Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / acpi / acpi_lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI support for Intel Lynxpoint LPSS.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/err.h>
14 #include <linux/io.h>
15 #include <linux/mutex.h>
16 #include <linux/pci.h>
17 #include <linux/platform_device.h>
18 #include <linux/platform_data/x86/clk-lpss.h>
19 #include <linux/platform_data/x86/pmc_atom.h>
20 #include <linux/pm_domain.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pwm.h>
23 #include <linux/suspend.h>
24 #include <linux/delay.h>
25
26 #include "internal.h"
27
28 ACPI_MODULE_NAME("acpi_lpss");
29
30 #ifdef CONFIG_X86_INTEL_LPSS
31
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/iosf_mbi.h>
35
36 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37
38 #define LPSS_CLK_SIZE   0x04
39 #define LPSS_LTR_SIZE   0x18
40
41 /* Offsets relative to LPSS_PRIVATE_OFFSET */
42 #define LPSS_CLK_DIVIDER_DEF_MASK       (BIT(1) | BIT(16))
43 #define LPSS_RESETS                     0x04
44 #define LPSS_RESETS_RESET_FUNC          BIT(0)
45 #define LPSS_RESETS_RESET_APB           BIT(1)
46 #define LPSS_GENERAL                    0x08
47 #define LPSS_GENERAL_LTR_MODE_SW        BIT(2)
48 #define LPSS_GENERAL_UART_RTS_OVRD      BIT(3)
49 #define LPSS_SW_LTR                     0x10
50 #define LPSS_AUTO_LTR                   0x14
51 #define LPSS_LTR_SNOOP_REQ              BIT(15)
52 #define LPSS_LTR_SNOOP_MASK             0x0000FFFF
53 #define LPSS_LTR_SNOOP_LAT_1US          0x800
54 #define LPSS_LTR_SNOOP_LAT_32US         0xC00
55 #define LPSS_LTR_SNOOP_LAT_SHIFT        5
56 #define LPSS_LTR_SNOOP_LAT_CUTOFF       3000
57 #define LPSS_LTR_MAX_VAL                0x3FF
58 #define LPSS_TX_INT                     0x20
59 #define LPSS_TX_INT_MASK                BIT(1)
60
61 #define LPSS_PRV_REG_COUNT              9
62
63 /* LPSS Flags */
64 #define LPSS_CLK                        BIT(0)
65 #define LPSS_CLK_GATE                   BIT(1)
66 #define LPSS_CLK_DIVIDER                BIT(2)
67 #define LPSS_LTR                        BIT(3)
68 #define LPSS_SAVE_CTX                   BIT(4)
69 #define LPSS_NO_D3_DELAY                BIT(5)
70
71 /* Crystal Cove PMIC shares same ACPI ID between different platforms */
72 #define BYT_CRC_HRV                     2
73 #define CHT_CRC_HRV                     3
74
75 struct lpss_private_data;
76
77 struct lpss_device_desc {
78         unsigned int flags;
79         const char *clk_con_id;
80         unsigned int prv_offset;
81         size_t prv_size_override;
82         struct property_entry *properties;
83         void (*setup)(struct lpss_private_data *pdata);
84         bool resume_from_noirq;
85 };
86
87 static const struct lpss_device_desc lpss_dma_desc = {
88         .flags = LPSS_CLK,
89 };
90
91 struct lpss_private_data {
92         struct acpi_device *adev;
93         void __iomem *mmio_base;
94         resource_size_t mmio_size;
95         unsigned int fixed_clk_rate;
96         struct clk *clk;
97         const struct lpss_device_desc *dev_desc;
98         u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
99 };
100
101 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
102 static u32 pmc_atom_d3_mask = 0xfe000ffe;
103
104 /* LPSS run time quirks */
105 static unsigned int lpss_quirks;
106
107 /*
108  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
109  *
110  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
111  * it can be powered off automatically whenever the last LPSS device goes down.
112  * In case of no power any access to the DMA controller will hang the system.
113  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
114  * well as on ASuS T100TA transformer.
115  *
116  * This quirk overrides power state of entire LPSS island to keep DMA powered
117  * on whenever we have at least one other device in use.
118  */
119 #define LPSS_QUIRK_ALWAYS_POWER_ON      BIT(0)
120
121 /* UART Component Parameter Register */
122 #define LPSS_UART_CPR                   0xF4
123 #define LPSS_UART_CPR_AFCE              BIT(4)
124
125 static void lpss_uart_setup(struct lpss_private_data *pdata)
126 {
127         unsigned int offset;
128         u32 val;
129
130         offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
131         val = readl(pdata->mmio_base + offset);
132         writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
133
134         val = readl(pdata->mmio_base + LPSS_UART_CPR);
135         if (!(val & LPSS_UART_CPR_AFCE)) {
136                 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
137                 val = readl(pdata->mmio_base + offset);
138                 val |= LPSS_GENERAL_UART_RTS_OVRD;
139                 writel(val, pdata->mmio_base + offset);
140         }
141 }
142
143 static void lpss_deassert_reset(struct lpss_private_data *pdata)
144 {
145         unsigned int offset;
146         u32 val;
147
148         offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
149         val = readl(pdata->mmio_base + offset);
150         val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
151         writel(val, pdata->mmio_base + offset);
152 }
153
154 /*
155  * BYT PWM used for backlight control by the i915 driver on systems without
156  * the Crystal Cove PMIC.
