Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / base / regmap / regmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/of.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20
21 #define CREATE_TRACE_POINTS
22 #include "trace.h"
23
24 #include "internal.h"
25
26 /*
27  * Sometimes for failures during very early init the trace
28  * infrastructure isn't available early enough to be used.  For this
29  * sort of problem defining LOG_DEVICE will add printks for basic
30  * register I/O on a specific device.
31  */
32 #undef LOG_DEVICE
33
34 #ifdef LOG_DEVICE
35 static inline bool regmap_should_log(struct regmap *map)
36 {
37         return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
38 }
39 #else
40 static inline bool regmap_should_log(struct regmap *map) { return false; }
41 #endif
42
43
44 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
45                                unsigned int mask, unsigned int val,
46                                bool *change, bool force_write);
47
48 static int _regmap_bus_reg_read(void *context, unsigned int reg,
49                                 unsigned int *val);
50 static int _regmap_bus_read(void *context, unsigned int reg,
51                             unsigned int *val);
52 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
53                                        unsigned int val);
54 static int _regmap_bus_reg_write(void *context, unsigned int reg,
55                                  unsigned int val);
56 static int _regmap_bus_raw_write(void *context, unsigned int reg,
57                                  unsigned int val);
58
59 bool regmap_reg_in_ranges(unsigned int reg,
60                           const struct regmap_range *ranges,
61                           unsigned int nranges)
62 {
63         const struct regmap_range *r;
64         int i;
65
66         for (i = 0, r = ranges; i < nranges; i++, r++)
67                 if (regmap_reg_in_range(reg, r))
68                         return true;
69         return false;
70 }
71 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
72
73 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
74                               const struct regmap_access_table *table)
75 {
76         /* Check "no ranges" first */
77         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
78                 return false;
79
80         /* In case zero "yes ranges" are supplied, any reg is OK */
81         if (!table->n_yes_ranges)
82                 return true;
83
84         return regmap_reg_in_ranges(reg, table->yes_ranges,
85                                     table->n_yes_ranges);
86 }
87 EXPORT_SYMBOL_GPL(regmap_check_range_table);
88
89 bool regmap_writeable(struct regmap *map, unsigned int reg)
90 {
91         if (map->max_register && reg > map->max_register)
92                 return false;
93
94         if (map->writeable_reg)
95                 return map->writeable_reg(map->dev, reg);
96
97         if (map->wr_table)
98                 return regmap_check_range_table(map, reg, map->wr_table);
99
100         return true;
101 }
102
103 bool regmap_cached(struct regmap *map, unsigned int reg)
104 {
105         int ret;
106         unsigned int val;
107
108         if (map->cache_type == REGCACHE_NONE)
109                 return false;
110
111         if (!map->cache_ops)
112                 return false;
113
114         if (map->max_register && reg > map->max_register)
115                 return false;
116
117         map->lock(map->lock_arg);
118         ret = regcache_read(map, reg, &val);
119         map->unlock(map->lock_arg);
120         if (ret)
121                 return false;
122
123         return true;
124 }
125
126 bool regmap_readable(struct regmap *map, unsigned int reg)
127 {
128         if (!map->reg_read)
129                 return false;
130
131         if (map->max_register && reg > map->max_register)
132                 return false;
133
134         if (map->format.format_write)
135                 return false;
136
137         if (map->readable_reg)
138                 return map->readable_reg(map->dev, reg);
139
140         if (map->rd_table)
141                 return regmap_check_range_table(map, reg, map->rd_table);
142
143         return true;
144 }
145
146 bool regmap_volatile(struct regmap *map, unsigned int reg)
147 {
148         if (!map->format.format_write && !regmap_readable(map, reg))
149                 return false;
150
151         if (map->volatile_reg)
152                 return map->volatile_reg(map->dev, reg);
153
154         if (map->volatile_table)
155                 return regmap_check_range_table(map, reg, map->volatile_table);
156
157         if (map->cache_ops)
158                 return false;
159         else
160                 return true;
161 }
162
163 bool regmap_precious(struct regmap *map, unsigned int reg)
164 {
165         if (!regmap_readable(map, reg))
166                 return false;
167
168         if (map->precious_reg)
169                 return map->precious_reg(map->dev, reg);
170
171         if (map->precious_table)
172                 return regmap_check_range_table(map, reg, map->precious_table);
173
174         return false;
175 }
176
177 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
178 {
179         if (map->writeable_noinc_reg)
180                 return map->writeable_noinc_reg(map->dev, reg);
181
182         if (map->wr_noinc_table)
183                 return regmap_check_range_table(map, reg, map->wr_noinc_table);
184
185         return true;
186 }
187
188 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
189 {
190         if (map->readable_noinc_reg)
191                 return map->readable_noinc_reg(map->dev, reg);
192
193         if (map->rd_noinc_table)
194                 return regmap_check_range_table(map, reg, map->rd_noinc_table);
195
196         return true;
197 }
198
199 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
200         size_t num)
201 {
202         unsigned int i;
203
204         for (i = 0; i < num; i++)
205                 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
206                         return false;
207
208         return true;
209 }
210
211 static void regmap_format_2_6_write(struct regmap *map,
212                                      unsigned int reg, unsigned int val)
213 {
214         u8 *out = map->work_buf;
215
216         *out = (reg << 6) | val;
217 }
218
219 static void regmap_format_4_12_write(struct regmap *map,
220                                      unsigned int reg, unsigned int val)
221 {
222         __be16 *out = map->work_buf;
223         *out = cpu_to_be16((reg << 12) | val);
224 }
225
226 static void regmap_format_7_9_write(struct regmap *map,
227                                     unsigned int reg, unsigned int val)
228 {
229         __be16 *out = map->work_buf;
230         *out = cpu_to_be16((reg << 9) | val);
231 }
232
233 static void regmap_format_10_14_write(struct regmap *map,
234                                     unsigned int reg, unsigned int val)
235 {
236         u8 *out = map->work_buf;
237
238         out[2] = val;
239         out[1] = (val >> 8) | (reg << 6);
240         out[0] = reg >> 2;
241 }
242
243 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
244 {
245         u8 *b = buf;
246
247         b[0] = val << shift;
248 }
249
250 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
251 {
252         __be16 *b = buf;
253
254         b[0] = cpu_to_be16(val << shift);
255 }
256
257 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
258 {
259         __le16 *b = buf;
260
261         b[0] = cpu_to_le16(val << shift);
262 }
263
264 static void regmap_format_16_native(void *buf, unsigned int val,
265                                     unsigned int shift)
266 {
267         *(u16 *)buf = val << shift;
268 }
269
270 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
271 {
272         u8 *b = buf;
273
274         val <<= shift;
275
276         b[0] = val >> 16;
277         b[1] = val >> 8;
278         b[2] = val;
279 }
280
281 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
282 {
283         __be32 *b = buf;
284
285         b[0] = cpu_to_be32(val << shift);
286 }
287
288 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
289 {
290         __le32 *b = buf;
291
292         b[0] = cpu_to_le32(val << shift);
293 }
294
295 static void regmap_format_32_native(void *buf, unsigned int val,
296                                     unsigned int shift)
297 {
298         *(u32 *)buf = val << shift;
299 }
300
301 #ifdef CONFIG_64BIT
302 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
303 {
304         __be64 *b = buf;
305
306         b[0] = cpu_to_be64((u64)val << shift);
307 }
308
309 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
310 {
311         __le64 *b = buf;
312
313         b[0] = cpu_to_le64((u64)val << shift);
314 }
315
316 static void regmap_format_64_native(void *buf, unsigned int val,
317                                     unsigned int shift)
318 {
319         *(u64 *)buf = (u64)val << shift;
320 }
321 #endif
322
323 static void regmap_parse_inplace_noop(void *buf)
324 {
325 }
326
327 static unsigned int regmap_parse_8(const void *buf)
328 {
329         const u8 *b = buf;
330
331         return b[0];
332 }
333
334 static unsigned int regmap_parse_16_be(const void *buf)
335 {
336         const __be16 *b = buf;
337
338         return be16_to_cpu(b[0]);
339 }
340
341 static unsigned int regmap_parse_16_le(const void *buf)
342 {
343         const __le16 *b = buf;
344
345         return le16_to_cpu(b[0]);
346 }
347
348 static void regmap_parse_16_be_inplace(void *buf)
349 {
350         __be16 *b = buf;
351
352         b[0] = be16_to_cpu(b[0]);
353 }
354
355 static void regmap_parse_16_le_inplace(void *buf)
356 {
357         __le16 *b = buf;
358
359         b[0] = le16_to_cpu(b[0]);
360 }
361
362 static unsigned int regmap_parse_16_native(const void *buf)
363 {
364         return *(u16 *)buf;
365 }
366
367 static unsigned int regmap_parse_24(const void *buf)
368 {
369         const u8 *b = buf;
370         unsigned int ret = b[2];
371         ret |= ((unsigned int)b[1]) << 8;
372         ret |= ((unsigned int)b[0]) << 16;
373
374         return ret;
375 }
376
377 static unsigned int regmap_parse_32_be(const void *buf)
378 {
379         const __be32 *b = buf;
380
381         return be32_to_cpu(b[0]);
382 }
383
384 static unsigned int regmap_parse_32_le(const void *buf)
385 {
386         const __le32 *b = buf;
387
388         return le32_to_cpu(b[0]);
389 }
390
391 static void regmap_parse_32_be_inplace(void *buf)
392 {
393         __be32 *b = buf;
394
395         b[0] = be32_to_cpu(b[0]);
396 }
397
398 static void regmap_parse_32_le_inplace(void *buf)
399 {
400         __le32 *b = buf;
401
402         b[0] = le32_to_cpu(b[0]);
403 }
404
405 static unsigned int regmap_parse_32_native(const void *buf)
406 {
407         return *(u32 *)buf;
408 }
409
410 #ifdef CONFIG_64BIT
411 static unsigned int regmap_parse_64_be(const void *buf)
412 {
413         const __be64 *b = buf;
414
415         return be64_to_cpu(b[0]);
416 }
417
418 static unsigned int regmap_parse_64_le(const void *buf)
419 {
420         const __le64 *b = buf;
421
422         return le64_to_cpu(b[0]);
423 }
424
425 static void regmap_parse_64_be_inplace(void *buf)
426 {
427         __be64 *b = buf;
428
429         b[0] = be64_to_cpu(b[0]);
430 }
431
432 static void regmap_parse_64_le_inplace(void *buf)
433 {
434         __le64 *b = buf;
435
436         b[0] = le64_to_cpu(b[0]);
437 }
438
439 static unsigned int regmap_parse_64_native(const void *buf)
440 {
441         return *(u64 *)buf;
442 }
443 #endif
444
445 static void regmap_lock_hwlock(void *__map)
446 {
447         struct regmap *map = __map;
448
449         hwspin_lock_timeout(map->hwlock, UINT_MAX);
450 }
451
452 static void regmap_lock_hwlock_irq(void *__map)
453 {
454         struct regmap *map = __map;
455
456         hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
457 }
458
459 static void regmap_lock_hwlock_irqsave(void *__map)
460 {
461         struct regmap *map = __map;
462
463         hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
464                                     &map->spinlock_flags);
465 }
466
467 static void regmap_unlock_hwlock(void *__map)
468 {
469         struct regmap *map = __map;
470
471         hwspin_unlock(map->hwlock);
472 }
473
474 static void regmap_unlock_hwlock_irq(void *__map)
475 {
476         struct regmap *map = __map;
477
478         hwspin_unlock_irq(map->hwlock);
479 }
480
481 static void regmap_unlock_hwlock_irqrestore(void *__map)
482 {
483         struct regmap *map = __map;
484
485         hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
486 }
487
488 static void regmap_lock_unlock_none(void *__map)
489 {
490
491 }
492
493 static void regmap_lock_mutex(void *__map)
494 {
495         struct regmap *map = __map;
496         mutex_lock(&map->mutex);
497 }
498
499 static void regmap_unlock_mutex(void *__map)
500 {
501         struct regmap *map = __map;
502         mutex_unlock(&map->mutex);
503 }
504
505 static void regmap_lock_spinlock(void *__map)
506 __acquires(&map->spinlock)
507 {
508         struct regmap *map = __map;
509         unsigned long flags;
510
511         spin_lock_irqsave(&map->spinlock, flags);
512         map->spinlock_flags = flags;
513 }
514
515 static void regmap_unlock_spinlock(void *__map)
516 __releases(&map->spinlock)
517 {
518         struct regmap *map = __map;
519         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
520 }
521
522 static void dev_get_regmap_release(struct device *dev, void *res)
523 {
524         /*
525          * We don't actually have anything to do here; the goal here
526          * is not to manage the regmap but to provide a simple way to
527          * get the regmap back given a struct device.
