8b2c6d39c82959055c8e4c3d0de6fdc5d3d8f2b2
[oweals/openssl.git] / crypto / ec / ecp_nistp224.c
1 /* crypto/ec/ecp_nistp224.c */
2 /*
3  * Written by Emilia Kasper (Google) for the OpenSSL project.
4  */
5 /* Copyright 2011 Google Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  *
9  * you may not use this file except in compliance with the License.
10  * You may obtain a copy of the License at
11  *
12  *     http://www.apache.org/licenses/LICENSE-2.0
13  *
14  *  Unless required by applicable law or agreed to in writing, software
15  *  distributed under the License is distributed on an "AS IS" BASIS,
16  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  *  See the License for the specific language governing permissions and
18  *  limitations under the License.
19  */
20
21 /*
22  * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
23  *
24  * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
25  * and Adam Langley's public domain 64-bit C implementation of curve25519
26  */
27 #ifdef EC_NISTP_64_GCC_128
28 #include <stdint.h>
29 #include <string.h>
30 #include <openssl/err.h>
31 #include "ec_lcl.h"
32
33 #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
34   /* even with gcc, the typedef won't work for 32-bit platforms */
35   typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */
36 #else
37   #error "Need GCC 3.1 or later to define type uint128_t"
38 #endif
39
40 typedef uint8_t u8;
41 typedef uint64_t u64;
42 typedef int64_t s64;
43
44
45 /******************************************************************************/
46 /*                  INTERNAL REPRESENTATION OF FIELD ELEMENTS
47  *
48  * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
49  * using 64-bit coefficients called 'limbs',
50  * and sometimes (for multiplication results) as
51  * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
52  * using 128-bit coefficients called 'widelimbs'.
53  * A 4-limb representation is an 'felem';
54  * a 7-widelimb representation is a 'widefelem'.
55  * Even within felems, bits of adjacent limbs overlap, and we don't always
56  * reduce the representations: we ensure that inputs to each felem
57  * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
58  * and fit into a 128-bit word without overflow. The coefficients are then
59  * again partially reduced to obtain an felem satisfying a_i < 2^57.
60  * We only reduce to the unique minimal representation at the end of the
61  * computation.
62  */
63
64 typedef uint64_t limb;
65 typedef uint128_t widelimb;
66
67 typedef limb felem[4];
68 typedef widelimb widefelem[7];
69
70 /* Field element represented as a byte arrary.
71  * 28*8 = 224 bits is also the group order size for the elliptic curve,
72  * and we also use this type for scalars for point multiplication.
73   */
74 typedef u8 felem_bytearray[28];
75
76 static const felem_bytearray nistp224_curve_params[5] = {
77         {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,    /* p */
78          0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00,
79          0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01},
80         {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,    /* a */
81          0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF,
82          0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE},
83         {0xB4,0x05,0x0A,0x85,0x0C,0x04,0xB3,0xAB,0xF5,0x41,    /* b */
84          0x32,0x56,0x50,0x44,0xB0,0xB7,0xD7,0xBF,0xD8,0xBA,
85          0x27,0x0B,0x39,0x43,0x23,0x55,0xFF,0xB4},
86         {0xB7,0x0E,0x0C,0xBD,0x6B,0xB4,0xBF,0x7F,0x32,0x13,    /* x */
87          0x90,0xB9,0x4A,0x03,0xC1,0xD3,0x56,0xC2,0x11,0x22,
88          0x34,0x32,0x80,0xD6,0x11,0x5C,0x1D,0x21},
89         {0xbd,0x37,0x63,0x88,0xb5,0xf7,0x23,0xfb,0x4c,0x22,    /* y */
90          0xdf,0xe6,0xcd,0x43,0x75,0xa0,0x5a,0x07,0x47,0x64,
91          0x44,0xd5,0x81,0x99,0x85,0x00,0x7e,0x34}
92 };
93
94 /* Precomputed multiples of the standard generator
95  * Points are given in coordinates (X, Y, Z) where Z normally is 1
96  * (0 for the point at infinity).
97  * For each field element, slice a_0 is word 0, etc.
98  *
99  * The table has 2 * 16 elements, starting with the following:
100  * index | bits    | point
101  * ------+---------+------------------------------
102  *     0 | 0 0 0 0 | 0G
103  *     1 | 0 0 0 1 | 1G
104  *     2 | 0 0 1 0 | 2^56G
105  *     3 | 0 0 1 1 | (2^56 + 1)G
106  *     4 | 0 1 0 0 | 2^112G
107  *     5 | 0 1 0 1 | (2^112 + 1)G
108  *     6 | 0 1 1 0 | (2^112 + 2^56)G
109  *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
110  *     8 | 1 0 0 0 | 2^168G
111  *     9 | 1 0 0 1 | (2^168 + 1)G
112  *    10 | 1 0 1 0 | (2^168 + 2^56)G
113  *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
114  *    12 | 1 1 0 0 | (2^168 + 2^112)G
115  *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
116  *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
117  *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
118  * followed by a copy of this with each element multiplied by 2^28.
119  *
120  * The reason for this is so that we can clock bits into four different
121  * locations when doing simple scalar multiplies against the base point,
122  * and then another four locations using the second 16 elements.
