Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / acpi / cppc_acpi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33
34 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
35
36 #include <linux/cpufreq.h>
37 #include <linux/delay.h>
38 #include <linux/iopoll.h>
39 #include <linux/ktime.h>
40 #include <linux/rwsem.h>
41 #include <linux/wait.h>
42
43 #include <acpi/cppc_acpi.h>
44
45 struct cppc_pcc_data {
46         struct mbox_chan *pcc_channel;
47         void __iomem *pcc_comm_addr;
48         bool pcc_channel_acquired;
49         unsigned int deadline_us;
50         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51
52         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
53         bool platform_owns_pcc;         /* Ownership of PCC subspace */
54         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
55
56         /*
57          * Lock to provide controlled access to the PCC channel.
58          *
59          * For performance critical usecases(currently cppc_set_perf)
60          *      We need to take read_lock and check if channel belongs to OSPM
61          * before reading or writing to PCC subspace
62          *      We need to take write_lock before transferring the channel
63          * ownership to the platform via a Doorbell
64          *      This allows us to batch a number of CPPC requests if they happen
65          * to originate in about the same time
66          *
67          * For non-performance critical usecases(init)
68          *      Take write_lock for all purposes which gives exclusive access
69          */
70         struct rw_semaphore pcc_lock;
71
72         /* Wait queue for CPUs whose requests were batched */
73         wait_queue_head_t pcc_write_wait_q;
74         ktime_t last_cmd_cmpl_time;
75         ktime_t last_mpar_reset;
76         int mpar_count;
77         int refcount;
78 };
79
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84
85 /*
86  * The cpc_desc structure contains the ACPI register details
87  * as described in the per CPU _CPC tables. The details
88  * include the type of register (e.g. PCC, System IO, FFH etc.)
89  * and destination addresses which lets us READ/WRITE CPU performance
90  * information using the appropriate I/O methods.
91  */
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96                                                 0x8 + (offs))
97
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
100                                 (cpc)->cpc_entry.reg.space_id ==        \
101                                 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Evalutes to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105                                 (reg)->address == 0 &&                  \
106                                 (reg)->bit_width == 0 &&                \
107                                 (reg)->bit_offset == 0 &&               \
108                                 (reg)->access_width == 0)
109
110 /* Evalutes to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
112                                 !!(cpc)->cpc_entry.int_value :          \
113                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 /*
115  * Arbitrary Retries in case the remote processor is slow to respond
116  * to PCC commands. Keeping it high enough to cover emulators where
117  * the processors run painfully slow.
118  */
119 #define NUM_RETRIES 500ULL
120
121 struct cppc_attr {
122         struct attribute attr;
123         ssize_t (*show)(struct kobject *kobj,
124                         struct attribute *attr, char *buf);
125         ssize_t (*store)(struct kobject *kobj,
126                         struct attribute *attr, const char *c, ssize_t count);
127 };
128
129 #define define_one_cppc_ro(_name)               \
130 static struct cppc_attr _name =                 \
131 __ATTR(_name, 0444, show_##_name, NULL)
132
133 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
134
135 #define show_cppc_data(access_fn, struct_name, member_name)             \
136         static ssize_t show_##member_name(struct kobject *kobj,         \
137                                         struct attribute *attr, char *buf) \
138         {                                                               \
139                 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);           \
140                 struct struct_name st_name = {0};                       \
141                 int ret;                                                \
142                                                                         \
143                 ret = access_fn(cpc_ptr->cpu_id, &st_name);             \
144                 if (ret)                                                \
145                         return ret;                                     \
146                                                                         \
147                 return scnprintf(buf, PAGE_SIZE, "%llu\n",              \
148                                 (u64)st_name.member_name);              \
149         }                                                               \
150         define_one_cppc_ro(member_name)
151
152 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
153 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
154 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
155 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
158
159 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
160 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
161
162 static ssize_t show_feedback_ctrs(struct kobject *kobj,
163                 struct attribute *attr, char *buf)
164 {
165         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
166         struct cppc_perf_fb_ctrs fb_ctrs = {0};
167         int ret;
168
169         ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
170         if (ret)
171                 return ret;
172
173         return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
174                         fb_ctrs.reference, fb_ctrs.delivered);
175 }
176 define_one_cppc_ro(feedback_ctrs);
177
178 static struct attribute *cppc_attrs[] = {
179         &feedback_ctrs.attr,
180         &reference_perf.attr,
181         &wraparound_time.attr,
182         &highest_perf.attr,
183         &lowest_perf.attr,
184         &lowest_nonlinear_perf.attr,
185         &nominal_perf.attr,
186         &nominal_freq.attr,
187         &lowest_freq.attr,
188         NULL
189 };
190
191 static struct kobj_type cppc_ktype = {
192         .sysfs_ops = &kobj_sysfs_ops,
193         .default_attrs = cppc_attrs,
194 };
195
196 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
197 {
198         int ret, status;
199         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
200         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
201                 pcc_ss_data->pcc_comm_addr;
202
203         if (!pcc_ss_data->platform_owns_pcc)
204                 return 0;
205
206         /*
207          * Poll PCC status register every 3us(delay_us) for maximum of
208          * deadline_us(timeout_us) until PCC command complete bit is set(cond)
209          */
210         ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
211                                         status & PCC_CMD_COMPLETE_MASK, 3,
212                                         pcc_ss_data->deadline_us);
213
214         if (likely(!ret)) {
215                 pcc_ss_data->platform_owns_pcc = false;
216                 if (chk_err_bit && (status & PCC_ERROR_MASK))
217                         ret = -EIO;
218         }
219
220         if (unlikely(ret))
221                 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
222                        pcc_ss_id, ret);
223
224         return ret;
225 }
226
227 /*