528          */
529 }
530
531 static bool _regmap_range_add(struct regmap *map,
532                               struct regmap_range_node *data)
533 {
534         struct rb_root *root = &map->range_tree;
535         struct rb_node **new = &(root->rb_node), *parent = NULL;
536
537         while (*new) {
538                 struct regmap_range_node *this =
539                         rb_entry(*new, struct regmap_range_node, node);
540
541                 parent = *new;
542                 if (data->range_max < this->range_min)
543                         new = &((*new)->rb_left);
544                 else if (data->range_min > this->range_max)
545                         new = &((*new)->rb_right);
546                 else
547                         return false;
548         }
549
550         rb_link_node(&data->node, parent, new);
551         rb_insert_color(&data->node, root);
552
553         return true;
554 }
555
556 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
557                                                       unsigned int reg)
558 {
559         struct rb_node *node = map->range_tree.rb_node;
560
561         while (node) {
562                 struct regmap_range_node *this =
563                         rb_entry(node, struct regmap_range_node, node);
564
565                 if (reg < this->range_min)
566                         node = node->rb_left;
567                 else if (reg > this->range_max)
568                         node = node->rb_right;
569                 else
570                         return this;
571         }
572
573         return NULL;
574 }
575
576 static void regmap_range_exit(struct regmap *map)
577 {
578         struct rb_node *next;
579         struct regmap_range_node *range_node;
580
581         next = rb_first(&map->range_tree);
582         while (next) {
583                 range_node = rb_entry(next, struct regmap_range_node, node);
584                 next = rb_next(&range_node->node);
585                 rb_erase(&range_node->node, &map->range_tree);
586                 kfree(range_node);
587         }
588
589         kfree(map->selector_work_buf);
590 }
591
592 int regmap_attach_dev(struct device *dev, struct regmap *map,
593                       const struct regmap_config *config)
594 {
595         struct regmap **m;
596
597         map->dev = dev;
598
599         regmap_debugfs_init(map, config->name);
600
601         /* Add a devres resource for dev_get_regmap() */
602         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
603         if (!m) {
604                 regmap_debugfs_exit(map);
605                 return -ENOMEM;
606         }
607         *m = map;
608         devres_add(dev, m);
609
610         return 0;
611 }
612 EXPORT_SYMBOL_GPL(regmap_attach_dev);
613
614 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
615                                         const struct regmap_config *config)
616 {
617         enum regmap_endian endian;
618
619         /* Retrieve the endianness specification from the regmap config */
620         endian = config->reg_format_endian;
621
622         /* If the regmap config specified a non-default value, use that */
623         if (endian != REGMAP_ENDIAN_DEFAULT)
624                 return endian;
625
626         /* Retrieve the endianness specification from the bus config */
627         if (bus && bus->reg_format_endian_default)
628                 endian = bus->reg_format_endian_default;
629
630         /* If the bus specified a non-default value, use that */
631         if (endian != REGMAP_ENDIAN_DEFAULT)
632                 return endian;
633
634         /* Use this if no other value was found */
635         return REGMAP_ENDIAN_BIG;
636 }
637
638 enum regmap_endian regmap_get_val_endian(struct device *dev,
639                                          const struct regmap_bus *bus,
640                                          const struct regmap_config *config)
641 {
642         struct device_node *np;
643         enum regmap_endian endian;
644
645         /* Retrieve the endianness specification from the regmap config */
646         endian = config->val_format_endian;
647
648         /* If the regmap config specified a non-default value, use that */
649         if (endian != REGMAP_ENDIAN_DEFAULT)
650                 return endian;
651
652         /* If the dev and dev->of_node exist try to get endianness from DT */
653         if (dev && dev->of_node) {
654                 np = dev->of_node;
655
656                 /* Parse the device's DT node for an endianness specification */
657                 if (of_property_read_bool(np, "big-endian"))
658                         endian = REGMAP_ENDIAN_BIG;
659                 else if (of_property_read_bool(np, "little-endian"))
660                         endian = REGMAP_ENDIAN_LITTLE;
661                 else if (of_property_read_bool(np, "native-endian"))
662                         endian = REGMAP_ENDIAN_NATIVE;
663
664                 /* If the endianness was specified in DT, use that */
665                 if (endian != REGMAP_ENDIAN_DEFAULT)
666                         return endian;
667         }
668
669         /* Retrieve the endianness specification from the bus config */
670         if (bus && bus->val_format_endian_default)
671                 endian = bus->val_format_endian_default;
672
673         /* If the bus specified a non-default value, use that */
674         if (endian != REGMAP_ENDIAN_DEFAULT)
675                 return endian;
676
677         /* Use this if no other value was found */
678         return REGMAP_ENDIAN_BIG;
679 }
680 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
681
682 struct regmap *__regmap_init(struct device *dev,
683                              const struct regmap_bus *bus,
684                              void *bus_context,
685                              const struct regmap_config *config,
686                              struct lock_class_key *lock_key,
687                              const char *lock_name)
688 {
689         struct regmap *map;
690         int ret = -EINVAL;
691         enum regmap_endian reg_endian, val_endian;
692         int i, j;
693
694         if (!config)
695                 goto err;
696
697         map = kzalloc(sizeof(*map), GFP_KERNEL);
698         if (map == NULL) {
699                 ret = -ENOMEM;
700                 goto err;
701         }
702
703         if (config->name) {
704                 map->name = kstrdup_const(config->name, GFP_KERNEL);
705                 if (!map->name) {
706                         ret = -ENOMEM;
707                         goto err_map;
708                 }
709         }
710
711         if (config->disable_locking) {
712                 map->lock = map->unlock = regmap_lock_unlock_none;
713                 regmap_debugfs_disable(map);
714         } else if (config->lock && config->unlock) {
715                 map->lock = config->lock;
716                 map->unlock = config->unlock;
717                 map->lock_arg = config->lock_arg;
718         } else if (config->use_hwlock) {
719                 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
720                 if (!map->hwlock) {
721                         ret = -ENXIO;
722                         goto err_name;
723                 }
724
725                 switch (config->hwlock_mode) {
726                 case HWLOCK_IRQSTATE:
727                         map->lock = regmap_lock_hwlock_irqsave;
728                         map->unlock = regmap_unlock_hwlock_irqrestore;
729                         break;
730                 case HWLOCK_IRQ:
731                         map->lock = regmap_lock_hwlock_irq;
732                         map->unlock = regmap_unlock_hwlock_irq;
733                         break;
734                 default:
735                         map->lock = regmap_lock_hwlock;
736                         map->unlock = regmap_unlock_hwlock;
737                         break;
738                 }
739
740                 map->lock_arg = map;
741         } else {
742                 if ((bus && bus->fast_io) ||
743                     config->fast_io) {
744                         spin_lock_init(&map->spinlock);
745                         map->lock = regmap_lock_spinlock;
746                         map->unlock = regmap_unlock_spinlock;
747                         lockdep_set_class_and_name(&map->spinlock,
748                                                    lock_key, lock_name);
749                 } else {
750                         mutex_init(&map->mutex);
751                         map->lock = regmap_lock_mutex;
752                         map->unlock = regmap_unlock_mutex;
753                         lockdep_set_class_and_name(&map->mutex,
754                                                    lock_key, lock_name);
755                 }
756                 map->lock_arg = map;
757         }
758
759         /*
760          * When we write in fast-paths with regmap_bulk_write() don't allocate
761          * scratch buffers with sleeping allocations.
