Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <trace/events/power.h>
28
29 #include <asm/div64.h>
30 #include <asm/msr.h>
31 #include <asm/cpu_device_id.h>
32 #include <asm/cpufeature.h>
33 #include <asm/intel-family.h>
34
35 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
36
37 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
38 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
39
40 #ifdef CONFIG_ACPI
41 #include <acpi/processor.h>
42 #include <acpi/cppc_acpi.h>
43 #endif
44
45 #define FRAC_BITS 8
46 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
47 #define fp_toint(X) ((X) >> FRAC_BITS)
48
49 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
50
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63         return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68         int mask, ret;
69
70         ret = fp_toint(x);
71         mask = (1 << FRAC_BITS) - 1;
72         if (x & mask)
73                 ret += 1;
74         return ret;
75 }
76
77 static inline int32_t percent_fp(int percent)
78 {
79         return div_fp(percent, 100);
80 }
81
82 static inline u64 mul_ext_fp(u64 x, u64 y)
83 {
84         return (x * y) >> EXT_FRAC_BITS;
85 }
86
87 static inline u64 div_ext_fp(u64 x, u64 y)
88 {
89         return div64_u64(x << EXT_FRAC_BITS, y);
90 }
91
92 static inline int32_t percent_ext_fp(int percent)
93 {
94         return div_ext_fp(percent, 100);
95 }
96
97 /**
98  * struct sample -      Store performance sample
99  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
100  *                      performance during last sample period
101  * @busy_scaled:        Scaled busy value which is used to calculate next
102  *                      P state. This can be different than core_avg_perf
103  *                      to account for cpu idle period
104  * @aperf:              Difference of actual performance frequency clock count
105  *                      read from APERF MSR between last and current sample
106  * @mperf:              Difference of maximum performance frequency clock count
107  *                      read from MPERF MSR between last and current sample
108  * @tsc:                Difference of time stamp counter between last and
109  *                      current sample
110  * @time:               Current time from scheduler
111  *
112  * This structure is used in the cpudata structure to store performance sample
113  * data for choosing next P State.
114  */
115 struct sample {
116         int32_t core_avg_perf;
117         int32_t busy_scaled;
118         u64 aperf;
119         u64 mperf;
120         u64 tsc;
121         u64 time;
122 };
123
124 /**
125  * struct pstate_data - Store P state data
126  * @current_pstate:     Current requested P state
127  * @min_pstate:         Min P state possible for this platform
128  * @max_pstate:         Max P state possible for this platform
129  * @max_pstate_physical:This is physical Max P state for a processor
130  *                      This can be higher than the max_pstate which can
131  *                      be limited by platform thermal design power limits
132  * @scaling:            Scaling factor to  convert frequency to cpufreq
133  *                      frequency units
134  * @turbo_pstate:       Max Turbo P state possible for this platform
135  * @max_freq:           @max_pstate frequency in cpufreq units
136  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
137  *
138  * Stores the per cpu model P state limits and current P state.
139  */
140 struct pstate_data {
141         int     current_pstate;
142         int     min_pstate;
143         int     max_pstate;
144         int     max_pstate_physical;
145         int     scaling;
146         int     turbo_pstate;
147         unsigned int max_freq;
148         unsigned int turbo_freq;
149 };
150
151 /**
152  * struct vid_data -    Stores voltage information data
153  * @min:                VID data for this platform corresponding to
154  *                      the lowest P state
155  * @max:                VID data corresponding to the highest P State.
156  * @turbo:              VID data for turbo P state
157  * @ratio:              Ratio of (vid max - vid min) /
158  *                      (max P state - Min P State)
159  *
160  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
161  * This data is used in Atom platforms, where in addition to target P state,
162  * the voltage data needs to be specified to select next P State.
163  */
164 struct vid_data {
165         int min;
166         int max;
167         int turbo;
168         int32_t ratio;
169 };
170
171 /**
172  * struct global_params - Global parameters, mostly tunable via sysfs.
173  * @no_turbo:           Whether or not to use turbo P-states.
174  * @turbo_disabled:     Whethet or not turbo P-states are available at all,
175  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
176  *                      not the maximum reported turbo P-state is different from
177  *                      the maximum reported non-turbo one.
178  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
179  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
180  *                      P-state capacity.
181  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
182  *                      P-state capacity.
183  */
184 struct global_params {
185         bool no_turbo;
186         bool turbo_disabled;
187         bool turbo_disabled_mf;
188         int max_perf_pct;
189         int min_perf_pct;
190 };
191
192 /**
193  * struct cpudata -     Per CPU instance data storage
194  * @cpu:                CPU number for this instance data
195  * @policy:             CPUFreq policy value
196  * @update_util:        CPUFreq utility callback information
197  * @update_util_set:    CPUFreq utility callback is set
198  * @iowait_boost:       iowait-related boost fraction
199  * @last_update:        Time of the last update.
200  * @pstate:             Stores P state limits for this CPU
201  * @vid:                Stores VID limits for this CPU
202  * @last_sample_time:   Last Sample time
203  * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
204  *                      This shift is a multiplier to mperf delta to
205  *                      calculate CPU busy.
206  * @prev_aperf:         Last APERF value read from APERF MSR
207  * @prev_mperf:         Last MPERF value read from MPERF MSR
208  * @prev_tsc:           Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *                      current sample
211  * @sample:             Storage for storing last Sample data
212  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
215  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:      Last saved HWP energy performance preference
217  *                      (EPP) or energy performance bias (EPB),
218  *                      when policy switched to performance
219  * @epp_policy:         Last saved policy used to set EPP/EPB
220  * @epp_default:        Power on default HWP energy performance
221  *                      preference/bias
222  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
223  *                      operation
224  * @hwp_req_cached:     Cached value of the last HWP Request MSR
225  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
226  * @last_io_update:     Last time when IO wake flag was set
227  * @sched_flags:        Store scheduler flags for possible cross CPU update
228  * @hwp_boost_min:      Last HWP boosted min performance
229  *
230  * This structure stores per CPU instance data for all CPUs.
231  */
232 struct cpudata {
233         int cpu;
234
235         unsigned int policy;
236         struct update_util_data update_util;
237         bool   update_util_set;
238
239         struct pstate_data pstate;
240         struct vid_data vid;
241
242         u64     last_update;
243         u64     last_sample_time;
244         u64     aperf_mperf_shift;
245         u64     prev_aperf;
246         u64     prev_mperf;
247         u64     prev_tsc;
248         u64     prev_cummulative_iowait;
249         struct sample sample;
250         int32_t min_perf_ratio;
251         int32_t max_perf_ratio;
252 #ifdef CONFIG_ACPI
253         struct acpi_processor_performance acpi_perf_data;
254         bool valid_pss_table;
255 #endif
256         unsigned int iowait_boost;
257         s16 epp_powersave;
258         s16 epp_policy;
259         s16 epp_default;
260         s16 epp_saved;
261         u64 hwp_req_cached;
262         u64 hwp_cap_cached;
263         u64 last_io_update;
264         unsigned int sched_flags;
265         u32 hwp_boost_min;
266 };
267
268 static struct cpudata **all_cpu_data;
269
270 /**
271  * struct pstate_funcs - Per CPU model specific callbacks
272  * @get_max:            Callback to get maximum non turbo effective P state
273  * @get_max_physical:   Callback to get maximum non turbo physical P state
274  * @get_min:            Callback to get minimum P state
275  * @get_turbo:          Callback to get turbo P state
276  * @get_scaling:        Callback to get frequency scaling factor
277  * @get_val:            Callback to convert P state to actual MSR write value
278  * @get_vid:            Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284         int (*get_max)(void);
285         int (*get_max_physical)(void);
286         int (*get_min)(void);
287         int (*get_turbo)(void);
288         int (*get_scaling)(void);
289         int (*get_aperf_mperf_shift)(void);
290         u64 (*get_val)(struct cpudata*, int pstate);
291         void (*get_vid)(struct cpudata *);
292 };
293
294 static struct pstate_funcs pstate_funcs __read_mostly;
295
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306
307 static struct global_params global;
308
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311
312 #ifdef CONFIG_ACPI
313
314 static bool intel_pstate_acpi_pm_profile_server(void)
315 {
316         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318                 return true;
319
320         return false;
321 }
322
323 static bool intel_pstate_get_ppc_enable_status(void)
324 {
325         if (intel_pstate_acpi_pm_profile_server())
326                 return true;
327
328         return acpi_ppc;
329 }
330
331 #ifdef CONFIG_ACPI_CPPC_LIB
332
333 /* The work item is needed to avoid CPU hotplug locking issues */
334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335 {
336         sched_set_itmt_support();
337 }
338
339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340
341 static void intel_pstate_set_itmt_prio(int cpu)
342 {
343         struct cppc_perf_caps cppc_perf;
344         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
345         int ret;
346
347         ret = cppc_get_perf_caps(cpu, &cppc_perf);
348         if (ret)
349                 return;
350
351         /*
352          * The priorities can be set regardless of whether or not
353          * sched_set_itmt_support(true) has been called and it is valid to
354          * update them at any time after it has been called.
355          */
356         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
357
358         if (max_highest_perf <= min_highest_perf) {
359                 if (cppc_perf.highest_perf > max_highest_perf)
360                         max_highest_perf = cppc_perf.highest_perf;
361
362                 if (cppc_perf.highest_perf < min_highest_perf)
363                         min_highest_perf = cppc_perf.highest_perf;
364
365                 if (max_highest_perf > min_highest_perf) {
366                         /*
367                          * This code can be run during CPU online under the
368                          * CPU hotplug locks, so sched_set_itmt_support()
369                          * cannot be called from here.  Queue up a work item
370                          * to invoke it.
