1 /* crypto/sha/sha256.c */
2 /* ====================================================================
3 * Copyright (c) 2004 The OpenSSL Project. All rights reserved
4 * according to the OpenSSL license [found in ../../LICENSE].
5 * ====================================================================
7 #include <openssl/opensslconf.h>
8 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
13 #include <openssl/crypto.h>
14 #include <openssl/sha.h>
15 #include <openssl/opensslv.h>
17 const char *SHA256_version="SHA-256" OPENSSL_VERSION_PTEXT;
19 int SHA224_Init (SHA256_CTX *c)
21 c->h[0]=0xc1059ed8UL; c->h[1]=0x367cd507UL;
22 c->h[2]=0x3070dd17UL; c->h[3]=0xf70e5939UL;
23 c->h[4]=0xffc00b31UL; c->h[5]=0x68581511UL;
24 c->h[6]=0x64f98fa7UL; c->h[7]=0xbefa4fa4UL;
26 c->num=0; c->md_len=SHA224_DIGEST_LENGTH;
30 int SHA256_Init (SHA256_CTX *c)
32 c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL;
33 c->h[2]=0x3c6ef372UL; c->h[3]=0xa54ff53aUL;
34 c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL;
35 c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL;
37 c->num=0; c->md_len=SHA256_DIGEST_LENGTH;
41 unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
44 static unsigned char m[SHA224_DIGEST_LENGTH];
48 SHA256_Update(&c,d,n);
50 OPENSSL_cleanse(&c,sizeof(c));
54 unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
57 static unsigned char m[SHA256_DIGEST_LENGTH];
61 SHA256_Update(&c,d,n);
63 OPENSSL_cleanse(&c,sizeof(c));
67 int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
68 { return SHA256_Update (c,data,len); }
69 int SHA224_Final (unsigned char *md, SHA256_CTX *c)
70 { return SHA256_Final (md,c); }
73 #define SHA_LONG_LOG2 2 /* default to 32 bits */
76 #define DATA_ORDER_IS_BIG_ENDIAN
78 #define HASH_LONG SHA_LONG
79 #define HASH_LONG_LOG2 SHA_LONG_LOG2
80 #define HASH_CTX SHA256_CTX
81 #define HASH_CBLOCK SHA_CBLOCK
82 #define HASH_LBLOCK SHA_LBLOCK
84 * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
85 * default: case below covers for it. It's not clear however if it's
86 * permitted to truncate to amount of bytes not divisible by 4. I bet not,
87 * but if it is, then default: case shall be extended. For reference.
88 * Idea behind separate cases for pre-defined lenghts is to let the
89 * compiler decide if it's appropriate to unroll small loops.
91 #define HASH_MAKE_STRING(c,s) do { \
94 switch ((c)->md_len) \
95 { case SHA224_DIGEST_LENGTH: \
96 for (n=0;n<SHA224_DIGEST_LENGTH/4;n++) \
97 { ll=(c)->h[n]; HOST_l2c(ll,(s)); } \
99 case SHA256_DIGEST_LENGTH: \
100 for (n=0;n<SHA256_DIGEST_LENGTH/4;n++) \
101 { ll=(c)->h[n]; HOST_l2c(ll,(s)); } \
104 if ((c)->md_len > SHA256_DIGEST_LENGTH) \
106 for (n=0;n<(c)->md_len/4;n++) \
107 { ll=(c)->h[n]; HOST_l2c(ll,(s)); } \
112 #define HASH_UPDATE SHA256_Update
113 #define HASH_TRANSFORM SHA256_Transform
114 #define HASH_FINAL SHA256_Final
115 #define HASH_BLOCK_HOST_ORDER sha256_block_host_order
116 #define HASH_BLOCK_DATA_ORDER sha256_block_data_order
117 void sha256_block_host_order (SHA256_CTX *ctx, const void *in, size_t num);
118 void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
120 #include "md32_common.h"
123 void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host);
125 static const SHA_LONG K256[64] = {
126 0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
127 0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
128 0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
129 0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
130 0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
131 0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
132 0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
133 0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
134 0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
135 0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
136 0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
137 0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
138 0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
139 0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
140 0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
141 0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
144 * FIPS specification refers to right rotations, while our ROTATE macro
145 * is left one. This is why you might notice that rotation coefficients
146 * differ from those observed in FIPS document by 32-N...