762          */
763         if ((bus && bus->fast_io) || config->fast_io)
764                 map->alloc_flags = GFP_ATOMIC;
765         else
766                 map->alloc_flags = GFP_KERNEL;
767
768         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
769         map->format.pad_bytes = config->pad_bits / 8;
770         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
771         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
772                         config->val_bits + config->pad_bits, 8);
773         map->reg_shift = config->pad_bits % 8;
774         if (config->reg_stride)
775                 map->reg_stride = config->reg_stride;
776         else
777                 map->reg_stride = 1;
778         if (is_power_of_2(map->reg_stride))
779                 map->reg_stride_order = ilog2(map->reg_stride);
780         else
781                 map->reg_stride_order = -1;
782         map->use_single_read = config->use_single_read || !bus || !bus->read;
783         map->use_single_write = config->use_single_write || !bus || !bus->write;
784         map->can_multi_write = config->can_multi_write && bus && bus->write;
785         if (bus) {
786                 map->max_raw_read = bus->max_raw_read;
787                 map->max_raw_write = bus->max_raw_write;
788         }
789         map->dev = dev;
790         map->bus = bus;
791         map->bus_context = bus_context;
792         map->max_register = config->max_register;
793         map->wr_table = config->wr_table;
794         map->rd_table = config->rd_table;
795         map->volatile_table = config->volatile_table;
796         map->precious_table = config->precious_table;
797         map->wr_noinc_table = config->wr_noinc_table;
798         map->rd_noinc_table = config->rd_noinc_table;
799         map->writeable_reg = config->writeable_reg;
800         map->readable_reg = config->readable_reg;
801         map->volatile_reg = config->volatile_reg;
802         map->precious_reg = config->precious_reg;
803         map->writeable_noinc_reg = config->writeable_noinc_reg;
804         map->readable_noinc_reg = config->readable_noinc_reg;
805         map->cache_type = config->cache_type;
806
807         spin_lock_init(&map->async_lock);
808         INIT_LIST_HEAD(&map->async_list);
809         INIT_LIST_HEAD(&map->async_free);
810         init_waitqueue_head(&map->async_waitq);
811
812         if (config->read_flag_mask ||
813             config->write_flag_mask ||
814             config->zero_flag_mask) {
815                 map->read_flag_mask = config->read_flag_mask;
816                 map->write_flag_mask = config->write_flag_mask;
817         } else if (bus) {
818                 map->read_flag_mask = bus->read_flag_mask;
819         }
820
821         if (!bus) {
822                 map->reg_read  = config->reg_read;
823                 map->reg_write = config->reg_write;
824
825                 map->defer_caching = false;
826                 goto skip_format_initialization;
827         } else if (!bus->read || !bus->write) {
828                 map->reg_read = _regmap_bus_reg_read;
829                 map->reg_write = _regmap_bus_reg_write;
830
831                 map->defer_caching = false;
832                 goto skip_format_initialization;
833         } else {
834                 map->reg_read  = _regmap_bus_read;
835                 map->reg_update_bits = bus->reg_update_bits;
836         }
837
838         reg_endian = regmap_get_reg_endian(bus, config);
839         val_endian = regmap_get_val_endian(dev, bus, config);
840
841         switch (config->reg_bits + map->reg_shift) {
842         case 2:
843                 switch (config->val_bits) {
844                 case 6:
845                         map->format.format_write = regmap_format_2_6_write;
846                         break;
847                 default:
848                         goto err_hwlock;
849                 }
850                 break;
851
852         case 4:
853                 switch (config->val_bits) {
854                 case 12:
855                         map->format.format_write = regmap_format_4_12_write;
856                         break;
857                 default:
858                         goto err_hwlock;
859                 }
860                 break;
861
862         case 7:
863                 switch (config->val_bits) {
864                 case 9:
865                         map->format.format_write = regmap_format_7_9_write;
866                         break;
867                 default:
868                         goto err_hwlock;
869                 }
870                 break;
871
872         case 10:
873                 switch (config->val_bits) {
874                 case 14:
875                         map->format.format_write = regmap_format_10_14_write;
876                         break;
877                 default:
878                         goto err_hwlock;
879                 }
880                 break;
881
882         case 8:
883                 map->format.format_reg = regmap_format_8;
884                 break;
885
886         case 16:
887                 switch (reg_endian) {
888                 case REGMAP_ENDIAN_BIG:
889                         map->format.format_reg = regmap_format_16_be;
890                         break;
891                 case REGMAP_ENDIAN_LITTLE:
892                         map->format.format_reg = regmap_format_16_le;
893                         break;
894                 case REGMAP_ENDIAN_NATIVE:
895                         map->format.format_reg = regmap_format_16_native;
896                         break;
897                 default:
898                         goto err_hwlock;
899                 }
900                 break;
901
902         case 24:
903                 if (reg_endian != REGMAP_ENDIAN_BIG)
904                         goto err_hwlock;
905                 map->format.format_reg = regmap_format_24;
906                 break;
907
908         case 32:
909                 switch (reg_endian) {
910                 case REGMAP_ENDIAN_BIG:
911                         map->format.format_reg = regmap_format_32_be;
912                         break;
913                 case REGMAP_ENDIAN_LITTLE:
914                         map->format.format_reg = regmap_format_32_le;
915                         break;
916                 case REGMAP_ENDIAN_NATIVE:
917                         map->format.format_reg = regmap_format_32_native;
918                         break;
919                 default:
920                         goto err_hwlock;
921                 }
922                 break;
923
924 #ifdef CONFIG_64BIT
925         case 64:
926                 switch (reg_endian) {
927                 case REGMAP_ENDIAN_BIG:
928                         map->format.format_reg = regmap_format_64_be;
929                         break;
930                 case REGMAP_ENDIAN_LITTLE:
931                         map->format.format_reg = regmap_format_64_le;
932                         break;
933                 case REGMAP_ENDIAN_NATIVE:
934                         map->format.format_reg = regmap_format_64_native;
935                         break;
936                 default:
937                         goto err_hwlock;
938                 }
939                 break;
940 #endif
941
942         default:
943                 goto err_hwlock;
944         }
945
946         if (val_endian == REGMAP_ENDIAN_NATIVE)
947                 map->format.parse_inplace = regmap_parse_inplace_noop;
948
949         switch (config->val_bits) {
950         case 8:
951                 map->format.format_val = regmap_format_8;
952                 map->format.parse_val = regmap_parse_8;
953                 map->format.parse_inplace = regmap_parse_inplace_noop;
954                 break;
955         case 16:
956                 switch (val_endian) {
957                 case REGMAP_ENDIAN_BIG:
958                         map->format.format_val = regmap_format_16_be;
959                         map->format.parse_val = regmap_parse_16_be;
960                         map->format.parse_inplace = regmap_parse_16_be_inplace;
961                         break;
962                 case REGMAP_ENDIAN_LITTLE:
963                         map->format.format_val = regmap_format_16_le;
964                         map->format.parse_val = regmap_parse_16_le;
965                         map->format.parse_inplace = regmap_parse_16_le_inplace;
966                         break;
967                 case REGMAP_ENDIAN_NATIVE:
968                         map->format.format_val = regmap_format_16_native;
969                         map->format.parse_val = regmap_parse_16_native;
970                         break;
971                 default:
972                         goto err_hwlock;
973                 }
974                 break;
975         case 24:
976                 if (val_endian != REGMAP_ENDIAN_BIG)
977                         goto err_hwlock;
978                 map->format.format_val = regmap_format_24;
979                 map->format.parse_val = regmap_parse_24;
980                 break;
981         case 32:
982                 switch (val_endian) {
983                 case REGMAP_ENDIAN_BIG:
984                         map->format.format_val = regmap_format_32_be;
985                         map->format.parse_val = regmap_parse_32_be;
986                         map->format.parse_inplace = regmap_parse_32_be_inplace;
987                         break;
988                 case REGMAP_ENDIAN_LITTLE:
989                         map->format.format_val = regmap_format_32_le;
990                         map->format.parse_val = regmap_parse_32_le;
991                         map->format.parse_inplace = regmap_parse_32_le_inplace;
992                         break;
993                 case REGMAP_ENDIAN_NATIVE:
994                         map->format.format_val = regmap_format_32_native;
995                         map->format.parse_val = regmap_parse_32_native;
996                         break;
997                 default:
998                         goto err_hwlock;
999                 }
1000                 break;
1001 #ifdef CONFIG_64BIT
1002         case 64:
1003                 switch (val_endian) {
1004                 case REGMAP_ENDIAN_BIG:
1005                         map->format.format_val = regmap_format_64_be;
1006                         map->format.parse_val = regmap_parse_64_be;
1007                         map->format.parse_inplace = regmap_parse_64_be_inplace;
1008                         break;
1009                 case REGMAP_ENDIAN_LITTLE:
1010                         map->format.format_val = regmap_format_64_le;
1011                         map->format.parse_val = regmap_parse_64_le;
1012                         map->format.parse_inplace = regmap_parse_64_le_inplace;
1013                         break;
1014                 case REGMAP_ENDIAN_NATIVE:
1015                         map->format.format_val = regmap_format_64_native;
1016                         map->format.parse_val = regmap_parse_64_native;
1017                         break;
1018                 default:
1019                         goto err_hwlock;
1020                 }
1021                 break;
1022 #endif
1023         }
1024
1025         if (map->format.format_write) {
1026                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1027                     (val_endian != REGMAP_ENDIAN_BIG))
1028                         goto err_hwlock;
1029                 map->use_single_write = true;
1030         }
1031
1032         if (!map->format.format_write &&
1033             !(map->format.format_reg && map->format.format_val))
1034                 goto err_hwlock;
1035
1036         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1037         if (map->work_buf == NULL) {
1038                 ret = -ENOMEM;
1039                 goto err_hwlock;
1040         }
1041
1042         if (map->format.format_write) {
1043                 map->defer_caching = false;
1044                 map->reg_write = _regmap_bus_formatted_write;
1045         } else if (map->format.format_val) {
1046                 map->defer_caching = true;
1047                 map->reg_write = _regmap_bus_raw_write;
1048         }
1049
1050 skip_format_initialization:
1051
1052         map->range_tree = RB_ROOT;
1053         for (i = 0; i < config->num_ranges; i++) {
1054                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1055                 struct regmap_range_node *new;
1056
1057                 /* Sanity check */
1058                 if (range_cfg->range_max < range_cfg->range_min) {
1059                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1060                                 range_cfg->range_max, range_cfg->range_min);
1061                         goto err_range;
1062                 }
1063
1064                 if (range_cfg->range_max > map->max_register) {
1065                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1066                                 range_cfg->range_max, map->max_register);
1067                         goto err_range;
1068                 }
1069
1070                 if (range_cfg->selector_reg > map->max_register) {
1071                         dev_err(map->dev,
1072                                 "Invalid range %d: selector out of map\n", i);
1073                         goto err_range;
1074                 }
1075
1076                 if (range_cfg->window_len == 0) {
1077                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
1078                                 i);
1079                         goto err_range;
1080                 }
1081
1082                 /* Make sure, that this register range has no selector
1083                    or data window within its boundary */
1084                 for (j = 0; j < config->num_ranges; j++) {
1085                         unsigned sel_reg = config->ranges[j].selector_reg;
1086                         unsigned win_min = config->ranges[j].window_start;
1087                         unsigned win_max = win_min +
1088                                            config->ranges[j].window_len - 1;
1089
1090                         /* Allow data window inside its own virtual range */
1091                         if (j == i)
1092                                 continue;
1093
1094                         if (range_cfg->range_min <= sel_reg &&
1095                             sel_reg <= range_cfg->range_max) {
1096                                 dev_err(map->dev,
1097                                         "Range %d: selector for %d in window\n",
1098                                         i, j);
1099                                 goto err_range;
1100                         }
1101
1102                         if (!(win_max < range_cfg->range_min ||
1103                               win_min > range_cfg->range_max)) {
1104                                 dev_err(map->dev,
1105                                         "Range %d: window for %d in window\n",
1106                                         i, j);
1107                                 goto err_range;
1108                         }
1109                 }
1110
1111                 new = kzalloc(sizeof(*new), GFP_KERNEL);
1112                 if (new == NULL) {
1113                         ret = -ENOMEM;
1114                         goto err_range;
1115                 }
1116
1117                 new->map = map;
1118                 new->name = range_cfg->name;
1119                 new->range_min = range_cfg->range_min;
1120                 new->range_max = range_cfg->range_max;
1121                 new->selector_reg = range_cfg->selector_reg;
1122                 new->selector_mask = range_cfg->selector_mask;
1123                 new->selector_shift = range_cfg->selector_shift;
1124                 new->window_start = range_cfg->window_start;
1125                 new->window_len = range_cfg->window_len;
1126
1127                 if (!_regmap_range_add(map, new)) {
1128                         dev_err(map->dev, "Failed to add range %d\n", i);
1129                         kfree(new);
1130                         goto err_range;
1131                 }
1132
1133                 if (map->selector_work_buf == NULL) {
1134                         map->selector_work_buf =
1135                                 kzalloc(map->format.buf_size, GFP_KERNEL);
1136                         if (map->selector_work_buf == NULL) {
1137                                 ret = -ENOMEM;
1138                                 goto err_range;
1139                         }
1140                 }
1141         }
1142
1143         ret = regcache_init(map, config);
1144         if (ret != 0)
1145                 goto err_range;
1146
1147         if (dev) {
1148                 ret = regmap_attach_dev(dev, map, config);
1149                 if (ret != 0)
1150                         goto err_regcache;
1151         } else {
1152                 regmap_debugfs_init(map, config->name);
1153         }
1154
1155         return map;
1156
1157 err_regcache:
1158         regcache_exit(map);
1159 err_range:
1160         regmap_range_exit(map);
1161         kfree(map->work_buf);
1162 err_hwlock:
1163         if (map->hwlock)
1164                 hwspin_lock_free(map->hwlock);
1165 err_name:
1166         kfree_const(map->name);
1167 err_map:
1168         kfree(map);
1169 err:
1170         return ERR_PTR(ret);
1171 }
1172 EXPORT_SYMBOL_GPL(__regmap_init);
1173
1174 static void devm_regmap_release(struct device *dev, void *res)
1175 {
1176         regmap_exit(*(struct regmap **)res);
1177 }
1178
1179 struct regmap *__devm_regmap_init(struct device *dev,
1180                                   const struct regmap_bus *bus,
1181                                   void *bus_context,
1182                                   const struct regmap_config *config,
1183                                   struct lock_class_key *lock_key,
1184                                   const char *lock_name)
1185 {
1186         struct regmap **ptr, *regmap;
1187
1188         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1189         if (!ptr)
1190                 return ERR_PTR(-ENOMEM);
1191
1192         regmap = __regmap_init(dev, bus, bus_context, config,
1193                                lock_key, lock_name);
1194         if (!IS_ERR(regmap)) {
1195                 *ptr = regmap;
1196                 devres_add(dev, ptr);
1197         } else {
1198                 devres_free(ptr);
1199         }
1200
1201         return regmap;
1202 }
1203 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1204
1205 static void regmap_field_init(struct regmap_field *rm_field,
1206         struct regmap *regmap, struct reg_field reg_field)
1207 {
1208         rm_field->regmap = regmap;
1209         rm_field->reg = reg_field.reg;
1210         rm_field->shift = reg_field.lsb;
1211         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1212         rm_field->id_size = reg_field.id_size;
1213         rm_field->id_offset = reg_field.id_offset;
1214 }
1215
1216 /**
1217  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1218  *
1219  * @dev: Device that will be interacted with
1220  * @regmap: regmap bank in which this register field is located.