123  */
124 static const felem gmul[2][16][3] =
125 {{{{0, 0, 0, 0},
126    {0, 0, 0, 0},
127    {0, 0, 0, 0}},
128   {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
129    {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
130    {1, 0, 0, 0}},
131   {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
132    {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
133    {1, 0, 0, 0}},
134   {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
135    {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
136    {1, 0, 0, 0}},
137   {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
138    {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
139    {1, 0, 0, 0}},
140   {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
141    {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
142    {1, 0, 0, 0}},
143   {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
144    {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
145    {1, 0, 0, 0}},
146   {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
147    {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
148    {1, 0, 0, 0}},
149   {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
150    {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
151    {1, 0, 0, 0}},
152   {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
153    {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
154    {1, 0, 0, 0}},
155   {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
156    {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
157    {1, 0, 0, 0}},
158   {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
159    {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
160    {1, 0, 0, 0}},
161   {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
162    {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
163    {1, 0, 0, 0}},
164   {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
165    {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
166    {1, 0, 0, 0}},
167   {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
168    {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
169    {1, 0, 0, 0}},
170   {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
171    {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
172    {1, 0, 0, 0}}},
173  {{{0, 0, 0, 0},
174    {0, 0, 0, 0},
175    {0, 0, 0, 0}},
176   {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
177    {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
178    {1, 0, 0, 0}},
179   {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
180    {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
181    {1, 0, 0, 0}},
182   {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
183    {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
184    {1, 0, 0, 0}},
185   {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
186    {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
187    {1, 0, 0, 0}},
188   {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
189    {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
190    {1, 0, 0, 0}},
191   {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
192    {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
193    {1, 0, 0, 0}},
194   {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
195    {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
196    {1, 0, 0, 0}},
197   {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
198    {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
199    {1, 0, 0, 0}},
200   {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
201    {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
202    {1, 0, 0, 0}},
203   {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
204    {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
205    {1, 0, 0, 0}},
206   {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
207    {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
208    {1, 0, 0, 0}},
209   {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
210    {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
211    {1, 0, 0, 0}},
212   {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
213    {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
214    {1, 0, 0, 0}},
215   {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
216    {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
217    {1, 0, 0, 0}},
218   {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
219    {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
220    {1, 0, 0, 0}}}};
221
222 /* Precomputation for the group generator. */
223 typedef struct {
224         felem g_pre_comp[2][16][3];
225         int references;
226 } NISTP224_PRE_COMP;
227
228 const EC_METHOD *EC_GFp_nistp224_method(void)
229         {
230         static const EC_METHOD ret = {
231                 EC_FLAGS_DEFAULT_OCT,
232                 NID_X9_62_prime_field,
233                 ec_GFp_nistp224_group_init,
234                 ec_GFp_simple_group_finish,
235                 ec_GFp_simple_group_clear_finish,
236                 ec_GFp_nist_group_copy,
237                 ec_GFp_nistp224_group_set_curve,
238                 ec_GFp_simple_group_get_curve,
239                 ec_GFp_simple_group_get_degree,
240                 ec_GFp_simple_group_check_discriminant,
241                 ec_GFp_simple_point_init,
242                 ec_GFp_simple_point_finish,
243                 ec_GFp_simple_point_clear_finish,
244                 ec_GFp_simple_point_copy,
245                 ec_GFp_simple_point_set_to_infinity,
246                 ec_GFp_simple_set_Jprojective_coordinates_GFp,
247                 ec_GFp_simple_get_Jprojective_coordinates_GFp,
248                 ec_GFp_simple_point_set_affine_coordinates,
249                 ec_GFp_nistp224_point_get_affine_coordinates,
250                 0 /* point_set_compressed_coordinates */,
251                 0 /* point2oct */,
252                 0 /* oct2point */,
253                 ec_GFp_simple_add,
254                 ec_GFp_simple_dbl,
255                 ec_GFp_simple_invert,
256                 ec_GFp_simple_is_at_infinity,
257                 ec_GFp_simple_is_on_curve,
258                 ec_GFp_simple_cmp,
259                 ec_GFp_simple_make_affine,
260                 ec_GFp_simple_points_make_affine,
261                 ec_GFp_nistp224_points_mul,
262                 ec_GFp_nistp224_precompute_mult,
263                 ec_GFp_nistp224_have_precompute_mult,
264                 ec_GFp_nist_field_mul,
265                 ec_GFp_nist_field_sqr,
266                 0 /* field_div */,
267                 0 /* field_encode */,
268                 0 /* field_decode */,
269                 0 /* field_set_to_one */ };
270
271         return &ret;
272         }
273
274 /* Helper functions to convert field elements to/from internal representation */
275 static void bin28_to_felem(felem out, const u8 in[28])
276         {
277         out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff;
278         out[1] = (*((const uint64_t *)(in+7))) & 0x00ffffffffffffff;
279         out[2] = (*((const uint64_t *)(in+14))) & 0x00ffffffffffffff;
280         out[3] = (*((const uint64_t *)(in+21))) & 0x00ffffffffffffff;
281         }
282
283 static void felem_to_bin28(u8 out[28], const felem in)
284         {
285         unsigned i;
286         for (i = 0; i < 7; ++i)
287                 {
288                 out[i]    = in[0]>>(8*i);
289                 out[i+7]  = in[1]>>(8*i);
290                 out[i+14] = in[2]>>(8*i);
291                 out[i+21] = in[3]>>(8*i);
292                 }
293         }
294
295 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
296 static void flip_endian(u8 *out, const u8 *in, unsigned len)
297         {
298         unsigned i;
299         for (i = 0; i < len; ++i)
300                 out[i] = in[len-1-i];
301         }
302
303 /* From OpenSSL BIGNUM to internal representation */
304 static int BN_to_felem(felem out, const BIGNUM *bn)
305         {
306         felem_bytearray b_in;
307         felem_bytearray b_out;
308         unsigned num_bytes;
309
310         /* BN_bn2bin eats leading zeroes */
311         memset(b_out, 0, sizeof b_out);
312         num_bytes = BN_num_bytes(bn);
313         if (num_bytes > sizeof b_out)
314                 {
315                 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
316                 return 0;
317                 }
318         if (BN_is_negative(bn))
319                 {
320                 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
321                 return 0;
322                 }
323         num_bytes = BN_bn2bin(bn, b_in);
324         flip_endian(b_out, b_in, num_bytes);
325         bin28_to_felem(out, b_out);
326         return 1;
327         }
328
329 /* From internal representation to OpenSSL BIGNUM */
330 static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
331         {
332         felem_bytearray b_in, b_out;
333         felem_to_bin28(b_in, in);
334         flip_endian(b_out, b_in, sizeof b_out);
335         return BN_bin2bn(b_out, sizeof b_out, out);
336         }
337
338 /******************************************************************************/
339 /*                              FIELD OPERATIONS
340  *
341  * Field operations, using the internal representation of field elements.
342  * NB! These operations are specific to our point multiplication and cannot be
343  * expected to be correct in general - e.g., multiplication with a large scalar
344  * will cause an overflow.
345  *
346  */
347
348 static void felem_one(felem out)
349         {
350         out[0] = 1;
351         out[1] = 0;
352         out[2] = 0;
353         out[3] = 0;
354         }
355
356 static void felem_assign(felem out, const felem in)
357         {
358         out[0] = in[0];
359         out[1] = in[1];
360         out[2] = in[2];
361         out[3] = in[3];
362         }
363
364 /* Sum two field elements: out += in */
365 static void felem_sum(felem out, const felem in)
366         {
367         out[0] += in[0];
368         out[1] += in[1];
369         out[2] += in[2];
370         out[3] += in[3];
371         }
372
373 /* Get negative value: out = -in */
374 /* Assumes in[i] < 2^57 */
375 static void felem_neg(felem out, const felem in)
