ppc4xx: Complete remove bogus dflush()
[oweals/u-boot.git] / cpu / ppc4xx / denali_spd_ddr2.c
1 /*
2  * cpu/ppc4xx/denali_spd_ddr2.c
3  * This SPD SDRAM detection code supports AMCC PPC44x CPUs with a Denali-core
4  * DDR2 controller, specifically the 440EPx/GRx.
5  *
6  * (C) Copyright 2007-2008
7  * Larry Johnson, lrj@acm.org.
8  *
9  * Based primarily on cpu/ppc4xx/4xx_spd_ddr2.c, which is...
10  *
11  * (C) Copyright 2007
12  * Stefan Roese, DENX Software Engineering, sr@denx.de.
13  *
14  * COPYRIGHT   AMCC   CORPORATION 2004
15  *
16  * See file CREDITS for list of people who contributed to this
17  * project.
18  *
19  * This program is free software; you can redistribute it and/or
20  * modify it under the terms of the GNU General Public License as
21  * published by the Free Software Foundation; either version 2 of
22  * the License, or (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
32  * MA 02111-1307 USA
33  *
34  */
35
36 /* define DEBUG for debugging output (obviously ;-)) */
37 #if 0
38 #define DEBUG
39 #endif
40
41 #include <common.h>
42 #include <command.h>
43 #include <ppc4xx.h>
44 #include <i2c.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48
49 #if defined(CONFIG_SPD_EEPROM) &&                               \
50         (defined(CONFIG_440EPX) || defined(CONFIG_440GRX))
51
52 /*-----------------------------------------------------------------------------+
53  * Defines
54  *-----------------------------------------------------------------------------*/
55 #ifndef TRUE
56 #define TRUE            1
57 #endif
58 #ifndef FALSE
59 #define FALSE           0
60 #endif
61
62 #define MAXDIMMS        2
63 #define MAXRANKS        2
64
65 #define ONE_BILLION     1000000000
66
67 #define MULDIV64(m1, m2, d)     (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
68
69 #define DLL_DQS_DELAY   0x19
70 #define DLL_DQS_BYPASS  0x0B
71 #define DQS_OUT_SHIFT   0x7F
72
73 /*
74  * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
75  * region. Right now the cache should still be disabled in U-Boot because of the
76  * EMAC driver, that need it's buffer descriptor to be located in non cached
77  * memory.
78  *
79  * If at some time this restriction doesn't apply anymore, just define
80  * CONFIG_4xx_DCACHE in the board config file and this code should setup
81  * everything correctly.
82  */
83 #if defined(CONFIG_4xx_DCACHE)
84 #define MY_TLB_WORD2_I_ENABLE   0                       /* enable caching on SDRAM */
85 #else
86 #define MY_TLB_WORD2_I_ENABLE   TLB_WORD2_I_ENABLE      /* disable caching on SDRAM */
87 #endif
88
89 /*-----------------------------------------------------------------------------+
90  * Prototypes
91  *-----------------------------------------------------------------------------*/
92 extern int denali_wait_for_dlllock(void);
93 extern void denali_core_search_data_eye(void);
94 extern void dcbz_area(u32 start_address, u32 num_bytes);
95
96 /*
97  * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
98  */
99 void __spd_ddr_init_hang(void)
100 {
101         hang();
102 }
103 void spd_ddr_init_hang(void)
104     __attribute__ ((weak, alias("__spd_ddr_init_hang")));
105
106 #if defined(DEBUG)
107 static void print_mcsr(void)
108 {
109         printf("MCSR = 0x%08X\n", mfspr(SPRN_MCSR));
110 }
111
112 static void denali_sdram_register_dump(void)
113 {
114         unsigned int sdram_data;
115
116         printf("\n  Register Dump:\n");
117         mfsdram(DDR0_00, sdram_data);
118         printf("        DDR0_00 = 0x%08X", sdram_data);
119         mfsdram(DDR0_01, sdram_data);
120         printf("        DDR0_01 = 0x%08X\n", sdram_data);
121         mfsdram(DDR0_02, sdram_data);
122         printf("        DDR0_02 = 0x%08X", sdram_data);
123         mfsdram(DDR0_03, sdram_data);
124         printf("        DDR0_03 = 0x%08X\n", sdram_data);
125         mfsdram(DDR0_04, sdram_data);
126         printf("        DDR0_04 = 0x%08X", sdram_data);
127         mfsdram(DDR0_05, sdram_data);
128         printf("        DDR0_05 = 0x%08X\n", sdram_data);
129         mfsdram(DDR0_06, sdram_data);
130         printf("        DDR0_06 = 0x%08X", sdram_data);
131         mfsdram(DDR0_07, sdram_data);
132         printf("        DDR0_07 = 0x%08X\n", sdram_data);
133         mfsdram(DDR0_08, sdram_data);
134         printf("        DDR0_08 = 0x%08X", sdram_data);
135         mfsdram(DDR0_09, sdram_data);
136         printf("        DDR0_09 = 0x%08X\n", sdram_data);
137         mfsdram(DDR0_10, sdram_data);
138         printf("        DDR0_10 = 0x%08X", sdram_data);
139         mfsdram(DDR0_11, sdram_data);
140         printf("        DDR0_11 = 0x%08X\n", sdram_data);
141         mfsdram(DDR0_12, sdram_data);
142         printf("        DDR0_12 = 0x%08X", sdram_data);
143         mfsdram(DDR0_14, sdram_data);
144         printf("        DDR0_14 = 0x%08X\n", sdram_data);
145         mfsdram(DDR0_17, sdram_data);
146         printf("        DDR0_17 = 0x%08X", sdram_data);
147         mfsdram(DDR0_18, sdram_data);
148         printf("        DDR0_18 = 0x%08X\n", sdram_data);
149         mfsdram(DDR0_19, sdram_data);
150         printf("        DDR0_19 = 0x%08X", sdram_data);
151         mfsdram(DDR0_20, sdram_data);
152         printf("        DDR0_20 = 0x%08X\n", sdram_data);
153         mfsdram(DDR0_21, sdram_data);
154         printf("        DDR0_21 = 0x%08X", sdram_data);
155         mfsdram(DDR0_22, sdram_data);
156         printf("        DDR0_22 = 0x%08X\n", sdram_data);
157         mfsdram(DDR0_23, sdram_data);
158         printf("        DDR0_23 = 0x%08X", sdram_data);
159         mfsdram(DDR0_24, sdram_data);
160         printf("        DDR0_24 = 0x%08X\n", sdram_data);
161         mfsdram(DDR0_25, sdram_data);
162         printf("        DDR0_25 = 0x%08X", sdram_data);
163         mfsdram(DDR0_26, sdram_data);
164         printf("        DDR0_26 = 0x%08X\n", sdram_data);
165         mfsdram(DDR0_27, sdram_data);
166         printf("        DDR0_27 = 0x%08X", sdram_data);
167         mfsdram(DDR0_28, sdram_data);
168         printf("        DDR0_28 = 0x%08X\n", sdram_data);
169         mfsdram(DDR0_31, sdram_data);
170         printf("        DDR0_31 = 0x%08X", sdram_data);
171         mfsdram(DDR0_32, sdram_data);
172         printf("        DDR0_32 = 0x%08X\n", sdram_data);
173         mfsdram(DDR0_33, sdram_data);
174         printf("        DDR0_33 = 0x%08X", sdram_data);
175         mfsdram(DDR0_34, sdram_data);
176         printf("        DDR0_34 = 0x%08X\n", sdram_data);
177         mfsdram(DDR0_35, sdram_data);
178         printf("        DDR0_35 = 0x%08X", sdram_data);
179         mfsdram(DDR0_36, sdram_data);