1221  * @reg_field: Register field with in the bank.
1222  *
1223  * The return value will be an ERR_PTR() on error or a valid pointer
1224  * to a struct regmap_field. The regmap_field will be automatically freed
1225  * by the device management code.
1226  */
1227 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1228                 struct regmap *regmap, struct reg_field reg_field)
1229 {
1230         struct regmap_field *rm_field = devm_kzalloc(dev,
1231                                         sizeof(*rm_field), GFP_KERNEL);
1232         if (!rm_field)
1233                 return ERR_PTR(-ENOMEM);
1234
1235         regmap_field_init(rm_field, regmap, reg_field);
1236
1237         return rm_field;
1238
1239 }
1240 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1241
1242 /**
1243  * devm_regmap_field_free() - Free a register field allocated using
1244  *                            devm_regmap_field_alloc.
1245  *
1246  * @dev: Device that will be interacted with
1247  * @field: regmap field which should be freed.
1248  *
1249  * Free register field allocated using devm_regmap_field_alloc(). Usually
1250  * drivers need not call this function, as the memory allocated via devm
1251  * will be freed as per device-driver life-cyle.
1252  */
1253 void devm_regmap_field_free(struct device *dev,
1254         struct regmap_field *field)
1255 {
1256         devm_kfree(dev, field);
1257 }
1258 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1259
1260 /**
1261  * regmap_field_alloc() - Allocate and initialise a register field.
1262  *
1263  * @regmap: regmap bank in which this register field is located.
1264  * @reg_field: Register field with in the bank.
1265  *
1266  * The return value will be an ERR_PTR() on error or a valid pointer
1267  * to a struct regmap_field. The regmap_field should be freed by the
1268  * user once its finished working with it using regmap_field_free().
1269  */
1270 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1271                 struct reg_field reg_field)
1272 {
1273         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1274
1275         if (!rm_field)
1276                 return ERR_PTR(-ENOMEM);
1277
1278         regmap_field_init(rm_field, regmap, reg_field);
1279
1280         return rm_field;
1281 }
1282 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1283
1284 /**
1285  * regmap_field_free() - Free register field allocated using
1286  *                       regmap_field_alloc.
1287  *
1288  * @field: regmap field which should be freed.
1289  */
1290 void regmap_field_free(struct regmap_field *field)
1291 {
1292         kfree(field);
1293 }
1294 EXPORT_SYMBOL_GPL(regmap_field_free);
1295
1296 /**
1297  * regmap_reinit_cache() - Reinitialise the current register cache
1298  *
1299  * @map: Register map to operate on.
1300  * @config: New configuration.  Only the cache data will be used.
1301  *
1302  * Discard any existing register cache for the map and initialize a
1303  * new cache.  This can be used to restore the cache to defaults or to
1304  * update the cache configuration to reflect runtime discovery of the
1305  * hardware.
1306  *
1307  * No explicit locking is done here, the user needs to ensure that
1308  * this function will not race with other calls to regmap.
1309  */
1310 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1311 {
1312         regcache_exit(map);
1313         regmap_debugfs_exit(map);
1314
1315         map->max_register = config->max_register;
1316         map->writeable_reg = config->writeable_reg;
1317         map->readable_reg = config->readable_reg;
1318         map->volatile_reg = config->volatile_reg;
1319         map->precious_reg = config->precious_reg;
1320         map->writeable_noinc_reg = config->writeable_noinc_reg;
1321         map->readable_noinc_reg = config->readable_noinc_reg;
1322         map->cache_type = config->cache_type;
1323
1324         regmap_debugfs_init(map, config->name);
1325
1326         map->cache_bypass = false;
1327         map->cache_only = false;
1328
1329         return regcache_init(map, config);
1330 }
1331 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1332
1333 /**
1334  * regmap_exit() - Free a previously allocated register map
1335  *
1336  * @map: Register map to operate on.
1337  */
1338 void regmap_exit(struct regmap *map)
1339 {
1340         struct regmap_async *async;
1341
1342         regcache_exit(map);
1343         regmap_debugfs_exit(map);
1344         regmap_range_exit(map);
1345         if (map->bus && map->bus->free_context)
1346                 map->bus->free_context(map->bus_context);
1347         kfree(map->work_buf);
1348         while (!list_empty(&map->async_free)) {
1349                 async = list_first_entry_or_null(&map->async_free,
1350                                                  struct regmap_async,
1351                                                  list);
1352                 list_del(&async->list);
1353                 kfree(async->work_buf);
1354                 kfree(async);
1355         }
1356         if (map->hwlock)
1357                 hwspin_lock_free(map->hwlock);
1358         kfree_const(map->name);
1359         kfree(map);
1360 }
1361 EXPORT_SYMBOL_GPL(regmap_exit);
1362
1363 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1364 {
1365         struct regmap **r = res;
1366         if (!r || !*r) {
1367                 WARN_ON(!r || !*r);
1368                 return 0;
1369         }
1370
1371         /* If the user didn't specify a name match any */
1372         if (data)
1373                 return (*r)->name == data;
1374         else
1375                 return 1;
1376 }
1377
1378 /**
1379  * dev_get_regmap() - Obtain the regmap (if any) for a device
1380  *
1381  * @dev: Device to retrieve the map for
1382  * @name: Optional name for the register map, usually NULL.
1383  *
1384  * Returns the regmap for the device if one is present, or NULL.  If
1385  * name is specified then it must match the name specified when
1386  * registering the device, if it is NULL then the first regmap found
1387  * will be used.  Devices with multiple register maps are very rare,
1388  * generic code should normally not need to specify a name.
1389  */
1390 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1391 {
1392         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1393                                         dev_get_regmap_match, (void *)name);
1394
1395         if (!r)
1396                 return NULL;
1397         return *r;
1398 }
1399 EXPORT_SYMBOL_GPL(dev_get_regmap);
1400
1401 /**
1402  * regmap_get_device() - Obtain the device from a regmap
1403  *
1404  * @map: Register map to operate on.
1405  *
1406  * Returns the underlying device that the regmap has been created for.
1407  */
1408 struct device *regmap_get_device(struct regmap *map)
1409 {
1410         return map->dev;
1411 }
1412 EXPORT_SYMBOL_GPL(regmap_get_device);
1413
1414 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1415                                struct regmap_range_node *range,
1416                                unsigned int val_num)
1417 {
1418         void *orig_work_buf;
1419         unsigned int win_offset;
1420         unsigned int win_page;
1421         bool page_chg;
1422         int ret;
1423
1424         win_offset = (*reg - range->range_min) % range->window_len;
1425         win_page = (*reg - range->range_min) / range->window_len;
1426
1427         if (val_num > 1) {
1428                 /* Bulk write shouldn't cross range boundary */
1429                 if (*reg + val_num - 1 > range->range_max)
1430                         return -EINVAL;
1431
1432                 /* ... or single page boundary */
1433                 if (val_num > range->window_len - win_offset)
1434                         return -EINVAL;
1435         }
1436
1437         /* It is possible to have selector register inside data window.
1438            In that case, selector register is located on every page and
1439            it needs no page switching, when accessed alone. */
1440         if (val_num > 1 ||
1441             range->window_start + win_offset != range->selector_reg) {
1442                 /* Use separate work_buf during page switching */
1443                 orig_work_buf = map->work_buf;
1444                 map->work_buf = map->selector_work_buf;
1445
1446                 ret = _regmap_update_bits(map, range->selector_reg,
1447                                           range->selector_mask,
1448                                           win_page << range->selector_shift,
1449                                           &page_chg, false);
1450
1451                 map->work_buf = orig_work_buf;
1452
1453                 if (ret != 0)
1454                         return ret;
1455         }
1456
1457         *reg = range->window_start + win_offset;
1458
1459         return 0;
1460 }
1461
1462 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1463                                           unsigned long mask)
1464 {
1465         u8 *buf;
1466         int i;
1467
1468         if (!mask || !map->work_buf)
1469                 return;
1470
1471         buf = map->work_buf;
1472
1473         for (i = 0; i < max_bytes; i++)
1474                 buf[i] |= (mask >> (8 * i)) & 0xff;
1475 }
1476
1477 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1478                                   const void *val, size_t val_len)
1479 {
1480         struct regmap_range_node *range;
1481         unsigned long flags;
1482         void *work_val = map->work_buf + map->format.reg_bytes +
1483                 map->format.pad_bytes;
1484         void *buf;
1485         int ret = -ENOTSUPP;
1486         size_t len;
1487         int i;
1488
1489         WARN_ON(!map->bus);
1490
1491         /* Check for unwritable registers before we start */
1492         for (i = 0; i < val_len / map->format.val_bytes; i++)
1493                 if (!regmap_writeable(map,
1494                                      reg + regmap_get_offset(map, i)))
1495                         return -EINVAL;
1496
1497         if (!map->cache_bypass && map->format.parse_val) {
1498                 unsigned int ival;
1499                 int val_bytes = map->format.val_bytes;
1500                 for (i = 0; i < val_len / val_bytes; i++) {
1501                         ival = map->format.parse_val(val + (i * val_bytes));
1502                         ret = regcache_write(map,
1503                                              reg + regmap_get_offset(map, i),
1504                                              ival);
1505                         if (ret) {
1506                                 dev_err(map->dev,
1507                                         "Error in caching of register: %x ret: %d\n",
1508                                         reg + i, ret);
1509                                 return ret;
1510                         }
1511                 }
1512                 if (map->cache_only) {
1513                         map->cache_dirty = true;
1514                         return 0;
1515                 }
1516         }
1517
1518         range = _regmap_range_lookup(map, reg);
1519         if (range) {
1520                 int val_num = val_len / map->format.val_bytes;
1521                 int win_offset = (reg - range->range_min) % range->window_len;
1522                 int win_residue = range->window_len - win_offset;
1523
1524                 /* If the write goes beyond the end of the window split it */
1525                 while (val_num > win_residue) {
1526                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1527                                 win_residue, val_len / map->format.val_bytes);
1528                         ret = _regmap_raw_write_impl(map, reg, val,
1529                                                      win_residue *
1530                                                      map->format.val_bytes);
1531                         if (ret != 0)
1532                                 return ret;
1533
1534                         reg += win_residue;
1535                         val_num -= win_residue;
1536                         val += win_residue * map->format.val_bytes;
1537                         val_len -= win_residue * map->format.val_bytes;
1538
1539                         win_offset = (reg - range->range_min) %
1540                                 range->window_len;
1541                         win_residue = range->window_len - win_offset;
1542                 }
1543
1544                 ret = _regmap_select_page(map, &reg, range, val_num);
1545                 if (ret != 0)
1546                         return ret;
1547         }
1548
1549         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1550         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1551                                       map->write_flag_mask);
1552
1553         /*
1554          * Essentially all I/O mechanisms will be faster with a single
1555          * buffer to write.  Since register syncs often generate raw
1556          * writes of single registers optimise that case.