376         {
377         static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
378         static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
379         static const limb two58m42m2 = (((limb) 1) << 58) -
380             (((limb) 1) << 42) - (((limb) 1) << 2);
381
382         /* Set to 0 mod 2^224-2^96+1 to ensure out > in */
383         out[0] = two58p2 - in[0];
384         out[1] = two58m42m2 - in[1];
385         out[2] = two58m2 - in[2];
386         out[3] = two58m2 - in[3];
387         }
388
389 /* Subtract field elements: out -= in */
390 /* Assumes in[i] < 2^57 */
391 static void felem_diff(felem out, const felem in)
392         {
393         static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
394         static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
395         static const limb two58m42m2 = (((limb) 1) << 58) -
396             (((limb) 1) << 42) - (((limb) 1) << 2);
397
398         /* Add 0 mod 2^224-2^96+1 to ensure out > in */
399         out[0] += two58p2;
400         out[1] += two58m42m2;
401         out[2] += two58m2;
402         out[3] += two58m2;
403
404         out[0] -= in[0];
405         out[1] -= in[1];
406         out[2] -= in[2];
407         out[3] -= in[3];
408         }
409
410 /* Subtract in unreduced 128-bit mode: out -= in */
411 /* Assumes in[i] < 2^119 */
412 static void widefelem_diff(widefelem out, const widefelem in)
413         {
414         static const widelimb two120 = ((widelimb) 1) << 120;
415         static const widelimb two120m64 = (((widelimb) 1) << 120) -
416                 (((widelimb) 1) << 64);
417         static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
418                 (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
419
420         /* Add 0 mod 2^224-2^96+1 to ensure out > in */
421         out[0] += two120;
422         out[1] += two120m64;
423         out[2] += two120m64;
424         out[3] += two120;
425         out[4] += two120m104m64;
426         out[5] += two120m64;
427         out[6] += two120m64;
428
429         out[0] -= in[0];
430         out[1] -= in[1];
431         out[2] -= in[2];
432         out[3] -= in[3];
433         out[4] -= in[4];
434         out[5] -= in[5];
435         out[6] -= in[6];
436         }
437
438 /* Subtract in mixed mode: out128 -= in64 */
439 /* in[i] < 2^63 */
440 static void felem_diff_128_64(widefelem out, const felem in)
441         {
442         static const widelimb two64p8 = (((widelimb) 1) << 64) +
443                 (((widelimb) 1) << 8);
444         static const widelimb two64m8 = (((widelimb) 1) << 64) -
445                 (((widelimb) 1) << 8);
446         static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
447                 (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
448
449         /* Add 0 mod 2^224-2^96+1 to ensure out > in */
450         out[0] += two64p8;
451         out[1] += two64m48m8;
452         out[2] += two64m8;
453         out[3] += two64m8;
454
455         out[0] -= in[0];
456         out[1] -= in[1];
457         out[2] -= in[2];
458         out[3] -= in[3];
459         }
460
461 /* Multiply a field element by a scalar: out = out * scalar
462  * The scalars we actually use are small, so results fit without overflow */
463 static void felem_scalar(felem out, const limb scalar)
464         {
465         out[0] *= scalar;
466         out[1] *= scalar;
467         out[2] *= scalar;
468         out[3] *= scalar;
469         }
470
471 /* Multiply an unreduced field element by a scalar: out = out * scalar
472  * The scalars we actually use are small, so results fit without overflow */
473 static void widefelem_scalar(widefelem out, const widelimb scalar)
474         {
475         out[0] *= scalar;
476         out[1] *= scalar;
477         out[2] *= scalar;
478         out[3] *= scalar;
479         out[4] *= scalar;
480         out[5] *= scalar;
481         out[6] *= scalar;
482         }
483
484 /* Square a field element: out = in^2 */
485 static void felem_square(widefelem out, const felem in)
486         {
487         limb tmp0, tmp1, tmp2;
488         tmp0 = 2 * in[0]; tmp1 = 2 * in[1]; tmp2 = 2 * in[2];
489         out[0] = ((widelimb) in[0]) * in[0];
490         out[1] = ((widelimb) in[0]) * tmp1;
491         out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
492         out[3] = ((widelimb) in[3]) * tmp0 +
493                 ((widelimb) in[1]) * tmp2;
494         out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
495         out[5] = ((widelimb) in[3]) * tmp2;
496         out[6] = ((widelimb) in[3]) * in[3];
497         }
498
499 /* Multiply two field elements: out = in1 * in2 */
500 static void felem_mul(widefelem out, const felem in1, const felem in2)
501         {
502         out[0] = ((widelimb) in1[0]) * in2[0];
503         out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
504         out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
505                 ((widelimb) in1[2]) * in2[0];
506         out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
507                 ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
508         out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
509                 ((widelimb) in1[3]) * in2[1];
510         out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
511         out[6] = ((widelimb) in1[3]) * in2[3];
512         }
513
514 /* Reduce seven 128-bit coefficients to four 64-bit coefficients.
515  * Requires in[i] < 2^126,
516  * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
517 static void felem_reduce(felem out, const widefelem in)
518         {
519         static const widelimb two127p15 = (((widelimb) 1) << 127) +
520                 (((widelimb) 1) << 15);
521         static const widelimb two127m71 = (((widelimb) 1) << 127) -
522                 (((widelimb) 1) << 71);
523         static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
524                 (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
525         widelimb output[5];
526
527         /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
528         output[0] = in[0] + two127p15;
529         output[1] = in[1] + two127m71m55;
530         output[2] = in[2] + two127m71;
531         output[3] = in[3];
532         output[4] = in[4];
533
534         /* Eliminate in[4], in[5], in[6] */
535         output[4] += in[6] >> 16;
536         output[3] += (in[6] & 0xffff) << 40;
537         output[2] -= in[6];
538
539         output[3] += in[5] >> 16;
540         output[2] += (in[5] & 0xffff) << 40;
541         output[1] -= in[5];
542
543         output[2] += output[4] >> 16;
544         output[1] += (output[4] & 0xffff) << 40;
545         output[0] -= output[4];
546
547         /* Carry 2 -> 3 -> 4 */
548         output[3] += output[2] >> 56;
549         output[2] &= 0x00ffffffffffffff;
550
551         output[4] = output[3] >> 56;
552         output[3] &= 0x00ffffffffffffff;
553
554         /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
555
556         /* Eliminate output[4] */
557         output[2] += output[4] >> 16;
558         /* output[2] < 2^56 + 2^56 = 2^57 */
559         output[1] += (output[4] & 0xffff) << 40;
560         output[0] -= output[4];
561
562         /* Carry 0 -> 1 -> 2 -> 3 */
563         output[1] += output[0] >> 56;
564         out[0] = output[0] & 0x00ffffffffffffff;
565
566         output[2] += output[1] >> 56;
567         /* output[2] < 2^57 + 2^72 */
568         out[1] = output[1] & 0x00ffffffffffffff;
569         output[3] += output[2] >> 56;
570         /* output[3] <= 2^56 + 2^16 */
571         out[2] = output[2] & 0x00ffffffffffffff;
572
573         /* out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
574          * out[3] <= 2^56 + 2^16 (due to final carry),
575          * so out < 2*p */
576         out[3] = output[3];
577         }
578
579 static void felem_square_reduce(felem out, const felem in)
580         {
581         widefelem tmp;
582         felem_square(tmp, in);
583         felem_reduce(out, tmp);
584         }
585
586 static void felem_mul_reduce(felem out, const felem in1, const felem in2)
587         {
588         widefelem tmp;
589         felem_mul(tmp, in1, in2);
590         felem_reduce(out, tmp);
591         }
592
593 /* Reduce to unique minimal representation.
594  * Requires 0 <= in < 2*p (always call felem_reduce first) */
595 static void felem_contract(felem out, const felem in)
596         {
597         static const int64_t two56 = ((limb) 1) << 56;
598         /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
599         /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
600         int64_t tmp[4], a;
601         tmp[0] = in[0];
602         tmp[1] = in[1];
603         tmp[2] = in[2];
604         tmp[3] = in[3];
605         /* Case 1: a = 1 iff in >= 2^224 */
606         a = (in[3] >> 56);
607         tmp[0] -= a;
608         tmp[1] += a << 40;
609         tmp[3] &= 0x00ffffffffffffff;
610         /* Case 2: a = 0 iff p <= in < 2^224, i.e.,
611          * the high 128 bits are all 1 and the lower part is non-zero */
612         a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
613                 (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
614         a &= 0x00ffffffffffffff;
615         /* turn a into an all-one mask (if a = 0) or an all-zero mask */
616         a = (a - 1) >> 63;
617         /* subtract 2^224 - 2^96 + 1 if a is all-one*/
618         tmp[3] &= a ^ 0xffffffffffffffff;
619         tmp[2] &= a ^ 0xffffffffffffffff;
620         tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
621         tmp[0] -= 1 & a;
622
623         /* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
624          * be non-zero, so we only need one step */
625         a = tmp[0] >> 63;
626         tmp[0] += two56 & a;
627         tmp[1] -= 1 & a;
628
629         /* carry 1 -> 2 -> 3 */
630         tmp[2] += tmp[1] >> 56;
631         tmp[1] &= 0x00ffffffffffffff;
632
633         tmp[3] += tmp[2] >> 56;
634         tmp[2] &= 0x00ffffffffffffff;
635
636         /* Now 0 <= out < p */
637         out[0] = tmp[0];
638         out[1] = tmp[1];
639         out[2] = tmp[2];
640         out[3] = tmp[3];
641         }
642
643 /* Zero-check: returns 1 if input is 0, and 0 otherwise.
