Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / clocksource / timer-atmel-tcb.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/init.h>
3 #include <linux/clocksource.h>
4 #include <linux/clockchips.h>
5 #include <linux/interrupt.h>
6 #include <linux/irq.h>
7
8 #include <linux/clk.h>
9 #include <linux/err.h>
10 #include <linux/ioport.h>
11 #include <linux/io.h>
12 #include <linux/of_address.h>
13 #include <linux/of_irq.h>
14 #include <linux/sched_clock.h>
15 #include <linux/syscore_ops.h>
16 #include <soc/at91/atmel_tcb.h>
17
18
19 /*
20  * We're configured to use a specific TC block, one that's not hooked
21  * up to external hardware, to provide a time solution:
22  *
23  *   - Two channels combine to create a free-running 32 bit counter
24  *     with a base rate of 5+ MHz, packaged as a clocksource (with
25  *     resolution better than 200 nsec).
26  *   - Some chips support 32 bit counter. A single channel is used for
27  *     this 32 bit free-running counter. the second channel is not used.
28  *
29  *   - The third channel may be used to provide a 16-bit clockevent
30  *     source, used in either periodic or oneshot mode.  This runs
31  *     at 32 KiHZ, and can handle delays of up to two seconds.
32  *
33  * REVISIT behavior during system suspend states... we should disable
34  * all clocks and save the power.  Easily done for clockevent devices,
35  * but clocksources won't necessarily get the needed notifications.
36  * For deeper system sleep states, this will be mandatory...
37  */
38
39 static void __iomem *tcaddr;
40 static struct
41 {
42         u32 cmr;
43         u32 imr;
44         u32 rc;
45         bool clken;
46 } tcb_cache[3];
47 static u32 bmr_cache;
48
49 static u64 tc_get_cycles(struct clocksource *cs)
50 {
51         unsigned long   flags;
52         u32             lower, upper;
53
54         raw_local_irq_save(flags);
55         do {
56                 upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
57                 lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
58         } while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
59
60         raw_local_irq_restore(flags);
61         return (upper << 16) | lower;
62 }
63
64 static u64 tc_get_cycles32(struct clocksource *cs)
65 {
66         return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
67 }
68
69 static void tc_clksrc_suspend(struct clocksource *cs)
70 {
71         int i;
72
73         for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
74                 tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
75                 tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
76                 tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
77                 tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
78                                         ATMEL_TC_CLKSTA);
79         }
80
81         bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
82 }
83
84 static void tc_clksrc_resume(struct clocksource *cs)
85 {
86         int i;
87
88         for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
89                 /* Restore registers for the channel, RA and RB are not used  */
90                 writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
91                 writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
92                 writel(0, tcaddr + ATMEL_TC_REG(i, RA));
93                 writel(0, tcaddr + ATMEL_TC_REG(i, RB));
94                 /* Disable all the interrupts */
95                 writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
96                 /* Reenable interrupts that were enabled before suspending */
97                 writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
98                 /* Start the clock if it was used */
99                 if (tcb_cache[i].clken)
100                         writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
101         }
102
103         /* Dual channel, chain channels */
104         writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
105         /* Finally, trigger all the channels*/
106         writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
107 }
108
109 static struct clocksource clksrc = {
110         .rating         = 200,
111         .read           = tc_get_cycles,
112         .mask           = CLOCKSOURCE_MASK(32),
113         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
114         .suspend        = tc_clksrc_suspend,
115         .resume         = tc_clksrc_resume,
116 };
117
118 static u64 notrace tc_sched_clock_read(void)
119 {
120         return tc_get_cycles(&clksrc);
121 }
122
123 static u64 notrace tc_sched_clock_read32(void)
124 {
125         return tc_get_cycles32(&clksrc);
126 }
127
128 #ifdef CONFIG_GENERIC_CLOCKEVENTS
129
130 struct tc_clkevt_device {
131         struct clock_event_device       clkevt;
132         struct clk                      *clk;
133         void __iomem                    *regs;
134 };
135
136 static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
137 {
138         return container_of(clkevt, struct tc_clkevt_device, clkevt);
139 }
140
141 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
142  * because using one of the divided clocks would usually mean the
143  * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
144  *
145  * A divided clock could be good for high resolution timers, since
146  * 30.5 usec resolution can seem "low".
147  */
148 static u32 timer_clock;
149
150 static int tc_shutdown(struct clock_event_device *d)
151 {
152         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
153         void __iomem            *regs = tcd->regs;
154
155         writel(0xff, regs + ATMEL_TC_REG(2, IDR));
156         writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
157         if (!clockevent_state_detached(d))
158                 clk_disable(tcd->clk);
159
160         return 0;
161 }
162
163 static int tc_set_oneshot(struct clock_event_device *d)
164 {
165         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
166         void __iomem            *regs = tcd->regs;
167
168         if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
169                 tc_shutdown(d);
170
171         clk_enable(tcd->clk);
172
173         /* slow clock, count up to RC, then irq and stop */
174         writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
175                      ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
176         writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
177
178         /* set_next_event() configures and starts the timer */
179         return 0;
180 }
181
182 static int tc_set_periodic(struct clock_event_device *d)
183 {
184         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
185         void __iomem            *regs = tcd->regs;
186
187         if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
188                 tc_shutdown(d);
189
190         /* By not making the gentime core emulate periodic mode on top
191          * of oneshot, we get lower overhead and improved accuracy.