371                          */
372                         schedule_work(&sched_itmt_work);
373                 }
374         }
375 }
376
377 static int intel_pstate_get_cppc_guranteed(int cpu)
378 {
379         struct cppc_perf_caps cppc_perf;
380         int ret;
381
382         ret = cppc_get_perf_caps(cpu, &cppc_perf);
383         if (ret)
384                 return ret;
385
386         if (cppc_perf.guaranteed_perf)
387                 return cppc_perf.guaranteed_perf;
388
389         return cppc_perf.nominal_perf;
390 }
391
392 #else /* CONFIG_ACPI_CPPC_LIB */
393 static void intel_pstate_set_itmt_prio(int cpu)
394 {
395 }
396 #endif /* CONFIG_ACPI_CPPC_LIB */
397
398 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
399 {
400         struct cpudata *cpu;
401         int ret;
402         int i;
403
404         if (hwp_active) {
405                 intel_pstate_set_itmt_prio(policy->cpu);
406                 return;
407         }
408
409         if (!intel_pstate_get_ppc_enable_status())
410                 return;
411
412         cpu = all_cpu_data[policy->cpu];
413
414         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
415                                                   policy->cpu);
416         if (ret)
417                 return;
418
419         /*
420          * Check if the control value in _PSS is for PERF_CTL MSR, which should
421          * guarantee that the states returned by it map to the states in our
422          * list directly.
423          */
424         if (cpu->acpi_perf_data.control_register.space_id !=
425                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
426                 goto err;
427
428         /*
429          * If there is only one entry _PSS, simply ignore _PSS and continue as
430          * usual without taking _PSS into account
431          */
432         if (cpu->acpi_perf_data.state_count < 2)
433                 goto err;
434
435         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
436         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
437                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
438                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
439                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
440                          (u32) cpu->acpi_perf_data.states[i].power,
441                          (u32) cpu->acpi_perf_data.states[i].control);
442         }
443
444         /*
445          * The _PSS table doesn't contain whole turbo frequency range.
446          * This just contains +1 MHZ above the max non turbo frequency,
447          * with control value corresponding to max turbo ratio. But
448          * when cpufreq set policy is called, it will call with this
449          * max frequency, which will cause a reduced performance as
450          * this driver uses real max turbo frequency as the max
451          * frequency. So correct this frequency in _PSS table to
452          * correct max turbo frequency based on the turbo state.
453          * Also need to convert to MHz as _PSS freq is in MHz.
454          */
455         if (!global.turbo_disabled)
456                 cpu->acpi_perf_data.states[0].core_frequency =
457                                         policy->cpuinfo.max_freq / 1000;
458         cpu->valid_pss_table = true;
459         pr_debug("_PPC limits will be enforced\n");
460
461         return;
462
463  err:
464         cpu->valid_pss_table = false;
465         acpi_processor_unregister_performance(policy->cpu);
466 }
467
468 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
469 {
470         struct cpudata *cpu;
471
472         cpu = all_cpu_data[policy->cpu];
473         if (!cpu->valid_pss_table)
474                 return;
475
476         acpi_processor_unregister_performance(policy->cpu);
477 }
478 #else /* CONFIG_ACPI */
479 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
480 {
481 }
482
483 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
484 {
485 }
486
487 static inline bool intel_pstate_acpi_pm_profile_server(void)
488 {
489         return false;
490 }
491 #endif /* CONFIG_ACPI */
492
493 #ifndef CONFIG_ACPI_CPPC_LIB
494 static int intel_pstate_get_cppc_guranteed(int cpu)
495 {
496         return -ENOTSUPP;
497 }
498 #endif /* CONFIG_ACPI_CPPC_LIB */
499
500 static inline void update_turbo_state(void)
501 {
502         u64 misc_en;
503         struct cpudata *cpu;
504
505         cpu = all_cpu_data[0];
506         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
507         global.turbo_disabled =
508                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
509                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
510 }
511
512 static int min_perf_pct_min(void)
513 {
514         struct cpudata *cpu = all_cpu_data[0];
515         int turbo_pstate = cpu->pstate.turbo_pstate;
516
517         return turbo_pstate ?
518                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
519 }
520
521 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
522 {
523         u64 epb;
524         int ret;
525
526         if (!boot_cpu_has(X86_FEATURE_EPB))
527                 return -ENXIO;
528
529         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
530         if (ret)
531                 return (s16)ret;
532
533         return (s16)(epb & 0x0f);
534 }
535
536 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
537 {
538         s16 epp;
539
540         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
541                 /*
542                  * When hwp_req_data is 0, means that caller didn't read
543                  * MSR_HWP_REQUEST, so need to read and get EPP.
544                  */
545                 if (!hwp_req_data) {
546                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
547                                             &hwp_req_data);
548                         if (epp)
549                                 return epp;
550                 }
551                 epp = (hwp_req_data >> 24) & 0xff;
552         } else {
553                 /* When there is no EPP present, HWP uses EPB settings */
554                 epp = intel_pstate_get_epb(cpu_data);
555         }
556
557         return epp;
558 }
559
560 static int intel_pstate_set_epb(int cpu, s16 pref)
561 {
562         u64 epb;
563         int ret;
564
565         if (!boot_cpu_has(X86_FEATURE_EPB))
566                 return -ENXIO;
567
568         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
569         if (ret)
570                 return ret;
571
572         epb = (epb & ~0x0f) | pref;
573         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
574
575         return 0;
576 }
577
578 /*
579  * EPP/EPB display strings corresponding to EPP index in the
580  * energy_perf_strings[]
581  *      index           String
582  *-------------------------------------
583  *      0               default
584  *      1               performance
585  *      2               balance_performance
586  *      3               balance_power
587  *      4               power
588  */
589 static const char * const energy_perf_strings[] = {
590         "default",
591         "performance",
592         "balance_performance",
593         "balance_power",
594         "power",
595         NULL
596 };
597 static const unsigned int epp_values[] = {
598         HWP_EPP_PERFORMANCE,
599         HWP_EPP_BALANCE_PERFORMANCE,
600         HWP_EPP_BALANCE_POWERSAVE,
601         HWP_EPP_POWERSAVE
602 };
603
604 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
605 {
606         s16 epp;
607         int index = -EINVAL;
608
609         epp = intel_pstate_get_epp(cpu_data, 0);
610         if (epp < 0)
611                 return epp;
612
613         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
614                 if (epp == HWP_EPP_PERFORMANCE)
615                         return 1;
616                 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
617                         return 2;
618                 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
619                         return 3;
620                 else
621                         return 4;
622         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
623                 /*
624                  * Range:
625                  *      0x00-0x03       :       Performance
626                  *      0x04-0x07       :       Balance performance
627                  *      0x08-0x0B       :       Balance power
628                  *      0x0C-0x0F       :       Power
629                  * The EPB is a 4 bit value, but our ranges restrict the
630                  * value which can be set. Here only using top two bits
631                  * effectively.
