * @local_pstate_idx:           New local pstate
612  * @highest_lpstate_idx:        pstate from which its ramping down
613  *
614  * Finds the appropriate global pstate based on the pstate from which its
615  * ramping down and the time elapsed in ramping down. It follows a quadratic
616  * equation which ensures that it reaches ramping down to pmin in 5sec.
617  */
618 static inline int calc_global_pstate(unsigned int elapsed_time,
619                                      int highest_lpstate_idx,
620                                      int local_pstate_idx)
621 {
622         int index_diff;
623
624         /*
625          * Using ramp_down_percent we get the percentage of rampdown
626          * that we are expecting to be dropping. Difference between
627          * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
628          * number of how many pstates we will drop eventually by the end of
629          * 5 seconds, then just scale it get the number pstates to be dropped.
630          */
631         index_diff =  ((int)ramp_down_percent(elapsed_time) *
632                         (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
633
634         /* Ensure that global pstate is >= to local pstate */
635         if (highest_lpstate_idx + index_diff >= local_pstate_idx)
636                 return local_pstate_idx;
637         else
638                 return highest_lpstate_idx + index_diff;
639 }
640
641 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
642 {
643         unsigned int timer_interval;
644
645         /*
646          * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
647          * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
648          * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
649          * seconds of ramp down time.
650          */
651         if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
652              > MAX_RAMP_DOWN_TIME)
653                 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
654         else
655                 timer_interval = GPSTATE_TIMER_INTERVAL;
656
657         mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
658 }
659
660 /**
661  * gpstate_timer_handler
662  *
663  * @data: pointer to cpufreq_policy on which timer was queued
664  *
665  * This handler brings down the global pstate closer to the local pstate
666  * according quadratic equation. Queues a new timer if it is still not equal
667  * to local pstate
668  */
669 void gpstate_timer_handler(struct timer_list *t)
670 {
671         struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
672         struct cpufreq_policy *policy = gpstates->policy;
673         int gpstate_idx, lpstate_idx;
674         unsigned long val;
675         unsigned int time_diff = jiffies_to_msecs(jiffies)
676                                         - gpstates->last_sampled_time;
677         struct powernv_smp_call_data freq_data;
678
679         if (!spin_trylock(&gpstates->gpstate_lock))
680                 return;
681         /*
682          * If the timer has migrated to the different cpu then bring
683          * it back to one of the policy->cpus
684          */
685         if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
686                 gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
687                 add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
688                 spin_unlock(&gpstates->gpstate_lock);
689                 return;
690         }
691
692         /*
693          * If PMCR was last updated was using fast_swtich then
694          * We may have wrong in gpstate->last_lpstate_idx
695          * value. Hence, read from PMCR to get correct data.
696          */
697         val = get_pmspr(SPRN_PMCR);
698         freq_data.gpstate_id = extract_global_pstate(val);
699         freq_data.pstate_id = extract_local_pstate(val);
700         if (freq_data.gpstate_id  == freq_data.pstate_id) {
701                 reset_gpstates(policy);
702                 spin_unlock(&gpstates->gpstate_lock);
703                 return;
704         }
705
706         gpstates->last_sampled_time += time_diff;
707         gpstates->elapsed_time += time_diff;
708
709         if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
710                 gpstate_idx = pstate_to_idx(freq_data.pstate_id);
711                 lpstate_idx = gpstate_idx;
712                 reset_gpstates(policy);
713                 gpstates->highest_lpstate_idx = gpstate_idx;
714         } else {
715                 lpstate_idx = pstate_to_idx(freq_data.pstate_id);
716                 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
717                                                  gpstates->highest_lpstate_idx,
718                                                  lpstate_idx);
719         }
720         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
721         gpstates->last_gpstate_idx = gpstate_idx;
722         gpstates->last_lpstate_idx = lpstate_idx;
723         /*
724          * If local pstate is equal to global pstate, rampdown is over
725          * So timer is not required to be queued.