192          */
193         clk_enable(tcd->clk);
194
195         /* slow clock, count up to RC, then irq and restart */
196         writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
197                      regs + ATMEL_TC_REG(2, CMR));
198         writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
199
200         /* Enable clock and interrupts on RC compare */
201         writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
202
203         /* go go gadget! */
204         writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
205                      ATMEL_TC_REG(2, CCR));
206         return 0;
207 }
208
209 static int tc_next_event(unsigned long delta, struct clock_event_device *d)
210 {
211         writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
212
213         /* go go gadget! */
214         writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
215                         tcaddr + ATMEL_TC_REG(2, CCR));
216         return 0;
217 }
218
219 static struct tc_clkevt_device clkevt = {
220         .clkevt = {
221                 .features               = CLOCK_EVT_FEAT_PERIODIC |
222                                           CLOCK_EVT_FEAT_ONESHOT,
223                 /* Should be lower than at91rm9200's system timer */
224                 .rating                 = 125,
225                 .set_next_event         = tc_next_event,
226                 .set_state_shutdown     = tc_shutdown,
227                 .set_state_periodic     = tc_set_periodic,
228                 .set_state_oneshot      = tc_set_oneshot,
229         },
230 };
231
232 static irqreturn_t ch2_irq(int irq, void *handle)
233 {
234         struct tc_clkevt_device *dev = handle;
235         unsigned int            sr;
236
237         sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
238         if (sr & ATMEL_TC_CPCS) {
239                 dev->clkevt.event_handler(&dev->clkevt);
240                 return IRQ_HANDLED;
241         }
242
243         return IRQ_NONE;
244 }
245
246 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
247 {
248         int ret;
249         struct clk *t2_clk = tc->clk[2];
250         int irq = tc->irq[2];
251
252         ret = clk_prepare_enable(tc->slow_clk);
253         if (ret)
254                 return ret;
255
256         /* try to enable t2 clk to avoid future errors in mode change */
257         ret = clk_prepare_enable(t2_clk);
258         if (ret) {
259                 clk_disable_unprepare(tc->slow_clk);
260                 return ret;
261         }
262
263         clk_disable(t2_clk);
264
265         clkevt.regs = tc->regs;
266         clkevt.clk = t2_clk;
267
268         timer_clock = clk32k_divisor_idx;
269
270         clkevt.clkevt.cpumask = cpumask_of(0);
271
272         ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
273         if (ret) {
274                 clk_unprepare(t2_clk);
275                 clk_disable_unprepare(tc->slow_clk);
276                 return ret;
277         }
278
279         clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
280
281         return ret;
282 }
283
284 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
285
286 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
287 {
288         /* NOTHING */
289         return 0;
290 }
291
292 #endif
293
294 static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
295 {
296         /* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
297         writel(mck_divisor_idx                  /* likely divide-by-8 */
298                         | ATMEL_TC_WAVE
299                         | ATMEL_TC_WAVESEL_UP           /* free-run */
300                         | ATMEL_TC_ACPA_SET             /* TIOA0 rises at 0 */
301                         | ATMEL_TC_ACPC_CLEAR,          /* (duty cycle 50%) */
302                         tcaddr + ATMEL_TC_REG(0, CMR));
303         writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
304         writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
305         writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));    /* no irqs */
306         writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
307
308         /* channel 1:  waveform mode, input TIOA0 */
309         writel(ATMEL_TC_XC1                     /* input: TIOA0 */
310                         | ATMEL_TC_WAVE
311                         | ATMEL_TC_WAVESEL_UP,          /* free-run */
312                         tcaddr + ATMEL_TC_REG(1, CMR));
313         writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));    /* no irqs */
314         writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
315
316         /* chain channel 0 to channel 1*/
317         writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
318         /* then reset all the timers */
319         writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
320 }
321
322 static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
323 {
324         /* channel 0:  waveform mode, input mclk/8 */
325         writel(mck_divisor_idx                  /* likely divide-by-8 */
326                         | ATMEL_TC_WAVE
327                         | ATMEL_TC_WAVESEL_UP,          /* free-run */
328                         tcaddr + ATMEL_TC_REG(0, CMR));
329         writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));    /* no irqs */