157  */
158 static struct pwm_lookup byt_pwm_lookup[] = {
159         PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
160                                "pwm_backlight", 0, PWM_POLARITY_NORMAL,
161                                "pwm-lpss-platform"),
162 };
163
164 static void byt_pwm_setup(struct lpss_private_data *pdata)
165 {
166         struct acpi_device *adev = pdata->adev;
167
168         /* Only call pwm_add_table for the first PWM controller */
169         if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
170                 return;
171
172         if (!acpi_dev_present("INT33FD", NULL, BYT_CRC_HRV))
173                 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
174 }
175
176 #define LPSS_I2C_ENABLE                 0x6c
177
178 static void byt_i2c_setup(struct lpss_private_data *pdata)
179 {
180         const char *uid_str = acpi_device_uid(pdata->adev);
181         acpi_handle handle = pdata->adev->handle;
182         unsigned long long shared_host = 0;
183         acpi_status status;
184         long uid = 0;
185
186         /* Expected to always be true, but better safe then sorry */
187         if (uid_str)
188                 uid = simple_strtol(uid_str, NULL, 10);
189
190         /* Detect I2C bus shared with PUNIT and ignore its d3 status */
191         status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
192         if (ACPI_SUCCESS(status) && shared_host && uid)
193                 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
194
195         lpss_deassert_reset(pdata);
196
197         if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
198                 pdata->fixed_clk_rate = 133000000;
199
200         writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
201 }
202
203 /* BSW PWM used for backlight control by the i915 driver */
204 static struct pwm_lookup bsw_pwm_lookup[] = {
205         PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
206                                "pwm_backlight", 0, PWM_POLARITY_NORMAL,
207                                "pwm-lpss-platform"),
208 };
209
210 static void bsw_pwm_setup(struct lpss_private_data *pdata)
211 {
212         struct acpi_device *adev = pdata->adev;
213
214         /* Only call pwm_add_table for the first PWM controller */
215         if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
216                 return;
217
218         pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
219 }
220
221 static const struct lpss_device_desc lpt_dev_desc = {
222         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
223                         | LPSS_SAVE_CTX,
224         .prv_offset = 0x800,
225 };
226
227 static const struct lpss_device_desc lpt_i2c_dev_desc = {
228         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
229         .prv_offset = 0x800,
230 };
231
232 static struct property_entry uart_properties[] = {
233         PROPERTY_ENTRY_U32("reg-io-width", 4),
234         PROPERTY_ENTRY_U32("reg-shift", 2),
235         PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
236         { },
237 };
238
239 static const struct lpss_device_desc lpt_uart_dev_desc = {
240         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
241                         | LPSS_SAVE_CTX,
242         .clk_con_id = "baudclk",
243         .prv_offset = 0x800,
244         .setup = lpss_uart_setup,
245         .properties = uart_properties,
246 };
247
248 static const struct lpss_device_desc lpt_sdio_dev_desc = {
249         .flags = LPSS_LTR,
250         .prv_offset = 0x1000,
251         .prv_size_override = 0x1018,
252 };
253
254 static const struct lpss_device_desc byt_pwm_dev_desc = {
255         .flags = LPSS_SAVE_CTX,
256         .prv_offset = 0x800,
257         .setup = byt_pwm_setup,
258 };
259
260 static const struct lpss_device_desc bsw_pwm_dev_desc = {
261         .flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
262         .prv_offset = 0x800,
263         .setup = bsw_pwm_setup,
264 };
265
266 static const struct lpss_device_desc byt_uart_dev_desc = {
267         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
268         .clk_con_id = "baudclk",
269         .prv_offset = 0x800,
270         .setup = lpss_uart_setup,
271         .properties = uart_properties,
272 };
273
274 static const struct lpss_device_desc bsw_uart_dev_desc = {
275         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
276                         | LPSS_NO_D3_DELAY,
277         .clk_con_id = "baudclk",
278         .prv_offset = 0x800,
279         .setup = lpss_uart_setup,
280         .properties = uart_properties,
281 };
282
283 static const struct lpss_device_desc byt_spi_dev_desc = {
284         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
285         .prv_offset = 0x400,
286 };
287
288 static const struct lpss_device_desc byt_sdio_dev_desc = {
289         .flags = LPSS_CLK,
290 };
291
292 static const struct lpss_device_desc byt_i2c_dev_desc = {
293         .flags = LPSS_CLK | LPSS_SAVE_CTX,
294         .prv_offset = 0x800,
295         .setup = byt_i2c_setup,
296         .resume_from_noirq = true,
297 };
298
299 static const struct lpss_device_desc bsw_i2c_dev_desc = {
300         .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
301         .prv_offset = 0x800,
302         .setup = byt_i2c_setup,
303         .resume_from_noirq = true,
304 };
305
306 static const struct lpss_device_desc bsw_spi_dev_desc = {
307         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
308                         | LPSS_NO_D3_DELAY,
309         .prv_offset = 0x400,
310         .setup = lpss_deassert_reset,
311 };
312
313 #define ICPU(model)     { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, }
314
315 static const struct x86_cpu_id lpss_cpu_ids[] = {
316         ICPU(INTEL_FAM6_ATOM_SILVERMONT),       /* Valleyview, Bay Trail */
317         ICPU(INTEL_FAM6_ATOM_AIRMONT),  /* Braswell, Cherry Trail */
318         {}
319 };
320
321 #else
322
323 #define LPSS_ADDR(desc) (0UL)
324
325 #endif /* CONFIG_X86_INTEL_LPSS */
326