644  * We know that field elements are reduced to in < 2^225,
645  * so we only need to check three cases: 0, 2^224 - 2^96 + 1,
646  * and 2^225 - 2^97 + 2 */
647 static limb felem_is_zero(const felem in)
648         {
649         limb zero, two224m96p1, two225m97p2;
650
651         zero = in[0] | in[1] | in[2] | in[3];
652         zero = (((int64_t)(zero) - 1) >> 63) & 1;
653         two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
654                 | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
655         two224m96p1 = (((int64_t)(two224m96p1) - 1) >> 63) & 1;
656         two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
657                 | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
658         two225m97p2 = (((int64_t)(two225m97p2) - 1) >> 63) & 1;
659         return (zero | two224m96p1 | two225m97p2);
660         }
661
662 static limb felem_is_zero_int(const felem in)
663         {
664         return (int) (felem_is_zero(in) & ((limb)1));
665         }
666
667 /* Invert a field element */
668 /* Computation chain copied from djb's code */
669 static void felem_inv(felem out, const felem in)
670         {
671         felem ftmp, ftmp2, ftmp3, ftmp4;
672         widefelem tmp;
673         unsigned i;
674
675         felem_square(tmp, in); felem_reduce(ftmp, tmp);         /* 2 */
676         felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);      /* 2^2 - 1 */
677         felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);       /* 2^3 - 2 */
678         felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);      /* 2^3 - 1 */
679         felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);      /* 2^4 - 2 */
680         felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);     /* 2^5 - 4 */
681         felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);     /* 2^6 - 8 */
682         felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);   /* 2^6 - 1 */
683         felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);      /* 2^7 - 2 */
684         for (i = 0; i < 5; ++i)                                 /* 2^12 - 2^6 */
685                 {
686                 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
687                 }
688         felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp);  /* 2^12 - 1 */
689         felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp);     /* 2^13 - 2 */
690         for (i = 0; i < 11; ++i)                                /* 2^24 - 2^12 */
691                 {
692                 felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);
693                 }
694         felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
695         felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp);     /* 2^25 - 2 */
696         for (i = 0; i < 23; ++i)                                /* 2^48 - 2^24 */
697                 {
698                 felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);
699                 }
700         felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
701         felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp);     /* 2^49 - 2 */
702         for (i = 0; i < 47; ++i)                                /* 2^96 - 2^48 */
703                 {
704                 felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp);
705                 }
706         felem_mul(tmp, ftmp3, ftmp4); felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
707         felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp);     /* 2^97 - 2 */
708         for (i = 0; i < 23; ++i)                                /* 2^120 - 2^24 */
709                 {
710                 felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp);
711                 }
712         felem_mul(tmp, ftmp2, ftmp4); felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
713         for (i = 0; i < 6; ++i)                                 /* 2^126 - 2^6 */
714                 {
715                 felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
716                 }
717         felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);   /* 2^126 - 1 */
718         felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);       /* 2^127 - 2 */
719         felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp);      /* 2^127 - 1 */
720         for (i = 0; i < 97; ++i)                                /* 2^224 - 2^97 */
721                 {
722                 felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
723                 }
724         felem_mul(tmp, ftmp, ftmp3); felem_reduce(out, tmp);    /* 2^224 - 2^96 - 1 */
725         }
726
727 /* Copy in constant time:
728  * if icopy == 1, copy in to out,
729  * if icopy == 0, copy out to itself. */
730 static void
731 copy_conditional(felem out, const felem in, limb icopy)
732         {
733         unsigned i;
734         /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */
735         const limb copy = -icopy;
736         for (i = 0; i < 4; ++i)
737                 {
738                 const limb tmp = copy & (in[i] ^ out[i]);
739                 out[i] ^= tmp;
740                 }
741         }
742
743 /******************************************************************************/
744 /*                       ELLIPTIC CURVE POINT OPERATIONS
745  *
746  * Points are represented in Jacobian projective coordinates:
747  * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
748  * or to the point at infinity if Z == 0.
749  *
750  */
751
752 /* Double an elliptic curve point:
753  * (X', Y', Z') = 2 * (X, Y, Z), where
754  * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
755  * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
756  * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
757  * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
758  * while x_out == y_in is not (maybe this works, but it's not tested). */
759 static void
760 point_double(felem x_out, felem y_out, felem z_out,
761              const felem x_in, const felem y_in, const felem z_in)
762         {
763         widefelem tmp, tmp2;
764         felem delta, gamma, beta, alpha, ftmp, ftmp2;
765
766         felem_assign(ftmp, x_in);
767         felem_assign(ftmp2, x_in);
768
769         /* delta = z^2 */
770         felem_square(tmp, z_in);
771         felem_reduce(delta, tmp);
772
773         /* gamma = y^2 */
774         felem_square(tmp, y_in);
775         felem_reduce(gamma, tmp);
776
777         /* beta = x*gamma */
778         felem_mul(tmp, x_in, gamma);
779         felem_reduce(beta, tmp);
780
781         /* alpha = 3*(x-delta)*(x+delta) */
782         felem_diff(ftmp, delta);
783         /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
784         felem_sum(ftmp2, delta);
785         /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
786         felem_scalar(ftmp2, 3);
787         /* ftmp2[i] < 3 * 2^58 < 2^60 */
788         felem_mul(tmp, ftmp, ftmp2);
789         /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
790         felem_reduce(alpha, tmp);
791
792         /* x' = alpha^2 - 8*beta */
793         felem_square(tmp, alpha);
794         /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
795         felem_assign(ftmp, beta);
796         felem_scalar(ftmp, 8);
797         /* ftmp[i] < 8 * 2^57 = 2^60 */
798         felem_diff_128_64(tmp, ftmp);
799         /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
800         felem_reduce(x_out, tmp);
801
802         /* z' = (y + z)^2 - gamma - delta */
803         felem_sum(delta, gamma);
804         /* delta[i] < 2^57 + 2^57 = 2^58 */
805         felem_assign(ftmp, y_in);
806         felem_sum(ftmp, z_in);
807         /* ftmp[i] < 2^57 + 2^57 = 2^58 */
808         felem_square(tmp, ftmp);
809         /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
810         felem_diff_128_64(tmp, delta);
811         /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
812         felem_reduce(z_out, tmp);
813
814         /* y' = alpha*(4*beta - x') - 8*gamma^2 */
815         felem_scalar(beta, 4);
816         /* beta[i] < 4 * 2^57 = 2^59 */
817         felem_diff(beta, x_out);
818         /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
819         felem_mul(tmp, alpha, beta);
820         /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
821         felem_square(tmp2, gamma);
822         /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
823         widefelem_scalar(tmp2, 8);
824         /* tmp2[i] < 8 * 2^116 = 2^119 */
825         widefelem_diff(tmp, tmp2);
826         /* tmp[i] < 2^119 + 2^120 < 2^121 */
827         felem_reduce(y_out, tmp);
828         }
829
830 /* Add two elliptic curve points:
831  * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
832  * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
833  * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
834  * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
835  *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
836  * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
837  *
838  * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
839  */
840
841 /* This function is not entirely constant-time:
842  * it includes a branch for checking whether the two input points are equal,
843  * (while not equal to the point at infinity).