632                  */
633                 index = (epp >> 2) + 1;
634         }
635
636         return index;
637 }
638
639 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
640                                               int pref_index)
641 {
642         int epp = -EINVAL;
643         int ret;
644
645         if (!pref_index)
646                 epp = cpu_data->epp_default;
647
648         mutex_lock(&intel_pstate_limits_lock);
649
650         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
651                 u64 value;
652
653                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
654                 if (ret)
655                         goto return_pref;
656
657                 value &= ~GENMASK_ULL(31, 24);
658
659                 if (epp == -EINVAL)
660                         epp = epp_values[pref_index - 1];
661
662                 value |= (u64)epp << 24;
663                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
664         } else {
665                 if (epp == -EINVAL)
666                         epp = (pref_index - 1) << 2;
667                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
668         }
669 return_pref:
670         mutex_unlock(&intel_pstate_limits_lock);
671
672         return ret;
673 }
674
675 static ssize_t show_energy_performance_available_preferences(
676                                 struct cpufreq_policy *policy, char *buf)
677 {
678         int i = 0;
679         int ret = 0;
680
681         while (energy_perf_strings[i] != NULL)
682                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
683
684         ret += sprintf(&buf[ret], "\n");
685
686         return ret;
687 }
688
689 cpufreq_freq_attr_ro(energy_performance_available_preferences);
690
691 static ssize_t store_energy_performance_preference(
692                 struct cpufreq_policy *policy, const char *buf, size_t count)
693 {
694         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
695         char str_preference[21];
696         int ret;
697
698         ret = sscanf(buf, "%20s", str_preference);
699         if (ret != 1)
700                 return -EINVAL;
701
702         ret = match_string(energy_perf_strings, -1, str_preference);
703         if (ret < 0)
704                 return ret;
705
706         intel_pstate_set_energy_pref_index(cpu_data, ret);
707         return count;
708 }
709
710 static ssize_t show_energy_performance_preference(
711                                 struct cpufreq_policy *policy, char *buf)
712 {
713         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
714         int preference;
715
716         preference = intel_pstate_get_energy_pref_index(cpu_data);
717         if (preference < 0)
718                 return preference;
719
720         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
721 }
722
723 cpufreq_freq_attr_rw(energy_performance_preference);
724
725 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
726 {
727         struct cpudata *cpu;
728         u64 cap;
729         int ratio;
730
731         ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
732         if (ratio <= 0) {
733                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
734                 ratio = HWP_GUARANTEED_PERF(cap);
735         }
736
737         cpu = all_cpu_data[policy->cpu];
738
739         return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
740 }
741
742 cpufreq_freq_attr_ro(base_frequency);
743
744 static struct freq_attr *hwp_cpufreq_attrs[] = {
745         &energy_performance_preference,
746         &energy_performance_available_preferences,
747         &base_frequency,
748         NULL,
749 };
750
751 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
752                                      int *current_max)
753 {
754         u64 cap;
755
756         rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
757         WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
758         if (global.no_turbo)
759                 *current_max = HWP_GUARANTEED_PERF(cap);
760         else
761                 *current_max = HWP_HIGHEST_PERF(cap);
762
763         *phy_max = HWP_HIGHEST_PERF(cap);
764 }
765
766 static void intel_pstate_hwp_set(unsigned int cpu)
767 {
768         struct cpudata *cpu_data = all_cpu_data[cpu];
769         int max, min;
770         u64 value;
771         s16 epp;
772
773         max = cpu_data->max_perf_ratio;
774         min = cpu_data->min_perf_ratio;
775
776         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
777                 min = max;
778
779         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
780
781         value &= ~HWP_MIN_PERF(~0L);
782         value |= HWP_MIN_PERF(min);
783
784         value &= ~HWP_MAX_PERF(~0L);
785         value |= HWP_MAX_PERF(max);
786
787         if (cpu_data->epp_policy == cpu_data->policy)
788                 goto skip_epp;
789
790         cpu_data->epp_policy = cpu_data->policy;
791
792         if (cpu_data->epp_saved >= 0) {
793                 epp = cpu_data->epp_saved;
794                 cpu_data->epp_saved = -EINVAL;
795                 goto update_epp;
796         }
797
798         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
799                 epp = intel_pstate_get_epp(cpu_data, value);
800                 cpu_data->epp_powersave = epp;
801                 /* If EPP read was failed, then don't try to write */
802                 if (epp < 0)
803                         goto skip_epp;
804
805                 epp = 0;
806         } else {
807                 /* skip setting EPP, when saved value is invalid */
808                 if (cpu_data->epp_powersave < 0)
809                         goto skip_epp;
810
811                 /*
812                  * No need to restore EPP when it is not zero. This
813                  * means:
814                  *  - Policy is not changed
815                  *  - user has manually changed
816                  *  - Error reading EPB
817                  */
818                 epp = intel_pstate_get_epp(cpu_data, value);
819                 if (epp)
820                         goto skip_epp;
821
822                 epp = cpu_data->epp_powersave;
823         }
824 update_epp:
825         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
826                 value &= ~GENMASK_ULL(31, 24);
827                 value |= (u64)epp << 24;
828         } else {
829                 intel_pstate_set_epb(cpu, epp);
830         }
831 skip_epp:
832         WRITE_ONCE(cpu_data->hwp_req_cached, value);
833         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
834 }
835
836 static void intel_pstate_hwp_force_min_perf(int cpu)
837 {
838         u64 value;
839         int min_perf;
840
841         value = all_cpu_data[cpu]->hwp_req_cached;
842         value &= ~GENMASK_ULL(31, 0);
843         min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
844
845         /* Set hwp_max = hwp_min */
846         value |= HWP_MAX_PERF(min_perf);
847         value |= HWP_MIN_PERF(min_perf);
848
849         /* Set EPP to min */
850         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
851                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
852
853         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
854 }
855
856 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
857 {
858         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
859
860         if (!hwp_active)
861                 return 0;
862
863         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
864
865         return 0;
866 }
867
868 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
869
870 static int intel_pstate_resume(struct cpufreq_policy *policy)
871 {
872         if (!hwp_active)
873                 return 0;
874
875         mutex_lock(&intel_pstate_limits_lock);
876
877         if (policy->cpu == 0)
878                 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
879
880         all_cpu_data[policy->cpu]->epp_policy = 0;
881         intel_pstate_hwp_set(policy->cpu);
882
883         mutex_unlock(&intel_pstate_limits_lock);
884
885         return 0;
886 }
887
888 static void intel_pstate_update_policies(void)
889 {
890         int cpu;
891
892         for_each_possible_cpu(cpu)
893                 cpufreq_update_policy(cpu);
894 }
895
896 static void intel_pstate_update_max_freq(unsigned int cpu)
897 {
898         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
899         struct cpudata *cpudata;
900
901         if (!policy)
902                 return;
903
904         cpudata = all_cpu_data[cpu];
905         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
906                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
907
908         refresh_frequency_limits(policy);
909
910         cpufreq_cpu_release(policy);
911 }
912
913 static void intel_pstate_update_limits(unsigned int cpu)
914 {
915         mutex_lock(&intel_pstate_driver_lock);
916
917         update_turbo_state();
918         /*
919          * If turbo has been turned on or off globally, policy limits for
920          * all CPUs need to be updated to reflect that.
921          */
922         if (global.turbo_disabled_mf != global.turbo_disabled) {
923                 global.turbo_disabled_mf = global.turbo_disabled;
924                 for_each_possible_cpu(cpu)
925                         intel_pstate_update_max_freq(cpu);
926         } else {
927                 cpufreq_update_policy(cpu);
928         }
929
930         mutex_unlock(&intel_pstate_driver_lock);
931 }
932
933 /************************** sysfs begin ************************/
934 #define show_one(file_name, object)                                     \
935         static ssize_t show_##file_name                                 \
936         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
937         {                                                               \
938                 return sprintf(buf, "%u\n", global.object);             \
939         }
940
941 static ssize_t intel_pstate_show_status(char *buf);
942 static int intel_pstate_update_status(const char *buf, size_t size);
943
944 static ssize_t show_status(struct kobject *kobj,
945                            struct kobj_attribute *attr, char *buf)
946 {
947         ssize_t ret;
948
949         mutex_lock(&intel_pstate_driver_lock);
950         ret = intel_pstate_show_status(buf);
951         mutex_unlock(&intel_pstate_driver_lock);
952
953         return ret;
954 }
955
956 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
957                             const char *buf, size_t count)
958 {
959         char *p = memchr(buf, '\n', count);
960         int ret;
961
962         mutex_lock(&intel_pstate_driver_lock);
963         ret = intel_pstate_update_status(buf, p ? p - buf : count);
964         mutex_unlock(&intel_pstate_driver_lock);
965
966         return ret < 0 ? ret : count;
967 }
968
969 static ssize_t show_turbo_pct(struct kobject *kobj,
970                                 struct kobj_attribute *attr, char *buf)
971 {
972         struct cpudata *cpu;
973         int total, no_turbo, turbo_pct;
974         uint32_t turbo_fp;
975
976         mutex_lock(&intel_pstate_driver_lock);
977
978         if (!intel_pstate_driver) {
979                 mutex_unlock(&intel_pstate_driver_lock);
980                 return -EAGAIN;
981         }
982
983         cpu = all_cpu_data[0];
984
985         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
986         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
987         turbo_fp = div_fp(no_turbo, total);
988         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
989
990         mutex_unlock(&intel_pstate_driver_lock);
991
992         return sprintf(buf, "%u\n", turbo_pct);
993 }
994
995 static ssize_t show_num_pstates(struct kobject *kobj,
996                                 struct kobj_attribute *attr, char *buf)
997 {
998         struct cpudata *cpu;
999         int total;
1000
1001         mutex_lock(&intel_pstate_driver_lock);
1002
1003         if (!intel_pstate_driver) {
1004                 mutex_unlock(&intel_pstate_driver_lock);
1005                 return -EAGAIN;
1006         }
1007
1008         cpu = all_cpu_data[0];
1009         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1010
1011         mutex_unlock(&intel_pstate_driver_lock);
1012
1013         return sprintf(buf, "%u\n", total);
1014 }
1015
1016 static ssize_t show_no_turbo(struct kobject *kobj,
1017                              struct kobj_attribute *attr, char *buf)
1018 {
1019         ssize_t ret;
1020
1021         mutex_lock(&intel_pstate_driver_lock);
1022
1023         if (!intel_pstate_driver) {
1024                 mutex_unlock(&intel_pstate_driver_lock);
1025                 return -EAGAIN;
1026         }
1027
1028         update_turbo_state();
1029         if (global.turbo_disabled)
1030                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1031         else
1032                 ret = sprintf(buf, "%u\n", global.no_turbo);
1033
1034         mutex_unlock(&intel_pstate_driver_lock);
1035
1036         return ret;
1037 }
1038
1039 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1040                               const char *buf, size_t count)
1041 {
1042         unsigned int input;
1043         int ret;
1044
1045         ret = sscanf(buf, "%u", &input);
1046         if (ret != 1)
1047                 return -EINVAL;
1048
1049         mutex_lock(&intel_pstate_driver_lock);
1050
1051         if (!intel_pstate_driver) {
1052                 mutex_unlock(&intel_pstate_driver_lock);
1053                 return -EAGAIN;
1054         }
1055
1056         mutex_lock(&intel_pstate_limits_lock);
1057
1058         update_turbo_state();