726          */
727         if (gpstate_idx != gpstates->last_lpstate_idx)
728                 queue_gpstate_timer(gpstates);
729
730         set_pstate(&freq_data);
731         spin_unlock(&gpstates->gpstate_lock);
732 }
733
734 /*
735  * powernv_cpufreq_target_index: Sets the frequency corresponding to
736  * the cpufreq table entry indexed by new_index on the cpus in the
737  * mask policy->cpus
738  */
739 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
740                                         unsigned int new_index)
741 {
742         struct powernv_smp_call_data freq_data;
743         unsigned int cur_msec, gpstate_idx;
744         struct global_pstate_info *gpstates = policy->driver_data;
745
746         if (unlikely(rebooting) && new_index != get_nominal_index())
747                 return 0;
748
749         if (!throttled) {
750                 /* we don't want to be preempted while
751                  * checking if the CPU frequency has been throttled
752                  */
753                 preempt_disable();
754                 powernv_cpufreq_throttle_check(NULL);
755                 preempt_enable();
756         }
757
758         cur_msec = jiffies_to_msecs(get_jiffies_64());
759
760         freq_data.pstate_id = idx_to_pstate(new_index);
761         if (!gpstates) {
762                 freq_data.gpstate_id = freq_data.pstate_id;
763                 goto no_gpstate;
764         }
765
766         spin_lock(&gpstates->gpstate_lock);
767
768         if (!gpstates->last_sampled_time) {
769                 gpstate_idx = new_index;
770                 gpstates->highest_lpstate_idx = new_index;
771                 goto gpstates_done;
772         }
773
774         if (gpstates->last_gpstate_idx < new_index) {
775                 gpstates->elapsed_time += cur_msec -
776                                                  gpstates->last_sampled_time;
777
778                 /*
779                  * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
780                  * we should be resetting all global pstate related data. Set it
781                  * equal to local pstate to start fresh.
782                  */
783                 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
784                         reset_gpstates(policy);
785                         gpstates->highest_lpstate_idx = new_index;
786                         gpstate_idx = new_index;
787                 } else {
788                 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
789                         gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
790                                                          gpstates->highest_lpstate_idx,
791                                                          new_index);
792                 }
793         } else {
794                 reset_gpstates(policy);
795                 gpstates->highest_lpstate_idx = new_index;
796                 gpstate_idx = new_index;
797         }
798
799         /*
800          * If local pstate is equal to global pstate, rampdown is over
801          * So timer is not required to be queued.
802          */
803         if (gpstate_idx != new_index)
804                 queue_gpstate_timer(gpstates);
805         else
806                 del_timer_sync(&gpstates->timer);
807
808 gpstates_done:
809         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
810         gpstates->last_sampled_time = cur_msec;
811         gpstates->last_gpstate_idx = gpstate_idx;
812         gpstates->last_lpstate_idx = new_index;
813
814         spin_unlock(&gpstates->gpstate_lock);
815
816 no_gpstate:
817         /*
818          * Use smp_call_function to send IPI and execute the
819          * mtspr on target CPU.  We could do that without IPI
820          * if current CPU is within policy->cpus (core)
821          */
822         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
823         return 0;
824 }
825
826 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
827 {
828         int base, i;
829         struct kernfs_node *kn;
830         struct global_pstate_info *gpstates;
831
832         base = cpu_first_thread_sibling(policy->cpu);
833
834         for (i = 0; i < threads_per_core; i++)
835                 cpumask_set_cpu(base + i, policy->cpus);
836
837         kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
838         if (!kn) {
839                 int ret;
840
841                 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
842                 if (ret) {
843                         pr_info("Failed to create throttle stats directory for cpu %d\n",
844                                 policy->cpu);
845                         return ret;
846                 }
847         } else {
848                 kernfs_put(kn);
849         }
850
851         policy->freq_table = powernv_freqs;
852         policy->fast_switch_possible = true;
853
854         if (pvr_version_is(PVR_POWER9))
855                 return 0;
856
857         /* Initialise Gpstate ramp-down timer only on POWER8 */