844  * This case never happens during single point multiplication,
845  * so there is no timing leak for ECDH or ECDSA signing. */
846 static void point_add(felem x3, felem y3, felem z3,
847         const felem x1, const felem y1, const felem z1,
848         const int mixed, const felem x2, const felem y2, const felem z2)
849         {
850         felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
851         widefelem tmp, tmp2;
852         limb z1_is_zero, z2_is_zero, x_equal, y_equal;
853
854         if (!mixed)
855                 {
856                 /* ftmp2 = z2^2 */
857                 felem_square(tmp, z2);
858                 felem_reduce(ftmp2, tmp);
859
860                 /* ftmp4 = z2^3 */
861                 felem_mul(tmp, ftmp2, z2);
862                 felem_reduce(ftmp4, tmp);
863
864                 /* ftmp4 = z2^3*y1 */
865                 felem_mul(tmp2, ftmp4, y1);
866                 felem_reduce(ftmp4, tmp2);
867
868                 /* ftmp2 = z2^2*x1 */
869                 felem_mul(tmp2, ftmp2, x1);
870                 felem_reduce(ftmp2, tmp2);
871                 }
872         else
873                 {
874                 /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
875
876                 /* ftmp4 = z2^3*y1 */
877                 felem_assign(ftmp4, y1);
878
879                 /* ftmp2 = z2^2*x1 */
880                 felem_assign(ftmp2, x1);
881                 }
882
883         /* ftmp = z1^2 */
884         felem_square(tmp, z1);
885         felem_reduce(ftmp, tmp);
886
887         /* ftmp3 = z1^3 */
888         felem_mul(tmp, ftmp, z1);
889         felem_reduce(ftmp3, tmp);
890
891         /* tmp = z1^3*y2 */
892         felem_mul(tmp, ftmp3, y2);
893         /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
894
895         /* ftmp3 = z1^3*y2 - z2^3*y1 */
896         felem_diff_128_64(tmp, ftmp4);
897         /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
898         felem_reduce(ftmp3, tmp);
899
900         /* tmp = z1^2*x2 */
901         felem_mul(tmp, ftmp, x2);
902         /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
903
904         /* ftmp = z1^2*x2 - z2^2*x1 */
905         felem_diff_128_64(tmp, ftmp2);
906         /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
907         felem_reduce(ftmp, tmp);
908
909         /* the formulae are incorrect if the points are equal
910          * so we check for this and do doubling if this happens */
911         x_equal = felem_is_zero(ftmp);
912         y_equal = felem_is_zero(ftmp3);
913         z1_is_zero = felem_is_zero(z1);
914         z2_is_zero = felem_is_zero(z2);
915         /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
916         if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)
917                 {
918                 point_double(x3, y3, z3, x1, y1, z1);
919                 return;
920                 }
921
922         /* ftmp5 = z1*z2 */
923         if (!mixed)
924                 {
925                 felem_mul(tmp, z1, z2);
926                 felem_reduce(ftmp5, tmp);
927                 }
928         else
929                 {
930                 /* special case z2 = 0 is handled later */
931                 felem_assign(ftmp5, z1);
932                 }
933
934         /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
935         felem_mul(tmp, ftmp, ftmp5);
936         felem_reduce(z_out, tmp);
937
938         /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
939         felem_assign(ftmp5, ftmp);
940         felem_square(tmp, ftmp);
941         felem_reduce(ftmp, tmp);
942
943         /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
944         felem_mul(tmp, ftmp, ftmp5);
945         felem_reduce(ftmp5, tmp);
946
947         /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
948         felem_mul(tmp, ftmp2, ftmp);
949         felem_reduce(ftmp2, tmp);
950
951         /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
952         felem_mul(tmp, ftmp4, ftmp5);
953         /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
954
955         /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
956         felem_square(tmp2, ftmp3);
957         /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
958
959         /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
960         felem_diff_128_64(tmp2, ftmp5);
961         /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
962
963         /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
964         felem_assign(ftmp5, ftmp2);
965         felem_scalar(ftmp5, 2);
966         /* ftmp5[i] < 2 * 2^57 = 2^58 */
967
968         /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
969            2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
970         felem_diff_128_64(tmp2, ftmp5);
971         /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
972         felem_reduce(x_out, tmp2);
973
974         /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
975         felem_diff(ftmp2, x_out);
976         /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
977
978         /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */
979         felem_mul(tmp2, ftmp3, ftmp2);
980         /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
981
982         /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
983            z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
984         widefelem_diff(tmp2, tmp);
985         /* tmp2[i] < 2^118 + 2^120 < 2^121 */
986         felem_reduce(y_out, tmp2);
987
988         /* the result (x_out, y_out, z_out) is incorrect if one of the inputs is
989          * the point at infinity, so we need to check for this separately */
990
991         /* if point 1 is at infinity, copy point 2 to output, and vice versa */
992         copy_conditional(x_out, x2, z1_is_zero);
993         copy_conditional(x_out, x1, z2_is_zero);
994         copy_conditional(y_out, y2, z1_is_zero);
995         copy_conditional(y_out, y1, z2_is_zero);
996         copy_conditional(z_out, z2, z1_is_zero);
997         copy_conditional(z_out, z1, z2_is_zero);
998         felem_assign(x3, x_out);
999         felem_assign(y3, y_out);
1000         felem_assign(z3, z_out);
1001         }
1002
1003 /* select_point selects the |index|th point from a precomputation table and
1004  * copies it to out. */
1005 static void select_point(const u64 index, unsigned int size, const felem pre_comp[/*size*/][3], felem out[3])
1006         {
1007         unsigned i, j;
1008         limb *outlimbs = &out[0][0];
1009         memset(outlimbs, 0, 3 * sizeof(felem));
1010
1011         for (i = 0; i < size; i++)
1012                 {
1013                 const limb *inlimbs = &pre_comp[i][0][0];
1014                 u64 mask = i ^ index;
1015                 mask |= mask >> 4;
1016                 mask |= mask >> 2;
1017                 mask |= mask >> 1;
1018                 mask &= 1;
1019                 mask--;
1020                 for (j = 0; j < 4 * 3; j++)
1021                         outlimbs[j] |= inlimbs[j] & mask;
1022                 }
1023         }
1024
1025 /* get_bit returns the |i|th bit in |in| */
1026 static char get_bit(const felem_bytearray in, unsigned i)
1027         {
1028         if (i >= 224)
1029                 return 0;
1030         return (in[i >> 3] >> (i & 7)) & 1;
1031         }
1032
1033 /* Interleaved point multiplication using precomputed point multiples:
1034  * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[],
1035  * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
1036  * of the generator, using certain (large) precomputed multiples in g_pre_comp.