1059         if (global.turbo_disabled) {
1060                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1061                 mutex_unlock(&intel_pstate_limits_lock);
1062                 mutex_unlock(&intel_pstate_driver_lock);
1063                 return -EPERM;
1064         }
1065
1066         global.no_turbo = clamp_t(int, input, 0, 1);
1067
1068         if (global.no_turbo) {
1069                 struct cpudata *cpu = all_cpu_data[0];
1070                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1071
1072                 /* Squash the global minimum into the permitted range. */
1073                 if (global.min_perf_pct > pct)
1074                         global.min_perf_pct = pct;
1075         }
1076
1077         mutex_unlock(&intel_pstate_limits_lock);
1078
1079         intel_pstate_update_policies();
1080
1081         mutex_unlock(&intel_pstate_driver_lock);
1082
1083         return count;
1084 }
1085
1086 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1087                                   const char *buf, size_t count)
1088 {
1089         unsigned int input;
1090         int ret;
1091
1092         ret = sscanf(buf, "%u", &input);
1093         if (ret != 1)
1094                 return -EINVAL;
1095
1096         mutex_lock(&intel_pstate_driver_lock);
1097
1098         if (!intel_pstate_driver) {
1099                 mutex_unlock(&intel_pstate_driver_lock);
1100                 return -EAGAIN;
1101         }
1102
1103         mutex_lock(&intel_pstate_limits_lock);
1104
1105         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1106
1107         mutex_unlock(&intel_pstate_limits_lock);
1108
1109         intel_pstate_update_policies();
1110
1111         mutex_unlock(&intel_pstate_driver_lock);
1112
1113         return count;
1114 }
1115
1116 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1117                                   const char *buf, size_t count)
1118 {
1119         unsigned int input;
1120         int ret;
1121
1122         ret = sscanf(buf, "%u", &input);
1123         if (ret != 1)
1124                 return -EINVAL;
1125
1126         mutex_lock(&intel_pstate_driver_lock);
1127
1128         if (!intel_pstate_driver) {
1129                 mutex_unlock(&intel_pstate_driver_lock);
1130                 return -EAGAIN;
1131         }
1132
1133         mutex_lock(&intel_pstate_limits_lock);
1134
1135         global.min_perf_pct = clamp_t(int, input,
1136                                       min_perf_pct_min(), global.max_perf_pct);
1137
1138         mutex_unlock(&intel_pstate_limits_lock);
1139
1140         intel_pstate_update_policies();
1141
1142         mutex_unlock(&intel_pstate_driver_lock);
1143
1144         return count;
1145 }
1146
1147 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1148                                 struct kobj_attribute *attr, char *buf)
1149 {
1150         return sprintf(buf, "%u\n", hwp_boost);
1151 }
1152
1153 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1154                                        struct kobj_attribute *b,
1155                                        const char *buf, size_t count)
1156 {
1157         unsigned int input;
1158         int ret;
1159
1160         ret = kstrtouint(buf, 10, &input);
1161         if (ret)
1162                 return ret;
1163
1164         mutex_lock(&intel_pstate_driver_lock);
1165         hwp_boost = !!input;
1166         intel_pstate_update_policies();
1167         mutex_unlock(&intel_pstate_driver_lock);
1168
1169         return count;
1170 }
1171
1172 show_one(max_perf_pct, max_perf_pct);
1173 show_one(min_perf_pct, min_perf_pct);
1174
1175 define_one_global_rw(status);
1176 define_one_global_rw(no_turbo);
1177 define_one_global_rw(max_perf_pct);
1178 define_one_global_rw(min_perf_pct);
1179 define_one_global_ro(turbo_pct);
1180 define_one_global_ro(num_pstates);
1181 define_one_global_rw(hwp_dynamic_boost);
1182
1183 static struct attribute *intel_pstate_attributes[] = {
1184         &status.attr,
1185         &no_turbo.attr,
1186         &turbo_pct.attr,
1187         &num_pstates.attr,
1188         NULL
1189 };
1190
1191 static const struct attribute_group intel_pstate_attr_group = {
1192         .attrs = intel_pstate_attributes,
1193 };
1194
1195 static void __init intel_pstate_sysfs_expose_params(void)
1196 {
1197         struct kobject *intel_pstate_kobject;
1198         int rc;
1199
1200         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1201                                                 &cpu_subsys.dev_root->kobj);
1202         if (WARN_ON(!intel_pstate_kobject))
1203                 return;
1204
1205         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1206         if (WARN_ON(rc))
1207                 return;
1208
1209         /*
1210          * If per cpu limits are enforced there are no global limits, so
1211          * return without creating max/min_perf_pct attributes
1212          */
1213         if (per_cpu_limits)
1214                 return;
1215
1216         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1217         WARN_ON(rc);
1218
1219         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1220         WARN_ON(rc);
1221
1222         if (hwp_active) {
1223                 rc = sysfs_create_file(intel_pstate_kobject,
1224                                        &hwp_dynamic_boost.attr);
1225                 WARN_ON(rc);
1226         }
1227 }
1228 /************************** sysfs end ************************/
1229
1230 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1231 {
1232         /* First disable HWP notification interrupt as we don't process them */
1233         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1234                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1235
1236         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1237         cpudata->epp_policy = 0;
1238         if (cpudata->epp_default == -EINVAL)
1239                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1240 }
1241
1242 #define MSR_IA32_POWER_CTL_BIT_EE       19
1243
1244 /* Disable energy efficiency optimization */
1245 static void intel_pstate_disable_ee(int cpu)
1246 {
1247         u64 power_ctl;
1248         int ret;
1249
1250         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1251         if (ret)
1252                 return;
1253
1254         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1255                 pr_info("Disabling energy efficiency optimization\n");
1256                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1257                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1258         }
1259 }
1260
1261 static int atom_get_min_pstate(void)
1262 {
1263         u64 value;
1264
1265         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1266         return (value >> 8) & 0x7F;
1267 }
1268
1269 static int atom_get_max_pstate(void)
1270 {
1271         u64 value;
1272
1273         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1274         return (value >> 16) & 0x7F;
1275 }
1276
1277 static int atom_get_turbo_pstate(void)
1278 {
1279         u64 value;
1280
1281         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1282         return value & 0x7F;
1283 }
1284
1285 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1286 {
1287         u64 val;
1288         int32_t vid_fp;
1289         u32 vid;
1290
1291         val = (u64)pstate << 8;
1292         if (global.no_turbo && !global.turbo_disabled)
1293                 val |= (u64)1 << 32;
1294
1295         vid_fp = cpudata->vid.min + mul_fp(
1296                 int_tofp(pstate - cpudata->pstate.min_pstate),
1297                 cpudata->vid.ratio);
1298
1299         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1300         vid = ceiling_fp(vid_fp);
1301
1302         if (pstate > cpudata->pstate.max_pstate)
1303                 vid = cpudata->vid.turbo;
1304
1305         return val | vid;
1306 }
1307
1308 static int silvermont_get_scaling(void)
1309 {
1310         u64 value;
1311         int i;
1312         /* Defined in Table 35-6 from SDM (Sept 2015) */
1313         static int silvermont_freq_table[] = {
1314                 83300, 100000, 133300, 116700, 80000};
1315
1316         rdmsrl(MSR_FSB_FREQ, value);
1317         i = value & 0x7;
1318         WARN_ON(i > 4);
1319
1320         return silvermont_freq_table[i];
1321 }
1322
1323 static int airmont_get_scaling(void)
1324 {
1325         u64 value;
1326         int i;
1327         /* Defined in Table 35-10 from SDM (Sept 2015) */
1328         static int airmont_freq_table[] = {
1329                 83300, 100000, 133300, 116700, 80000,
1330                 93300, 90000, 88900, 87500};
1331
1332         rdmsrl(MSR_FSB_FREQ, value);
1333         i = value & 0xF;
1334         WARN_ON(i > 8);
1335
1336         return airmont_freq_table[i];
1337 }
1338
1339 static void atom_get_vid(struct cpudata *cpudata)
1340 {
1341         u64 value;
1342
1343         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1344         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1345         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1346         cpudata->vid.ratio = div_fp(
1347                 cpudata->vid.max - cpudata->vid.min,
1348                 int_tofp(cpudata->pstate.max_pstate -
1349                         cpudata->pstate.min_pstate));
1350
1351         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1352         cpudata->vid.turbo = value & 0x7f;
1353 }
1354
1355 static int core_get_min_pstate(void)
1356 {
1357         u64 value;
1358
1359         rdmsrl(MSR_PLATFORM_INFO, value);
1360         return (value >> 40) & 0xFF;
1361 }
1362
1363 static int core_get_max_pstate_physical(void)
1364 {
1365         u64 value;
1366
1367         rdmsrl(MSR_PLATFORM_INFO, value);
1368         return (value >> 8) & 0xFF;
1369 }
1370
1371 static int core_get_tdp_ratio(u64 plat_info)
1372 {
1373         /* Check how many TDP levels present */
1374         if (plat_info & 0x600000000) {
1375                 u64 tdp_ctrl;
1376                 u64 tdp_ratio;
1377                 int tdp_msr;
1378                 int err;
1379
1380                 /* Get the TDP level (0, 1, 2) to get ratios */
1381                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1382                 if (err)
1383                         return err;
1384
1385                 /* TDP MSR are continuous starting at 0x648 */
1386                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1387                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1388                 if (err)
1389                         return err;
1390
1391                 /* For level 1 and 2, bits[23:16] contain the ratio */
1392                 if (tdp_ctrl & 0x03)
1393                         tdp_ratio >>= 16;
1394
1395                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1396                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1397
1398                 return (int)tdp_ratio;
1399         }
1400
1401         return -ENXIO;
1402 }
1403
1404 static int core_get_max_pstate(void)
1405 {
1406         u64 tar;
1407         u64 plat_info;
1408         int max_pstate;
1409         int tdp_ratio;
1410         int err;
1411
1412         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1413         max_pstate = (plat_info >> 8) & 0xFF;
1414
1415         tdp_ratio = core_get_tdp_ratio(plat_info);
1416         if (tdp_ratio <= 0)
1417                 return max_pstate;
1418
1419         if (hwp_active) {
1420                 /* Turbo activation ratio is not used on HWP platforms */
1421                 return tdp_ratio;
1422         }
1423
1424         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1425         if (!err) {
1426                 int tar_levels;
1427
1428                 /* Do some sanity checking for safety */
1429                 tar_levels = tar & 0xff;
1430                 if (tdp_ratio - 1 == tar_levels) {
1431                         max_pstate = tar_levels;
1432                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1433                 }
1434         }
1435
1436         return max_pstate;
1437 }
1438
1439 static int core_get_turbo_pstate(void)
1440 {
1441         u64 value;
1442         int nont, ret;
1443
1444         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1445         nont = core_get_max_pstate();
1446         ret = (value) & 255;
1447         if (ret <= nont)
1448                 ret = nont;
1449         return ret;
1450 }
1451
1452 static inline int core_get_scaling(void)
1453 {
1454         return 100000;
1455 }
1456
1457 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1458 {
1459         u64 val;
1460
1461         val = (u64)pstate << 8;
1462         if (global.no_turbo && !global.turbo_disabled)
1463                 val |= (u64)1 << 32;
1464
1465         return val;
1466 }
1467
1468 static int knl_get_aperf_mperf_shift(void)
1469 {
1470         return 10;
1471 }
1472
1473 static int knl_get_turbo_pstate(void)
1474 {
1475         u64 value;
1476         int nont, ret;
1477
1478         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1479         nont = core_get_max_pstate();
1480         ret = (((value) >> 8) & 0xFF);
1481         if (ret <= nont)
1482                 ret = nont;
1483         return ret;
1484 }
1485
1486 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1487 {
1488         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1489         cpu->pstate.current_pstate = pstate;
1490         /*
1491          * Generally, there is no guarantee that this code will always run on
1492          * the CPU being updated, so force the register update to run on the
1493          * right CPU.