1557          */
1558         if (val != work_val && val_len == map->format.val_bytes) {
1559                 memcpy(work_val, val, map->format.val_bytes);
1560                 val = work_val;
1561         }
1562
1563         if (map->async && map->bus->async_write) {
1564                 struct regmap_async *async;
1565
1566                 trace_regmap_async_write_start(map, reg, val_len);
1567
1568                 spin_lock_irqsave(&map->async_lock, flags);
1569                 async = list_first_entry_or_null(&map->async_free,
1570                                                  struct regmap_async,
1571                                                  list);
1572                 if (async)
1573                         list_del(&async->list);
1574                 spin_unlock_irqrestore(&map->async_lock, flags);
1575
1576                 if (!async) {
1577                         async = map->bus->async_alloc();
1578                         if (!async)
1579                                 return -ENOMEM;
1580
1581                         async->work_buf = kzalloc(map->format.buf_size,
1582                                                   GFP_KERNEL | GFP_DMA);
1583                         if (!async->work_buf) {
1584                                 kfree(async);
1585                                 return -ENOMEM;
1586                         }
1587                 }
1588
1589                 async->map = map;
1590
1591                 /* If the caller supplied the value we can use it safely. */
1592                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1593                        map->format.reg_bytes + map->format.val_bytes);
1594
1595                 spin_lock_irqsave(&map->async_lock, flags);
1596                 list_add_tail(&async->list, &map->async_list);
1597                 spin_unlock_irqrestore(&map->async_lock, flags);
1598
1599                 if (val != work_val)
1600                         ret = map->bus->async_write(map->bus_context,
1601                                                     async->work_buf,
1602                                                     map->format.reg_bytes +
1603                                                     map->format.pad_bytes,
1604                                                     val, val_len, async);
1605                 else
1606                         ret = map->bus->async_write(map->bus_context,
1607                                                     async->work_buf,
1608                                                     map->format.reg_bytes +
1609                                                     map->format.pad_bytes +
1610                                                     val_len, NULL, 0, async);
1611
1612                 if (ret != 0) {
1613                         dev_err(map->dev, "Failed to schedule write: %d\n",
1614                                 ret);
1615
1616                         spin_lock_irqsave(&map->async_lock, flags);
1617                         list_move(&async->list, &map->async_free);
1618                         spin_unlock_irqrestore(&map->async_lock, flags);
1619                 }
1620
1621                 return ret;
1622         }
1623
1624         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1625
1626         /* If we're doing a single register write we can probably just
1627          * send the work_buf directly, otherwise try to do a gather
1628          * write.
1629          */
1630         if (val == work_val)
1631                 ret = map->bus->write(map->bus_context, map->work_buf,
1632                                       map->format.reg_bytes +
1633                                       map->format.pad_bytes +
1634                                       val_len);
1635         else if (map->bus->gather_write)
1636                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1637                                              map->format.reg_bytes +
1638                                              map->format.pad_bytes,
1639                                              val, val_len);
1640         else
1641                 ret = -ENOTSUPP;
1642
1643         /* If that didn't work fall back on linearising by hand. */
1644         if (ret == -ENOTSUPP) {
1645                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1646                 buf = kzalloc(len, GFP_KERNEL);
1647                 if (!buf)
1648                         return -ENOMEM;
1649
1650                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1651                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1652                        val, val_len);
1653                 ret = map->bus->write(map->bus_context, buf, len);
1654
1655                 kfree(buf);
1656         } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1657                 /* regcache_drop_region() takes lock that we already have,
1658                  * thus call map->cache_ops->drop() directly
1659                  */
1660                 if (map->cache_ops && map->cache_ops->drop)
1661                         map->cache_ops->drop(map, reg, reg + 1);
1662         }
1663
1664         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1665
1666         return ret;
1667 }
1668
1669 /**
1670  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1671  *
1672  * @map: Map to check.
1673  */
1674 bool regmap_can_raw_write(struct regmap *map)
1675 {
1676         return map->bus && map->bus->write && map->format.format_val &&
1677                 map->format.format_reg;
1678 }
1679 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1680
1681 /**
1682  * regmap_get_raw_read_max - Get the maximum size we can read
1683  *
1684  * @map: Map to check.
1685  */
1686 size_t regmap_get_raw_read_max(struct regmap *map)
1687 {
1688         return map->max_raw_read;
1689 }
1690 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1691
1692 /**
1693  * regmap_get_raw_write_max - Get the maximum size we can read
1694  *
1695  * @map: Map to check.
1696  */
1697 size_t regmap_get_raw_write_max(struct regmap *map)
1698 {
1699         return map->max_raw_write;
1700 }
1701 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1702
1703 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1704                                        unsigned int val)
1705 {
1706         int ret;
1707         struct regmap_range_node *range;
1708         struct regmap *map = context;
1709
1710         WARN_ON(!map->bus || !map->format.format_write);
1711
1712         range = _regmap_range_lookup(map, reg);
1713         if (range) {
1714                 ret = _regmap_select_page(map, &reg, range, 1);
1715                 if (ret != 0)
1716                         return ret;
1717         }
1718
1719         map->format.format_write(map, reg, val);
1720
1721         trace_regmap_hw_write_start(map, reg, 1);
1722
1723         ret = map->bus->write(map->bus_context, map->work_buf,
1724                               map->format.buf_size);
1725
1726         trace_regmap_hw_write_done(map, reg, 1);
1727
1728         return ret;
1729 }
1730
1731 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1732                                  unsigned int val)
1733 {
1734         struct regmap *map = context;
1735
1736         return map->bus->reg_write(map->bus_context, reg, val);
1737 }
1738
1739 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1740                                  unsigned int val)
1741 {
1742         struct regmap *map = context;
1743
1744         WARN_ON(!map->bus || !map->format.format_val);
1745
1746         map->format.format_val(map->work_buf + map->format.reg_bytes
1747                                + map->format.pad_bytes, val, 0);
1748         return _regmap_raw_write_impl(map, reg,
1749                                       map->work_buf +
1750                                       map->format.reg_bytes +
1751                                       map->format.pad_bytes,
1752                                       map->format.val_bytes);
1753 }
1754
1755 static inline void *_regmap_map_get_context(struct regmap *map)
1756 {
1757         return (map->bus) ? map : map->bus_context;
1758 }
1759
1760 int _regmap_write(struct regmap *map, unsigned int reg,
1761                   unsigned int val)
1762 {
1763         int ret;
1764         void *context = _regmap_map_get_context(map);
1765
1766         if (!regmap_writeable(map, reg))
1767                 return -EIO;
1768
1769         if (!map->cache_bypass && !map->defer_caching) {
1770                 ret = regcache_write(map, reg, val);
1771                 if (ret != 0)
1772                         return ret;
1773                 if (map->cache_only) {
1774                         map->cache_dirty = true;
1775                         return 0;
1776                 }
1777         }
1778
1779         if (regmap_should_log(map))
1780                 dev_info(map->dev, "%x <= %x\n", reg, val);
1781
1782         trace_regmap_reg_write(map, reg, val);
1783
1784         return map->reg_write(context, reg, val);
1785 }
1786
1787 /**
1788  * regmap_write() - Write a value to a single register
1789  *
1790  * @map: Register map to write to
1791  * @reg: Register to write to
1792  * @val: Value to be written
1793  *
1794  * A value of zero will be returned on success, a negative errno will
1795  * be returned in error cases.
1796  */
1797 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1798 {
1799         int ret;
1800
1801         if (!IS_ALIGNED(reg, map->reg_stride))
1802                 return -EINVAL;
1803
1804         map->lock(map->lock_arg);
1805
1806         ret = _regmap_write(map, reg, val);
1807
1808         map->unlock(map->lock_arg);
1809
1810         return ret;
1811 }
1812 EXPORT_SYMBOL_GPL(regmap_write);
1813
1814 /**
1815  * regmap_write_async() - Write a value to a single register asynchronously
1816  *
1817  * @map: Register map to write to
1818  * @reg: Register to write to
1819  * @val: Value to be written
1820  *
1821  * A value of zero will be returned on success, a negative errno will
1822  * be returned in error cases.
1823  */
1824 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1825 {
1826         int ret;
1827
1828         if (!IS_ALIGNED(reg, map->reg_stride))
1829                 return -EINVAL;
1830
1831         map->lock(map->lock_arg);
1832
1833         map->async = true;
1834
1835         ret = _regmap_write(map, reg, val);
1836
1837         map->async = false;
1838
1839         map->unlock(map->lock_arg);
1840
1841         return ret;
1842 }
1843 EXPORT_SYMBOL_GPL(regmap_write_async);
1844
1845 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1846                       const void *val, size_t val_len)
1847 {
1848         size_t val_bytes = map->format.val_bytes;
1849         size_t val_count = val_len / val_bytes;
1850         size_t chunk_count, chunk_bytes;
1851         size_t chunk_regs = val_count;
1852         int ret, i;
1853
1854         if (!val_count)
1855                 return -EINVAL;
1856
1857         if (map->use_single_write)
1858                 chunk_regs = 1;
1859         else if (map->max_raw_write && val_len > map->max_raw_write)
1860                 chunk_regs = map->max_raw_write / val_bytes;
1861
1862         chunk_count = val_count / chunk_regs;
1863         chunk_bytes = chunk_regs * val_bytes;
1864
1865         /* Write as many bytes as possible with chunk_size */
1866         for (i = 0; i < chunk_count; i++) {
1867                 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1868                 if (ret)
1869                         return ret;
1870
1871                 reg += regmap_get_offset(map, chunk_regs);
1872                 val += chunk_bytes;
1873                 val_len -= chunk_bytes;
1874         }
1875
1876         /* Write remaining bytes */
1877         if (val_len)
1878                 ret = _regmap_raw_write_impl(map, reg, val, val_len);
1879
1880         return ret;
1881 }
1882
1883 /**
1884  * regmap_raw_write() - Write raw values to one or more registers
1885  *
1886  * @map: Register map to write to
1887  * @reg: Initial register to write to
1888  * @val: Block of data to be written, laid out for direct transmission to the
1889  *       device
1890  * @val_len: Length of data pointed to by val.
1891  *
1892  * This function is intended to be used for things like firmware
1893  * download where a large block of data needs to be transferred to the
1894  * device.  No formatting will be done on the data provided.
1895  *
1896  * A value of zero will be returned on success, a negative errno will
1897  * be returned in error cases.
1898  */
1899 int regmap_raw_write(struct regmap *map, unsigned int reg,
1900                      const void *val, size_t val_len)
1901 {
1902         int ret;
1903
1904         if (!regmap_can_raw_write(map))
1905                 return -EINVAL;
1906         if (val_len % map->format.val_bytes)
1907                 return -EINVAL;
1908
1909         map->lock(map->lock_arg);
1910
1911         ret = _regmap_raw_write(map, reg, val, val_len);
1912
1913         map->unlock(map->lock_arg);
1914
1915         return ret;
1916 }
1917 EXPORT_SYMBOL_GPL(regmap_raw_write);
1918
1919 /**
1920  * regmap_noinc_write(): Write data from a register without incrementing the
1921  *                      register number
1922  *
1923  * @map: Register map to write to
1924  * @reg: Register to write to
1925  * @val: Pointer to data buffer
1926  * @val_len: Length of output buffer in bytes.
1927  *
1928  * The regmap API usually assumes that bulk bus write operations will write a
1929  * range of registers. Some devices have certain registers for which a write
1930  * operation can write to an internal FIFO.
1931  *
1932  * The target register must be volatile but registers after it can be
1933  * completely unrelated cacheable registers.
1934  *
1935  * This will attempt multiple writes as required to write val_len bytes.