858         gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
859         if (!gpstates)
860                 return -ENOMEM;
861
862         policy->driver_data = gpstates;
863
864         /* initialize timer */
865         gpstates->policy = policy;
866         timer_setup(&gpstates->timer, gpstate_timer_handler,
867                     TIMER_PINNED | TIMER_DEFERRABLE);
868         gpstates->timer.expires = jiffies +
869                                 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
870         spin_lock_init(&gpstates->gpstate_lock);
871
872         return 0;
873 }
874
875 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
876 {
877         /* timer is deleted in cpufreq_cpu_stop() */
878         kfree(policy->driver_data);
879
880         return 0;
881 }
882
883 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
884                                 unsigned long action, void *unused)
885 {
886         int cpu;
887         struct cpufreq_policy cpu_policy;
888
889         rebooting = true;
890         for_each_online_cpu(cpu) {
891                 cpufreq_get_policy(&cpu_policy, cpu);
892                 powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
893         }
894
895         return NOTIFY_DONE;
896 }
897
898 static struct notifier_block powernv_cpufreq_reboot_nb = {
899         .notifier_call = powernv_cpufreq_reboot_notifier,
900 };
901
902 void powernv_cpufreq_work_fn(struct work_struct *work)
903 {
904         struct chip *chip = container_of(work, struct chip, throttle);
905         unsigned int cpu;
906         cpumask_t mask;
907
908         get_online_cpus();
909         cpumask_and(&mask, &chip->mask, cpu_online_mask);
910         smp_call_function_any(&mask,
911                               powernv_cpufreq_throttle_check, NULL, 0);
912
913         if (!chip->restore)
914                 goto out;
915
916         chip->restore = false;
917         for_each_cpu(cpu, &mask) {
918                 int index;
919                 struct cpufreq_policy policy;
920
921                 cpufreq_get_policy(&policy, cpu);
922                 index = cpufreq_table_find_index_c(&policy, policy.cur);
923                 powernv_cpufreq_target_index(&policy, index);
924                 cpumask_andnot(&mask, &mask, policy.cpus);
925         }
926 out:
927         put_online_cpus();
928 }
929
930 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
931                                    unsigned long msg_type, void *_msg)
932 {
933         struct opal_msg *msg = _msg;
934         struct opal_occ_msg omsg;
935         int i;
936
937         if (msg_type != OPAL_MSG_OCC)
938                 return 0;
939
940         omsg.type = be64_to_cpu(msg->params[0]);
941
942         switch (omsg.type) {
943         case OCC_RESET:
944                 occ_reset = true;
945                 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
946                 /*
947                  * powernv_cpufreq_throttle_check() is called in
948                  * target() callback which can detect the throttle state
949                  * for governors like ondemand.
950                  * But static governors will not call target() often thus
951                  * report throttling here.
952                  */
953                 if (!throttled) {
954                         throttled = true;
955                         pr_warn("CPU frequency is throttled for duration\n");
956                 }
957
958                 break;
959         case OCC_LOAD:
960                 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
961                 break;
962         case OCC_THROTTLE:
963                 omsg.chip = be64_to_cpu(msg->params[1]);
964                 omsg.throttle_status = be64_to_cpu(msg->params[2]);
965
966                 if (occ_reset) {
967                         occ_reset = false;
968                         throttled = false;
969                         pr_info("OCC Active, CPU frequency is no longer throttled\n");
970
971                         for (i = 0; i < nr_chips; i++) {
972                                 chips[i].restore = true;
973                                 schedule_work(&chips[i].throttle);
974                         }
975
976                         return 0;
977                 }
978
979                 for (i = 0; i < nr_chips; i++)
980                         if (chips[i].id == omsg.chip)
981                                 break;
982
983                 if (omsg.throttle_status >= 0 &&
984                     omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
985                         chips[i].throttle_reason = omsg.throttle_status;
986                         chips[i].reason[omsg.throttle_status]++;
987                 }
988
989                 if (!omsg.throttle_status)
990                         chips[i].restore = true;
991
992                 schedule_work(&chips[i].throttle);
993         }
994         return 0;
995 }
996
997 static struct notifier_block powernv_cpufreq_opal_nb = {