228  * This function transfers the ownership of the PCC to the platform
229  * So it must be called while holding write_lock(pcc_lock)
230  */
231 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
232 {
233         int ret = -EIO, i;
234         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
235         struct acpi_pcct_shared_memory *generic_comm_base =
236                 (struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
237         unsigned int time_delta;
238
239         /*
240          * For CMD_WRITE we know for a fact the caller should have checked
241          * the channel before writing to PCC space
242          */
243         if (cmd == CMD_READ) {
244                 /*
245                  * If there are pending cpc_writes, then we stole the channel
246                  * before write completion, so first send a WRITE command to
247                  * platform
248                  */
249                 if (pcc_ss_data->pending_pcc_write_cmd)
250                         send_pcc_cmd(pcc_ss_id, CMD_WRITE);
251
252                 ret = check_pcc_chan(pcc_ss_id, false);
253                 if (ret)
254                         goto end;
255         } else /* CMD_WRITE */
256                 pcc_ss_data->pending_pcc_write_cmd = FALSE;
257
258         /*
259          * Handle the Minimum Request Turnaround Time(MRTT)
260          * "The minimum amount of time that OSPM must wait after the completion
261          * of a command before issuing the next command, in microseconds"
262          */
263         if (pcc_ss_data->pcc_mrtt) {
264                 time_delta = ktime_us_delta(ktime_get(),
265                                             pcc_ss_data->last_cmd_cmpl_time);
266                 if (pcc_ss_data->pcc_mrtt > time_delta)
267                         udelay(pcc_ss_data->pcc_mrtt - time_delta);
268         }
269
270         /*
271          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
272          * "The maximum number of periodic requests that the subspace channel can
273          * support, reported in commands per minute. 0 indicates no limitation."
274          *
275          * This parameter should be ideally zero or large enough so that it can
276          * handle maximum number of requests that all the cores in the system can
277          * collectively generate. If it is not, we will follow the spec and just
278          * not send the request to the platform after hitting the MPAR limit in
279          * any 60s window
280          */
281         if (pcc_ss_data->pcc_mpar) {
282                 if (pcc_ss_data->mpar_count == 0) {
283                         time_delta = ktime_ms_delta(ktime_get(),
284                                                     pcc_ss_data->last_mpar_reset);
285                         if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
286                                 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
287                                          pcc_ss_id);
288                                 ret = -EIO;
289                                 goto end;
290                         }
291                         pcc_ss_data->last_mpar_reset = ktime_get();
292                         pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
293                 }
294                 pcc_ss_data->mpar_count--;
295         }
296
297         /* Write to the shared comm region. */
298         writew_relaxed(cmd, &generic_comm_base->command);
299
300         /* Flip CMD COMPLETE bit */
301         writew_relaxed(0, &generic_comm_base->status);
302
303         pcc_ss_data->platform_owns_pcc = true;
304
305         /* Ring doorbell */
306         ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
307         if (ret < 0) {
308                 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
309                        pcc_ss_id, cmd, ret);
310                 goto end;
311         }
312
313         /* wait for completion and check for PCC errro bit */
314         ret = check_pcc_chan(pcc_ss_id, true);
315
316         if (pcc_ss_data->pcc_mrtt)
317                 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
318
319         if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
320                 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
321         else
322                 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
323
324 end:
325         if (cmd == CMD_WRITE) {
326                 if (unlikely(ret)) {
327                         for_each_possible_cpu(i) {
328                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
329                                 if (!desc)
330                                         continue;
331
332                                 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
333                                         desc->write_cmd_status = ret;
334                         }
335                 }
336                 pcc_ss_data->pcc_write_cnt++;
337                 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
338         }
339
340         return ret;
341 }
342
343 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
344 {
345         if (ret < 0)
346                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
347                                 *(u16 *)msg, ret);
348         else
349                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
350                                 *(u16 *)msg, ret);
351 }
352
353 struct mbox_client cppc_mbox_cl = {
354         .tx_done = cppc_chan_tx_done,
355         .knows_txdone = true,
356 };
357
358 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
359 {
360         int result = -EFAULT;
361         acpi_status status = AE_OK;
362         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
363         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
364         struct acpi_buffer state = {0, NULL};
365         union acpi_object  *psd = NULL;
366         struct acpi_psd_package *pdomain;
367
368         status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
369                                             &buffer, ACPI_TYPE_PACKAGE);
370         if (status == AE_NOT_FOUND)     /* _PSD is optional */
371                 return 0;
372         if (ACPI_FAILURE(status))
373                 return -ENODEV;
374
375         psd = buffer.pointer;
376         if (!psd || psd->package.count != 1) {
377                 pr_debug("Invalid _PSD data\n");
378                 goto end;
379         }
380
381         pdomain = &(cpc_ptr->domain_info);
382
383         state.length = sizeof(struct acpi_psd_package);
384         state.pointer = pdomain;
385
386         status = acpi_extract_package(&(psd->package.elements[0]),
387                 &format, &state);
388         if (ACPI_FAILURE(status)) {
389                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
390                 goto end;
391         }
392
393         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
394                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
395                 goto end;
396         }
397
398         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
399                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
400                 goto end;
401         }
402
403         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
404             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
405             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
406                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
407                 goto end;
408         }
409
410         result = 0;
411 end:
412         kfree(buffer.pointer);
413         return result;
414 }
415
416 /**
417  * acpi_get_psd_map - Map the CPUs in a common freq domain.