327 static const struct acpi_device_id acpi_lpss_device_ids[] = {
328         /* Generic LPSS devices */
329         { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
330
331         /* Lynxpoint LPSS devices */
332         { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
333         { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
334         { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
335         { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
336         { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
337         { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
338         { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
339         { "INT33C7", },
340
341         /* BayTrail LPSS devices */
342         { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
343         { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
344         { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
345         { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
346         { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
347         { "INT33B2", },
348         { "INT33FC", },
349
350         /* Braswell LPSS devices */
351         { "80862286", LPSS_ADDR(lpss_dma_desc) },
352         { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
353         { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
354         { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
355         { "808622C0", LPSS_ADDR(lpss_dma_desc) },
356         { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
357
358         /* Broadwell LPSS devices */
359         { "INT3430", LPSS_ADDR(lpt_dev_desc) },
360         { "INT3431", LPSS_ADDR(lpt_dev_desc) },
361         { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
362         { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
363         { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
364         { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
365         { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
366         { "INT3437", },
367
368         /* Wildcat Point LPSS devices */
369         { "INT3438", LPSS_ADDR(lpt_dev_desc) },
370
371         { }
372 };
373
374 #ifdef CONFIG_X86_INTEL_LPSS
375
376 static int is_memory(struct acpi_resource *res, void *not_used)
377 {
378         struct resource r;
379         return !acpi_dev_resource_memory(res, &r);
380 }
381
382 /* LPSS main clock device. */
383 static struct platform_device *lpss_clk_dev;
384
385 static inline void lpt_register_clock_device(void)
386 {
387         lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
388 }
389
390 static int register_device_clock(struct acpi_device *adev,
391                                  struct lpss_private_data *pdata)
392 {
393         const struct lpss_device_desc *dev_desc = pdata->dev_desc;
394         const char *devname = dev_name(&adev->dev);
395         struct clk *clk;
396         struct lpss_clk_data *clk_data;
397         const char *parent, *clk_name;
398         void __iomem *prv_base;
399
400         if (!lpss_clk_dev)
401                 lpt_register_clock_device();
402
403         clk_data = platform_get_drvdata(lpss_clk_dev);
404         if (!clk_data)
405                 return -ENODEV;
406         clk = clk_data->clk;
407
408         if (!pdata->mmio_base
409             || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
410                 return -ENODATA;
411
412         parent = clk_data->name;
413         prv_base = pdata->mmio_base + dev_desc->prv_offset;
414
415         if (pdata->fixed_clk_rate) {
416                 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
417                                               pdata->fixed_clk_rate);
418                 goto out;
419         }
420
421         if (dev_desc->flags & LPSS_CLK_GATE) {
422                 clk = clk_register_gate(NULL, devname, parent, 0,
423                                         prv_base, 0, 0, NULL);
424                 parent = devname;
425         }
426
427         if (dev_desc->flags & LPSS_CLK_DIVIDER) {
428                 /* Prevent division by zero */
429                 if (!readl(prv_base))
430                         writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
431
432                 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
433                 if (!clk_name)
434                         return -ENOMEM;
435                 clk = clk_register_fractional_divider(NULL, clk_name, parent,
436                                                       0, prv_base,
437                                                       1, 15, 16, 15, 0, NULL);
438                 parent = clk_name;
439
440                 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
441                 if (!clk_name) {
442                         kfree(parent);
443                         return -ENOMEM;
444                 }
445                 clk = clk_register_gate(NULL, clk_name, parent,
446                                         CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
447                                         prv_base, 31, 0, NULL);
448                 kfree(parent);
449                 kfree(clk_name);
450         }
451 out:
452         if (IS_ERR(clk))
453                 return PTR_ERR(clk);
454
455         pdata->clk = clk;
456         clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
457         return 0;
458 }
459
460 struct lpss_device_links {
461         const char *supplier_hid;
462         const char *supplier_uid;
463         const char *consumer_hid;
464         const char *consumer_uid;
465         u32 flags;
466 };
467
468 /*
469  * The _DEP method is used to identify dependencies but instead of creating
470  * device links for every handle in _DEP, only links in the following list are
471  * created. That is necessary because, in the general case, _DEP can refer to
472  * devices that might not have drivers, or that are on different buses, or where
473  * the supplier is not enumerated until after the consumer is probed.