330         writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
331
332         /* then reset all the timers */
333         writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
334 }
335
336 static const u8 atmel_tcb_divisors[5] = { 2, 8, 32, 128, 0, };
337
338 static const struct of_device_id atmel_tcb_of_match[] = {
339         { .compatible = "atmel,at91rm9200-tcb", .data = (void *)16, },
340         { .compatible = "atmel,at91sam9x5-tcb", .data = (void *)32, },
341         { /* sentinel */ }
342 };
343
344 static int __init tcb_clksrc_init(struct device_node *node)
345 {
346         struct atmel_tc tc;
347         struct clk *t0_clk;
348         const struct of_device_id *match;
349         u64 (*tc_sched_clock)(void);
350         u32 rate, divided_rate = 0;
351         int best_divisor_idx = -1;
352         int clk32k_divisor_idx = -1;
353         int bits;
354         int i;
355         int ret;
356
357         /* Protect against multiple calls */
358         if (tcaddr)
359                 return 0;
360
361         tc.regs = of_iomap(node->parent, 0);
362         if (!tc.regs)
363                 return -ENXIO;
364
365         t0_clk = of_clk_get_by_name(node->parent, "t0_clk");
366         if (IS_ERR(t0_clk))
367                 return PTR_ERR(t0_clk);
368
369         tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk");
370         if (IS_ERR(tc.slow_clk))
371                 return PTR_ERR(tc.slow_clk);
372
373         tc.clk[0] = t0_clk;
374         tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk");
375         if (IS_ERR(tc.clk[1]))
376                 tc.clk[1] = t0_clk;
377         tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk");
378         if (IS_ERR(tc.clk[2]))
379                 tc.clk[2] = t0_clk;
380
381         tc.irq[2] = of_irq_get(node->parent, 2);
382         if (tc.irq[2] <= 0) {
383                 tc.irq[2] = of_irq_get(node->parent, 0);
384                 if (tc.irq[2] <= 0)
385                         return -EINVAL;
386         }
387
388         match = of_match_node(atmel_tcb_of_match, node->parent);
389         bits = (uintptr_t)match->data;
390
391         for (i = 0; i < ARRAY_SIZE(tc.irq); i++)
392                 writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR));
393
394         ret = clk_prepare_enable(t0_clk);
395         if (ret) {
396                 pr_debug("can't enable T0 clk\n");
397                 return ret;
398         }
399
400         /* How fast will we be counting?  Pick something over 5 MHz.  */
401         rate = (u32) clk_get_rate(t0_clk);
402         for (i = 0; i < ARRAY_SIZE(atmel_tcb_divisors); i++) {
403                 unsigned divisor = atmel_tcb_divisors[i];
404                 unsigned tmp;
405
406                 /* remember 32 KiHz clock for later */
407                 if (!divisor) {
408                         clk32k_divisor_idx = i;
409                         continue;
410                 }
411
412                 tmp = rate / divisor;
413                 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
414                 if (best_divisor_idx > 0) {
415                         if (tmp < 5 * 1000 * 1000)
416                                 continue;
417                 }
418                 divided_rate = tmp;
419                 best_divisor_idx = i;
420         }
421
422         clksrc.name = kbasename(node->parent->full_name);
423         clkevt.clkevt.name = kbasename(node->parent->full_name);
424         pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000,
425                         ((divided_rate % 1000000) + 500) / 1000);
426
427         tcaddr = tc.regs;
428
429         if (bits == 32) {
430                 /* use apropriate function to read 32 bit counter */
431                 clksrc.read = tc_get_cycles32;
432                 /* setup ony channel 0 */
433                 tcb_setup_single_chan(&tc, best_divisor_idx);
434                 tc_sched_clock = tc_sched_clock_read32;
435         } else {
436                 /* we have three clocks no matter what the
437                  * underlying platform supports.
438                  */
439                 ret = clk_prepare_enable(tc.clk[1]);
440                 if (ret) {
441                         pr_debug("can't enable T1 clk\n");
442                         goto err_disable_t0;
443                 }
444                 /* setup both channel 0 & 1 */
445                 tcb_setup_dual_chan(&tc, best_divisor_idx);
446                 tc_sched_clock = tc_sched_clock_read;
447         }
448
449         /* and away we go! */
450         ret = clocksource_register_hz(&clksrc, divided_rate);
451         if (ret)
452                 goto err_disable_t1;
453
454         /* channel 2:  periodic and oneshot timer support */
455         ret = setup_clkevents(&tc, clk32k_divisor_idx);
456         if (ret)
457                 goto err_unregister_clksrc;
458
459         sched_clock_register(tc_sched_clock, 32, divided_rate);
460
461         return 0;
462
463 err_unregister_clksrc:
464         clocksource_unregister(&clksrc);
465
466 err_disable_t1:
467         if (bits != 32)
468                 clk_disable_unprepare(tc.clk[1]);
469
470 err_disable_t0:
471         clk_disable_unprepare(t0_clk);
472
473         tcaddr = NULL;
474
475         return ret;
476 }
477 TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);