418  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
419  *
420  *      Return: 0 for success or negative value for err.
421  */
422 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
423 {
424         int count_target;
425         int retval = 0;
426         unsigned int i, j;
427         cpumask_var_t covered_cpus;
428         struct cppc_cpudata *pr, *match_pr;
429         struct acpi_psd_package *pdomain;
430         struct acpi_psd_package *match_pdomain;
431         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
432
433         if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
434                 return -ENOMEM;
435
436         /*
437          * Now that we have _PSD data from all CPUs, let's setup P-state
438          * domain info.
439          */
440         for_each_possible_cpu(i) {
441                 pr = all_cpu_data[i];
442                 if (!pr)
443                         continue;
444
445                 if (cpumask_test_cpu(i, covered_cpus))
446                         continue;
447
448                 cpc_ptr = per_cpu(cpc_desc_ptr, i);
449                 if (!cpc_ptr) {
450                         retval = -EFAULT;
451                         goto err_ret;
452                 }
453
454                 pdomain = &(cpc_ptr->domain_info);
455                 cpumask_set_cpu(i, pr->shared_cpu_map);
456                 cpumask_set_cpu(i, covered_cpus);
457                 if (pdomain->num_processors <= 1)
458                         continue;
459
460                 /* Validate the Domain info */
461                 count_target = pdomain->num_processors;
462                 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
463                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
464                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
465                         pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
466                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
467                         pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
468
469                 for_each_possible_cpu(j) {
470                         if (i == j)
471                                 continue;
472
473                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
474                         if (!match_cpc_ptr) {
475                                 retval = -EFAULT;
476                                 goto err_ret;
477                         }
478
479                         match_pdomain = &(match_cpc_ptr->domain_info);
480                         if (match_pdomain->domain != pdomain->domain)
481                                 continue;
482
483                         /* Here i and j are in the same domain */
484                         if (match_pdomain->num_processors != count_target) {
485                                 retval = -EFAULT;
486                                 goto err_ret;
487                         }
488
489                         if (pdomain->coord_type != match_pdomain->coord_type) {
490                                 retval = -EFAULT;
491                                 goto err_ret;
492                         }
493
494                         cpumask_set_cpu(j, covered_cpus);
495                         cpumask_set_cpu(j, pr->shared_cpu_map);
496                 }
497
498                 for_each_possible_cpu(j) {
499                         if (i == j)
500                                 continue;
501
502                         match_pr = all_cpu_data[j];
503                         if (!match_pr)
504                                 continue;
505
506                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
507                         if (!match_cpc_ptr) {
508                                 retval = -EFAULT;
509                                 goto err_ret;
510                         }
511
512                         match_pdomain = &(match_cpc_ptr->domain_info);
513                         if (match_pdomain->domain != pdomain->domain)
514                                 continue;
515
516                         match_pr->shared_type = pr->shared_type;
517                         cpumask_copy(match_pr->shared_cpu_map,
518                                      pr->shared_cpu_map);
519                 }
520         }
521
522 err_ret:
523         for_each_possible_cpu(i) {
524                 pr = all_cpu_data[i];
525                 if (!pr)
526                         continue;
527
528                 /* Assume no coordination on any error parsing domain info */
529                 if (retval) {
530                         cpumask_clear(pr->shared_cpu_map);
531                         cpumask_set_cpu(i, pr->shared_cpu_map);
532                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
533                 }
534         }
535
536         free_cpumask_var(covered_cpus);
537         return retval;
538 }
539 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
540
541 static int register_pcc_channel(int pcc_ss_idx)
542 {
543         struct acpi_pcct_hw_reduced *cppc_ss;
544         u64 usecs_lat;
545
546         if (pcc_ss_idx >= 0) {
547                 pcc_data[pcc_ss_idx]->pcc_channel =
548                         pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
549
550                 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
551                         pr_err("Failed to find PCC channel for subspace %d\n",
552                                pcc_ss_idx);
553                         return -ENODEV;
554                 }
555
556                 /*
557                  * The PCC mailbox controller driver should
558                  * have parsed the PCCT (global table of all
559                  * PCC channels) and stored pointers to the
560                  * subspace communication region in con_priv.