474  */
475 static const struct lpss_device_links lpss_device_links[] = {
476         {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
477         {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
478         {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
479 };
480
481 static bool hid_uid_match(struct acpi_device *adev,
482                           const char *hid2, const char *uid2)
483 {
484         const char *hid1 = acpi_device_hid(adev);
485         const char *uid1 = acpi_device_uid(adev);
486
487         if (strcmp(hid1, hid2))
488                 return false;
489
490         if (!uid2)
491                 return true;
492
493         return uid1 && !strcmp(uid1, uid2);
494 }
495
496 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
497                                   const struct lpss_device_links *link)
498 {
499         return hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
500 }
501
502 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
503                                   const struct lpss_device_links *link)
504 {
505         return hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
506 }
507
508 struct hid_uid {
509         const char *hid;
510         const char *uid;
511 };
512
513 static int match_hid_uid(struct device *dev, const void *data)
514 {
515         struct acpi_device *adev = ACPI_COMPANION(dev);
516         const struct hid_uid *id = data;
517
518         if (!adev)
519                 return 0;
520
521         return hid_uid_match(adev, id->hid, id->uid);
522 }
523
524 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
525 {
526         struct device *dev;
527
528         struct hid_uid data = {
529                 .hid = hid,
530                 .uid = uid,
531         };
532
533         dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
534         if (dev)
535                 return dev;
536
537         return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
538 }
539
540 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
541 {
542         struct acpi_handle_list dep_devices;
543         acpi_status status;
544         int i;
545
546         if (!acpi_has_method(adev->handle, "_DEP"))
547                 return false;
548
549         status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
550                                          &dep_devices);
551         if (ACPI_FAILURE(status)) {
552                 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
553                 return false;
554         }
555
556         for (i = 0; i < dep_devices.count; i++) {
557                 if (dep_devices.handles[i] == handle)
558                         return true;
559         }
560
561         return false;
562 }
563
564 static void acpi_lpss_link_consumer(struct device *dev1,
565                                     const struct lpss_device_links *link)
566 {
567         struct device *dev2;
568
569         dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
570         if (!dev2)
571                 return;
572
573         if (acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
574                 device_link_add(dev2, dev1, link->flags);
575
576         put_device(dev2);
577 }
578
579 static void acpi_lpss_link_supplier(struct device *dev1,
580                                     const struct lpss_device_links *link)
581 {
582         struct device *dev2;
583
584         dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
585         if (!dev2)
586                 return;
587
588         if (acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
589                 device_link_add(dev1, dev2, link->flags);
590
591         put_device(dev2);
592 }
593
594 static void acpi_lpss_create_device_links(struct acpi_device *adev,
595                                           struct platform_device *pdev)
596 {
597         int i;
598
599         for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
600                 const struct lpss_device_links *link = &lpss_device_links[i];
601
602                 if (acpi_lpss_is_supplier(adev, link))
603                         acpi_lpss_link_consumer(&pdev->dev, link);
604
605                 if (acpi_lpss_is_consumer(adev, link))
606                         acpi_lpss_link_supplier(&pdev->dev, link);
607         }
608 }
609
610 static int acpi_lpss_create_device(struct acpi_device *adev,
611                                    const struct acpi_device_id *id)
612 {
613         const struct lpss_device_desc *dev_desc;
614         struct lpss_private_data *pdata;
615         struct resource_entry *rentry;
616         struct list_head resource_list;
617         struct platform_device *pdev;
618         int ret;
619
620         dev_desc = (const struct lpss_device_desc *)id->driver_data;
621         if (!dev_desc) {
622                 pdev = acpi_create_platform_device(adev, NULL);
623                 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
624         }
625         pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
626         if (!pdata)
627                 return -ENOMEM;
628
629         INIT_LIST_HEAD(&resource_list);
630         ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
631         if (ret < 0)
632                 goto err_out;
633
634         list_for_each_entry(rentry, &resource_list, node)
635                 if (resource_type(rentry->res) == IORESOURCE_MEM) {
636                         if (dev_desc->prv_size_override)
637                                 pdata->mmio_size = dev_desc->prv_size_override;
638                         else
639                                 pdata->mmio_size = resource_size(rentry->res);
640                         pdata->mmio_base = ioremap(rentry->res->start,
641                                                    pdata->mmio_size);
642                         break;
643                 }
644
645         acpi_dev_free_resource_list(&resource_list);
646
647         if (!pdata->mmio_base) {
648                 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
649                 adev->pnp.type.platform_id = 0;
650                 /* Skip the device, but continue the namespace scan. */
651                 ret = 0;
652                 goto err_out;
653         }
654
655         pdata->adev = adev;
656         pdata->dev_desc = dev_desc;
657
658         if (dev_desc->setup)
659                 dev_desc->setup(pdata);
660
661         if (dev_desc->flags & LPSS_CLK) {
662                 ret = register_device_clock(adev, pdata);
663                 if (ret) {
664                         /* Skip the device, but continue the namespace scan. */
665                         ret = 0;
666                         goto err_out;
667                 }
668         }
669
670         /*
671          * This works around a known issue in ACPI tables where LPSS devices
672          * have _PS0 and _PS3 without _PSC (and no power resources), so
673          * acpi_bus_init_power() will assume that the BIOS has put them into D0.