1494          */
1495         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1496                       pstate_funcs.get_val(cpu, pstate));
1497 }
1498
1499 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1500 {
1501         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1502 }
1503
1504 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1505 {
1506         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1507
1508         update_turbo_state();
1509         intel_pstate_set_pstate(cpu, pstate);
1510 }
1511
1512 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1513 {
1514         cpu->pstate.min_pstate = pstate_funcs.get_min();
1515         cpu->pstate.max_pstate = pstate_funcs.get_max();
1516         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1517         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1518         cpu->pstate.scaling = pstate_funcs.get_scaling();
1519         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1520
1521         if (hwp_active && !hwp_mode_bdw) {
1522                 unsigned int phy_max, current_max;
1523
1524                 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1525                 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1526         } else {
1527                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1528         }
1529
1530         if (pstate_funcs.get_aperf_mperf_shift)
1531                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1532
1533         if (pstate_funcs.get_vid)
1534                 pstate_funcs.get_vid(cpu);
1535
1536         intel_pstate_set_min_pstate(cpu);
1537 }
1538
1539 /*
1540  * Long hold time will keep high perf limits for long time,
1541  * which negatively impacts perf/watt for some workloads,
1542  * like specpower. 3ms is based on experiements on some
1543  * workoads.
1544  */
1545 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1546
1547 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1548 {
1549         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1550         u32 max_limit = (hwp_req & 0xff00) >> 8;
1551         u32 min_limit = (hwp_req & 0xff);
1552         u32 boost_level1;
1553
1554         /*
1555          * Cases to consider (User changes via sysfs or boot time):
1556          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1557          *      No boost, return.
1558          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1559          *     Should result in one level boost only for P0.
1560          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1561          *     Should result in two level boost:
1562          *         (min + p1)/2 and P1.
1563          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1564          *     Should result in three level boost:
1565          *        (min + p1)/2, P1 and P0.
1566          */
1567
1568         /* If max and min are equal or already at max, nothing to boost */
1569         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1570                 return;
1571
1572         if (!cpu->hwp_boost_min)
1573                 cpu->hwp_boost_min = min_limit;
1574
1575         /* level at half way mark between min and guranteed */
1576         boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1577
1578         if (cpu->hwp_boost_min < boost_level1)
1579                 cpu->hwp_boost_min = boost_level1;
1580         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1581                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1582         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1583                  max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1584                 cpu->hwp_boost_min = max_limit;
1585         else
1586                 return;
1587
1588         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1589         wrmsrl(MSR_HWP_REQUEST, hwp_req);
1590         cpu->last_update = cpu->sample.time;
1591 }
1592
1593 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1594 {
1595         if (cpu->hwp_boost_min) {
1596                 bool expired;
1597
1598                 /* Check if we are idle for hold time to boost down */
1599                 expired = time_after64(cpu->sample.time, cpu->last_update +
1600                                        hwp_boost_hold_time_ns);
1601                 if (expired) {
1602                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1603                         cpu->hwp_boost_min = 0;
1604                 }
1605         }
1606         cpu->last_update = cpu->sample.time;
1607 }
1608
1609 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1610                                                       u64 time)
1611 {
1612         cpu->sample.time = time;
1613
1614         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1615                 bool do_io = false;
1616
1617                 cpu->sched_flags = 0;
1618                 /*
1619                  * Set iowait_boost flag and update time. Since IO WAIT flag
1620                  * is set all the time, we can't just conclude that there is
1621                  * some IO bound activity is scheduled on this CPU with just
1622                  * one occurrence. If we receive at least two in two
1623                  * consecutive ticks, then we treat as boost candidate.
1624                  */
1625                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1626                         do_io = true;
1627
1628                 cpu->last_io_update = time;
1629
1630                 if (do_io)
1631                         intel_pstate_hwp_boost_up(cpu);
1632
1633         } else {
1634                 intel_pstate_hwp_boost_down(cpu);
1635         }
1636 }
1637
1638 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1639                                                 u64 time, unsigned int flags)
1640 {
1641         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1642
1643         cpu->sched_flags |= flags;
1644
1645         if (smp_processor_id() == cpu->cpu)
1646                 intel_pstate_update_util_hwp_local(cpu, time);
1647 }
1648
1649 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1650 {
1651         struct sample *sample = &cpu->sample;
1652
1653         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1654 }
1655
1656 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1657 {
1658         u64 aperf, mperf;
1659         unsigned long flags;
1660         u64 tsc;
1661
1662         local_irq_save(flags);
1663         rdmsrl(MSR_IA32_APERF, aperf);
1664         rdmsrl(MSR_IA32_MPERF, mperf);
1665         tsc = rdtsc();
1666         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1667                 local_irq_restore(flags);
1668                 return false;
1669         }
1670         local_irq_restore(flags);
1671
1672         cpu->last_sample_time = cpu->sample.time;
1673         cpu->sample.time = time;
1674         cpu->sample.aperf = aperf;
1675         cpu->sample.mperf = mperf;
1676         cpu->sample.tsc =  tsc;
1677         cpu->sample.aperf -= cpu->prev_aperf;
1678         cpu->sample.mperf -= cpu->prev_mperf;
1679         cpu->sample.tsc -= cpu->prev_tsc;
1680
1681         cpu->prev_aperf = aperf;
1682         cpu->prev_mperf = mperf;
1683         cpu->prev_tsc = tsc;
1684         /*
1685          * First time this function is invoked in a given cycle, all of the
1686          * previous sample data fields are equal to zero or stale and they must
1687          * be populated with meaningful numbers for things to work, so assume
1688          * that sample.time will always be reset before setting the utilization
1689          * update hook and make the caller skip the sample then.
1690          */
1691         if (cpu->last_sample_time) {
1692                 intel_pstate_calc_avg_perf(cpu);
1693                 return true;
1694         }
1695         return false;
1696 }
1697
1698 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1699 {
1700         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1701 }
1702
1703 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1704 {
1705         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1706                           cpu->sample.core_avg_perf);
1707 }
1708
1709 static inline int32_t get_target_pstate(struct cpudata *cpu)
1710 {
1711         struct sample *sample = &cpu->sample;
1712         int32_t busy_frac;
1713         int target, avg_pstate;
1714
1715         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1716                            sample->tsc);
1717
1718         if (busy_frac < cpu->iowait_boost)
1719                 busy_frac = cpu->iowait_boost;
1720
1721         sample->busy_scaled = busy_frac * 100;
1722
1723         target = global.no_turbo || global.turbo_disabled ?
1724                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1725         target += target >> 2;
1726         target = mul_fp(target, busy_frac);
1727         if (target < cpu->pstate.min_pstate)
1728                 target = cpu->pstate.min_pstate;
1729
1730         /*
1731          * If the average P-state during the previous cycle was higher than the
1732          * current target, add 50% of the difference to the target to reduce
1733          * possible performance oscillations and offset possible performance
1734          * loss related to moving the workload from one CPU to another within
1735          * a package/module.