1936  *
1937  * A value of zero will be returned on success, a negative errno will be
1938  * returned in error cases.
1939  */
1940 int regmap_noinc_write(struct regmap *map, unsigned int reg,
1941                       const void *val, size_t val_len)
1942 {
1943         size_t write_len;
1944         int ret;
1945
1946         if (!map->bus)
1947                 return -EINVAL;
1948         if (!map->bus->write)
1949                 return -ENOTSUPP;
1950         if (val_len % map->format.val_bytes)
1951                 return -EINVAL;
1952         if (!IS_ALIGNED(reg, map->reg_stride))
1953                 return -EINVAL;
1954         if (val_len == 0)
1955                 return -EINVAL;
1956
1957         map->lock(map->lock_arg);
1958
1959         if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1960                 ret = -EINVAL;
1961                 goto out_unlock;
1962         }
1963
1964         while (val_len) {
1965                 if (map->max_raw_write && map->max_raw_write < val_len)
1966                         write_len = map->max_raw_write;
1967                 else
1968                         write_len = val_len;
1969                 ret = _regmap_raw_write(map, reg, val, write_len);
1970                 if (ret)
1971                         goto out_unlock;
1972                 val = ((u8 *)val) + write_len;
1973                 val_len -= write_len;
1974         }
1975
1976 out_unlock:
1977         map->unlock(map->lock_arg);
1978         return ret;
1979 }
1980 EXPORT_SYMBOL_GPL(regmap_noinc_write);
1981
1982 /**
1983  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1984  *                                   register field.
1985  *
1986  * @field: Register field to write to
1987  * @mask: Bitmask to change
1988  * @val: Value to be written
1989  * @change: Boolean indicating if a write was done
1990  * @async: Boolean indicating asynchronously
1991  * @force: Boolean indicating use force update
1992  *
1993  * Perform a read/modify/write cycle on the register field with change,
1994  * async, force option.
1995  *
1996  * A value of zero will be returned on success, a negative errno will
1997  * be returned in error cases.
1998  */
1999 int regmap_field_update_bits_base(struct regmap_field *field,
2000                                   unsigned int mask, unsigned int val,
2001                                   bool *change, bool async, bool force)
2002 {
2003         mask = (mask << field->shift) & field->mask;
2004
2005         return regmap_update_bits_base(field->regmap, field->reg,
2006                                        mask, val << field->shift,
2007                                        change, async, force);
2008 }
2009 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2010
2011 /**
2012  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2013  *                                    register field with port ID
2014  *
2015  * @field: Register field to write to
2016  * @id: port ID
2017  * @mask: Bitmask to change
2018  * @val: Value to be written
2019  * @change: Boolean indicating if a write was done
2020  * @async: Boolean indicating asynchronously
2021  * @force: Boolean indicating use force update
2022  *
2023  * A value of zero will be returned on success, a negative errno will
2024  * be returned in error cases.
2025  */
2026 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
2027                                    unsigned int mask, unsigned int val,
2028                                    bool *change, bool async, bool force)
2029 {
2030         if (id >= field->id_size)
2031                 return -EINVAL;
2032
2033         mask = (mask << field->shift) & field->mask;
2034
2035         return regmap_update_bits_base(field->regmap,
2036                                        field->reg + (field->id_offset * id),
2037                                        mask, val << field->shift,
2038                                        change, async, force);
2039 }
2040 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2041
2042 /**
2043  * regmap_bulk_write() - Write multiple registers to the device
2044  *
2045  * @map: Register map to write to
2046  * @reg: First register to be write from
2047  * @val: Block of data to be written, in native register size for device
2048  * @val_count: Number of registers to write
2049  *
2050  * This function is intended to be used for writing a large block of
2051  * data to the device either in single transfer or multiple transfer.
2052  *
2053  * A value of zero will be returned on success, a negative errno will
2054  * be returned in error cases.
2055  */
2056 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2057                      size_t val_count)
2058 {
2059         int ret = 0, i;
2060         size_t val_bytes = map->format.val_bytes;
2061
2062         if (!IS_ALIGNED(reg, map->reg_stride))
2063                 return -EINVAL;
2064
2065         /*
2066          * Some devices don't support bulk write, for them we have a series of
2067          * single write operations.
2068          */
2069         if (!map->bus || !map->format.parse_inplace) {
2070                 map->lock(map->lock_arg);
2071                 for (i = 0; i < val_count; i++) {
2072                         unsigned int ival;
2073
2074                         switch (val_bytes) {
2075                         case 1:
2076                                 ival = *(u8 *)(val + (i * val_bytes));
2077                                 break;
2078                         case 2:
2079                                 ival = *(u16 *)(val + (i * val_bytes));
2080                                 break;
2081                         case 4:
2082                                 ival = *(u32 *)(val + (i * val_bytes));
2083                                 break;
2084 #ifdef CONFIG_64BIT
2085                         case 8:
2086                                 ival = *(u64 *)(val + (i * val_bytes));
2087                                 break;
2088 #endif
2089                         default:
2090                                 ret = -EINVAL;
2091                                 goto out;
2092                         }
2093
2094                         ret = _regmap_write(map,
2095                                             reg + regmap_get_offset(map, i),
2096                                             ival);
2097                         if (ret != 0)
2098                                 goto out;
2099                 }
2100 out:
2101                 map->unlock(map->lock_arg);
2102         } else {
2103                 void *wval;
2104
2105                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2106                 if (!wval)
2107                         return -ENOMEM;
2108
2109                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2110                         map->format.parse_inplace(wval + i);
2111
2112                 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2113
2114                 kfree(wval);
2115         }
2116         return ret;
2117 }
2118 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2119
2120 /*
2121  * _regmap_raw_multi_reg_write()
2122  *
2123  * the (register,newvalue) pairs in regs have not been formatted, but
2124  * they are all in the same page and have been changed to being page
2125  * relative. The page register has been written if that was necessary.
2126  */
2127 static int _regmap_raw_multi_reg_write(struct regmap *map,
2128                                        const struct reg_sequence *regs,
2129                                        size_t num_regs)
2130 {
2131         int ret;
2132         void *buf;
2133         int i;
2134         u8 *u8;
2135         size_t val_bytes = map->format.val_bytes;
2136         size_t reg_bytes = map->format.reg_bytes;
2137         size_t pad_bytes = map->format.pad_bytes;
2138         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2139         size_t len = pair_size * num_regs;
2140
2141         if (!len)
2142                 return -EINVAL;
2143
2144         buf = kzalloc(len, GFP_KERNEL);
2145         if (!buf)
2146                 return -ENOMEM;
2147
2148         /* We have to linearise by hand. */
2149
2150         u8 = buf;
2151
2152         for (i = 0; i < num_regs; i++) {
2153                 unsigned int reg = regs[i].reg;
2154                 unsigned int val = regs[i].def;
2155                 trace_regmap_hw_write_start(map, reg, 1);
2156                 map->format.format_reg(u8, reg, map->reg_shift);
2157                 u8 += reg_bytes + pad_bytes;
2158                 map->format.format_val(u8, val, 0);
2159                 u8 += val_bytes;
2160         }
2161         u8 = buf;
2162         *u8 |= map->write_flag_mask;
2163
2164         ret = map->bus->write(map->bus_context, buf, len);
2165
2166         kfree(buf);
2167
2168         for (i = 0; i < num_regs; i++) {
2169                 int reg = regs[i].reg;
2170                 trace_regmap_hw_write_done(map, reg, 1);
2171         }
2172         return ret;
2173 }
2174
2175 static unsigned int _regmap_register_page(struct regmap *map,
2176                                           unsigned int reg,
2177                                           struct regmap_range_node *range)
2178 {
2179         unsigned int win_page = (reg - range->range_min) / range->window_len;
2180
2181         return win_page;
2182 }
2183
2184 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2185                                                struct reg_sequence *regs,
2186                                                size_t num_regs)
2187 {
2188         int ret;
2189         int i, n;
2190         struct reg_sequence *base;
2191         unsigned int this_page = 0;
2192         unsigned int page_change = 0;
2193         /*
2194          * the set of registers are not neccessarily in order, but
2195          * since the order of write must be preserved this algorithm
2196          * chops the set each time the page changes. This also applies
2197          * if there is a delay required at any point in the sequence.
2198          */
2199         base = regs;
2200         for (i = 0, n = 0; i < num_regs; i++, n++) {
2201                 unsigned int reg = regs[i].reg;
2202                 struct regmap_range_node *range;
2203
2204                 range = _regmap_range_lookup(map, reg);
2205                 if (range) {
2206                         unsigned int win_page = _regmap_register_page(map, reg,
2207                                                                       range);
2208
2209                         if (i == 0)
2210                                 this_page = win_page;
2211                         if (win_page != this_page) {
2212                                 this_page = win_page;
2213                                 page_change = 1;
2214                         }
2215                 }
2216
2217                 /* If we have both a page change and a delay make sure to
2218                  * write the regs and apply the delay before we change the
2219                  * page.
2220                  */
2221
2222                 if (page_change || regs[i].delay_us) {
2223
2224                                 /* For situations where the first write requires
2225                                  * a delay we need to make sure we don't call
2226                                  * raw_multi_reg_write with n=0
2227                                  * This can't occur with page breaks as we
2228                                  * never write on the first iteration
2229                                  */
2230                                 if (regs[i].delay_us && i == 0)
2231                                         n = 1;
2232
2233                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2234                                 if (ret != 0)
2235                                         return ret;
2236
2237                                 if (regs[i].delay_us)
2238                                         udelay(regs[i].delay_us);
2239
2240                                 base += n;
2241                                 n = 0;
2242
2243                                 if (page_change) {
2244                                         ret = _regmap_select_page(map,
2245                                                                   &base[n].reg,
2246                                                                   range, 1);
2247                                         if (ret != 0)
2248                                                 return ret;
2249
2250                                         page_change = 0;
2251                                 }
2252
2253                 }
2254
2255         }
2256         if (n > 0)
2257                 return _regmap_raw_multi_reg_write(map, base, n);
2258         return 0;
2259 }
2260
2261 static int _regmap_multi_reg_write(struct regmap *map,
2262                                    const struct reg_sequence *regs,
2263                                    size_t num_regs)
2264 {
2265         int i;
2266         int ret;
2267
2268         if (!map->can_multi_write) {
2269                 for (i = 0; i < num_regs; i++) {
2270                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2271                         if (ret != 0)
2272                                 return ret;
2273
2274                         if (regs[i].delay_us)
2275                                 udelay(regs[i].delay_us);
2276                 }
2277                 return 0;
2278         }
2279
2280         if (!map->format.parse_inplace)
2281                 return -EINVAL;
2282
2283         if (map->writeable_reg)
2284                 for (i = 0; i < num_regs; i++) {
2285                         int reg = regs[i].reg;
2286                         if (!map->writeable_reg(map->dev, reg))
2287                                 return -EINVAL;
2288                         if (!IS_ALIGNED(reg, map->reg_stride))
2289                                 return -EINVAL;
2290                 }
2291
2292         if (!map->cache_bypass) {
2293                 for (i = 0; i < num_regs; i++) {
2294                         unsigned int val = regs[i].def;
2295                         unsigned int reg = regs[i].reg;
2296                         ret = regcache_write(map, reg, val);
2297                         if (ret) {
2298                                 dev_err(map->dev,
2299                                 "Error in caching of register: %x ret: %d\n",
2300                                                                 reg, ret);
2301                                 return ret;
2302                         }
2303                 }
2304                 if (map->cache_only) {
2305                         map->cache_dirty = true;
2306                         return 0;
2307                 }
2308         }
2309
2310         WARN_ON(!map->bus);
2311
2312         for (i = 0; i < num_regs; i++) {
2313                 unsigned int reg = regs[i].reg;
2314                 struct regmap_range_node *range;
2315
2316                 /* Coalesce all the writes between a page break or a delay
2317                  * in a sequence
2318                  */
2319                 range = _regmap_range_lookup(map, reg);
2320                 if (range || regs[i].delay_us) {
2321                         size_t len = sizeof(struct reg_sequence)*num_regs;
2322                         struct reg_sequence *base = kmemdup(regs, len,
2323                                                            GFP_KERNEL);
2324                         if (!base)
2325                                 return -ENOMEM;
2326                         ret = _regmap_range_multi_paged_reg_write(map, base,
2327                                                                   num_regs);
2328                         kfree(base);
2329
2330                         return ret;
2331                 }
2332         }
2333         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2334 }
2335
2336 /**
2337  * regmap_multi_reg_write() - Write multiple registers to the device
2338  *
2339  * @map: Register map to write to
2340  * @regs: Array of structures containing register,value to be written
2341  * @num_regs: Number of registers to write
2342  *
2343  * Write multiple registers to the device where the set of register, value
2344  * pairs are supplied in any order, possibly not all in a single range.