561                  */
562                 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
563
564                 if (!cppc_ss) {
565                         pr_err("No PCC subspace found for %d CPPC\n",
566                                pcc_ss_idx);
567                         return -ENODEV;
568                 }
569
570                 /*
571                  * cppc_ss->latency is just a Nominal value. In reality
572                  * the remote processor could be much slower to reply.
573                  * So add an arbitrary amount of wait on top of Nominal.
574                  */
575                 usecs_lat = NUM_RETRIES * cppc_ss->latency;
576                 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
577                 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
578                 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
579                 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
580
581                 pcc_data[pcc_ss_idx]->pcc_comm_addr =
582                         acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
583                 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
584                         pr_err("Failed to ioremap PCC comm region mem for %d\n",
585                                pcc_ss_idx);
586                         return -ENOMEM;
587                 }
588
589                 /* Set flag so that we don't come here for each CPU. */
590                 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
591         }
592
593         return 0;
594 }
595
596 /**
597  * cpc_ffh_supported() - check if FFH reading supported
598  *
599  * Check if the architecture has support for functional fixed hardware
600  * read/write capability.
601  *
602  * Return: true for supported, false for not supported
603  */
604 bool __weak cpc_ffh_supported(void)
605 {
606         return false;
607 }
608
609 /**
610  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
611  *
612  * Check and allocate the cppc_pcc_data memory.
613  * In some processor configurations it is possible that same subspace
614  * is shared between multiple CPUs. This is seen especially in CPUs
615  * with hardware multi-threading support.
616  *
617  * Return: 0 for success, errno for failure
618  */
619 int pcc_data_alloc(int pcc_ss_id)
620 {
621         if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
622                 return -EINVAL;
623
624         if (pcc_data[pcc_ss_id]) {
625                 pcc_data[pcc_ss_id]->refcount++;
626         } else {
627                 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
628                                               GFP_KERNEL);
629                 if (!pcc_data[pcc_ss_id])
630                         return -ENOMEM;
631                 pcc_data[pcc_ss_id]->refcount++;
632         }
633
634         return 0;
635 }
636
637 /* Check if CPPC revision + num_ent combination is supported */
638 static bool is_cppc_supported(int revision, int num_ent)
639 {
640         int expected_num_ent;
641
642         switch (revision) {
643         case CPPC_V2_REV:
644                 expected_num_ent = CPPC_V2_NUM_ENT;
645                 break;
646         case CPPC_V3_REV:
647                 expected_num_ent = CPPC_V3_NUM_ENT;
648                 break;
649         default:
650                 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
651                         revision);
652                 return false;
653         }
654
655         if (expected_num_ent != num_ent) {
656                 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
657                         num_ent, expected_num_ent, revision);
658                 return false;
659         }
660
661         return true;
662 }
663
664 /*
665  * An example CPC table looks like the following.
666  *
667  *      Name(_CPC, Package()
668  *                      {
669  *                      17,
670  *                      NumEntries
671  *                      1,
672  *                      // Revision
673  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
674  *                      // Highest Performance
675  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
676  *                      // Nominal Performance
677  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
678  *                      // Lowest Nonlinear Performance
679  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
680  *                      // Lowest Performance
681  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
682  *                      // Guaranteed Performance Register
683  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
684  *                      // Desired Performance Register
685  *                      ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
686  *                      ..
687  *                      ..
688  *                      ..
689  *
690  *              }
691  * Each Register() encodes how to access that specific register.
692  * e.g. a sample PCC entry has the following encoding:
693  *
694  *      Register (
695  *              PCC,
696  *              AddressSpaceKeyword
697  *              8,
698  *              //RegisterBitWidth
699  *              8,
700  *              //RegisterBitOffset
701  *              0x30,
702  *              //RegisterAddress
703  *              9
704  *              //AccessSize (subspace ID)
705  *              0
706  *              )
707  *      }
708  */
709
710 /**
711  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
712  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
713  *
714  *      Return: 0 for success or negative value for err.
715  */
716 int acpi_cppc_processor_probe(struct acpi_processor *pr)
717 {
718         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
719         union acpi_object *out_obj, *cpc_obj;
720         struct cpc_desc *cpc_ptr;
721         struct cpc_reg *gas_t;
722         struct device *cpu_dev;
723         acpi_handle handle = pr->handle;
724         unsigned int num_ent, i, cpc_rev;
725         int pcc_subspace_id = -1;
726         acpi_status status;
727         int ret = -EFAULT;
728
729         /* Parse the ACPI _CPC table for this CPU. */
730         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
731                         ACPI_TYPE_PACKAGE);
732         if (ACPI_FAILURE(status)) {
733                 ret = -ENODEV;
734                 goto out_buf_free;
735         }
736
737         out_obj = (union acpi_object *) output.pointer;
738
739         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
740         if (!cpc_ptr) {
741                 ret = -ENOMEM;
742                 goto out_buf_free;
743         }
744
745         /* First entry is NumEntries. */
746         cpc_obj = &out_obj->package.elements[0];
747         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
748                 num_ent = cpc_obj->integer.value;
749         } else {
750                 pr_debug("Unexpected entry type(%d) for NumEntries\n",
751                                 cpc_obj->type);
752                 goto out_free;
753         }
754         cpc_ptr->num_entries = num_ent;
755
756         /* Second entry should be revision. */
757         cpc_obj = &out_obj->package.elements[1];
758         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
759                 cpc_rev = cpc_obj->integer.value;
760         } else {
761                 pr_debug("Unexpected entry type(%d) for Revision\n",
762                                 cpc_obj->type);
763                 goto out_free;
764         }
765         cpc_ptr->version = cpc_rev;
766
767         if (!is_cppc_supported(cpc_rev, num_ent))
768                 goto out_free;
769
770         /* Iterate through remaining entries in _CPC */
771         for (i = 2; i < num_ent; i++) {
772                 cpc_obj = &out_obj->package.elements[i];
773
774                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
775                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
776                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
777                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
778                         gas_t = (struct cpc_reg *)
779                                 cpc_obj->buffer.pointer;
780
781                         /*
782                          * The PCC Subspace index is encoded inside
783                          * the CPC table entries. The same PCC index
784                          * will be used for all the PCC entries,
785                          * so extract it only once.