1736          */
1737         avg_pstate = get_avg_pstate(cpu);
1738         if (avg_pstate > target)
1739                 target += (avg_pstate - target) >> 1;
1740
1741         return target;
1742 }
1743
1744 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1745 {
1746         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1747         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1748
1749         return clamp_t(int, pstate, min_pstate, max_pstate);
1750 }
1751
1752 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1753 {
1754         if (pstate == cpu->pstate.current_pstate)
1755                 return;
1756
1757         cpu->pstate.current_pstate = pstate;
1758         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1759 }
1760
1761 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1762 {
1763         int from = cpu->pstate.current_pstate;
1764         struct sample *sample;
1765         int target_pstate;
1766
1767         update_turbo_state();
1768
1769         target_pstate = get_target_pstate(cpu);
1770         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1771         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1772         intel_pstate_update_pstate(cpu, target_pstate);
1773
1774         sample = &cpu->sample;
1775         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1776                 fp_toint(sample->busy_scaled),
1777                 from,
1778                 cpu->pstate.current_pstate,
1779                 sample->mperf,
1780                 sample->aperf,
1781                 sample->tsc,
1782                 get_avg_frequency(cpu),
1783                 fp_toint(cpu->iowait_boost * 100));
1784 }
1785
1786 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1787                                      unsigned int flags)
1788 {
1789         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1790         u64 delta_ns;
1791
1792         /* Don't allow remote callbacks */
1793         if (smp_processor_id() != cpu->cpu)
1794                 return;
1795
1796         delta_ns = time - cpu->last_update;
1797         if (flags & SCHED_CPUFREQ_IOWAIT) {
1798                 /* Start over if the CPU may have been idle. */
1799                 if (delta_ns > TICK_NSEC) {
1800                         cpu->iowait_boost = ONE_EIGHTH_FP;
1801                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1802                         cpu->iowait_boost <<= 1;
1803                         if (cpu->iowait_boost > int_tofp(1))
1804                                 cpu->iowait_boost = int_tofp(1);
1805                 } else {
1806                         cpu->iowait_boost = ONE_EIGHTH_FP;
1807                 }
1808         } else if (cpu->iowait_boost) {
1809                 /* Clear iowait_boost if the CPU may have been idle. */
1810                 if (delta_ns > TICK_NSEC)
1811                         cpu->iowait_boost = 0;
1812                 else
1813                         cpu->iowait_boost >>= 1;
1814         }
1815         cpu->last_update = time;
1816         delta_ns = time - cpu->sample.time;
1817         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1818                 return;
1819
1820         if (intel_pstate_sample(cpu, time))
1821                 intel_pstate_adjust_pstate(cpu);
1822 }
1823
1824 static struct pstate_funcs core_funcs = {
1825         .get_max = core_get_max_pstate,
1826         .get_max_physical = core_get_max_pstate_physical,
1827         .get_min = core_get_min_pstate,
1828         .get_turbo = core_get_turbo_pstate,
1829         .get_scaling = core_get_scaling,
1830         .get_val = core_get_val,
1831 };
1832
1833 static const struct pstate_funcs silvermont_funcs = {
1834         .get_max = atom_get_max_pstate,
1835         .get_max_physical = atom_get_max_pstate,
1836         .get_min = atom_get_min_pstate,
1837         .get_turbo = atom_get_turbo_pstate,
1838         .get_val = atom_get_val,
1839         .get_scaling = silvermont_get_scaling,
1840         .get_vid = atom_get_vid,
1841 };
1842
1843 static const struct pstate_funcs airmont_funcs = {
1844         .get_max = atom_get_max_pstate,
1845         .get_max_physical = atom_get_max_pstate,
1846         .get_min = atom_get_min_pstate,
1847         .get_turbo = atom_get_turbo_pstate,
1848         .get_val = atom_get_val,
1849         .get_scaling = airmont_get_scaling,
1850         .get_vid = atom_get_vid,
1851 };
1852
1853 static const struct pstate_funcs knl_funcs = {
1854         .get_max = core_get_max_pstate,
1855         .get_max_physical = core_get_max_pstate_physical,
1856         .get_min = core_get_min_pstate,
1857         .get_turbo = knl_get_turbo_pstate,
1858         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1859         .get_scaling = core_get_scaling,
1860         .get_val = core_get_val,
1861 };
1862
1863 #define ICPU(model, policy) \
1864         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1865                         (unsigned long)&policy }
1866
1867 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1868         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1869         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1870         ICPU(INTEL_FAM6_ATOM_SILVERMONT,        silvermont_funcs),
1871         ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1872         ICPU(INTEL_FAM6_HASWELL_CORE,           core_funcs),
1873         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_funcs),
1874         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1875         ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1876         ICPU(INTEL_FAM6_HASWELL_ULT,            core_funcs),
1877         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_funcs),
1878         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_funcs),
1879         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1880         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_funcs),
1881         ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1882         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_funcs),
1883         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_funcs),
1884         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1885         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1886         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          core_funcs),
1887         ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1888         ICPU(INTEL_FAM6_SKYLAKE_X,              core_funcs),
1889         {}
1890 };
1891 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1892
1893 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1894         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1895         ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1896         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1897         {}
1898 };
1899
1900 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1901         ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1902         {}
1903 };
1904
1905 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1906         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1907         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1908         {}
1909 };
1910
1911 static int intel_pstate_init_cpu(unsigned int cpunum)
1912 {
1913         struct cpudata *cpu;
1914
1915         cpu = all_cpu_data[cpunum];
1916
1917         if (!cpu) {
1918                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1919                 if (!cpu)
1920                         return -ENOMEM;
1921
1922                 all_cpu_data[cpunum] = cpu;
1923
1924                 cpu->epp_default = -EINVAL;
1925                 cpu->epp_powersave = -EINVAL;
1926                 cpu->epp_saved = -EINVAL;
1927         }
1928
1929         cpu = all_cpu_data[cpunum];
1930
1931         cpu->cpu = cpunum;
1932
1933         if (hwp_active) {
1934                 const struct x86_cpu_id *id;
1935
1936                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1937                 if (id)
1938                         intel_pstate_disable_ee(cpunum);
1939
1940                 intel_pstate_hwp_enable(cpu);
1941
1942                 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1943                 if (id && intel_pstate_acpi_pm_profile_server())
1944                         hwp_boost = true;
1945         }
1946
1947         intel_pstate_get_cpu_pstates(cpu);
1948
1949         pr_debug("controlling: cpu %d\n", cpunum);
1950
1951         return 0;
1952 }
1953
1954 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1955 {
1956         struct cpudata *cpu = all_cpu_data[cpu_num];
1957
1958         if (hwp_active && !hwp_boost)
1959                 return;
1960
1961         if (cpu->update_util_set)
1962                 return;
1963
1964         /* Prevent intel_pstate_update_util() from using stale data. */
1965         cpu->sample.time = 0;
1966         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1967                                      (hwp_active ?
1968                                       intel_pstate_update_util_hwp :
1969                                       intel_pstate_update_util));
1970         cpu->update_util_set = true;
1971 }
1972
1973 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1974 {
1975         struct cpudata *cpu_data = all_cpu_data[cpu];
1976
1977         if (!cpu_data->update_util_set)
1978                 return;
1979
1980         cpufreq_remove_update_util_hook(cpu);
1981         cpu_data->update_util_set = false;
1982         synchronize_rcu();
1983 }
1984
1985 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1986 {
1987         return global.turbo_disabled || global.no_turbo ?
1988                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1989 }
1990
1991 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1992                                             struct cpudata *cpu)
1993 {
1994         int max_freq = intel_pstate_get_max_freq(cpu);
1995         int32_t max_policy_perf, min_policy_perf;
1996         int max_state, turbo_max;
1997
1998         /*
1999          * HWP needs some special consideration, because on BDX the
2000          * HWP_REQUEST uses abstract value to represent performance
2001          * rather than pure ratios.
2002          */
2003         if (hwp_active) {
2004                 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2005         } else {
2006                 max_state = global.no_turbo || global.turbo_disabled ?
2007                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2008                 turbo_max = cpu->pstate.turbo_pstate;
2009         }
2010
2011         max_policy_perf = max_state * policy->max / max_freq;
2012         if (policy->max == policy->min) {
2013                 min_policy_perf = max_policy_perf;
2014         } else {
2015                 min_policy_perf = max_state * policy->min / max_freq;
2016                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2017                                           0, max_policy_perf);
2018         }
2019
2020         pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2021                  policy->cpu, max_state,
2022                  min_policy_perf, max_policy_perf);
2023
2024         /* Normalize user input to [min_perf, max_perf] */
2025         if (per_cpu_limits) {
2026                 cpu->min_perf_ratio = min_policy_perf;
2027                 cpu->max_perf_ratio = max_policy_perf;
2028         } else {
2029                 int32_t global_min, global_max;
2030
2031                 /* Global limits are in percent of the maximum turbo P-state. */
2032                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2033                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2034                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2035
2036                 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2037                          global_min, global_max);
2038
2039                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2040                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2041                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2042                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2043
2044                 /* Make sure min_perf <= max_perf */
2045                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2046                                           cpu->max_perf_ratio);
2047
2048         }
2049         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2050                  cpu->max_perf_ratio,
2051                  cpu->min_perf_ratio);
2052 }
2053
2054 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2055 {
2056         struct cpudata *cpu;
2057
2058         if (!policy->cpuinfo.max_freq)
2059                 return -ENODEV;
2060
2061         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2062                  policy->cpuinfo.max_freq, policy->max);
2063
2064         cpu = all_cpu_data[policy->cpu];
2065         cpu->policy = policy->policy;
2066
2067         mutex_lock(&intel_pstate_limits_lock);
2068
2069         intel_pstate_update_perf_limits(policy, cpu);
2070
2071         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2072                 /*
2073                  * NOHZ_FULL CPUs need this as the governor callback may not
2074                  * be invoked on them.
2075                  */
2076                 intel_pstate_clear_update_util_hook(policy->cpu);
2077                 intel_pstate_max_within_limits(cpu);
2078         } else {
2079                 intel_pstate_set_update_util_hook(policy->cpu);
2080         }
2081
2082         if (hwp_active) {
2083                 /*
2084                  * When hwp_boost was active before and dynamically it
2085                  * was turned off, in that case we need to clear the
2086                  * update util hook.