180         printf("        DDR0_36 = 0x%08X\n", sdram_data);
181         mfsdram(DDR0_37, sdram_data);
182         printf("        DDR0_37 = 0x%08X", sdram_data);
183         mfsdram(DDR0_38, sdram_data);
184         printf("        DDR0_38 = 0x%08X\n", sdram_data);
185         mfsdram(DDR0_39, sdram_data);
186         printf("        DDR0_39 = 0x%08X", sdram_data);
187         mfsdram(DDR0_40, sdram_data);
188         printf("        DDR0_40 = 0x%08X\n", sdram_data);
189         mfsdram(DDR0_41, sdram_data);
190         printf("        DDR0_41 = 0x%08X", sdram_data);
191         mfsdram(DDR0_42, sdram_data);
192         printf("        DDR0_42 = 0x%08X\n", sdram_data);
193         mfsdram(DDR0_43, sdram_data);
194         printf("        DDR0_43 = 0x%08X", sdram_data);
195         mfsdram(DDR0_44, sdram_data);
196         printf("        DDR0_44 = 0x%08X\n", sdram_data);
197 }
198 #else
199 static inline void denali_sdram_register_dump(void)
200 {
201 }
202
203 inline static void print_mcsr(void)
204 {
205 }
206 #endif /* defined(DEBUG) */
207
208 static int is_ecc_enabled(void)
209 {
210         u32 val;
211
212         mfsdram(DDR0_22, val);
213         return 0x3 == DDR0_22_CTRL_RAW_DECODE(val);
214 }
215
216 static unsigned char spd_read(u8 chip, unsigned int addr)
217 {
218         u8 data[2];
219
220         if (0 != i2c_probe(chip) || 0 != i2c_read(chip, addr, 1, data, 1)) {
221                 debug("spd_read(0x%02X, 0x%02X) failed\n", chip, addr);
222                 return 0;
223         }
224         debug("spd_read(0x%02X, 0x%02X) returned 0x%02X\n",
225               chip, addr, data[0]);
226         return data[0];
227 }
228
229 static unsigned long get_tcyc(unsigned char reg)
230 {
231         /*
232          * Byte 9, et al: Cycle time for CAS Latency=X, is split into two
233          * nibbles: the higher order nibble (bits 4-7) designates the cycle time
234          * to a granularity of 1ns; the value presented by the lower order
235          * nibble (bits 0-3) has a granularity of .1ns and is added to the value
236          * designated by the higher nibble. In addition, four lines of the lower
237          * order nibble are assigned to support +.25, +.33, +.66, and +.75.
238          */
239
240         unsigned char subfield_b = reg & 0x0F;
241
242         switch (subfield_b & 0x0F) {
243         case 0x0:
244         case 0x1:
245         case 0x2:
246         case 0x3:
247         case 0x4:
248         case 0x5:
249         case 0x6:
250         case 0x7:
251         case 0x8:
252         case 0x9:
253                 return 1000 * (reg >> 4) + 100 * subfield_b;
254         case 0xA:
255                 return 1000 * (reg >> 4) + 250;
256         case 0xB:
257                 return 1000 * (reg >> 4) + 333;
258         case 0xC:
259                 return 1000 * (reg >> 4) + 667;
260         case 0xD:
261                 return 1000 * (reg >> 4) + 750;
262         }
263         return 0;
264 }
265
266 /*------------------------------------------------------------------
267  * Find the installed DIMMs, make sure that the are DDR2, and fill
268  * in the dimm_ranks array.  Then dimm_ranks[dimm_num] > 0 iff the
269  * DIMM and dimm_num is present.
270  * Note: Because there are only two chip-select lines, it is assumed
271  * that a board with a single socket can support two ranks on that
272  * socket, while a board with two sockets can support only one rank
273  * on each socket.
274  *-----------------------------------------------------------------*/
275 static void get_spd_info(unsigned long dimm_ranks[],
276                          unsigned long *ranks,
277                          unsigned char const iic0_dimm_addr[],
278                          unsigned long num_dimm_banks)
279 {
280         unsigned long dimm_num;
281         unsigned long dimm_found = FALSE;
282         unsigned long const max_ranks_per_dimm = (1 == num_dimm_banks) ? 2 : 1;
283         unsigned char num_of_bytes;
284         unsigned char total_size;
285
286         *ranks = 0;
287         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
288                 num_of_bytes = 0;
289                 total_size = 0;
290
291                 num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
292                 total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
293                 if ((num_of_bytes != 0) && (total_size != 0)) {
294                         unsigned char const dimm_type =
295                             spd_read(iic0_dimm_addr[dimm_num], 2);
296
297                         unsigned long ranks_on_dimm =
298                             (spd_read(iic0_dimm_addr[dimm_num], 5) & 0x07) + 1;
299
300                         if (8 != dimm_type) {
301                                 switch (dimm_type) {
302                                 case 1:
303                                         printf("ERROR: Standard Fast Page Mode "
304                                                "DRAM DIMM");
305                                         break;
306                                 case 2:
307                                         printf("ERROR: EDO DIMM");
308                                         break;
309                                 case 3:
310                                         printf("ERROR: Pipelined Nibble DIMM");
311                                         break;
312                                 case 4:
313                                         printf("ERROR: SDRAM DIMM");
314                                         break;
315                                 case 5:
316                                         printf("ERROR: Multiplexed ROM DIMM");
317                                         break;
318                                 case 6:
319                                         printf("ERROR: SGRAM DIMM");
320                                         break;
321                                 case 7:
322                                         printf("ERROR: DDR1 DIMM");
323                                         break;
324                                 default:
325                                         printf("ERROR: Unknown DIMM (type %d)",
326                                                (unsigned int)dimm_type);
327                                         break;
328                                 }
329                                 printf(" detected in slot %lu.\n", dimm_num);
330                                 printf("Only DDR2 SDRAM DIMMs are supported."
331                                        "\n");
332                                 printf("Replace the module with a DDR2 DIMM."