786                          */
787                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
788                                 if (pcc_subspace_id < 0) {
789                                         pcc_subspace_id = gas_t->access_width;
790                                         if (pcc_data_alloc(pcc_subspace_id))
791                                                 goto out_free;
792                                 } else if (pcc_subspace_id != gas_t->access_width) {
793                                         pr_debug("Mismatched PCC ids.\n");
794                                         goto out_free;
795                                 }
796                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
797                                 if (gas_t->address) {
798                                         void __iomem *addr;
799
800                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
801                                         if (!addr)
802                                                 goto out_free;
803                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
804                                 }
805                         } else {
806                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
807                                         /* Support only PCC ,SYS MEM and FFH type regs */
808                                         pr_debug("Unsupported register type: %d\n", gas_t->space_id);
809                                         goto out_free;
810                                 }
811                         }
812
813                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
814                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
815                 } else {
816                         pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
817                         goto out_free;
818                 }
819         }
820         per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
821
822         /*
823          * Initialize the remaining cpc_regs as unsupported.
824          * Example: In case FW exposes CPPC v2, the below loop will initialize
825          * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
826          */
827         for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
828                 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
829                 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
830         }
831
832
833         /* Store CPU Logical ID */
834         cpc_ptr->cpu_id = pr->id;
835
836         /* Parse PSD data for this CPU */
837         ret = acpi_get_psd(cpc_ptr, handle);
838         if (ret)
839                 goto out_free;
840
841         /* Register PCC channel once for all PCC subspace ID. */
842         if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
843                 ret = register_pcc_channel(pcc_subspace_id);
844                 if (ret)
845                         goto out_free;
846
847                 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
848                 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
849         }
850
851         /* Everything looks okay */
852         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
853
854         /* Add per logical CPU nodes for reading its feedback counters. */
855         cpu_dev = get_cpu_device(pr->id);
856         if (!cpu_dev) {
857                 ret = -EINVAL;
858                 goto out_free;
859         }
860
861         /* Plug PSD data into this CPU's CPC descriptor. */
862         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
863
864         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
865                         "acpi_cppc");
866         if (ret) {
867                 per_cpu(cpc_desc_ptr, pr->id) = NULL;
868                 goto out_free;
869         }
870
871         kfree(output.pointer);
872         return 0;
873
874 out_free:
875         /* Free all the mapped sys mem areas for this CPU */
876         for (i = 2; i < cpc_ptr->num_entries; i++) {
877                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
878
879                 if (addr)
880                         iounmap(addr);
881         }
882         kfree(cpc_ptr);
883
884 out_buf_free:
885         kfree(output.pointer);
886         return ret;
887 }
888 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
889
890 /**
891  * acpi_cppc_processor_exit - Cleanup CPC structs.
892  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
893  *
894  * Return: Void
895  */
896 void acpi_cppc_processor_exit(struct acpi_processor *pr)
897 {
898         struct cpc_desc *cpc_ptr;
899         unsigned int i;
900         void __iomem *addr;
901         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
902
903         if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
904                 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
905                         pcc_data[pcc_ss_id]->refcount--;
906                         if (!pcc_data[pcc_ss_id]->refcount) {
907                                 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
908                                 kfree(pcc_data[pcc_ss_id]);
909                                 pcc_data[pcc_ss_id] = NULL;
910                         }
911                 }
912         }
913
914         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
915         if (!cpc_ptr)
916                 return;
917
918         /* Free all the mapped sys mem areas for this CPU */
919         for (i = 2; i < cpc_ptr->num_entries; i++) {
920                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
921                 if (addr)
922                         iounmap(addr);
923         }
924
925         kobject_put(&cpc_ptr->kobj);
926         kfree(cpc_ptr);
927 }
928 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
929
930 /**
931  * cpc_read_ffh() - Read FFH register
932  * @cpunum:     CPU number to read
933  * @reg:        cppc register information
934  * @val:        place holder for return value
935  *
936  * Read bit_width bits from a specified address and bit_offset
937  *
938  * Return: 0 for success and error code
939  */
940 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
941 {
942         return -ENOTSUPP;
943 }
944
945 /**
946  * cpc_write_ffh() - Write FFH register
947  * @cpunum:     CPU number to write
948  * @reg:        cppc register information
949  * @val:        value to write
950  *
951  * Write value of bit_width bits to a specified address and bit_offset
952  *
953  * Return: 0 for success and error code
954  */
955 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
956 {
957         return -ENOTSUPP;
958 }
959
960 /*
961  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
962  * as fast as possible. We have already mapped the PCC subspace during init, so
963  * we can directly write to it.