2345  *
2346  * The 'normal' block write mode will send ultimately send data on the
2347  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2348  * addressed. However, this alternative block multi write mode will send
2349  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2350  * must of course support the mode.
2351  *
2352  * A value of zero will be returned on success, a negative errno will be
2353  * returned in error cases.
2354  */
2355 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2356                            int num_regs)
2357 {
2358         int ret;
2359
2360         map->lock(map->lock_arg);
2361
2362         ret = _regmap_multi_reg_write(map, regs, num_regs);
2363
2364         map->unlock(map->lock_arg);
2365
2366         return ret;
2367 }
2368 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2369
2370 /**
2371  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2372  *                                     device but not the cache
2373  *
2374  * @map: Register map to write to
2375  * @regs: Array of structures containing register,value to be written
2376  * @num_regs: Number of registers to write
2377  *
2378  * Write multiple registers to the device but not the cache where the set
2379  * of register are supplied in any order.
2380  *
2381  * This function is intended to be used for writing a large block of data
2382  * atomically to the device in single transfer for those I2C client devices
2383  * that implement this alternative block write mode.
2384  *
2385  * A value of zero will be returned on success, a negative errno will
2386  * be returned in error cases.
2387  */
2388 int regmap_multi_reg_write_bypassed(struct regmap *map,
2389                                     const struct reg_sequence *regs,
2390                                     int num_regs)
2391 {
2392         int ret;
2393         bool bypass;
2394
2395         map->lock(map->lock_arg);
2396
2397         bypass = map->cache_bypass;
2398         map->cache_bypass = true;
2399
2400         ret = _regmap_multi_reg_write(map, regs, num_regs);
2401
2402         map->cache_bypass = bypass;
2403
2404         map->unlock(map->lock_arg);
2405
2406         return ret;
2407 }
2408 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2409
2410 /**
2411  * regmap_raw_write_async() - Write raw values to one or more registers
2412  *                            asynchronously
2413  *
2414  * @map: Register map to write to
2415  * @reg: Initial register to write to
2416  * @val: Block of data to be written, laid out for direct transmission to the
2417  *       device.  Must be valid until regmap_async_complete() is called.
2418  * @val_len: Length of data pointed to by val.
2419  *
2420  * This function is intended to be used for things like firmware
2421  * download where a large block of data needs to be transferred to the
2422  * device.  No formatting will be done on the data provided.
2423  *
2424  * If supported by the underlying bus the write will be scheduled
2425  * asynchronously, helping maximise I/O speed on higher speed buses
2426  * like SPI.  regmap_async_complete() can be called to ensure that all
2427  * asynchrnous writes have been completed.
2428  *
2429  * A value of zero will be returned on success, a negative errno will
2430  * be returned in error cases.
2431  */
2432 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2433                            const void *val, size_t val_len)
2434 {
2435         int ret;
2436
2437         if (val_len % map->format.val_bytes)
2438                 return -EINVAL;
2439         if (!IS_ALIGNED(reg, map->reg_stride))
2440                 return -EINVAL;
2441
2442         map->lock(map->lock_arg);
2443
2444         map->async = true;
2445
2446         ret = _regmap_raw_write(map, reg, val, val_len);
2447
2448         map->async = false;
2449
2450         map->unlock(map->lock_arg);
2451
2452         return ret;
2453 }
2454 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2455
2456 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2457                             unsigned int val_len)
2458 {
2459         struct regmap_range_node *range;
2460         int ret;
2461
2462         WARN_ON(!map->bus);
2463
2464         if (!map->bus || !map->bus->read)
2465                 return -EINVAL;
2466
2467         range = _regmap_range_lookup(map, reg);
2468         if (range) {
2469                 ret = _regmap_select_page(map, &reg, range,
2470                                           val_len / map->format.val_bytes);
2471                 if (ret != 0)
2472                         return ret;
2473         }
2474
2475         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2476         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2477                                       map->read_flag_mask);
2478         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2479
2480         ret = map->bus->read(map->bus_context, map->work_buf,
2481                              map->format.reg_bytes + map->format.pad_bytes,
2482                              val, val_len);
2483
2484         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2485
2486         return ret;
2487 }
2488
2489 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2490                                 unsigned int *val)
2491 {
2492         struct regmap *map = context;
2493
2494         return map->bus->reg_read(map->bus_context, reg, val);
2495 }
2496
2497 static int _regmap_bus_read(void *context, unsigned int reg,
2498                             unsigned int *val)
2499 {
2500         int ret;
2501         struct regmap *map = context;
2502         void *work_val = map->work_buf + map->format.reg_bytes +
2503                 map->format.pad_bytes;
2504
2505         if (!map->format.parse_val)
2506                 return -EINVAL;
2507
2508         ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2509         if (ret == 0)
2510                 *val = map->format.parse_val(work_val);
2511
2512         return ret;
2513 }
2514
2515 static int _regmap_read(struct regmap *map, unsigned int reg,
2516                         unsigned int *val)
2517 {
2518         int ret;
2519         void *context = _regmap_map_get_context(map);
2520
2521         if (!map->cache_bypass) {
2522                 ret = regcache_read(map, reg, val);
2523                 if (ret == 0)
2524                         return 0;
2525         }
2526
2527         if (map->cache_only)
2528                 return -EBUSY;
2529
2530         if (!regmap_readable(map, reg))
2531                 return -EIO;
2532
2533         ret = map->reg_read(context, reg, val);
2534         if (ret == 0) {
2535                 if (regmap_should_log(map))
2536                         dev_info(map->dev, "%x => %x\n", reg, *val);
2537
2538                 trace_regmap_reg_read(map, reg, *val);
2539
2540                 if (!map->cache_bypass)
2541                         regcache_write(map, reg, *val);
2542         }
2543
2544         return ret;
2545 }
2546
2547 /**
2548  * regmap_read() - Read a value from a single register
2549  *
2550  * @map: Register map to read from
2551  * @reg: Register to be read from
2552  * @val: Pointer to store read value
2553  *
2554  * A value of zero will be returned on success, a negative errno will
2555  * be returned in error cases.
2556  */
2557 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2558 {
2559         int ret;
2560
2561         if (!IS_ALIGNED(reg, map->reg_stride))
2562                 return -EINVAL;
2563
2564         map->lock(map->lock_arg);
2565
2566         ret = _regmap_read(map, reg, val);
2567
2568         map->unlock(map->lock_arg);
2569
2570         return ret;
2571 }
2572 EXPORT_SYMBOL_GPL(regmap_read);
2573
2574 /**
2575  * regmap_raw_read() - Read raw data from the device
2576  *
2577  * @map: Register map to read from
2578  * @reg: First register to be read from
2579  * @val: Pointer to store read value
2580  * @val_len: Size of data to read
2581  *
2582  * A value of zero will be returned on success, a negative errno will
2583  * be returned in error cases.
2584  */
2585 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2586                     size_t val_len)
2587 {
2588         size_t val_bytes = map->format.val_bytes;
2589         size_t val_count = val_len / val_bytes;
2590         unsigned int v;
2591         int ret, i;
2592
2593         if (!map->bus)
2594                 return -EINVAL;
2595         if (val_len % map->format.val_bytes)
2596                 return -EINVAL;
2597         if (!IS_ALIGNED(reg, map->reg_stride))
2598                 return -EINVAL;
2599         if (val_count == 0)
2600                 return -EINVAL;
2601
2602         map->lock(map->lock_arg);
2603
2604         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2605             map->cache_type == REGCACHE_NONE) {
2606                 size_t chunk_count, chunk_bytes;
2607                 size_t chunk_regs = val_count;
2608
2609                 if (!map->bus->read) {
2610                         ret = -ENOTSUPP;
2611                         goto out;
2612                 }
2613
2614                 if (map->use_single_read)
2615                         chunk_regs = 1;
2616                 else if (map->max_raw_read && val_len > map->max_raw_read)
2617                         chunk_regs = map->max_raw_read / val_bytes;
2618
2619                 chunk_count = val_count / chunk_regs;
2620                 chunk_bytes = chunk_regs * val_bytes;
2621
2622                 /* Read bytes that fit into whole chunks */
2623                 for (i = 0; i < chunk_count; i++) {
2624                         ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2625                         if (ret != 0)
2626                                 goto out;
2627
2628                         reg += regmap_get_offset(map, chunk_regs);
2629                         val += chunk_bytes;
2630                         val_len -= chunk_bytes;
2631                 }
2632
2633                 /* Read remaining bytes */
2634                 if (val_len) {
2635                         ret = _regmap_raw_read(map, reg, val, val_len);
2636                         if (ret != 0)
2637                                 goto out;
2638                 }
2639         } else {
2640                 /* Otherwise go word by word for the cache; should be low
2641                  * cost as we expect to hit the cache.
2642                  */
2643                 for (i = 0; i < val_count; i++) {
2644                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2645                                            &v);
2646                         if (ret != 0)
2647                                 goto out;
2648
2649                         map->format.format_val(val + (i * val_bytes), v, 0);
2650                 }
2651         }
2652
2653  out:
2654         map->unlock(map->lock_arg);
2655
2656         return ret;
2657 }
2658 EXPORT_SYMBOL_GPL(regmap_raw_read);
2659
2660 /**
2661  * regmap_noinc_read(): Read data from a register without incrementing the
2662  *                      register number
2663  *
2664  * @map: Register map to read from
2665  * @reg: Register to read from
2666  * @val: Pointer to data buffer
2667  * @val_len: Length of output buffer in bytes.
2668  *
2669  * The regmap API usually assumes that bulk bus read operations will read a
2670  * range of registers. Some devices have certain registers for which a read
2671  * operation read will read from an internal FIFO.
2672  *
2673  * The target register must be volatile but registers after it can be
2674  * completely unrelated cacheable registers.
2675  *
2676  * This will attempt multiple reads as required to read val_len bytes.
2677  *
2678  * A value of zero will be returned on success, a negative errno will be
2679  * returned in error cases.