148 #define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
149 #define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
150 #define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
151 #define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
153 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
154 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
156 #ifdef OPENSSL_SMALL_FOOTPRINT
158 static void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host)
160 unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
163 const unsigned char *data=in;
167 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
168 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
172 const SHA_LONG *W=(const SHA_LONG *)data;
177 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
178 T2 = Sigma0(a) + Maj(a,b,c);
179 h = g; g = f; f = e; e = d + T1;
180 d = c; c = b; b = a; a = T1 + T2;
183 data += SHA256_CBLOCK;
191 HOST_c2l(data,l); T1 = X[i] = l;
192 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
193 T2 = Sigma0(a) + Maj(a,b,c);
194 h = g; g = f; f = e; e = d + T1;
195 d = c; c = b; b = a; a = T1 + T2;
201 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
202 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
204 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
205 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
206 T2 = Sigma0(a) + Maj(a,b,c);
207 h = g; g = f; f = e; e = d + T1;
208 d = c; c = b; b = a; a = T1 + T2;
211 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
212 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
219 #define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
220 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \
221 h = Sigma0(a) + Maj(a,b,c); \
222 d += T1; h += T1; } while (0)
224 #define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \
225 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
226 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
227 T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
228 ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
230 static void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host)
232 unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
235 const unsigned char *data=in;
239 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
240 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
244 const SHA_LONG *W=(const SHA_LONG *)data;
246 T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
247 T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
248 T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
249 T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
250 T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
251 T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
252 T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
253 T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
254 T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
255 T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
256 T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
257 T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
258 T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
259 T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
260 T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
261 T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
263 data += SHA256_CBLOCK;
269 HOST_c2l(data,l); T1 = X[0] = l; ROUND_00_15(0,a,b,c,d,e,f,g,h);
270 HOST_c2l(data,l); T1 = X[1] = l; ROUND_00_15(1,h,a,b,c,d,e,f,g);
271 HOST_c2l(data,l); T1 = X[2] = l; ROUND_00_15(2,g,h,a,b,c,d,e,f);
272 HOST_c2l(data,l); T1 = X[3] = l; ROUND_00_15(3,f,g,h,a,b,c,d,e);
273 HOST_c2l(data,l); T1 = X[4] = l; ROUND_00_15(4,e,f,g,h,a,b,c,d);
274 HOST_c2l(data,l); T1 = X[5] = l; ROUND_00_15(5,d,e,f,g,h,a,b,c);
275 HOST_c2l(data,l); T1 = X[6] = l; ROUND_00_15(6,c,d,e,f,g,h,a,b);
276 HOST_c2l(data,l); T1 = X[7] = l; ROUND_00_15(7,b,c,d,e,f,g,h,a);
277 HOST_c2l(data,l); T1 = X[8] = l; ROUND_00_15(8,a,b,c,d,e,f,g,h);
278 HOST_c2l(data,l); T1 = X[9] = l; ROUND_00_15(9,h,a,b,c,d,e,f,g);
279 HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
280 HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
281 HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
282 HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
283 HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
284 HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
289 ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
290 ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
291 ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
292 ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
293 ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
294 ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
295 ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
296 ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
299 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
300 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
306 #endif /* SHA256_ASM */
309 * Idea is to trade couple of cycles for some space. On IA-32 we save
310 * about 4K in "big footprint" case. In "small footprint" case any gain
313 void HASH_BLOCK_HOST_ORDER (SHA256_CTX *ctx, const void *in, size_t num)
314 { sha256_block (ctx,in,num,1); }
316 void HASH_BLOCK_DATA_ORDER (SHA256_CTX *ctx, const void *in, size_t num)
317 { sha256_block (ctx,in,num,0); }
319 #endif /* OPENSSL_NO_SHA256 */