2087                  */
2088                 if (!hwp_boost)
2089                         intel_pstate_clear_update_util_hook(policy->cpu);
2090                 intel_pstate_hwp_set(policy->cpu);
2091         }
2092
2093         mutex_unlock(&intel_pstate_limits_lock);
2094
2095         return 0;
2096 }
2097
2098 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2099                                          struct cpudata *cpu)
2100 {
2101         if (!hwp_active &&
2102             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2103             policy->max < policy->cpuinfo.max_freq &&
2104             policy->max > cpu->pstate.max_freq) {
2105                 pr_debug("policy->max > max non turbo frequency\n");
2106                 policy->max = policy->cpuinfo.max_freq;
2107         }
2108 }
2109
2110 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2111 {
2112         struct cpudata *cpu = all_cpu_data[policy->cpu];
2113
2114         update_turbo_state();
2115         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2116                                      intel_pstate_get_max_freq(cpu));
2117
2118         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2119             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2120                 return -EINVAL;
2121
2122         intel_pstate_adjust_policy_max(policy, cpu);
2123
2124         return 0;
2125 }
2126
2127 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2128 {
2129         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2130 }
2131
2132 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2133 {
2134         pr_debug("CPU %d exiting\n", policy->cpu);
2135
2136         intel_pstate_clear_update_util_hook(policy->cpu);
2137         if (hwp_active) {
2138                 intel_pstate_hwp_save_state(policy);
2139                 intel_pstate_hwp_force_min_perf(policy->cpu);
2140         } else {
2141                 intel_cpufreq_stop_cpu(policy);
2142         }
2143 }
2144
2145 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2146 {
2147         intel_pstate_exit_perf_limits(policy);
2148
2149         policy->fast_switch_possible = false;
2150
2151         return 0;
2152 }
2153
2154 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2155 {
2156         struct cpudata *cpu;
2157         int rc;
2158
2159         rc = intel_pstate_init_cpu(policy->cpu);
2160         if (rc)
2161                 return rc;
2162
2163         cpu = all_cpu_data[policy->cpu];
2164
2165         cpu->max_perf_ratio = 0xFF;
2166         cpu->min_perf_ratio = 0;
2167
2168         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2169         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2170
2171         /* cpuinfo and default policy values */
2172         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2173         update_turbo_state();
2174         global.turbo_disabled_mf = global.turbo_disabled;
2175         policy->cpuinfo.max_freq = global.turbo_disabled ?
2176                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2177         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2178
2179         if (hwp_active) {
2180                 unsigned int max_freq;
2181
2182                 max_freq = global.turbo_disabled ?
2183                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2184                 if (max_freq < policy->cpuinfo.max_freq)
2185                         policy->cpuinfo.max_freq = max_freq;
2186         }
2187
2188         intel_pstate_init_acpi_perf_limits(policy);
2189
2190         policy->fast_switch_possible = true;
2191
2192         return 0;
2193 }
2194
2195 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2196 {
2197         int ret = __intel_pstate_cpu_init(policy);
2198
2199         if (ret)
2200                 return ret;
2201
2202         if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2203                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2204         else
2205                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2206
2207         return 0;
2208 }
2209
2210 static struct cpufreq_driver intel_pstate = {
2211         .flags          = CPUFREQ_CONST_LOOPS,
2212         .verify         = intel_pstate_verify_policy,
2213         .setpolicy      = intel_pstate_set_policy,
2214         .suspend        = intel_pstate_hwp_save_state,
2215         .resume         = intel_pstate_resume,
2216         .init           = intel_pstate_cpu_init,
2217         .exit           = intel_pstate_cpu_exit,
2218         .stop_cpu       = intel_pstate_stop_cpu,
2219         .update_limits  = intel_pstate_update_limits,
2220         .name           = "intel_pstate",
2221 };
2222
2223 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2224 {
2225         struct cpudata *cpu = all_cpu_data[policy->cpu];
2226
2227         update_turbo_state();
2228         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2229                                      intel_pstate_get_max_freq(cpu));
2230
2231         intel_pstate_adjust_policy_max(policy, cpu);
2232
2233         intel_pstate_update_perf_limits(policy, cpu);
2234
2235         return 0;
2236 }
2237
2238 /* Use of trace in passive mode:
2239  *
2240  * In passive mode the trace core_busy field (also known as the
2241  * performance field, and lablelled as such on the graphs; also known as
2242  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2243  * driver call was via the normal or fast switch path. Various graphs
2244  * output from the intel_pstate_tracer.py utility that include core_busy
2245  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2246  * so we use 10 to indicate the the normal path through the driver, and
2247  * 90 to indicate the fast switch path through the driver.
2248  * The scaled_busy field is not used, and is set to 0.
2249  */
2250
2251 #define INTEL_PSTATE_TRACE_TARGET 10
2252 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2253
2254 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2255 {
2256         struct sample *sample;
2257
2258         if (!trace_pstate_sample_enabled())
2259                 return;
2260
2261         if (!intel_pstate_sample(cpu, ktime_get()))
2262                 return;
2263
2264         sample = &cpu->sample;
2265         trace_pstate_sample(trace_type,
2266                 0,
2267                 old_pstate,
2268                 cpu->pstate.current_pstate,
2269                 sample->mperf,
2270                 sample->aperf,
2271                 sample->tsc,
2272                 get_avg_frequency(cpu),
2273                 fp_toint(cpu->iowait_boost * 100));
2274 }
2275
2276 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2277                                 unsigned int target_freq,
2278                                 unsigned int relation)
2279 {
2280         struct cpudata *cpu = all_cpu_data[policy->cpu];
2281         struct cpufreq_freqs freqs;
2282         int target_pstate, old_pstate;
2283
2284         update_turbo_state();
2285
2286         freqs.old = policy->cur;
2287         freqs.new = target_freq;
2288
2289         cpufreq_freq_transition_begin(policy, &freqs);
2290         switch (relation) {
2291         case CPUFREQ_RELATION_L:
2292                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2293                 break;
2294         case CPUFREQ_RELATION_H:
2295                 target_pstate = freqs.new / cpu->pstate.scaling;
2296                 break;
2297         default:
2298                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2299                 break;
2300         }
2301         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2302         old_pstate = cpu->pstate.current_pstate;
2303         if (target_pstate != cpu->pstate.current_pstate) {
2304                 cpu->pstate.current_pstate = target_pstate;
2305                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2306                               pstate_funcs.get_val(cpu, target_pstate));
2307         }
2308         freqs.new = target_pstate * cpu->pstate.scaling;
2309         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2310         cpufreq_freq_transition_end(policy, &freqs, false);
2311
2312         return 0;
2313 }
2314
2315 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2316                                               unsigned int target_freq)
2317 {
2318         struct cpudata *cpu = all_cpu_data[policy->cpu];
2319         int target_pstate, old_pstate;
2320
2321         update_turbo_state();
2322
2323         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2324         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2325         old_pstate = cpu->pstate.current_pstate;
2326         intel_pstate_update_pstate(cpu, target_pstate);
2327         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2328         return target_pstate * cpu->pstate.scaling;
2329 }
2330
2331 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2332 {
2333         int ret = __intel_pstate_cpu_init(policy);
2334
2335         if (ret)
2336                 return ret;
2337
2338         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2339         policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2340         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2341         policy->cur = policy->cpuinfo.min_freq;
2342
2343         return 0;
2344 }
2345
2346 static struct cpufreq_driver intel_cpufreq = {
2347         .flags          = CPUFREQ_CONST_LOOPS,
2348         .verify         = intel_cpufreq_verify_policy,
2349         .target         = intel_cpufreq_target,
2350         .fast_switch    = intel_cpufreq_fast_switch,
2351         .init           = intel_cpufreq_cpu_init,
2352         .exit           = intel_pstate_cpu_exit,
2353         .stop_cpu       = intel_cpufreq_stop_cpu,
2354         .update_limits  = intel_pstate_update_limits,
2355         .name           = "intel_cpufreq",
2356 };
2357
2358 static struct cpufreq_driver *default_driver = &intel_pstate;
2359
2360 static void intel_pstate_driver_cleanup(void)
2361 {
2362         unsigned int cpu;
2363
2364         get_online_cpus();
2365         for_each_online_cpu(cpu) {
2366                 if (all_cpu_data[cpu]) {
2367                         if (intel_pstate_driver == &intel_pstate)
2368                                 intel_pstate_clear_update_util_hook(cpu);
2369
2370                         kfree(all_cpu_data[cpu]);
2371                         all_cpu_data[cpu] = NULL;
2372                 }
2373         }
2374         put_online_cpus();
2375         intel_pstate_driver = NULL;
2376 }
2377
2378 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2379 {
2380         int ret;
2381
2382         memset(&global, 0, sizeof(global));
2383         global.max_perf_pct = 100;
2384
2385         intel_pstate_driver = driver;
2386         ret = cpufreq_register_driver(intel_pstate_driver);
2387         if (ret) {
2388                 intel_pstate_driver_cleanup();
2389                 return ret;
2390         }
2391
2392         global.min_perf_pct = min_perf_pct_min();
2393
2394         return 0;
2395 }
2396
2397 static int intel_pstate_unregister_driver(void)
2398 {
2399         if (hwp_active)
2400                 return -EBUSY;
2401
2402         cpufreq_unregister_driver(intel_pstate_driver);
2403         intel_pstate_driver_cleanup();
2404
2405         return 0;
2406 }
2407
2408 static ssize_t intel_pstate_show_status(char *buf)
2409 {
2410         if (!intel_pstate_driver)
2411                 return sprintf(buf, "off\n");
2412
2413         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2414                                         "active" : "passive");
2415 }
2416
2417 static int intel_pstate_update_status(const char *buf, size_t size)
2418 {
2419         int ret;
2420
2421         if (size == 3 && !strncmp(buf, "off", size))
2422                 return intel_pstate_driver ?