333                                        "\n\n");
334                                 spd_ddr_init_hang();
335                         }
336                         dimm_found = TRUE;
337                         debug("DIMM slot %lu: populated with %lu-rank DDR2 DIMM"
338                               "\n", dimm_num, ranks_on_dimm);
339                         if (ranks_on_dimm > max_ranks_per_dimm) {
340                                 printf("WARNING: DRAM DIMM in slot %lu has %lu "
341                                        "ranks.\n");
342                                 if (1 == max_ranks_per_dimm) {
343                                         printf("Only one rank will be used.\n");
344                                 } else {
345                                         printf
346                                             ("Only two ranks will be used.\n");
347                                 }
348                                 ranks_on_dimm = max_ranks_per_dimm;
349                         }
350                         dimm_ranks[dimm_num] = ranks_on_dimm;
351                         *ranks += ranks_on_dimm;
352                 } else {
353                         dimm_ranks[dimm_num] = 0;
354                         debug("DIMM slot %lu: Not populated\n", dimm_num);
355                 }
356         }
357         if (dimm_found == FALSE) {
358                 printf("ERROR: No memory installed.\n");
359                 printf("Install at least one DDR2 DIMM.\n\n");
360                 spd_ddr_init_hang();
361         }
362         debug("Total number of ranks = %d\n", *ranks);
363 }
364
365 /*------------------------------------------------------------------
366  * For the memory DIMMs installed, this routine verifies that
367  * frequency previously calculated is supported.
368  *-----------------------------------------------------------------*/
369 static void check_frequency(unsigned long *dimm_ranks,
370                             unsigned char const iic0_dimm_addr[],
371                             unsigned long num_dimm_banks,
372                             unsigned long sdram_freq)
373 {
374         unsigned long dimm_num;
375         unsigned long cycle_time;
376         unsigned long calc_cycle_time;
377
378         /*
379          * calc_cycle_time is calculated from DDR frequency set by board/chip
380          * and is expressed in picoseconds to match the way DIMM cycle time is
381          * calculated below.
382          */
383         calc_cycle_time = MULDIV64(ONE_BILLION, 1000, sdram_freq);
384
385         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
386                 if (dimm_ranks[dimm_num]) {
387                         cycle_time =
388                             get_tcyc(spd_read(iic0_dimm_addr[dimm_num], 9));
389                         debug("cycle_time=%d ps\n", cycle_time);
390
391                         if (cycle_time > (calc_cycle_time + 10)) {
392                                 /*
393                                  * the provided sdram cycle_time is too small
394                                  * for the available DIMM cycle_time. The
395                                  * additionnal 10ps is here to accept a small
396                                  * incertainty.
397                                  */
398                                 printf
399                                     ("ERROR: DRAM DIMM detected with cycle_time %d ps in "
400                                      "slot %d \n while calculated cycle time is %d ps.\n",
401                                      (unsigned int)cycle_time,
402                                      (unsigned int)dimm_num,
403                                      (unsigned int)calc_cycle_time);
404                                 printf
405                                     ("Replace the DIMM, or change DDR frequency via "
406                                      "strapping bits.\n\n");
407                                 spd_ddr_init_hang();
408                         }
409                 }
410         }
411 }
412
413 /*------------------------------------------------------------------
414  * This routine gets size information for the installed memory
415  * DIMMs.
416  *-----------------------------------------------------------------*/
417 static void get_dimm_size(unsigned long dimm_ranks[],
418                           unsigned char const iic0_dimm_addr[],
419                           unsigned long num_dimm_banks,
420                           unsigned long *const rows,
421                           unsigned long *const banks,
422                           unsigned long *const cols, unsigned long *const width)
423 {
424         unsigned long dimm_num;
425
426         *rows = 0;
427         *banks = 0;
428         *cols = 0;
429         *width = 0;
430         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
431                 if (dimm_ranks[dimm_num]) {
432                         unsigned long t;
433
434                         /* Rows */
435                         t = spd_read(iic0_dimm_addr[dimm_num], 3);
436                         if (0 == *rows) {
437                                 *rows = t;
438                         } else if (t != *rows) {
439                                 printf("ERROR: DRAM DIMM modules do not all "
440                                        "have the same number of rows.\n\n");
441                                 spd_ddr_init_hang();
442                         }
443                         /* Banks */
444                         t = spd_read(iic0_dimm_addr[dimm_num], 17);
445                         if (0 == *banks) {
446                                 *banks = t;
447                         } else if (t != *banks) {
448                                 printf("ERROR: DRAM DIMM modules do not all "
449                                        "have the same number of banks.\n\n");
450                                 spd_ddr_init_hang();
451                         }
452                         /* Columns */
453                         t = spd_read(iic0_dimm_addr[dimm_num], 4);
454                         if (0 == *cols) {
455                                 *cols = t;
456                         } else if (t != *cols) {
457                                 printf("ERROR: DRAM DIMM modules do not all "
458                                        "have the same number of columns.\n\n");
459                                 spd_ddr_init_hang();
460                         }
461                         /* Data width */
462                         t = spd_read(iic0_dimm_addr[dimm_num], 6);
463                         if (0 == *width) {
464                                 *width = t;
465                         } else if (t != *width) {
466                                 printf("ERROR: DRAM DIMM modules do not all "
467                                        "have the same data width.\n\n");
468                                 spd_ddr_init_hang();
469                         }
470                 }
471         }
472         debug("Number of rows = %d\n", *rows);
473         debug("Number of columns = %d\n", *cols);
474         debug("Number of banks = %d\n", *banks);
475         debug("Data width = %d\n", *width);
476         if (*rows > 14) {
477                 printf("ERROR: DRAM DIMM modules have %lu address rows.\n",
478                        *rows);
479                 printf("Only modules with 14 or fewer rows are supported.\n\n");
480                 spd_ddr_init_hang();
481         }
482         if (4 != *banks && 8 != *banks) {
483                 printf("ERROR: DRAM DIMM modules have %lu banks.\n", *banks);
484                 printf("Only modules with 4 or 8 banks are supported.\n\n");
485                 spd_ddr_init_hang();
486         }
487         if (*cols > 12) {
488                 printf("ERROR: DRAM DIMM modules have %lu address columns.\n",
489                        *cols);
490                 printf("Only modules with 12 or fewer columns are "
491                        "supported.\n\n");
492                 spd_ddr_init_hang();
493         }
494         if (32 != *width && 40 != *width && 64 != *width && 72 != *width) {
495                 printf("ERROR: DRAM DIMM modules have a width of %lu bit.\n",
496                        *width);
497                 printf("Only modules with widths of 32, 40, 64, and 72 bits "
498                        "are supported.\n\n");
499                 spd_ddr_init_hang();
500         }
501 }
502
503 /*------------------------------------------------------------------
504  * Only 1.8V modules are supported.  This routine verifies this.