1037  * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
1038 static void batch_mul(felem x_out, felem y_out, felem z_out,
1039         const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar,
1040         const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[2][16][3])
1041         {
1042         int i, skip;
1043         unsigned num;
1044         unsigned gen_mul = (g_scalar != NULL);
1045         felem nq[3], tmp[4];
1046         u64 bits;
1047         u8 sign, digit;
1048
1049         /* set nq to the point at infinity */
1050         memset(nq, 0, 3 * sizeof(felem));
1051
1052         /* Loop over all scalars msb-to-lsb, interleaving additions
1053          * of multiples of the generator (two in each of the last 28 rounds)
1054          * and additions of other points multiples (every 5th round).
1055          */
1056         skip = 1; /* save two point operations in the first round */
1057         for (i = (num_points ? 220 : 27); i >= 0; --i)
1058                 {
1059                 /* double */
1060                 if (!skip)
1061                         point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1062
1063                 /* add multiples of the generator */
1064                 if (gen_mul && (i <= 27))
1065                         {
1066                         /* first, look 28 bits upwards */
1067                         bits = get_bit(g_scalar, i + 196) << 3;
1068                         bits |= get_bit(g_scalar, i + 140) << 2;
1069                         bits |= get_bit(g_scalar, i + 84) << 1;
1070                         bits |= get_bit(g_scalar, i + 28);
1071                         /* select the point to add, in constant time */
1072                         select_point(bits, 16, g_pre_comp[1], tmp);
1073
1074                         if (!skip)
1075                                 {
1076                                 point_add(nq[0], nq[1], nq[2],
1077                                         nq[0], nq[1], nq[2],
1078                                         1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1079                                 }
1080                         else
1081                                 {
1082                                 memcpy(nq, tmp, 3 * sizeof(felem));
1083                                 skip = 0;
1084                                 }
1085
1086                         /* second, look at the current position */
1087                         bits = get_bit(g_scalar, i + 168) << 3;
1088                         bits |= get_bit(g_scalar, i + 112) << 2;
1089                         bits |= get_bit(g_scalar, i + 56) << 1;
1090                         bits |= get_bit(g_scalar, i);
1091                         /* select the point to add, in constant time */
1092                         select_point(bits, 16, g_pre_comp[0], tmp);
1093                         point_add(nq[0], nq[1], nq[2],
1094                                 nq[0], nq[1], nq[2],
1095                                 1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1096                         }
1097
1098                 /* do other additions every 5 doublings */
1099                 if (num_points && (i % 5 == 0))
1100                         {
1101                         /* loop over all scalars */
1102                         for (num = 0; num < num_points; ++num)
1103                                 {
1104                                 bits = get_bit(scalars[num], i + 4) << 5;
1105                                 bits |= get_bit(scalars[num], i + 3) << 4;
1106                                 bits |= get_bit(scalars[num], i + 2) << 3;
1107                                 bits |= get_bit(scalars[num], i + 1) << 2;
1108                                 bits |= get_bit(scalars[num], i) << 1;
1109                                 bits |= get_bit(scalars[num], i - 1);
1110                                 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1111
1112                                 /* select the point to add or subtract */
1113                                 select_point(digit, 17, pre_comp[num], tmp);
1114                                 felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */
1115                                 copy_conditional(tmp[1], tmp[3], sign);
1116
1117                                 if (!skip)
1118                                         {
1119                                         point_add(nq[0], nq[1], nq[2],
1120                                                 nq[0], nq[1], nq[2],
1121                                                 mixed, tmp[0], tmp[1], tmp[2]);
1122                                         }
1123                                 else
1124                                         {
1125                                         memcpy(nq, tmp, 3 * sizeof(felem));
1126                                         skip = 0;
1127                                         }
1128                                 }
1129                         }
1130                 }
1131         felem_assign(x_out, nq[0]);
1132         felem_assign(y_out, nq[1]);
1133         felem_assign(z_out, nq[2]);
1134         }
1135
1136 /******************************************************************************/
1137 /*                     FUNCTIONS TO MANAGE PRECOMPUTATION
1138  */
1139
1140 static NISTP224_PRE_COMP *nistp224_pre_comp_new()
1141         {
1142         NISTP224_PRE_COMP *ret = NULL;
1143         ret = (NISTP224_PRE_COMP *) OPENSSL_malloc(sizeof *ret);
1144         if (!ret)
1145                 {
1146                 ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1147                 return ret;
1148                 }
1149         memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
1150         ret->references = 1;
1151         return ret;
1152         }
1153
1154 static void *nistp224_pre_comp_dup(void *src_)
1155         {
1156         NISTP224_PRE_COMP *src = src_;
1157
1158         /* no need to actually copy, these objects never change! */
1159         CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
1160
1161         return src_;
1162         }
1163
1164 static void nistp224_pre_comp_free(void *pre_)
1165         {
1166         int i;
1167         NISTP224_PRE_COMP *pre = pre_;
1168
1169         if (!pre)
1170                 return;
1171
1172         i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1173         if (i > 0)
1174                 return;
1175
1176         OPENSSL_free(pre);
1177         }
1178
1179 static void nistp224_pre_comp_clear_free(void *pre_)
1180         {
1181         int i;
1182         NISTP224_PRE_COMP *pre = pre_;
1183
1184         if (!pre)
1185                 return;
1186
1187         i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1188         if (i > 0)
1189                 return;
1190
1191         OPENSSL_cleanse(pre, sizeof *pre);
1192         OPENSSL_free(pre);
1193         }
1194
1195 /******************************************************************************/
1196 /*                         OPENSSL EC_METHOD FUNCTIONS
1197  */
1198
1199 int ec_GFp_nistp224_group_init(EC_GROUP *group)
1200         {
1201         int ret;
1202         ret = ec_GFp_simple_group_init(group);
1203         group->a_is_minus3 = 1;
1204         return ret;
1205         }
1206
1207 int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1208         const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
1209         {
1210         int ret = 0;
1211         BN_CTX *new_ctx = NULL;
1212         BIGNUM *curve_p, *curve_a, *curve_b;
1213
1214         if (ctx == NULL)
1215                 if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1216         BN_CTX_start(ctx);
1217         if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
1218                 ((curve_a = BN_CTX_get(ctx)) == NULL) ||
1219                 ((curve_b = BN_CTX_get(ctx)) == NULL)) goto err;
1220         BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1221         BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1222         BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1223         if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) ||
1224                 (BN_cmp(curve_b, b)))
1225                 {
1226                 ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE,
1227                         EC_R_WRONG_CURVE_PARAMETERS);
1228                 goto err;
1229                 }
1230         group->field_mod_func = BN_nist_mod_224;
1231         ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1232 err:
1233         BN_CTX_end(ctx);
1234         if (new_ctx != NULL)
1235                 BN_CTX_free(new_ctx);
1236         return ret;
1237         }
1238
1239 /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
1240  * (X', Y') = (X/Z^2, Y/Z^3) */
1241 int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1242         const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1243         {
1244         felem z1, z2, x_in, y_in, x_out, y_out;
1245         widefelem tmp;
1246
1247         if (EC_POINT_is_at_infinity(group, point))
1248                 {
1249                 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1250                         EC_R_POINT_AT_INFINITY);
1251                 return 0;
1252                 }
1253         if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) ||
1254                 (!BN_to_felem(z1, &point->Z))) return 0;
1255         felem_inv(z2, z1);
1256         felem_square(tmp, z2); felem_reduce(z1, tmp);
1257         felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp);
1258         felem_contract(x_out, x_in);
1259         if (x != NULL)
1260                 {
1261                 if (!felem_to_BN(x, x_out)) {
1262                 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1263                         ERR_R_BN_LIB);
1264                 return 0;
1265                 }
1266                 }