2680  */
2681 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2682                       void *val, size_t val_len)
2683 {
2684         size_t read_len;
2685         int ret;
2686
2687         if (!map->bus)
2688                 return -EINVAL;
2689         if (!map->bus->read)
2690                 return -ENOTSUPP;
2691         if (val_len % map->format.val_bytes)
2692                 return -EINVAL;
2693         if (!IS_ALIGNED(reg, map->reg_stride))
2694                 return -EINVAL;
2695         if (val_len == 0)
2696                 return -EINVAL;
2697
2698         map->lock(map->lock_arg);
2699
2700         if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2701                 ret = -EINVAL;
2702                 goto out_unlock;
2703         }
2704
2705         while (val_len) {
2706                 if (map->max_raw_read && map->max_raw_read < val_len)
2707                         read_len = map->max_raw_read;
2708                 else
2709                         read_len = val_len;
2710                 ret = _regmap_raw_read(map, reg, val, read_len);
2711                 if (ret)
2712                         goto out_unlock;
2713                 val = ((u8 *)val) + read_len;
2714                 val_len -= read_len;
2715         }
2716
2717 out_unlock:
2718         map->unlock(map->lock_arg);
2719         return ret;
2720 }
2721 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2722
2723 /**
2724  * regmap_field_read(): Read a value to a single register field
2725  *
2726  * @field: Register field to read from
2727  * @val: Pointer to store read value
2728  *
2729  * A value of zero will be returned on success, a negative errno will
2730  * be returned in error cases.
2731  */
2732 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2733 {
2734         int ret;
2735         unsigned int reg_val;
2736         ret = regmap_read(field->regmap, field->reg, &reg_val);
2737         if (ret != 0)
2738                 return ret;
2739
2740         reg_val &= field->mask;
2741         reg_val >>= field->shift;
2742         *val = reg_val;
2743
2744         return ret;
2745 }
2746 EXPORT_SYMBOL_GPL(regmap_field_read);
2747
2748 /**
2749  * regmap_fields_read() - Read a value to a single register field with port ID
2750  *
2751  * @field: Register field to read from
2752  * @id: port ID
2753  * @val: Pointer to store read value
2754  *
2755  * A value of zero will be returned on success, a negative errno will
2756  * be returned in error cases.
2757  */
2758 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2759                        unsigned int *val)
2760 {
2761         int ret;
2762         unsigned int reg_val;
2763
2764         if (id >= field->id_size)
2765                 return -EINVAL;
2766
2767         ret = regmap_read(field->regmap,
2768                           field->reg + (field->id_offset * id),
2769                           &reg_val);
2770         if (ret != 0)
2771                 return ret;
2772
2773         reg_val &= field->mask;
2774         reg_val >>= field->shift;
2775         *val = reg_val;
2776
2777         return ret;
2778 }
2779 EXPORT_SYMBOL_GPL(regmap_fields_read);
2780
2781 /**
2782  * regmap_bulk_read() - Read multiple registers from the device
2783  *
2784  * @map: Register map to read from
2785  * @reg: First register to be read from
2786  * @val: Pointer to store read value, in native register size for device
2787  * @val_count: Number of registers to read
2788  *
2789  * A value of zero will be returned on success, a negative errno will
2790  * be returned in error cases.
2791  */
2792 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2793                      size_t val_count)
2794 {
2795         int ret, i;
2796         size_t val_bytes = map->format.val_bytes;
2797         bool vol = regmap_volatile_range(map, reg, val_count);
2798
2799         if (!IS_ALIGNED(reg, map->reg_stride))
2800                 return -EINVAL;
2801         if (val_count == 0)
2802                 return -EINVAL;
2803
2804         if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2805                 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2806                 if (ret != 0)
2807                         return ret;
2808
2809                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2810                         map->format.parse_inplace(val + i);
2811         } else {
2812 #ifdef CONFIG_64BIT
2813                 u64 *u64 = val;
2814 #endif
2815                 u32 *u32 = val;
2816                 u16 *u16 = val;
2817                 u8 *u8 = val;
2818
2819                 map->lock(map->lock_arg);
2820
2821                 for (i = 0; i < val_count; i++) {
2822                         unsigned int ival;
2823
2824                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2825                                            &ival);
2826                         if (ret != 0)
2827                                 goto out;
2828
2829                         switch (map->format.val_bytes) {
2830 #ifdef CONFIG_64BIT
2831                         case 8:
2832                                 u64[i] = ival;
2833                                 break;
2834 #endif
2835                         case 4:
2836                                 u32[i] = ival;
2837                                 break;
2838                         case 2:
2839                                 u16[i] = ival;
2840                                 break;
2841                         case 1:
2842                                 u8[i] = ival;
2843                                 break;
2844                         default:
2845                                 ret = -EINVAL;
2846                                 goto out;
2847                         }
2848                 }
2849
2850 out:
2851                 map->unlock(map->lock_arg);
2852         }
2853
2854         return ret;
2855 }
2856 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2857
2858 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2859                                unsigned int mask, unsigned int val,
2860                                bool *change, bool force_write)
2861 {
2862         int ret;
2863         unsigned int tmp, orig;
2864
2865         if (change)
2866                 *change = false;
2867
2868         if (regmap_volatile(map, reg) && map->reg_update_bits) {
2869                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2870                 if (ret == 0 && change)
2871                         *change = true;
2872         } else {
2873                 ret = _regmap_read(map, reg, &orig);
2874                 if (ret != 0)
2875                         return ret;
2876
2877                 tmp = orig & ~mask;
2878                 tmp |= val & mask;
2879
2880                 if (force_write || (tmp != orig)) {
2881                         ret = _regmap_write(map, reg, tmp);
2882                         if (ret == 0 && change)
2883                                 *change = true;
2884                 }
2885         }
2886
2887         return ret;
2888 }
2889
2890 /**
2891  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2892  *
2893  * @map: Register map to update
2894  * @reg: Register to update
2895  * @mask: Bitmask to change
2896  * @val: New value for bitmask
2897  * @change: Boolean indicating if a write was done
2898  * @async: Boolean indicating asynchronously
2899  * @force: Boolean indicating use force update
2900  *
2901  * Perform a read/modify/write cycle on a register map with change, async, force
2902  * options.
2903  *
2904  * If async is true:
2905  *
2906  * With most buses the read must be done synchronously so this is most useful
2907  * for devices with a cache which do not need to interact with the hardware to
2908  * determine the current register value.
2909  *
2910  * Returns zero for success, a negative number on error.
2911  */
2912 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2913                             unsigned int mask, unsigned int val,
2914                             bool *change, bool async, bool force)
2915 {
2916         int ret;
2917
2918         map->lock(map->lock_arg);
2919
2920         map->async = async;
2921
2922         ret = _regmap_update_bits(map, reg, mask, val, change, force);
2923
2924         map->async = false;
2925
2926         map->unlock(map->lock_arg);
2927
2928         return ret;
2929 }
2930 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2931
2932 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2933 {
2934         struct regmap *map = async->map;
2935         bool wake;
2936
2937         trace_regmap_async_io_complete(map);
2938
2939         spin_lock(&map->async_lock);
2940         list_move(&async->list, &map->async_free);
2941         wake = list_empty(&map->async_list);
2942
2943         if (ret != 0)
2944                 map->async_ret = ret;
2945
2946         spin_unlock(&map->async_lock);
2947
2948         if (wake)
2949                 wake_up(&map->async_waitq);
2950 }
2951 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2952
2953 static int regmap_async_is_done(struct regmap *map)
2954 {
2955         unsigned long flags;
2956         int ret;
2957
2958         spin_lock_irqsave(&map->async_lock, flags);
2959         ret = list_empty(&map->async_list);
2960         spin_unlock_irqrestore(&map->async_lock, flags);
2961
2962         return ret;
2963 }
2964
2965 /**
2966  * regmap_async_complete - Ensure all asynchronous I/O has completed.
2967  *
2968  * @map: Map to operate on.
2969  *
2970  * Blocks until any pending asynchronous I/O has completed.  Returns
2971  * an error code for any failed I/O operations.
2972  */
2973 int regmap_async_complete(struct regmap *map)
2974 {
2975         unsigned long flags;
2976         int ret;
2977
2978         /* Nothing to do with no async support */
2979         if (!map->bus || !map->bus->async_write)
2980                 return 0;
2981
2982         trace_regmap_async_complete_start(map);
2983
2984         wait_event(map->async_waitq, regmap_async_is_done(map));
2985
2986         spin_lock_irqsave(&map->async_lock, flags);
2987         ret = map->async_ret;
2988         map->async_ret = 0;
2989         spin_unlock_irqrestore(&map->async_lock, flags);
2990
2991         trace_regmap_async_complete_done(map);
2992
2993         return ret;
2994 }
2995 EXPORT_SYMBOL_GPL(regmap_async_complete);
2996
2997 /**
2998  * regmap_register_patch - Register and apply register updates to be applied
2999  *                         on device initialistion
3000  *
3001  * @map: Register map to apply updates to.
3002  * @regs: Values to update.
3003  * @num_regs: Number of entries in regs.
3004  *
3005  * Register a set of register updates to be applied to the device
3006  * whenever the device registers are synchronised with the cache and
3007  * apply them immediately.  Typically this is used to apply
3008  * corrections to be applied to the device defaults on startup, such
3009  * as the updates some vendors provide to undocumented registers.
3010  *
3011  * The caller must ensure that this function cannot be called
3012  * concurrently with either itself or regcache_sync().
3013  */
3014 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3015                           int num_regs)
3016 {
3017         struct reg_sequence *p;
3018         int ret;
3019         bool bypass;
3020
3021         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3022             num_regs))
3023                 return 0;
3024
3025         p = krealloc(map->patch,
3026                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3027                      GFP_KERNEL);
3028         if (p) {
3029                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3030                 map->patch = p;
3031                 map->patch_regs += num_regs;
3032         } else {
3033                 return -ENOMEM;
3034         }
3035
3036         map->lock(map->lock_arg);
3037
3038         bypass = map->cache_bypass;
3039
3040         map->cache_bypass = true;
3041         map->async = true;
3042
3043         ret = _regmap_multi_reg_write(map, regs, num_regs);
3044
3045         map->async = false;
3046         map->cache_bypass = bypass;
3047
3048         map->unlock(map->lock_arg);
3049
3050         regmap_async_complete(map);
3051
3052         return ret;
3053 }
3054 EXPORT_SYMBOL_GPL(regmap_register_patch);
3055
3056 /**
3057  * regmap_get_val_bytes() - Report the size of a register value
3058  *
3059  * @map: Register map to operate on.
3060  *
3061  * Report the size of a register value, mainly intended to for use by
3062  * generic infrastructure built on top of regmap.
3063  */
3064 int regmap_get_val_bytes(struct regmap *map)
3065 {
3066         if (map->format.format_write)
3067                 return -EINVAL;
3068
3069         return map->format.val_bytes;
3070 }
3071 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3072
3073 /**
3074  * regmap_get_max_register() - Report the max register value
3075  *
3076  * @map: Register map to operate on.
3077  *
3078  * Report the max register value, mainly intended to for use by
3079  * generic infrastructure built on top of regmap.
3080  */
3081 int regmap_get_max_register(struct regmap *map)
3082 {
3083         return map->max_register ? map->max_register : -EINVAL;
3084 }
3085 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3086
3087 /**
3088  * regmap_get_reg_stride() - Report the register address stride
3089  *
3090  * @map: Register map to operate on.
3091  *
3092  * Report the register address stride, mainly intended to for use by
3093  * generic infrastructure built on top of regmap.
3094  */
3095 int regmap_get_reg_stride(struct regmap *map)
3096 {
3097         return map->reg_stride;
3098 }
3099 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3100
3101 int regmap_parse_val(struct regmap *map, const void *buf,
3102                         unsigned int *val)
3103 {
3104         if (!map->format.parse_val)
3105                 return -EINVAL;
3106
3107         *val = map->format.parse_val(buf);
3108
3109         return 0;
3110 }
3111 EXPORT_SYMBOL_GPL(regmap_parse_val);
3112
3113 static int __init regmap_initcall(void)
3114 {
3115         regmap_debugfs_initcall();
3116
3117         return 0;
3118 }
3119 postcore_initcall(regmap_initcall);