505  *-----------------------------------------------------------------*/
506 static void check_voltage_type(unsigned long dimm_ranks[],
507                                unsigned char const iic0_dimm_addr[],
508                                unsigned long num_dimm_banks)
509 {
510         unsigned long dimm_num;
511         unsigned long voltage_type;
512
513         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
514                 if (dimm_ranks[dimm_num]) {
515                         voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
516                         if (0x05 != voltage_type) {     /* 1.8V for DDR2 */
517                                 printf("ERROR: Slot %lu provides 1.8V for DDR2 "
518                                        "DIMMs.\n", dimm_num);
519                                 switch (voltage_type) {
520                                 case 0x00:
521                                         printf("This DIMM is 5.0 Volt/TTL.\n");
522                                         break;
523                                 case 0x01:
524                                         printf("This DIMM is LVTTL.\n");
525                                         break;
526                                 case 0x02:
527                                         printf("This DIMM is 1.5 Volt.\n");
528                                         break;
529                                 case 0x03:
530                                         printf("This DIMM is 3.3 Volt/TTL.\n");
531                                         break;
532                                 case 0x04:
533                                         printf("This DIMM is 2.5 Volt.\n");
534                                         break;
535                                 default:
536                                         printf("This DIMM is an unknown "
537                                                "voltage.\n");
538                                         break;
539                                 }
540                                 printf("Replace it with a 1.8V DDR2 DIMM.\n\n");
541                                 spd_ddr_init_hang();
542                         }
543                 }
544         }
545 }
546
547 static void program_ddr0_03(unsigned long dimm_ranks[],
548                             unsigned char const iic0_dimm_addr[],
549                             unsigned long num_dimm_banks,
550                             unsigned long sdram_freq,
551                             unsigned long rows, unsigned long *cas_latency)
552 {
553         unsigned long dimm_num;
554         unsigned long cas_index;
555         unsigned long cycle_2_0_clk;
556         unsigned long cycle_3_0_clk;
557         unsigned long cycle_4_0_clk;
558         unsigned long cycle_5_0_clk;
559         unsigned long max_2_0_tcyc_ps = 100;
560         unsigned long max_3_0_tcyc_ps = 100;
561         unsigned long max_4_0_tcyc_ps = 100;
562         unsigned long max_5_0_tcyc_ps = 100;
563         unsigned char cas_available = 0x3C;     /* value for DDR2 */
564         u32 ddr0_03 = DDR0_03_BSTLEN_ENCODE(0x2) | DDR0_03_INITAREF_ENCODE(0x2);
565         unsigned int const tcyc_addr[3] = { 9, 23, 25 };
566
567         /*------------------------------------------------------------------
568          * Get the board configuration info.
569          *-----------------------------------------------------------------*/
570         debug("sdram_freq = %d\n", sdram_freq);
571
572         /*------------------------------------------------------------------
573          * Handle the timing.  We need to find the worst case timing of all
574          * the dimm modules installed.
575          *-----------------------------------------------------------------*/
576         /* loop through all the DIMM slots on the board */
577         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
578                 /* If a dimm is installed in a particular slot ... */
579                 if (dimm_ranks[dimm_num]) {
580                         unsigned char const cas_bit =
581                             spd_read(iic0_dimm_addr[dimm_num], 18);
582                         unsigned char cas_mask;
583
584                         cas_available &= cas_bit;
585                         for (cas_mask = 0x80; cas_mask; cas_mask >>= 1) {
586                                 if (cas_bit & cas_mask)
587                                         break;
588                         }
589                         debug("cas_bit (SPD byte 18) = %02X, cas_mask = %02X\n",
590                               cas_bit, cas_mask);
591
592                         for (cas_index = 0; cas_index < 3;
593                              cas_mask >>= 1, cas_index++) {
594                                 unsigned long cycle_time_ps;
595
596                                 if (!(cas_available & cas_mask)) {
597                                         continue;
598                                 }
599                                 cycle_time_ps =
600                                     get_tcyc(spd_read(iic0_dimm_addr[dimm_num],
601                                                       tcyc_addr[cas_index]));
602
603                                 debug("cas_index = %d: cycle_time_ps = %d\n",
604                                       cas_index, cycle_time_ps);
605                                 /*
606                                  * DDR2 devices use the following bitmask for CAS latency:
607                                  *  Bit   7    6    5    4    3    2    1    0
608                                  *       TBD  6.0  5.0  4.0  3.0  2.0  TBD  TBD
609                                  */
610                                 switch (cas_mask) {
611                                 case 0x20:
612                                         max_5_0_tcyc_ps =
613                                             max(max_5_0_tcyc_ps, cycle_time_ps);
614                                         break;
615                                 case 0x10:
616                                         max_4_0_tcyc_ps =
617                                             max(max_4_0_tcyc_ps, cycle_time_ps);
618                                         break;
619                                 case 0x08:
620                                         max_3_0_tcyc_ps =
621                                             max(max_3_0_tcyc_ps, cycle_time_ps);
622                                         break;
623                                 case 0x04:
624                                         max_2_0_tcyc_ps =
625                                             max(max_2_0_tcyc_ps, cycle_time_ps);
626                                         break;
627                                 }
628                         }
629                 }
630         }
631         debug("cas_available (bit map) = 0x%02X\n", cas_available);
632
633         /*------------------------------------------------------------------
634          * Set the SDRAM mode, SDRAM_MMODE
635          *-----------------------------------------------------------------*/
636
637         /* add 10 here because of rounding problems */
638         cycle_2_0_clk = MULDIV64(ONE_BILLION, 1000, max_2_0_tcyc_ps) + 10;
639         cycle_3_0_clk = MULDIV64(ONE_BILLION, 1000, max_3_0_tcyc_ps) + 10;
640         cycle_4_0_clk = MULDIV64(ONE_BILLION, 1000, max_4_0_tcyc_ps) + 10;
641         cycle_5_0_clk = MULDIV64(ONE_BILLION, 1000, max_5_0_tcyc_ps) + 10;
642         debug("cycle_2_0_clk = %d\n", cycle_2_0_clk);
643         debug("cycle_3_0_clk = %d\n", cycle_3_0_clk);
644         debug("cycle_4_0_clk = %d\n", cycle_4_0_clk);
645         debug("cycle_5_0_clk = %d\n", cycle_5_0_clk);
646
647         if ((cas_available & 0x04) && (sdram_freq <= cycle_2_0_clk)) {
648                 *cas_latency = 2;
649                 ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x2) |
650                     DDR0_03_CASLAT_LIN_ENCODE(0x4);
651         } else if ((cas_available & 0x08) && (sdram_freq <= cycle_3_0_clk)) {
652                 *cas_latency = 3;
653                 ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x3) |
654                     DDR0_03_CASLAT_LIN_ENCODE(0x6);
655         } else if ((cas_available & 0x10) && (sdram_freq <= cycle_4_0_clk)) {
656                 *cas_latency = 4;
657                 ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x4) |
658                     DDR0_03_CASLAT_LIN_ENCODE(0x8);
659         } else if ((cas_available & 0x20) && (sdram_freq <= cycle_5_0_clk)) {
660                 *cas_latency = 5;
661                 ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x5) |
662                     DDR0_03_CASLAT_LIN_ENCODE(0xA);
663         } else {
664                 printf("ERROR: Cannot find a supported CAS latency with the "
665                        "installed DIMMs.\n");
666                 printf("Only DDR2 DIMMs with CAS latencies of 2.0, 3.0, 4.0, "
667                        "and 5.0 are supported.\n");
668                 printf("Make sure the PLB speed is within the supported range "
669                        "of the DIMMs.\n");
670                 printf("sdram_freq=%d cycle2=%d cycle3=%d cycle4=%d "
671                        "cycle5=%d\n\n", sdram_freq, cycle_2_0_clk,
672                        cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
673                 spd_ddr_init_hang();
674         }
675         debug("CAS latency = %d\n", *cas_latency);
676         mtsdram(DDR0_03, ddr0_03);
677 }
678
679 static void program_ddr0_04(unsigned long dimm_ranks[],
680                             unsigned char const iic0_dimm_addr[],
681                             unsigned long num_dimm_banks,
682                             unsigned long sdram_freq)
683 {
684         unsigned long dimm_num;
685         unsigned long t_rc_ps = 0;
686         unsigned long t_rrd_ps = 0;
687         unsigned long t_rtp_ps = 0;
688         unsigned long t_rc_clk;
689         unsigned long t_rrd_clk;
690         unsigned long t_rtp_clk;
691
692         /*------------------------------------------------------------------
693          * Handle the timing.  We need to find the worst case timing of all
694          * the dimm modules installed.