964  */
965
966 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
967 {
968         int ret_val = 0;
969         void __iomem *vaddr = 0;
970         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
971         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
972
973         if (reg_res->type == ACPI_TYPE_INTEGER) {
974                 *val = reg_res->cpc_entry.int_value;
975                 return ret_val;
976         }
977
978         *val = 0;
979         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
980                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
981         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
982                 vaddr = reg_res->sys_mem_vaddr;
983         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
984                 return cpc_read_ffh(cpu, reg, val);
985         else
986                 return acpi_os_read_memory((acpi_physical_address)reg->address,
987                                 val, reg->bit_width);
988
989         switch (reg->bit_width) {
990                 case 8:
991                         *val = readb_relaxed(vaddr);
992                         break;
993                 case 16:
994                         *val = readw_relaxed(vaddr);
995                         break;
996                 case 32:
997                         *val = readl_relaxed(vaddr);
998                         break;
999                 case 64:
1000                         *val = readq_relaxed(vaddr);
1001                         break;
1002                 default:
1003                         pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1004                                  reg->bit_width, pcc_ss_id);
1005                         ret_val = -EFAULT;
1006         }
1007
1008         return ret_val;
1009 }
1010
1011 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1012 {
1013         int ret_val = 0;
1014         void __iomem *vaddr = 0;
1015         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1016         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1017
1018         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1019                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1020         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1021                 vaddr = reg_res->sys_mem_vaddr;
1022         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1023                 return cpc_write_ffh(cpu, reg, val);
1024         else
1025                 return acpi_os_write_memory((acpi_physical_address)reg->address,
1026                                 val, reg->bit_width);
1027
1028         switch (reg->bit_width) {
1029                 case 8:
1030                         writeb_relaxed(val, vaddr);
1031                         break;
1032                 case 16:
1033                         writew_relaxed(val, vaddr);
1034                         break;
1035                 case 32:
1036                         writel_relaxed(val, vaddr);
1037                         break;
1038                 case 64:
1039                         writeq_relaxed(val, vaddr);
1040                         break;
1041                 default:
1042                         pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1043                                  reg->bit_width, pcc_ss_id);
1044                         ret_val = -EFAULT;
1045                         break;
1046         }
1047
1048         return ret_val;
1049 }
1050
1051 /**
1052  * cppc_get_desired_perf - Get the value of desired performance register.
1053  * @cpunum: CPU from which to get desired performance.
1054  * @desired_perf: address of a variable to store the returned desired performance
1055  *
1056  * Return: 0 for success, -EIO otherwise.
1057  */
1058 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1059 {
1060         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1061         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1062         struct cpc_register_resource *desired_reg;
1063         struct cppc_pcc_data *pcc_ss_data = NULL;
1064
1065         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1066
1067         if (CPC_IN_PCC(desired_reg)) {
1068                 int ret = 0;
1069
1070                 if (pcc_ss_id < 0)
1071                         return -EIO;
1072
1073                 pcc_ss_data = pcc_data[pcc_ss_id];
1074
1075                 down_write(&pcc_ss_data->pcc_lock);
1076
1077                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1078                         cpc_read(cpunum, desired_reg, desired_perf);
1079                 else
1080                         ret = -EIO;
1081
1082                 up_write(&pcc_ss_data->pcc_lock);
1083
1084                 return ret;
1085         }
1086
1087         cpc_read(cpunum, desired_reg, desired_perf);
1088
1089         return 0;
1090 }
1091 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1092
1093 /**
1094  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1095  * @cpunum: CPU from which to get capabilities info.
1096  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1097  *
1098  * Return: 0 for success with perf_caps populated else -ERRNO.