674          */
675         acpi_device_fix_up_power(adev);
676
677         adev->driver_data = pdata;
678         pdev = acpi_create_platform_device(adev, dev_desc->properties);
679         if (!IS_ERR_OR_NULL(pdev)) {
680                 acpi_lpss_create_device_links(adev, pdev);
681                 return 1;
682         }
683
684         ret = PTR_ERR(pdev);
685         adev->driver_data = NULL;
686
687  err_out:
688         kfree(pdata);
689         return ret;
690 }
691
692 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
693 {
694         return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
695 }
696
697 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
698                              unsigned int reg)
699 {
700         writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
701 }
702
703 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
704 {
705         struct acpi_device *adev;
706         struct lpss_private_data *pdata;
707         unsigned long flags;
708         int ret;
709
710         ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
711         if (WARN_ON(ret))
712                 return ret;
713
714         spin_lock_irqsave(&dev->power.lock, flags);
715         if (pm_runtime_suspended(dev)) {
716                 ret = -EAGAIN;
717                 goto out;
718         }
719         pdata = acpi_driver_data(adev);
720         if (WARN_ON(!pdata || !pdata->mmio_base)) {
721                 ret = -ENODEV;
722                 goto out;
723         }
724         *val = __lpss_reg_read(pdata, reg);
725
726  out:
727         spin_unlock_irqrestore(&dev->power.lock, flags);
728         return ret;
729 }
730
731 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
732                              char *buf)
733 {
734         u32 ltr_value = 0;
735         unsigned int reg;
736         int ret;
737
738         reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
739         ret = lpss_reg_read(dev, reg, &ltr_value);
740         if (ret)
741                 return ret;
742
743         return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
744 }
745
746 static ssize_t lpss_ltr_mode_show(struct device *dev,
747                                   struct device_attribute *attr, char *buf)
748 {
749         u32 ltr_mode = 0;
750         char *outstr;
751         int ret;
752
753         ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
754         if (ret)
755                 return ret;
756
757         outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
758         return sprintf(buf, "%s\n", outstr);
759 }
760
761 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
762 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
763 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
764
765 static struct attribute *lpss_attrs[] = {
766         &dev_attr_auto_ltr.attr,
767         &dev_attr_sw_ltr.attr,
768         &dev_attr_ltr_mode.attr,
769         NULL,
770 };
771
772 static const struct attribute_group lpss_attr_group = {
773         .attrs = lpss_attrs,
774         .name = "lpss_ltr",
775 };
776
777 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
778 {
779         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
780         u32 ltr_mode, ltr_val;
781
782         ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
783         if (val < 0) {
784                 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
785                         ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
786                         __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
787                 }
788                 return;
789         }
790         ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
791         if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
792                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
793                 val = LPSS_LTR_MAX_VAL;
794         } else if (val > LPSS_LTR_MAX_VAL) {
795                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
796                 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
797         } else {
798                 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
799         }
800         ltr_val |= val;
801         __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
802         if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
803                 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
804                 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
805         }
806 }
807
808 #ifdef CONFIG_PM
809 /**
810  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
811  * @dev: LPSS device
812  * @pdata: pointer to the private data of the LPSS device
813  *
814  * Most LPSS devices have private registers which may loose their context when
815  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
816  * prv_reg_ctx array.
817  */
818 static void acpi_lpss_save_ctx(struct device *dev,
819                                struct lpss_private_data *pdata)
820 {
821         unsigned int i;
822
823         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
824                 unsigned long offset = i * sizeof(u32);
825
826                 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
827                 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
828                         pdata->prv_reg_ctx[i], offset);
829         }
830 }
831
832 /**
833  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
834  * @dev: LPSS device
835  * @pdata: pointer to the private data of the LPSS device
836  *
837  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
838  */
839 static void acpi_lpss_restore_ctx(struct device *dev,
840                                   struct lpss_private_data *pdata)
841 {
842         unsigned int i;
843
844         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
845                 unsigned long offset = i * sizeof(u32);
846
847                 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
848                 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
849                         pdata->prv_reg_ctx[i], offset);
850         }
851 }
852
853 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
854 {
855         /*
856          * The following delay is needed or the subsequent write operations may
857          * fail. The LPSS devices are actually PCI devices and the PCI spec
858          * expects 10ms delay before the device can be accessed after D3 to D0
859          * transition. However some platforms like BSW does not need this delay.