695          *-----------------------------------------------------------------*/
696         /* loop through all the DIMM slots on the board */
697         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
698                 /* If a dimm is installed in a particular slot ... */
699                 if (dimm_ranks[dimm_num]) {
700                         unsigned long ps;
701
702                         /* tRC */
703                         ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 41);
704                         switch (spd_read(iic0_dimm_addr[dimm_num], 40) >> 4) {
705                         case 0x1:
706                                 ps += 250;
707                                 break;
708                         case 0x2:
709                                 ps += 333;
710                                 break;
711                         case 0x3:
712                                 ps += 500;
713                                 break;
714                         case 0x4:
715                                 ps += 667;
716                                 break;
717                         case 0x5:
718                                 ps += 750;
719                                 break;
720                         }
721                         t_rc_ps = max(t_rc_ps, ps);
722                         /* tRRD */
723                         ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 28);
724                         t_rrd_ps = max(t_rrd_ps, ps);
725                         /* tRTP */
726                         ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 38);
727                         t_rtp_ps = max(t_rtp_ps, ps);
728                 }
729         }
730         debug("t_rc_ps  = %d\n", t_rc_ps);
731         t_rc_clk = (MULDIV64(sdram_freq, t_rc_ps, ONE_BILLION) + 999) / 1000;
732         debug("t_rrd_ps = %d\n", t_rrd_ps);
733         t_rrd_clk = (MULDIV64(sdram_freq, t_rrd_ps, ONE_BILLION) + 999) / 1000;
734         debug("t_rtp_ps = %d\n", t_rtp_ps);
735         t_rtp_clk = (MULDIV64(sdram_freq, t_rtp_ps, ONE_BILLION) + 999) / 1000;
736         mtsdram(DDR0_04, DDR0_04_TRC_ENCODE(t_rc_clk) |
737                 DDR0_04_TRRD_ENCODE(t_rrd_clk) |
738                 DDR0_04_TRTP_ENCODE(t_rtp_clk));
739 }
740
741 static void program_ddr0_05(unsigned long dimm_ranks[],
742                             unsigned char const iic0_dimm_addr[],
743                             unsigned long num_dimm_banks,
744                             unsigned long sdram_freq)
745 {
746         unsigned long dimm_num;
747         unsigned long t_rp_ps = 0;
748         unsigned long t_ras_ps = 0;
749         unsigned long t_rp_clk;
750         unsigned long t_ras_clk;
751         u32 ddr0_05 = DDR0_05_TMRD_ENCODE(0x2) | DDR0_05_TEMRS_ENCODE(0x2);
752
753         /*------------------------------------------------------------------
754          * Handle the timing.  We need to find the worst case timing of all
755          * the dimm modules installed.
756          *-----------------------------------------------------------------*/
757         /* loop through all the DIMM slots on the board */
758         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
759                 /* If a dimm is installed in a particular slot ... */
760                 if (dimm_ranks[dimm_num]) {
761                         unsigned long ps;
762
763                         /* tRP */
764                         ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 27);
765                         t_rp_ps = max(t_rp_ps, ps);
766                         /* tRAS */
767                         ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 30);
768                         t_ras_ps = max(t_ras_ps, ps);
769                 }
770         }
771         debug("t_rp_ps  = %d\n", t_rp_ps);
772         t_rp_clk = (MULDIV64(sdram_freq, t_rp_ps, ONE_BILLION) + 999) / 1000;
773         debug("t_ras_ps = %d\n", t_ras_ps);
774         t_ras_clk = (MULDIV64(sdram_freq, t_ras_ps, ONE_BILLION) + 999) / 1000;
775         mtsdram(DDR0_05, ddr0_05 | DDR0_05_TRP_ENCODE(t_rp_clk) |
776                 DDR0_05_TRAS_MIN_ENCODE(t_ras_clk));
777 }
778
779 static void program_ddr0_06(unsigned long dimm_ranks[],
780                             unsigned char const iic0_dimm_addr[],
781                             unsigned long num_dimm_banks,
782                             unsigned long sdram_freq)
783 {
784         unsigned long dimm_num;
785         unsigned char spd_40;
786         unsigned long t_wtr_ps = 0;
787         unsigned long t_rfc_ps = 0;
788         unsigned long t_wtr_clk;
789         unsigned long t_rfc_clk;
790         u32 ddr0_06 =
791             DDR0_06_WRITEINTERP_ENCODE(0x1) | DDR0_06_TDLL_ENCODE(200);
792
793         /*------------------------------------------------------------------
794          * Handle the timing.  We need to find the worst case timing of all
795          * the dimm modules installed.