1099  */
1100 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1101 {
1102         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1103         struct cpc_register_resource *highest_reg, *lowest_reg,
1104                 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1105                 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1106         u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1107         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1108         struct cppc_pcc_data *pcc_ss_data = NULL;
1109         int ret = 0, regs_in_pcc = 0;
1110
1111         if (!cpc_desc) {
1112                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1113                 return -ENODEV;
1114         }
1115
1116         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1117         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1118         lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1119         nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1120         low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1121         nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1122         guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1123
1124         /* Are any of the regs PCC ?*/
1125         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1126                 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1127                 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1128                 if (pcc_ss_id < 0) {
1129                         pr_debug("Invalid pcc_ss_id\n");
1130                         return -ENODEV;
1131                 }
1132                 pcc_ss_data = pcc_data[pcc_ss_id];
1133                 regs_in_pcc = 1;
1134                 down_write(&pcc_ss_data->pcc_lock);
1135                 /* Ring doorbell once to update PCC subspace */
1136                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1137                         ret = -EIO;
1138                         goto out_err;
1139                 }
1140         }
1141
1142         cpc_read(cpunum, highest_reg, &high);
1143         perf_caps->highest_perf = high;
1144
1145         cpc_read(cpunum, lowest_reg, &low);
1146         perf_caps->lowest_perf = low;
1147
1148         cpc_read(cpunum, nominal_reg, &nom);
1149         perf_caps->nominal_perf = nom;
1150
1151         if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1152             IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1153                 perf_caps->guaranteed_perf = 0;
1154         } else {
1155                 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1156                 perf_caps->guaranteed_perf = guaranteed;
1157         }
1158
1159         cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1160         perf_caps->lowest_nonlinear_perf = min_nonlinear;
1161
1162         if (!high || !low || !nom || !min_nonlinear)
1163                 ret = -EFAULT;
1164
1165         /* Read optional lowest and nominal frequencies if present */
1166         if (CPC_SUPPORTED(low_freq_reg))
1167                 cpc_read(cpunum, low_freq_reg, &low_f);
1168
1169         if (CPC_SUPPORTED(nom_freq_reg))
1170                 cpc_read(cpunum, nom_freq_reg, &nom_f);
1171
1172         perf_caps->lowest_freq = low_f;
1173         perf_caps->nominal_freq = nom_f;
1174
1175
1176 out_err:
1177         if (regs_in_pcc)
1178                 up_write(&pcc_ss_data->pcc_lock);
1179         return ret;
1180 }
1181 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1182
1183 /**
1184  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1185  * @cpunum: CPU from which to read counters.
1186  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1187  *
1188  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1189  */
1190 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1191 {
1192         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1193         struct cpc_register_resource *delivered_reg, *reference_reg,
1194                 *ref_perf_reg, *ctr_wrap_reg;
1195         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1196         struct cppc_pcc_data *pcc_ss_data = NULL;
1197         u64 delivered, reference, ref_perf, ctr_wrap_time;
1198         int ret = 0, regs_in_pcc = 0;
1199
1200         if (!cpc_desc) {
1201                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1202                 return -ENODEV;
1203         }
1204
1205         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1206         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1207         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1208         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1209
1210         /*
1211          * If reference perf register is not supported then we should
1212          * use the nominal perf value
1213          */
1214         if (!CPC_SUPPORTED(ref_perf_reg))
1215                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1216
1217         /* Are any of the regs PCC ?*/
1218         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1219                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1220                 if (pcc_ss_id < 0) {
1221                         pr_debug("Invalid pcc_ss_id\n");
1222                         return -ENODEV;
1223                 }
1224                 pcc_ss_data = pcc_data[pcc_ss_id];
1225                 down_write(&pcc_ss_data->pcc_lock);
1226                 regs_in_pcc = 1;
1227                 /* Ring doorbell once to update PCC subspace */
1228                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1229                         ret = -EIO;
1230                         goto out_err;
1231                 }
1232         }
1233
1234         cpc_read(cpunum, delivered_reg, &delivered);
1235         cpc_read(cpunum, reference_reg, &reference);
1236         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1237
1238         /*
1239          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1240          * performance counters are assumed to never wrap during the lifetime of
1241          * platform
1242          */
1243         ctr_wrap_time = (u64)(~((u64)0));
1244         if (CPC_SUPPORTED(ctr_wrap_reg))
1245                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1246
1247         if (!delivered || !reference || !ref_perf) {
1248                 ret = -EFAULT;
1249                 goto out_err;
1250         }
1251
1252         perf_fb_ctrs->delivered = delivered;
1253         perf_fb_ctrs->reference = reference;
1254         perf_fb_ctrs->reference_perf = ref_perf;
1255         perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1256 out_err:
1257         if (regs_in_pcc)
1258                 up_write(&pcc_ss_data->pcc_lock);
1259         return ret;
1260 }
1261 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1262
1263 /**
1264  * cppc_set_perf - Set a CPU's performance controls.
1265  * @cpu: CPU for which to set performance controls.
1266  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1267  *
1268  * Return: 0 for success, -ERRNO otherwise.
1269  */
1270 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1271 {
1272         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1273         struct cpc_register_resource *desired_reg;
1274         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1275         struct cppc_pcc_data *pcc_ss_data = NULL;
1276         int ret = 0;
1277
1278         if (!cpc_desc) {
1279                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1280                 return -ENODEV;
1281         }
1282
1283         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1284
1285         /*
1286          * This is Phase-I where we want to write to CPC registers
1287          * -> We want all CPUs to be able to execute this phase in parallel
1288          *
1289          * Since read_lock can be acquired by multiple CPUs simultaneously we
1290          * achieve that goal here
1291          */
1292         if (CPC_IN_PCC(desired_reg)) {
1293                 if (pcc_ss_id < 0) {
1294                         pr_debug("Invalid pcc_ss_id\n");
1295                         return -ENODEV;
1296                 }
1297                 pcc_ss_data = pcc_data[pcc_ss_id];
1298                 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1299                 if (pcc_ss_data->platform_owns_pcc) {
1300                         ret = check_pcc_chan(pcc_ss_id, false);
1301                         if (ret) {
1302                                 up_read(&pcc_ss_data->pcc_lock);
1303                                 return ret;
1304                         }
1305                 }
1306                 /*
1307                  * Update the pending_write to make sure a PCC CMD_READ will not
1308                  * arrive and steal the channel during the switch to write lock
1309                  */
1310                 pcc_ss_data->pending_pcc_write_cmd = true;
1311                 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1312                 cpc_desc->write_cmd_status = 0;
1313         }
1314
1315         /*
1316          * Skip writing MIN/MAX until Linux knows how to come up with
1317          * useful values.