860          */
861         unsigned int delay = 10;        /* default 10ms delay */
862
863         if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
864                 delay = 0;
865
866         msleep(delay);
867 }
868
869 static int acpi_lpss_activate(struct device *dev)
870 {
871         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
872         int ret;
873
874         ret = acpi_dev_resume(dev);
875         if (ret)
876                 return ret;
877
878         acpi_lpss_d3_to_d0_delay(pdata);
879
880         /*
881          * This is called only on ->probe() stage where a device is either in
882          * known state defined by BIOS or most likely powered off. Due to this
883          * we have to deassert reset line to be sure that ->probe() will
884          * recognize the device.
885          */
886         if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
887                 lpss_deassert_reset(pdata);
888
889         return 0;
890 }
891
892 static void acpi_lpss_dismiss(struct device *dev)
893 {
894         acpi_dev_suspend(dev, false);
895 }
896
897 /* IOSF SB for LPSS island */
898 #define LPSS_IOSF_UNIT_LPIOEP           0xA0
899 #define LPSS_IOSF_UNIT_LPIO1            0xAB
900 #define LPSS_IOSF_UNIT_LPIO2            0xAC
901
902 #define LPSS_IOSF_PMCSR                 0x84
903 #define LPSS_PMCSR_D0                   0
904 #define LPSS_PMCSR_D3hot                3
905 #define LPSS_PMCSR_Dx_MASK              GENMASK(1, 0)
906
907 #define LPSS_IOSF_GPIODEF0              0x154
908 #define LPSS_GPIODEF0_DMA1_D3           BIT(2)
909 #define LPSS_GPIODEF0_DMA2_D3           BIT(3)
910 #define LPSS_GPIODEF0_DMA_D3_MASK       GENMASK(3, 2)
911 #define LPSS_GPIODEF0_DMA_LLP           BIT(13)
912
913 static DEFINE_MUTEX(lpss_iosf_mutex);
914 static bool lpss_iosf_d3_entered = true;
915
916 static void lpss_iosf_enter_d3_state(void)
917 {
918         u32 value1 = 0;
919         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
920         u32 value2 = LPSS_PMCSR_D3hot;
921         u32 mask2 = LPSS_PMCSR_Dx_MASK;
922         /*
923          * PMC provides an information about actual status of the LPSS devices.
924          * Here we read the values related to LPSS power island, i.e. LPSS
925          * devices, excluding both LPSS DMA controllers, along with SCC domain.
926          */
927         u32 func_dis, d3_sts_0, pmc_status;
928         int ret;
929
930         ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
931         if (ret)
932                 return;
933
934         mutex_lock(&lpss_iosf_mutex);
935
936         ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
937         if (ret)
938                 goto exit;
939
940         /*
941          * Get the status of entire LPSS power island per device basis.
942          * Shutdown both LPSS DMA controllers if and only if all other devices
943          * are already in D3hot.
944          */
945         pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
946         if (pmc_status)
947                 goto exit;
948
949         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
950                         LPSS_IOSF_PMCSR, value2, mask2);
951
952         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
953                         LPSS_IOSF_PMCSR, value2, mask2);
954
955         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
956                         LPSS_IOSF_GPIODEF0, value1, mask1);
957
958         lpss_iosf_d3_entered = true;
959
960 exit:
961         mutex_unlock(&lpss_iosf_mutex);
962 }
963
964 static void lpss_iosf_exit_d3_state(void)
965 {
966         u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
967                      LPSS_GPIODEF0_DMA_LLP;
968         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
969         u32 value2 = LPSS_PMCSR_D0;
970         u32 mask2 = LPSS_PMCSR_Dx_MASK;
971
972         mutex_lock(&lpss_iosf_mutex);
973
974         if (!lpss_iosf_d3_entered)
975                 goto exit;
976
977         lpss_iosf_d3_entered = false;
978
979         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
980                         LPSS_IOSF_GPIODEF0, value1, mask1);
981
982         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
983                         LPSS_IOSF_PMCSR, value2, mask2);
984
985         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
986                         LPSS_IOSF_PMCSR, value2, mask2);
987
988 exit:
989         mutex_unlock(&lpss_iosf_mutex);
990 }
991
992 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
993 {
994         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
995         int ret;
996
997         if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
998                 acpi_lpss_save_ctx(dev, pdata);
999
1000         ret = acpi_dev_suspend(dev, wakeup);
1001
1002         /*
1003          * This call must be last in the sequence, otherwise PMC will return
1004          * wrong status for devices being about to be powered off. See
1005          * lpss_iosf_enter_d3_state() for further information.
1006          */
1007         if (acpi_target_system_state() == ACPI_STATE_S0 &&
1008             lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1009                 lpss_iosf_enter_d3_state();
1010
1011         return ret;
1012 }
1013
1014 static int acpi_lpss_resume(struct device *dev)
1015 {
1016         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1017         int ret;
1018
1019         /*
1020          * This call is kept first to be in symmetry with
1021          * acpi_lpss_runtime_suspend() one.