796          *-----------------------------------------------------------------*/
797         /* loop through all the DIMM slots on the board */
798         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
799                 /* If a dimm is installed in a particular slot ... */
800                 if (dimm_ranks[dimm_num]) {
801                         unsigned long ps;
802
803                         /* tWTR */
804                         ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 37);
805                         t_wtr_ps = max(t_wtr_ps, ps);
806                         /* tRFC */
807                         ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 42);
808                         spd_40 = spd_read(iic0_dimm_addr[dimm_num], 40);
809                         ps += 256000 * (spd_40 & 0x01);
810                         switch ((spd_40 & 0x0E) >> 1) {
811                         case 0x1:
812                                 ps += 250;
813                                 break;
814                         case 0x2:
815                                 ps += 333;
816                                 break;
817                         case 0x3:
818                                 ps += 500;
819                                 break;
820                         case 0x4:
821                                 ps += 667;
822                                 break;
823                         case 0x5:
824                                 ps += 750;
825                                 break;
826                         }
827                         t_rfc_ps = max(t_rfc_ps, ps);
828                 }
829         }
830         debug("t_wtr_ps = %d\n", t_wtr_ps);
831         t_wtr_clk = (MULDIV64(sdram_freq, t_wtr_ps, ONE_BILLION) + 999) / 1000;
832         debug("t_rfc_ps = %d\n", t_rfc_ps);
833         t_rfc_clk = (MULDIV64(sdram_freq, t_rfc_ps, ONE_BILLION) + 999) / 1000;
834         mtsdram(DDR0_06, ddr0_06 | DDR0_06_TWTR_ENCODE(t_wtr_clk) |
835                 DDR0_06_TRFC_ENCODE(t_rfc_clk));
836 }
837
838 static void program_ddr0_10(unsigned long dimm_ranks[], unsigned long ranks)
839 {
840         unsigned long csmap;
841
842         if (2 == ranks) {
843                 /* Both chip selects in use */
844                 csmap = 0x03;
845         } else {
846                 /* One chip select in use */
847                 csmap = (1 == dimm_ranks[0]) ? 0x1 : 0x2;
848         }
849         mtsdram(DDR0_10, DDR0_10_WRITE_MODEREG_ENCODE(0x0) |
850                 DDR0_10_CS_MAP_ENCODE(csmap) |
851                 DDR0_10_OCD_ADJUST_PUP_CS_0_ENCODE(0));
852 }
853
854 static void program_ddr0_11(unsigned long sdram_freq)
855 {
856         unsigned long const t_xsnr_ps = 200000; /* 200 ns */
857         unsigned long t_xsnr_clk;
858
859         debug("t_xsnr_ps = %d\n", t_xsnr_ps);
860         t_xsnr_clk =
861             (MULDIV64(sdram_freq, t_xsnr_ps, ONE_BILLION) + 999) / 1000;
862         mtsdram(DDR0_11, DDR0_11_SREFRESH_ENCODE(0) |
863                 DDR0_11_TXSNR_ENCODE(t_xsnr_clk) | DDR0_11_TXSR_ENCODE(200));
864 }
865
866 static void program_ddr0_22(unsigned long dimm_ranks[],
867                             unsigned char const iic0_dimm_addr[],
868                             unsigned long num_dimm_banks, unsigned long width)
869 {
870 #if defined(CONFIG_DDR_ECC)
871         unsigned long dimm_num;
872         unsigned long ecc_available = width >= 64;
873         u32 ddr0_22 = DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) |
874             DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) |
875             DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS);
876
877         /* loop through all the DIMM slots on the board */
878         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
879                 /* If a dimm is installed in a particular slot ... */
880                 if (dimm_ranks[dimm_num]) {
881                         /* Check for ECC */
882                         if (0 == (spd_read(iic0_dimm_addr[dimm_num], 11) &
883                                   0x02)) {
884                                 ecc_available = FALSE;
885                         }
886                 }
887         }
888         if (ecc_available) {
889                 debug("ECC found on all DIMMs present\n");
890                 mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x3));
891         } else {
892                 debug("ECC not found on some or all DIMMs present\n");
893                 mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x0));
894         }
895 #else
896         mtsdram(DDR0_22, DDR0_22_CTRL_RAW_ENCODE(0x0) |
897                 DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) |
898                 DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) |
899                 DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS));
900 #endif /* defined(CONFIG_DDR_ECC) */
901 }
902
903 static void program_ddr0_24(unsigned long ranks)
904 {
905         u32 ddr0_24 = DDR0_24_RTT_PAD_TERMINATION_ENCODE(0x1) | /* 75 ohm */
906             DDR0_24_ODT_RD_MAP_CS1_ENCODE(0x0);
907
908         if (2 == ranks) {
909                 /* Both chip selects in use */
910                 ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x1) |
911                     DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x2);
912         } else {
913                 /* One chip select in use */
914                 /* One of the two fields added to ddr0_24 is a "don't care" */
915                 ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x2) |
916                     DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x1);
917         }
918         mtsdram(DDR0_24, ddr0_24);
919 }
920
921 static void program_ddr0_26(unsigned long sdram_freq)
922 {
923         unsigned long const t_ref_ps = 7800000; /* 7.8 us. refresh */
924         /* TODO: check definition of tRAS_MAX */
925         unsigned long const t_ras_max_ps = 9 * t_ref_ps;
926         unsigned long t_ras_max_clk;
927         unsigned long t_ref_clk;
928
929         /* Round down t_ras_max_clk and t_ref_clk */
930         debug("t_ras_max_ps = %d\n", t_ras_max_ps);
931         t_ras_max_clk = MULDIV64(sdram_freq, t_ras_max_ps, ONE_BILLION) / 1000;
932         debug("t_ref_ps     = %d\n", t_ref_ps);
933         t_ref_clk = MULDIV64(sdram_freq, t_ref_ps, ONE_BILLION) / 1000;
934         mtsdram(DDR0_26, DDR0_26_TRAS_MAX_ENCODE(t_ras_max_clk) |
935                 DDR0_26_TREF_ENCODE(t_ref_clk));
936 }
937
938 static void program_ddr0_27(unsigned long sdram_freq)
939 {
940         unsigned long const t_init_ps = 200000000;      /* 200 us. init */
941         unsigned long t_init_clk;
942
943         debug("t_init_ps = %d\n", t_init_ps);
944         t_init_clk =
945             (MULDIV64(sdram_freq, t_init_ps, ONE_BILLION) + 999) / 1000;
946         mtsdram(DDR0_27, DDR0_27_EMRS_DATA_ENCODE(0x0000) |
947                 DDR0_27_TINIT_ENCODE(t_init_clk));
948 }
949
950 static void program_ddr0_43(unsigned long dimm_ranks[],
951                             unsigned char const iic0_dimm_addr[],
952                             unsigned long num_dimm_banks,
953                             unsigned long sdram_freq,
954                             unsigned long cols, unsigned long banks)
955 {
956         unsigned long dimm_num;
957         unsigned long t_wr_ps = 0;
958         unsigned long t_wr_clk;
959         u32 ddr0_43 = DDR0_43_APREBIT_ENCODE(10) |
960             DDR0_43_COLUMN_SIZE_ENCODE(12 - cols) |
961             DDR0_43_EIGHT_BANK_MODE_ENCODE(8 == banks ? 1 : 0);
962
963         /*------------------------------------------------------------------
964          * Handle the timing.  We need to find the worst case timing of all
965          * the dimm modules installed.
966          *-----------------------------------------------------------------*/
967         /* loop through all the DIMM slots on the board */
968         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
969                 /* If a dimm is installed in a particular slot ... */
970                 if (dimm_ranks[dimm_num]) {
971                         unsigned long ps;
972
973                         ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 36);
974                         t_wr_ps = max(t_wr_ps, ps);
975                 }
976         }
977         debug("t_wr_ps = %d\n", t_wr_ps);
978         t_wr_clk = (MULDIV64(sdram_freq, t_wr_ps, ONE_BILLION) + 999) / 1000;
979         mtsdram(DDR0_43, ddr0_43 | DDR0_43_TWR_ENCODE(t_wr_clk));
980 }
981
982 static void program_ddr0_44(unsigned long dimm_ranks[],
983                             unsigned char const iic0_dimm_addr[],
984                             unsigned long num_dimm_banks,
985                             unsigned long sdram_freq)
986 {
987         unsigned long dimm_num;
988         unsigned long t_rcd_ps = 0;
989         unsigned long t_rcd_clk;
990
991         /*------------------------------------------------------------------
992          * Handle the timing.  We need to find the worst case timing of all
993          * the dimm modules installed.