2423                         intel_pstate_unregister_driver() : -EINVAL;
2424
2425         if (size == 6 && !strncmp(buf, "active", size)) {
2426                 if (intel_pstate_driver) {
2427                         if (intel_pstate_driver == &intel_pstate)
2428                                 return 0;
2429
2430                         ret = intel_pstate_unregister_driver();
2431                         if (ret)
2432                                 return ret;
2433                 }
2434
2435                 return intel_pstate_register_driver(&intel_pstate);
2436         }
2437
2438         if (size == 7 && !strncmp(buf, "passive", size)) {
2439                 if (intel_pstate_driver) {
2440                         if (intel_pstate_driver == &intel_cpufreq)
2441                                 return 0;
2442
2443                         ret = intel_pstate_unregister_driver();
2444                         if (ret)
2445                                 return ret;
2446                 }
2447
2448                 return intel_pstate_register_driver(&intel_cpufreq);
2449         }
2450
2451         return -EINVAL;
2452 }
2453
2454 static int no_load __initdata;
2455 static int no_hwp __initdata;
2456 static int hwp_only __initdata;
2457 static unsigned int force_load __initdata;
2458
2459 static int __init intel_pstate_msrs_not_valid(void)
2460 {
2461         if (!pstate_funcs.get_max() ||
2462             !pstate_funcs.get_min() ||
2463             !pstate_funcs.get_turbo())
2464                 return -ENODEV;
2465
2466         return 0;
2467 }
2468
2469 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2470 {
2471         pstate_funcs.get_max   = funcs->get_max;
2472         pstate_funcs.get_max_physical = funcs->get_max_physical;
2473         pstate_funcs.get_min   = funcs->get_min;
2474         pstate_funcs.get_turbo = funcs->get_turbo;
2475         pstate_funcs.get_scaling = funcs->get_scaling;
2476         pstate_funcs.get_val   = funcs->get_val;
2477         pstate_funcs.get_vid   = funcs->get_vid;
2478         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2479 }
2480
2481 #ifdef CONFIG_ACPI
2482
2483 static bool __init intel_pstate_no_acpi_pss(void)
2484 {
2485         int i;
2486
2487         for_each_possible_cpu(i) {
2488                 acpi_status status;
2489                 union acpi_object *pss;
2490                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2491                 struct acpi_processor *pr = per_cpu(processors, i);
2492
2493                 if (!pr)
2494                         continue;
2495
2496                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2497                 if (ACPI_FAILURE(status))
2498                         continue;
2499
2500                 pss = buffer.pointer;
2501                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2502                         kfree(pss);
2503                         return false;
2504                 }
2505
2506                 kfree(pss);
2507         }
2508
2509         pr_debug("ACPI _PSS not found\n");
2510         return true;
2511 }
2512
2513 static bool __init intel_pstate_no_acpi_pcch(void)
2514 {
2515         acpi_status status;
2516         acpi_handle handle;
2517
2518         status = acpi_get_handle(NULL, "\\_SB", &handle);
2519         if (ACPI_FAILURE(status))
2520                 goto not_found;
2521
2522         if (acpi_has_method(handle, "PCCH"))
2523                 return false;
2524
2525 not_found:
2526         pr_debug("ACPI PCCH not found\n");
2527         return true;
2528 }
2529
2530 static bool __init intel_pstate_has_acpi_ppc(void)
2531 {
2532         int i;
2533
2534         for_each_possible_cpu(i) {
2535                 struct acpi_processor *pr = per_cpu(processors, i);
2536
2537                 if (!pr)
2538                         continue;
2539                 if (acpi_has_method(pr->handle, "_PPC"))
2540                         return true;
2541         }
2542         pr_debug("ACPI _PPC not found\n");
2543         return false;
2544 }
2545
2546 enum {
2547         PSS,
2548         PPC,
2549 };
2550
2551 /* Hardware vendor-specific info that has its own power management modes */
2552 static struct acpi_platform_list plat_info[] __initdata = {
2553         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2554         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2555         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2556         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2557         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2558         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2559         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2560         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2561         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2562         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2563         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2564         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2565         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2566         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2567         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2568         { } /* End */
2569 };
2570
2571 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2572 {
2573         const struct x86_cpu_id *id;
2574         u64 misc_pwr;
2575         int idx;
2576
2577         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2578         if (id) {
2579                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2580                 if (misc_pwr & (1 << 8)) {
2581                         pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2582                         return true;
2583                 }
2584         }
2585
2586         idx = acpi_match_platform_list(plat_info);
2587         if (idx < 0)
2588                 return false;
2589
2590         switch (plat_info[idx].data) {
2591         case PSS:
2592                 if (!intel_pstate_no_acpi_pss())
2593                         return false;
2594
2595                 return intel_pstate_no_acpi_pcch();
2596         case PPC:
2597                 return intel_pstate_has_acpi_ppc() && !force_load;
2598         }
2599
2600         return false;
2601 }
2602
2603 static void intel_pstate_request_control_from_smm(void)
2604 {
2605         /*
2606          * It may be unsafe to request P-states control from SMM if _PPC support
2607          * has not been enabled.
2608          */
2609         if (acpi_ppc)
2610                 acpi_processor_pstate_control();
2611 }
2612 #else /* CONFIG_ACPI not enabled */
2613 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2614 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2615 static inline void intel_pstate_request_control_from_smm(void) {}
2616 #endif /* CONFIG_ACPI */
2617
2618 #define INTEL_PSTATE_HWP_BROADWELL      0x01
2619
2620 #define ICPU_HWP(model, hwp_mode) \
2621         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2622
2623 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2624         ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2625         ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2626         ICPU_HWP(X86_MODEL_ANY, 0),
2627         {}
2628 };
2629
2630 static int __init intel_pstate_init(void)
2631 {
2632         const struct x86_cpu_id *id;
2633         int rc;
2634
2635         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2636                 return -ENODEV;
2637
2638         if (no_load)
2639                 return -ENODEV;
2640
2641         id = x86_match_cpu(hwp_support_ids);
2642         if (id) {
2643                 copy_cpu_funcs(&core_funcs);
2644                 if (!no_hwp) {
2645                         hwp_active++;
2646                         hwp_mode_bdw = id->driver_data;
2647                         intel_pstate.attr = hwp_cpufreq_attrs;
2648                         goto hwp_cpu_matched;
2649                 }
2650         } else {
2651                 id = x86_match_cpu(intel_pstate_cpu_ids);
2652                 if (!id) {
2653                         pr_info("CPU model not supported\n");
2654                         return -ENODEV;
2655                 }
2656
2657                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2658         }
2659
2660         if (intel_pstate_msrs_not_valid()) {
2661                 pr_info("Invalid MSRs\n");
2662                 return -ENODEV;
2663         }
2664
2665 hwp_cpu_matched:
2666         /*
2667          * The Intel pstate driver will be ignored if the platform
2668          * firmware has its own power management modes.
2669          */
2670         if (intel_pstate_platform_pwr_mgmt_exists()) {
2671                 pr_info("P-states controlled by the platform\n");
2672                 return -ENODEV;
2673         }
2674
2675         if (!hwp_active && hwp_only)
2676                 return -ENOTSUPP;
2677
2678         pr_info("Intel P-state driver initializing\n");
2679
2680         all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2681         if (!all_cpu_data)
2682                 return -ENOMEM;
2683
2684         intel_pstate_request_control_from_smm();
2685
2686         intel_pstate_sysfs_expose_params();
2687
2688         mutex_lock(&intel_pstate_driver_lock);
2689         rc = intel_pstate_register_driver(default_driver);
2690         mutex_unlock(&intel_pstate_driver_lock);
2691         if (rc)
2692                 return rc;
2693
2694         if (hwp_active)
2695                 pr_info("HWP enabled\n");
2696
2697         return 0;
2698 }
2699 device_initcall(intel_pstate_init);
2700
2701 static int __init intel_pstate_setup(char *str)
2702 {
2703         if (!str)
2704                 return -EINVAL;
2705
2706         if (!strcmp(str, "disable")) {
2707                 no_load = 1;
2708         } else if (!strcmp(str, "passive")) {
2709                 pr_info("Passive mode enabled\n");
2710                 default_driver = &intel_cpufreq;
2711                 no_hwp = 1;
2712         }
2713         if (!strcmp(str, "no_hwp")) {
2714                 pr_info("HWP disabled\n");
2715                 no_hwp = 1;
2716         }
2717         if (!strcmp(str, "force"))
2718                 force_load = 1;
2719         if (!strcmp(str, "hwp_only"))
2720                 hwp_only = 1;
2721         if (!strcmp(str, "per_cpu_perf_limits"))
2722                 per_cpu_limits = true;
2723
2724 #ifdef CONFIG_ACPI
2725         if (!strcmp(str, "support_acpi_ppc"))
2726                 acpi_ppc = true;
2727 #endif
2728
2729         return 0;
2730 }
2731 early_param("intel_pstate", intel_pstate_setup);
2732
2733 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2734 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2735 MODULE_LICENSE("GPL");