1022          */
1023         if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1024                 lpss_iosf_exit_d3_state();
1025
1026         ret = acpi_dev_resume(dev);
1027         if (ret)
1028                 return ret;
1029
1030         acpi_lpss_d3_to_d0_delay(pdata);
1031
1032         if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1033                 acpi_lpss_restore_ctx(dev, pdata);
1034
1035         return 0;
1036 }
1037
1038 #ifdef CONFIG_PM_SLEEP
1039 static int acpi_lpss_do_suspend_late(struct device *dev)
1040 {
1041         int ret;
1042
1043         if (dev_pm_smart_suspend_and_suspended(dev))
1044                 return 0;
1045
1046         ret = pm_generic_suspend_late(dev);
1047         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1048 }
1049
1050 static int acpi_lpss_suspend_late(struct device *dev)
1051 {
1052         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1053
1054         if (pdata->dev_desc->resume_from_noirq)
1055                 return 0;
1056
1057         return acpi_lpss_do_suspend_late(dev);
1058 }
1059
1060 static int acpi_lpss_suspend_noirq(struct device *dev)
1061 {
1062         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1063         int ret;
1064
1065         if (pdata->dev_desc->resume_from_noirq) {
1066                 /*
1067                  * The driver's ->suspend_late callback will be invoked by
1068                  * acpi_lpss_do_suspend_late(), with the assumption that the
1069                  * driver really wanted to run that code in ->suspend_noirq, but
1070                  * it could not run after acpi_dev_suspend() and the driver
1071                  * expected the latter to be called in the "late" phase.
1072                  */
1073                 ret = acpi_lpss_do_suspend_late(dev);
1074                 if (ret)
1075                         return ret;
1076         }
1077
1078         return acpi_subsys_suspend_noirq(dev);
1079 }
1080
1081 static int acpi_lpss_do_resume_early(struct device *dev)
1082 {
1083         int ret = acpi_lpss_resume(dev);
1084
1085         return ret ? ret : pm_generic_resume_early(dev);
1086 }
1087
1088 static int acpi_lpss_resume_early(struct device *dev)
1089 {
1090         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1091
1092         if (pdata->dev_desc->resume_from_noirq)
1093                 return 0;
1094
1095         return acpi_lpss_do_resume_early(dev);
1096 }
1097
1098 static int acpi_lpss_resume_noirq(struct device *dev)
1099 {
1100         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1101         int ret;
1102
1103         /* Follow acpi_subsys_resume_noirq(). */
1104         if (dev_pm_may_skip_resume(dev))
1105                 return 0;
1106
1107         if (dev_pm_smart_suspend_and_suspended(dev))
1108                 pm_runtime_set_active(dev);
1109
1110         ret = pm_generic_resume_noirq(dev);
1111         if (ret)
1112                 return ret;
1113
1114         if (!pdata->dev_desc->resume_from_noirq)
1115                 return 0;
1116
1117         /*
1118          * The driver's ->resume_early callback will be invoked by
1119          * acpi_lpss_do_resume_early(), with the assumption that the driver
1120          * really wanted to run that code in ->resume_noirq, but it could not
1121          * run before acpi_dev_resume() and the driver expected the latter to be
1122          * called in the "early" phase.
1123          */
1124         return acpi_lpss_do_resume_early(dev);
1125 }
1126
1127 static int acpi_lpss_do_restore_early(struct device *dev)
1128 {
1129         int ret = acpi_lpss_resume(dev);
1130
1131         return ret ? ret : pm_generic_restore_early(dev);
1132 }
1133
1134 static int acpi_lpss_restore_early(struct device *dev)
1135 {
1136         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1137
1138         if (pdata->dev_desc->resume_from_noirq)
1139                 return 0;
1140
1141         return acpi_lpss_do_restore_early(dev);
1142 }
1143
1144 static int acpi_lpss_restore_noirq(struct device *dev)
1145 {
1146         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1147         int ret;
1148
1149         ret = pm_generic_restore_noirq(dev);
1150         if (ret)
1151                 return ret;
1152
1153         if (!pdata->dev_desc->resume_from_noirq)
1154                 return 0;
1155
1156         /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1157         return acpi_lpss_do_restore_early(dev);
1158 }
1159
1160 static int acpi_lpss_do_poweroff_late(struct device *dev)
1161 {
1162         int ret = pm_generic_poweroff_late(dev);
1163
1164         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1165 }
1166
1167 static int acpi_lpss_poweroff_late(struct device *dev)
1168 {
1169         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1170
1171         if (dev_pm_smart_suspend_and_suspended(dev))
1172                 return 0;
1173
1174         if (pdata->dev_desc->resume_from_noirq)
1175                 return 0;
1176
1177         return acpi_lpss_do_poweroff_late(dev);
1178 }
1179
1180 static int acpi_lpss_poweroff_noirq(struct device *dev)
1181 {
1182         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1183
1184         if (dev_pm_smart_suspend_and_suspended(dev))
1185                 return 0;
1186
1187         if (pdata->dev_desc->resume_from_noirq) {
1188                 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1189                 int ret = acpi_lpss_do_poweroff_late(dev);