994          *-----------------------------------------------------------------*/
995         /* loop through all the DIMM slots on the board */
996         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
997                 /* If a dimm is installed in a particular slot ... */
998                 if (dimm_ranks[dimm_num]) {
999                         unsigned long ps;
1000
1001                         ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 29);
1002                         t_rcd_ps = max(t_rcd_ps, ps);
1003                 }
1004         }
1005         debug("t_rcd_ps = %d\n", t_rcd_ps);
1006         t_rcd_clk = (MULDIV64(sdram_freq, t_rcd_ps, ONE_BILLION) + 999) / 1000;
1007         mtsdram(DDR0_44, DDR0_44_TRCD_ENCODE(t_rcd_clk));
1008 }
1009
1010 /*-----------------------------------------------------------------------------+
1011  * initdram.  Initializes the 440EPx/GPx DDR SDRAM controller.
1012  * Note: This routine runs from flash with a stack set up in the chip's
1013  * sram space.  It is important that the routine does not require .sbss, .bss or
1014  * .data sections.  It also cannot call routines that require these sections.
1015  *-----------------------------------------------------------------------------*/
1016 /*-----------------------------------------------------------------------------
1017  * Function:     initdram
1018  * Description:  Configures SDRAM memory banks for DDR operation.
1019  *               Auto Memory Configuration option reads the DDR SDRAM EEPROMs
1020  *               via the IIC bus and then configures the DDR SDRAM memory
1021  *               banks appropriately. If Auto Memory Configuration is
1022  *               not used, it is assumed that no DIMM is plugged
1023  *-----------------------------------------------------------------------------*/
1024 long int initdram(int board_type)
1025 {
1026         unsigned char const iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
1027         unsigned long dimm_ranks[MAXDIMMS];
1028         unsigned long ranks;
1029         unsigned long rows;
1030         unsigned long banks;
1031         unsigned long cols;
1032         unsigned long width;
1033         unsigned long const sdram_freq = get_bus_freq(0);
1034         unsigned long const num_dimm_banks = sizeof(iic0_dimm_addr);    /* on board dimm banks */
1035         unsigned long cas_latency = 0;  /* to quiet initialization warning */
1036         unsigned long dram_size;
1037
1038         debug("\nEntering initdram()\n");
1039
1040         /*------------------------------------------------------------------
1041          * Stop the DDR-SDRAM controller.
1042          *-----------------------------------------------------------------*/
1043         mtsdram(DDR0_02, DDR0_02_START_ENCODE(0));
1044
1045         /*
1046          * Make sure I2C controller is initialized
1047          * before continuing.
1048          */
1049         /* switch to correct I2C bus */
1050         I2C_SET_BUS(CFG_SPD_BUS_NUM);
1051         i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
1052
1053         /*------------------------------------------------------------------
1054          * Clear out the serial presence detect buffers.
1055          * Perform IIC reads from the dimm.  Fill in the spds.
1056          * Check to see if the dimm slots are populated
1057          *-----------------------------------------------------------------*/
1058         get_spd_info(dimm_ranks, &ranks, iic0_dimm_addr, num_dimm_banks);
1059
1060         /*------------------------------------------------------------------
1061          * Check the frequency supported for the dimms plugged.
1062          *-----------------------------------------------------------------*/
1063         check_frequency(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
1064
1065         /*------------------------------------------------------------------
1066          * Check and get size information.
1067          *-----------------------------------------------------------------*/
1068         get_dimm_size(dimm_ranks, iic0_dimm_addr, num_dimm_banks, &rows, &banks,
1069                       &cols, &width);
1070
1071         /*------------------------------------------------------------------
1072          * Check the voltage type for the dimms plugged.
1073          *-----------------------------------------------------------------*/
1074         check_voltage_type(dimm_ranks, iic0_dimm_addr, num_dimm_banks);
1075
1076         /*------------------------------------------------------------------
1077          * Program registers for SDRAM controller.
1078          *-----------------------------------------------------------------*/
1079         mtsdram(DDR0_00, DDR0_00_DLL_INCREMENT_ENCODE(0x19) |
1080                 DDR0_00_DLL_START_POINT_DECODE(0x0A));
1081
1082         mtsdram(DDR0_01, DDR0_01_PLB0_DB_CS_LOWER_ENCODE(0x01) |
1083                 DDR0_01_PLB0_DB_CS_UPPER_ENCODE(0x00) |
1084                 DDR0_01_INT_MASK_ENCODE(0xFF));
1085
1086         program_ddr0_03(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq,
1087                         rows, &cas_latency);
1088
1089         program_ddr0_04(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
1090
1091         program_ddr0_05(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
1092
1093         program_ddr0_06(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
1094
1095         /*
1096          * TODO: tFAW not found in SPD.  Value of 13 taken from Sequoia
1097          * board SDRAM, but may be overly conservative.