1267         felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);
1268         felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp);
1269         felem_contract(y_out, y_in);
1270         if (y != NULL)
1271                 {
1272                 if (!felem_to_BN(y, y_out)) {
1273                 ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1274                         ERR_R_BN_LIB);
1275                 return 0;
1276                 }
1277                 }
1278         return 1;
1279         }
1280
1281 static void make_points_affine(size_t num, felem points[/*num*/][3], felem tmp_felems[/*num+1*/])
1282         {
1283         /* Runs in constant time, unless an input is the point at infinity
1284          * (which normally shouldn't happen). */
1285         ec_GFp_nistp_points_make_affine_internal(
1286                 num,
1287                 points,
1288                 sizeof(felem),
1289                 tmp_felems,
1290                 (void (*)(void *)) felem_one,
1291                 (int (*)(const void *)) felem_is_zero_int,
1292                 (void (*)(void *, const void *)) felem_assign,
1293                 (void (*)(void *, const void *)) felem_square_reduce,
1294                 (void (*)(void *, const void *, const void *)) felem_mul_reduce,
1295                 (void (*)(void *, const void *)) felem_inv,
1296                 (void (*)(void *, const void *)) felem_contract);
1297         }
1298
1299 /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
1300  * Result is stored in r (r can equal one of the inputs). */
1301 int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1302         const BIGNUM *scalar, size_t num, const EC_POINT *points[],
1303         const BIGNUM *scalars[], BN_CTX *ctx)
1304         {
1305         int ret = 0;
1306         int j;
1307         unsigned i;
1308         int mixed = 0;
1309         BN_CTX *new_ctx = NULL;
1310         BIGNUM *x, *y, *z, *tmp_scalar;
1311         felem_bytearray g_secret;
1312         felem_bytearray *secrets = NULL;
1313         felem (*pre_comp)[17][3] = NULL;
1314         felem *tmp_felems = NULL;
1315         felem_bytearray tmp;
1316         unsigned num_bytes;
1317         int have_pre_comp = 0;
1318         size_t num_points = num;
1319         felem x_in, y_in, z_in, x_out, y_out, z_out;
1320         NISTP224_PRE_COMP *pre = NULL;
1321         const felem (*g_pre_comp)[16][3] = NULL;
1322         EC_POINT *generator = NULL;
1323         const EC_POINT *p = NULL;
1324         const BIGNUM *p_scalar = NULL;
1325
1326         if (ctx == NULL)
1327                 if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1328         BN_CTX_start(ctx);
1329         if (((x = BN_CTX_get(ctx)) == NULL) ||
1330                 ((y = BN_CTX_get(ctx)) == NULL) ||
1331                 ((z = BN_CTX_get(ctx)) == NULL) ||
1332                 ((tmp_scalar = BN_CTX_get(ctx)) == NULL))
1333                 goto err;
1334
1335         if (scalar != NULL)
1336                 {
1337                 pre = EC_EX_DATA_get_data(group->extra_data,
1338                         nistp224_pre_comp_dup, nistp224_pre_comp_free,
1339                         nistp224_pre_comp_clear_free);
1340                 if (pre)
1341                         /* we have precomputation, try to use it */
1342                         g_pre_comp = (const felem (*)[16][3]) pre->g_pre_comp;
1343                 else
1344                         /* try to use the standard precomputation */
1345                         g_pre_comp = &gmul[0];
1346                 generator = EC_POINT_new(group);
1347                 if (generator == NULL)
1348                         goto err;
1349                 /* get the generator from precomputation */
1350                 if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1351                         !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1352                         !felem_to_BN(z, g_pre_comp[0][1][2]))
1353                         {
1354                         ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1355                         goto err;
1356                         }
1357                 if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1358                                 generator, x, y, z, ctx))
1359                         goto err;
1360                 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1361                         /* precomputation matches generator */
1362                         have_pre_comp = 1;
1363                 else
1364                         /* we don't have valid precomputation:
1365                          * treat the generator as a random point */
1366                         num_points = num_points + 1;
1367                 }
1368
1369         if (num_points > 0)
1370                 {
1371                 if (num_points >= 3)
1372                         {
1373                         /* unless we precompute multiples for just one or two points,
1374                          * converting those into affine form is time well spent  */
1375                         mixed = 1;
1376                         }
1377                 secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
1378                 pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(felem));
1379                 if (mixed)
1380                         tmp_felems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(felem));
1381                 if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL)))
1382                         {
1383                         ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1384                         goto err;
1385                         }
1386
1387                 /* we treat NULL scalars as 0, and NULL points as points at infinity,
1388                  * i.e., they contribute nothing to the linear combination */
1389                 memset(secrets, 0, num_points * sizeof(felem_bytearray));
1390                 memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem));
1391                 for (i = 0; i < num_points; ++i)
1392                         {
1393                         if (i == num)
1394                                 /* the generator */
1395                                 {
1396                                 p = EC_GROUP_get0_generator(group);
1397                                 p_scalar = scalar;
1398                                 }
1399                         else
1400                                 /* the i^th point */
1401                                 {
1402                                 p = points[i];
1403                                 p_scalar = scalars[i];
1404                                 }
1405                         if ((p_scalar != NULL) && (p != NULL))
1406                                 {
1407                                 /* reduce scalar to 0 <= scalar < 2^224 */
1408                                 if ((BN_num_bits(p_scalar) > 224) || (BN_is_negative(p_scalar)))
1409                                         {
1410                                         /* this is an unusual input, and we don't guarantee
1411                                          * constant-timeness */
1412                                         if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx))
1413                                                 {
1414                                                 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1415                                                 goto err;
1416                                                 }
1417                                         num_bytes = BN_bn2bin(tmp_scalar, tmp);
1418                                         }
1419                                 else
1420                                         num_bytes = BN_bn2bin(p_scalar, tmp);
1421                                 flip_endian(secrets[i], tmp, num_bytes);
1422                                 /* precompute multiples */
1423                                 if ((!BN_to_felem(x_out, &p->X)) ||
1424                                         (!BN_to_felem(y_out, &p->Y)) ||
1425                                         (!BN_to_felem(z_out, &p->Z))) goto err;
1426                                 felem_assign(pre_comp[i][1][0], x_out);
1427                                 felem_assign(pre_comp[i][1][1], y_out);
1428                                 felem_assign(pre_comp[i][1][2], z_out);
1429                                 for (j = 2; j <= 16; ++j)
1430                                         {
1431                                         if (j & 1)
1432                                                 {
1433                                                 point_add(
1434                                                         pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1435                                                         pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
1436                                                         0, pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]);
1437                                                 }
1438                                         else
1439                                                 {
1440                                                 point_double(
1441                                                         pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1442                                                         pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]);
1443                                                 }
1444                                         }
1445                                 }
1446                         }
1447                 if (mixed)
1448                         make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1449                 }
1450
1451         /* the scalar for the generator */
1452         if ((scalar != NULL) && (have_pre_comp))