1318          */
1319         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1320
1321         if (CPC_IN_PCC(desired_reg))
1322                 up_read(&pcc_ss_data->pcc_lock);        /* END Phase-I */
1323         /*
1324          * This is Phase-II where we transfer the ownership of PCC to Platform
1325          *
1326          * Short Summary: Basically if we think of a group of cppc_set_perf
1327          * requests that happened in short overlapping interval. The last CPU to
1328          * come out of Phase-I will enter Phase-II and ring the doorbell.
1329          *
1330          * We have the following requirements for Phase-II:
1331          *     1. We want to execute Phase-II only when there are no CPUs
1332          * currently executing in Phase-I
1333          *     2. Once we start Phase-II we want to avoid all other CPUs from
1334          * entering Phase-I.
1335          *     3. We want only one CPU among all those who went through Phase-I
1336          * to run phase-II
1337          *
1338          * If write_trylock fails to get the lock and doesn't transfer the
1339          * PCC ownership to the platform, then one of the following will be TRUE
1340          *     1. There is at-least one CPU in Phase-I which will later execute
1341          * write_trylock, so the CPUs in Phase-I will be responsible for
1342          * executing the Phase-II.
1343          *     2. Some other CPU has beaten this CPU to successfully execute the
1344          * write_trylock and has already acquired the write_lock. We know for a
1345          * fact it (other CPU acquiring the write_lock) couldn't have happened
1346          * before this CPU's Phase-I as we held the read_lock.
1347          *     3. Some other CPU executing pcc CMD_READ has stolen the
1348          * down_write, in which case, send_pcc_cmd will check for pending
1349          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1350          * So this CPU can be certain that its request will be delivered
1351          *    So in all cases, this CPU knows that its request will be delivered
1352          * by another CPU and can return
1353          *
1354          * After getting the down_write we still need to check for
1355          * pending_pcc_write_cmd to take care of the following scenario
1356          *    The thread running this code could be scheduled out between
1357          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1358          * could have delivered the request to Platform by triggering the
1359          * doorbell and transferred the ownership of PCC to platform. So this
1360          * avoids triggering an unnecessary doorbell and more importantly before
1361          * triggering the doorbell it makes sure that the PCC channel ownership
1362          * is still with OSPM.
1363          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1364          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1365          * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1366          * case during a CMD_READ and if there are pending writes it delivers
1367          * the write command before servicing the read command
1368          */
1369         if (CPC_IN_PCC(desired_reg)) {
1370                 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1371                         /* Update only if there are pending write commands */
1372                         if (pcc_ss_data->pending_pcc_write_cmd)
1373                                 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1374                         up_write(&pcc_ss_data->pcc_lock);       /* END Phase-II */
1375                 } else
1376                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1377                         wait_event(pcc_ss_data->pcc_write_wait_q,
1378                                    cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1379
1380                 /* send_pcc_cmd updates the status in case of failure */
1381                 ret = cpc_desc->write_cmd_status;
1382         }
1383         return ret;
1384 }
1385 EXPORT_SYMBOL_GPL(cppc_set_perf);
1386
1387 /**
1388  * cppc_get_transition_latency - returns frequency transition latency in ns
1389  *
1390  * ACPI CPPC does not explicitly specifiy how a platform can specify the
1391  * transition latency for perfromance change requests. The closest we have
1392  * is the timing information from the PCCT tables which provides the info
1393  * on the number and frequency of PCC commands the platform can handle.
1394  */
1395 unsigned int cppc_get_transition_latency(int cpu_num)
1396 {
1397         /*
1398          * Expected transition latency is based on the PCCT timing values
1399          * Below are definition from ACPI spec:
1400          * pcc_nominal- Expected latency to process a command, in microseconds
1401          * pcc_mpar   - The maximum number of periodic requests that the subspace
1402          *              channel can support, reported in commands per minute. 0
1403          *              indicates no limitation.
1404          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1405          *              completion of a command before issuing the next command,
1406          *              in microseconds.
1407          */
1408         unsigned int latency_ns = 0;
1409         struct cpc_desc *cpc_desc;
1410         struct cpc_register_resource *desired_reg;
1411         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1412         struct cppc_pcc_data *pcc_ss_data;
1413
1414         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1415         if (!cpc_desc)
1416                 return CPUFREQ_ETERNAL;
1417
1418         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1419         if (!CPC_IN_PCC(desired_reg))
1420                 return CPUFREQ_ETERNAL;
1421
1422         if (pcc_ss_id < 0)
1423                 return CPUFREQ_ETERNAL;
1424
1425         pcc_ss_data = pcc_data[pcc_ss_id];
1426         if (pcc_ss_data->pcc_mpar)
1427                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1428
1429         latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1430         latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1431
1432         return latency_ns;
1433 }
1434 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);