1098          */
1099         mtsdram(DDR0_07, DDR0_07_NO_CMD_INIT_ENCODE(0) |
1100                 DDR0_07_TFAW_ENCODE(13) |
1101                 DDR0_07_AUTO_REFRESH_MODE_ENCODE(1) |
1102                 DDR0_07_AREFRESH_ENCODE(0));
1103
1104         mtsdram(DDR0_08, DDR0_08_WRLAT_ENCODE(cas_latency - 1) |
1105                 DDR0_08_TCPD_ENCODE(200) | DDR0_08_DQS_N_EN_ENCODE(0) |
1106                 DDR0_08_DDRII_ENCODE(1));
1107
1108         mtsdram(DDR0_09, DDR0_09_OCD_ADJUST_PDN_CS_0_ENCODE(0x00) |
1109                 DDR0_09_RTT_0_ENCODE(0x1) |
1110                 DDR0_09_WR_DQS_SHIFT_BYPASS_ENCODE(0x1D) |
1111                 DDR0_09_WR_DQS_SHIFT_ENCODE(DQS_OUT_SHIFT - 0x20));
1112
1113         program_ddr0_10(dimm_ranks, ranks);
1114
1115         program_ddr0_11(sdram_freq);
1116
1117         mtsdram(DDR0_12, DDR0_12_TCKE_ENCODE(3));
1118
1119         mtsdram(DDR0_14, DDR0_14_DLL_BYPASS_MODE_ENCODE(0) |
1120                 DDR0_14_REDUC_ENCODE(width <= 40 ? 1 : 0) |
1121                 DDR0_14_REG_DIMM_ENABLE_ENCODE(0));
1122
1123         mtsdram(DDR0_17, DDR0_17_DLL_DQS_DELAY_0_ENCODE(DLL_DQS_DELAY));
1124
1125         mtsdram(DDR0_18, DDR0_18_DLL_DQS_DELAY_4_ENCODE(DLL_DQS_DELAY) |
1126                 DDR0_18_DLL_DQS_DELAY_3_ENCODE(DLL_DQS_DELAY) |
1127                 DDR0_18_DLL_DQS_DELAY_2_ENCODE(DLL_DQS_DELAY) |
1128                 DDR0_18_DLL_DQS_DELAY_1_ENCODE(DLL_DQS_DELAY));
1129
1130         mtsdram(DDR0_19, DDR0_19_DLL_DQS_DELAY_8_ENCODE(DLL_DQS_DELAY) |
1131                 DDR0_19_DLL_DQS_DELAY_7_ENCODE(DLL_DQS_DELAY) |
1132                 DDR0_19_DLL_DQS_DELAY_6_ENCODE(DLL_DQS_DELAY) |
1133                 DDR0_19_DLL_DQS_DELAY_5_ENCODE(DLL_DQS_DELAY));
1134
1135         mtsdram(DDR0_20, DDR0_20_DLL_DQS_BYPASS_3_ENCODE(DLL_DQS_BYPASS) |
1136                 DDR0_20_DLL_DQS_BYPASS_2_ENCODE(DLL_DQS_BYPASS) |
1137                 DDR0_20_DLL_DQS_BYPASS_1_ENCODE(DLL_DQS_BYPASS) |
1138                 DDR0_20_DLL_DQS_BYPASS_0_ENCODE(DLL_DQS_BYPASS));
1139
1140         mtsdram(DDR0_21, DDR0_21_DLL_DQS_BYPASS_7_ENCODE(DLL_DQS_BYPASS) |
1141                 DDR0_21_DLL_DQS_BYPASS_6_ENCODE(DLL_DQS_BYPASS) |
1142                 DDR0_21_DLL_DQS_BYPASS_5_ENCODE(DLL_DQS_BYPASS) |
1143                 DDR0_21_DLL_DQS_BYPASS_4_ENCODE(DLL_DQS_BYPASS));
1144
1145         program_ddr0_22(dimm_ranks, iic0_dimm_addr, num_dimm_banks, width);
1146
1147         mtsdram(DDR0_23, DDR0_23_ODT_RD_MAP_CS0_ENCODE(0x0) |
1148                 DDR0_23_FWC_ENCODE(0));
1149
1150         program_ddr0_24(ranks);
1151
1152         program_ddr0_26(sdram_freq);
1153
1154         program_ddr0_27(sdram_freq);
1155
1156         mtsdram(DDR0_28, DDR0_28_EMRS3_DATA_ENCODE(0x0000) |
1157                 DDR0_28_EMRS2_DATA_ENCODE(0x0000));
1158
1159         mtsdram(DDR0_31, DDR0_31_XOR_CHECK_BITS_ENCODE(0x0000));
1160
1161         mtsdram(DDR0_42, DDR0_42_ADDR_PINS_DECODE(14 - rows) |
1162                 DDR0_42_CASLAT_LIN_GATE_ENCODE(2 * cas_latency));
1163
1164         program_ddr0_43(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq,
1165                         cols, banks);
1166
1167         program_ddr0_44(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
1168
1169         denali_sdram_register_dump();
1170
1171         dram_size = (width >= 64) ? 8 : 4;
1172         dram_size *= 1 << cols;
1173         dram_size *= banks;
1174         dram_size *= 1 << rows;
1175         dram_size *= ranks;
1176         debug("dram_size = %lu\n", dram_size);
1177
1178         /* Start the SDRAM controler */
1179         mtsdram(DDR0_02, DDR0_02_START_ENCODE(1));
1180         denali_wait_for_dlllock();
1181
1182 #if defined(CONFIG_DDR_DATA_EYE)
1183         /*
1184          * Map the first 1 MiB of memory in the TLB, and perform the data eye
1185          * search.
1186          */
1187         program_tlb(0, CFG_SDRAM_BASE, TLB_1MB_SIZE, TLB_WORD2_I_ENABLE);
1188         denali_core_search_data_eye();
1189         denali_sdram_register_dump();
1190         remove_tlb(CFG_SDRAM_BASE, TLB_1MB_SIZE);
1191 #endif
1192
1193 #if defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC)
1194         program_tlb(0, CFG_SDRAM_BASE, dram_size, 0);
1195         sync();
1196         /* Zero the memory */
1197         debug("Zeroing SDRAM...");
1198 #if defined(CFG_MEM_TOP_HIDE)
1199         dcbz_area(CFG_SDRAM_BASE, dram_size - CFG_MEM_TOP_HIDE);
1200 #else
1201 #error Please define CFG_MEM_TOP_HIDE (see README) in your board config file
1202 #endif
1203         /* Write modified dcache lines back to memory */
1204         clean_dcache_range(CFG_SDRAM_BASE, CFG_SDRAM_BASE + dram_size - CFG_MEM_TOP_HIDE);
1205         debug("Completed\n");
1206         sync();
1207         remove_tlb(CFG_SDRAM_BASE, dram_size);
1208
1209 #if defined(CONFIG_DDR_ECC)
1210         /*
1211          * If ECC is enabled, clear and enable interrupts
1212          */
1213         if (is_ecc_enabled()) {
1214                 u32 val;
1215
1216                 sync();
1217                 /* Clear error status */
1218                 mfsdram(DDR0_00, val);
1219                 mtsdram(DDR0_00, val | DDR0_00_INT_ACK_ALL);
1220                 /* Set 'int_mask' parameter to functionnal value */
1221                 mfsdram(DDR0_01, val);
1222                 mtsdram(DDR0_01, (val & ~DDR0_01_INT_MASK_MASK) |
1223                         DDR0_01_INT_MASK_ALL_OFF);
1224 #if defined(CONFIG_DDR_DATA_EYE)
1225                 /*
1226                  * Running denali_core_search_data_eye() when ECC is enabled
1227                  * causes non-ECC machine checks.  This clears them.
1228                  */
1229                 print_mcsr();
1230                 mtspr(SPRN_MCSR, mfspr(SPRN_MCSR));
1231                 print_mcsr();
1232 #endif
1233                 sync();
1234         }
1235 #endif /* defined(CONFIG_DDR_ECC) */
1236 #endif /* defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC) */
1237
1238         program_tlb(0, CFG_SDRAM_BASE, dram_size, MY_TLB_WORD2_I_ENABLE);
1239         return dram_size;
1240 }
1241
1242 void board_add_ram_info(int use_default)
1243 {
1244         u32 val;
1245
1246         printf(" (ECC");
1247         if (!is_ecc_enabled()) {
1248                 printf(" not");
1249         }
1250         printf(" enabled, %d MHz", (2 * get_bus_freq(0)) / 1000000);
1251
1252         mfsdram(DDR0_03, val);
1253         printf(", CL%d)", DDR0_03_CASLAT_LIN_DECODE(val) >> 1);
1254 }
1255 #endif /* CONFIG_SPD_EEPROM */