998         .notifier_call  = powernv_cpufreq_occ_msg,
999         .next           = NULL,
1000         .priority       = 0,
1001 };
1002
1003 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1004 {
1005         struct powernv_smp_call_data freq_data;
1006         struct global_pstate_info *gpstates = policy->driver_data;
1007
1008         freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
1009         freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
1010         smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
1011         if (gpstates)
1012                 del_timer_sync(&gpstates->timer);
1013 }
1014
1015 static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1016                                         unsigned int target_freq)
1017 {
1018         int index;
1019         struct powernv_smp_call_data freq_data;
1020
1021         index = cpufreq_table_find_index_dl(policy, target_freq);
1022         freq_data.pstate_id = powernv_freqs[index].driver_data;
1023         freq_data.gpstate_id = powernv_freqs[index].driver_data;
1024         set_pstate(&freq_data);
1025
1026         return powernv_freqs[index].frequency;
1027 }
1028
1029 static struct cpufreq_driver powernv_cpufreq_driver = {
1030         .name           = "powernv-cpufreq",
1031         .flags          = CPUFREQ_CONST_LOOPS,
1032         .init           = powernv_cpufreq_cpu_init,
1033         .exit           = powernv_cpufreq_cpu_exit,
1034         .verify         = cpufreq_generic_frequency_table_verify,
1035         .target_index   = powernv_cpufreq_target_index,
1036         .fast_switch    = powernv_fast_switch,
1037         .get            = powernv_cpufreq_get,
1038         .stop_cpu       = powernv_cpufreq_stop_cpu,
1039         .attr           = powernv_cpu_freq_attr,
1040 };
1041
1042 static int init_chip_info(void)
1043 {
1044         unsigned int chip[256];
1045         unsigned int cpu, i;
1046         unsigned int prev_chip_id = UINT_MAX;
1047
1048         for_each_possible_cpu(cpu) {
1049                 unsigned int id = cpu_to_chip_id(cpu);
1050
1051                 if (prev_chip_id != id) {
1052                         prev_chip_id = id;
1053                         chip[nr_chips++] = id;
1054                 }
1055         }
1056
1057         chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1058         if (!chips)
1059                 return -ENOMEM;
1060
1061         for (i = 0; i < nr_chips; i++) {
1062                 chips[i].id = chip[i];
1063                 cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
1064                 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1065                 for_each_cpu(cpu, &chips[i].mask)
1066                         per_cpu(chip_info, cpu) =  &chips[i];
1067         }
1068
1069         return 0;
1070 }
1071
1072 static inline void clean_chip_info(void)
1073 {
1074         kfree(chips);
1075 }
1076
1077 static inline void unregister_all_notifiers(void)
1078 {
1079         opal_message_notifier_unregister(OPAL_MSG_OCC,
1080                                          &powernv_cpufreq_opal_nb);
1081         unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1082 }
1083
1084 static int __init powernv_cpufreq_init(void)
1085 {
1086         int rc = 0;
1087
1088         /* Don't probe on pseries (guest) platforms */
1089         if (!firmware_has_feature(FW_FEATURE_OPAL))
1090                 return -ENODEV;
1091
1092         /* Discover pstates from device tree and init */
1093         rc = init_powernv_pstates();
1094         if (rc)
1095                 goto out;
1096
1097         /* Populate chip info */
1098         rc = init_chip_info();
1099         if (rc)
1100                 goto out;
1101
1102         register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1103         opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1104
1105         if (powernv_pstate_info.wof_enabled)
1106                 powernv_cpufreq_driver.boost_enabled = true;
1107         else
1108                 powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1109
1110         rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1111         if (rc) {
1112                 pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1113                 goto cleanup_notifiers;
1114         }
1115
1116         if (powernv_pstate_info.wof_enabled)
1117                 cpufreq_enable_boost_support();
1118
1119         return 0;
1120 cleanup_notifiers:
1121         unregister_all_notifiers();
1122         clean_chip_info();
1123 out:
1124         pr_info("Platform driver disabled. System does not support PState control\n");
1125         return rc;
1126 }
1127 module_init(powernv_cpufreq_init);
1128
1129 static void __exit powernv_cpufreq_exit(void)
1130 {
1131         cpufreq_unregister_driver(&powernv_cpufreq_driver);
1132         unregister_all_notifiers();
1133         clean_chip_info();
1134 }
1135 module_exit(powernv_cpufreq_exit);
1136
1137 MODULE_LICENSE("GPL");
1138 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");