1190                 if (ret)
1191                         return ret;
1192         }
1193
1194         return pm_generic_poweroff_noirq(dev);
1195 }
1196 #endif /* CONFIG_PM_SLEEP */
1197
1198 static int acpi_lpss_runtime_suspend(struct device *dev)
1199 {
1200         int ret = pm_generic_runtime_suspend(dev);
1201
1202         return ret ? ret : acpi_lpss_suspend(dev, true);
1203 }
1204
1205 static int acpi_lpss_runtime_resume(struct device *dev)
1206 {
1207         int ret = acpi_lpss_resume(dev);
1208
1209         return ret ? ret : pm_generic_runtime_resume(dev);
1210 }
1211 #endif /* CONFIG_PM */
1212
1213 static struct dev_pm_domain acpi_lpss_pm_domain = {
1214 #ifdef CONFIG_PM
1215         .activate = acpi_lpss_activate,
1216         .dismiss = acpi_lpss_dismiss,
1217 #endif
1218         .ops = {
1219 #ifdef CONFIG_PM
1220 #ifdef CONFIG_PM_SLEEP
1221                 .prepare = acpi_subsys_prepare,
1222                 .complete = acpi_subsys_complete,
1223                 .suspend = acpi_subsys_suspend,
1224                 .suspend_late = acpi_lpss_suspend_late,
1225                 .suspend_noirq = acpi_lpss_suspend_noirq,
1226                 .resume_noirq = acpi_lpss_resume_noirq,
1227                 .resume_early = acpi_lpss_resume_early,
1228                 .freeze = acpi_subsys_freeze,
1229                 .poweroff = acpi_subsys_poweroff,
1230                 .poweroff_late = acpi_lpss_poweroff_late,
1231                 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1232                 .restore_noirq = acpi_lpss_restore_noirq,
1233                 .restore_early = acpi_lpss_restore_early,
1234 #endif
1235                 .runtime_suspend = acpi_lpss_runtime_suspend,
1236                 .runtime_resume = acpi_lpss_runtime_resume,
1237 #endif
1238         },
1239 };
1240
1241 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1242                                      unsigned long action, void *data)
1243 {
1244         struct platform_device *pdev = to_platform_device(data);
1245         struct lpss_private_data *pdata;
1246         struct acpi_device *adev;
1247         const struct acpi_device_id *id;
1248
1249         id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1250         if (!id || !id->driver_data)
1251                 return 0;
1252
1253         if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1254                 return 0;
1255
1256         pdata = acpi_driver_data(adev);
1257         if (!pdata)
1258                 return 0;
1259
1260         if (pdata->mmio_base &&
1261             pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1262                 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1263                 return 0;
1264         }
1265
1266         switch (action) {
1267         case BUS_NOTIFY_BIND_DRIVER:
1268                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1269                 break;
1270         case BUS_NOTIFY_DRIVER_NOT_BOUND:
1271         case BUS_NOTIFY_UNBOUND_DRIVER:
1272                 dev_pm_domain_set(&pdev->dev, NULL);
1273                 break;
1274         case BUS_NOTIFY_ADD_DEVICE:
1275                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1276                 if (pdata->dev_desc->flags & LPSS_LTR)
1277                         return sysfs_create_group(&pdev->dev.kobj,
1278                                                   &lpss_attr_group);
1279                 break;
1280         case BUS_NOTIFY_DEL_DEVICE:
1281                 if (pdata->dev_desc->flags & LPSS_LTR)
1282                         sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1283                 dev_pm_domain_set(&pdev->dev, NULL);
1284                 break;
1285         default:
1286                 break;
1287         }
1288
1289         return 0;
1290 }
1291
1292 static struct notifier_block acpi_lpss_nb = {
1293         .notifier_call = acpi_lpss_platform_notify,
1294 };
1295
1296 static void acpi_lpss_bind(struct device *dev)
1297 {
1298         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1299
1300         if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1301                 return;
1302
1303         if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1304                 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1305         else
1306                 dev_err(dev, "MMIO size insufficient to access LTR\n");
1307 }
1308
1309 static void acpi_lpss_unbind(struct device *dev)
1310 {
1311         dev->power.set_latency_tolerance = NULL;
1312 }
1313
1314 static struct acpi_scan_handler lpss_handler = {
1315         .ids = acpi_lpss_device_ids,
1316         .attach = acpi_lpss_create_device,
1317         .bind = acpi_lpss_bind,
1318         .unbind = acpi_lpss_unbind,
1319 };
1320
1321 void __init acpi_lpss_init(void)
1322 {
1323         const struct x86_cpu_id *id;
1324         int ret;
1325
1326         ret = lpt_clk_init();
1327         if (ret)
1328                 return;
1329
1330         id = x86_match_cpu(lpss_cpu_ids);
1331         if (id)
1332                 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1333
1334         bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1335         acpi_scan_add_handler(&lpss_handler);
1336 }
1337
1338 #else
1339
1340 static struct acpi_scan_handler lpss_handler = {
1341         .ids = acpi_lpss_device_ids,
1342 };
1343
1344 void __init acpi_lpss_init(void)
1345 {
1346         acpi_scan_add_handler(&lpss_handler);
1347 }
1348
1349 #endif /* CONFIG_X86_INTEL_LPSS */