1453                 {
1454                 memset(g_secret, 0, sizeof g_secret);
1455                 /* reduce scalar to 0 <= scalar < 2^224 */
1456                 if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar)))
1457                         {
1458                         /* this is an unusual input, and we don't guarantee
1459                          * constant-timeness */
1460                         if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx))
1461                                 {
1462                                 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1463                                 goto err;
1464                                 }
1465                         num_bytes = BN_bn2bin(tmp_scalar, tmp);
1466                         }
1467                 else
1468                         num_bytes = BN_bn2bin(scalar, tmp);
1469                 flip_endian(g_secret, tmp, num_bytes);
1470                 /* do the multiplication with generator precomputation*/
1471                 batch_mul(x_out, y_out, z_out,
1472                         (const felem_bytearray (*)) secrets, num_points,
1473                         g_secret,
1474                         mixed, (const felem (*)[17][3]) pre_comp,
1475                         g_pre_comp);
1476                 }
1477         else
1478                 /* do the multiplication without generator precomputation */
1479                 batch_mul(x_out, y_out, z_out,
1480                         (const felem_bytearray (*)) secrets, num_points,
1481                         NULL, mixed, (const felem (*)[17][3]) pre_comp, NULL);
1482         /* reduce the output to its unique minimal representation */
1483         felem_contract(x_in, x_out);
1484         felem_contract(y_in, y_out);
1485         felem_contract(z_in, z_out);
1486         if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1487                 (!felem_to_BN(z, z_in)))
1488                 {
1489                 ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1490                 goto err;
1491                 }
1492         ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
1493
1494 err:
1495         BN_CTX_end(ctx);
1496         if (generator != NULL)
1497                 EC_POINT_free(generator);
1498         if (new_ctx != NULL)
1499                 BN_CTX_free(new_ctx);
1500         if (secrets != NULL)
1501                 OPENSSL_free(secrets);
1502         if (pre_comp != NULL)
1503                 OPENSSL_free(pre_comp);
1504         if (tmp_felems != NULL)
1505                 OPENSSL_free(tmp_felems);
1506         return ret;
1507         }
1508
1509 int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1510         {
1511         int ret = 0;
1512         NISTP224_PRE_COMP *pre = NULL;
1513         int i, j;
1514         BN_CTX *new_ctx = NULL;
1515         BIGNUM *x, *y;
1516         EC_POINT *generator = NULL;
1517         felem tmp_felems[32];
1518
1519         /* throw away old precomputation */
1520         EC_EX_DATA_free_data(&group->extra_data, nistp224_pre_comp_dup,
1521                 nistp224_pre_comp_free, nistp224_pre_comp_clear_free);
1522         if (ctx == NULL)
1523                 if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1524         BN_CTX_start(ctx);
1525         if (((x = BN_CTX_get(ctx)) == NULL) ||
1526                 ((y = BN_CTX_get(ctx)) == NULL))
1527                 goto err;
1528         /* get the generator */
1529         if (group->generator == NULL) goto err;
1530         generator = EC_POINT_new(group);
1531         if (generator == NULL)
1532                 goto err;
1533         BN_bin2bn(nistp224_curve_params[3], sizeof (felem_bytearray), x);
1534         BN_bin2bn(nistp224_curve_params[4], sizeof (felem_bytearray), y);
1535         if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
1536                 goto err;
1537         if ((pre = nistp224_pre_comp_new()) == NULL)
1538                 goto err;
1539         /* if the generator is the standard one, use built-in precomputation */
1540         if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1541                 {
1542                 memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1543                 ret = 1;
1544                 goto err;
1545                 }
1546         if ((!BN_to_felem(pre->g_pre_comp[0][1][0], &group->generator->X)) ||
1547                 (!BN_to_felem(pre->g_pre_comp[0][1][1], &group->generator->Y)) ||
1548                 (!BN_to_felem(pre->g_pre_comp[0][1][2], &group->generator->Z)))
1549                 goto err;
1550         /* compute 2^56*G, 2^112*G, 2^168*G for the first table,
1551          * 2^28*G, 2^84*G, 2^140*G, 2^196*G for the second one
1552          */
1553         for (i = 1; i <= 8; i <<= 1)
1554                 {
1555                 point_double(
1556                         pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
1557                         pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1558                 for (j = 0; j < 27; ++j)
1559                         {
1560                         point_double(
1561                                 pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
1562                                 pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1563                         }
1564                 if (i == 8)
1565                         break;
1566                 point_double(
1567                         pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
1568                         pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1569                 for (j = 0; j < 27; ++j)
1570                         {
1571                         point_double(
1572                                 pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
1573                                 pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2]);
1574                         }
1575                 }
1576         for (i = 0; i < 2; i++)
1577                 {
1578                 /* g_pre_comp[i][0] is the point at infinity */
1579                 memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1580                 /* the remaining multiples */
1581                 /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1582                 point_add(
1583                         pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1584                         pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1585                         pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1586                         0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1587                         pre->g_pre_comp[i][2][2]);
1588                 /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1589                 point_add(
1590                         pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1591                         pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1592                         pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1593                         0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1594                         pre->g_pre_comp[i][2][2]);
1595                 /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1596                 point_add(
1597                         pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1598                         pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1599                         pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1600                         0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1601                         pre->g_pre_comp[i][4][2]);
1602                 /* 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G */
1603                 point_add(
1604                         pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1605                         pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1606                         pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1607                         0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1608                         pre->g_pre_comp[i][2][2]);
1609                 for (j = 1; j < 8; ++j)
1610                         {
1611                         /* odd multiples: add G resp. 2^28*G */
1612                         point_add(
1613                                 pre->g_pre_comp[i][2*j+1][0], pre->g_pre_comp[i][2*j+1][1],
1614                                 pre->g_pre_comp[i][2*j+1][2], pre->g_pre_comp[i][2*j][0],
1615                                 pre->g_pre_comp[i][2*j][1], pre->g_pre_comp[i][2*j][2],
1616                                 0, pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1617                                 pre->g_pre_comp[i][1][2]);
1618                         }
1619                 }
1620         make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1621
1622         if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp224_pre_comp_dup,
1623                         nistp224_pre_comp_free, nistp224_pre_comp_clear_free))
1624                 goto err;
1625         ret = 1;
1626         pre = NULL;
1627  err:
1628         BN_CTX_end(ctx);
1629         if (generator != NULL)
1630                 EC_POINT_free(generator);
1631         if (new_ctx != NULL)
1632                 BN_CTX_free(new_ctx);
1633         if (pre)
1634                 nistp224_pre_comp_free(pre);
1635         return ret;
1636         }
1637
1638 int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1639         {
1640         if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup,
1641                         nistp224_pre_comp_free, nistp224_pre_comp_clear_free)
1642                 != NULL)
1643                 return 1;
1644         else
1645                 return 0;
1646         }
1647
1648 #else
1649 static void *dummy=&dummy;
1650 #endif