Some code cleanup.
[oweals/u-boot.git] / cpu / ppc4xx / 44x_spd_ddr2.c
1 /*
2  * cpu/ppc4xx/44x_spd_ddr2.c
3  * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
4  * DDR2 controller (non Denali Core). Those are 440SP/SPe.
5  *
6  * (C) Copyright 2007
7  * Stefan Roese, DENX Software Engineering, sr@denx.de.
8  *
9  * COPYRIGHT   AMCC   CORPORATION 2004
10  *
11  * See file CREDITS for list of people who contributed to this
12  * project.
13  *
14  * This program is free software; you can redistribute it and/or
15  * modify it under the terms of the GNU General Public License as
16  * published by the Free Software Foundation; either version 2 of
17  * the License, or (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, write to the Free Software
26  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
27  * MA 02111-1307 USA
28  *
29  */
30
31 /* define DEBUG for debugging output (obviously ;-)) */
32 #if 0
33 #define DEBUG
34 #endif
35
36 #include <common.h>
37 #include <command.h>
38 #include <ppc4xx.h>
39 #include <i2c.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43
44 #if defined(CONFIG_SPD_EEPROM) &&                               \
45         (defined(CONFIG_440SP) || defined(CONFIG_440SPE))
46
47 /*-----------------------------------------------------------------------------+
48  * Defines
49  *-----------------------------------------------------------------------------*/
50 #ifndef TRUE
51 #define TRUE            1
52 #endif
53 #ifndef FALSE
54 #define FALSE           0
55 #endif
56
57 #define SDRAM_DDR1      1
58 #define SDRAM_DDR2      2
59 #define SDRAM_NONE      0
60
61 #define MAXDIMMS        2
62 #define MAXRANKS        4
63 #define MAXBXCF         4
64 #define MAX_SPD_BYTES   256   /* Max number of bytes on the DIMM's SPD EEPROM */
65
66 #define ONE_BILLION     1000000000
67
68 #define MULDIV64(m1, m2, d)     (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
69
70 #define CMD_NOP         (7 << 19)
71 #define CMD_PRECHARGE   (2 << 19)
72 #define CMD_REFRESH     (1 << 19)
73 #define CMD_EMR         (0 << 19)
74 #define CMD_READ        (5 << 19)
75 #define CMD_WRITE       (4 << 19)
76
77 #define SELECT_MR       (0 << 16)
78 #define SELECT_EMR      (1 << 16)
79 #define SELECT_EMR2     (2 << 16)
80 #define SELECT_EMR3     (3 << 16)
81
82 /* MR */
83 #define DLL_RESET       0x00000100
84
85 #define WRITE_RECOV_2   (1 << 9)
86 #define WRITE_RECOV_3   (2 << 9)
87 #define WRITE_RECOV_4   (3 << 9)
88 #define WRITE_RECOV_5   (4 << 9)
89 #define WRITE_RECOV_6   (5 << 9)
90
91 #define BURST_LEN_4     0x00000002
92
93 /* EMR */
94 #define ODT_0_OHM       0x00000000
95 #define ODT_50_OHM      0x00000044
96 #define ODT_75_OHM      0x00000004
97 #define ODT_150_OHM     0x00000040
98
99 #define ODS_FULL        0x00000000
100 #define ODS_REDUCED     0x00000002
101
102 /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
103 #define ODT_EB0R        (0x80000000 >> 8)
104 #define ODT_EB0W        (0x80000000 >> 7)
105 #define CALC_ODT_R(n)   (ODT_EB0R << (n << 1))
106 #define CALC_ODT_W(n)   (ODT_EB0W << (n << 1))
107 #define CALC_ODT_RW(n)  (CALC_ODT_R(n) | CALC_ODT_W(n))
108
109 /* Defines for the Read Cycle Delay test */
110 #define NUMMEMTESTS 8
111 #define NUMMEMWORDS 8
112
113 #define CONFIG_ECC_ERROR_RESET          /* test-only: see description below, at check_ecc() */
114
115 /*
116  * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
117  * region. Right now the cache should still be disabled in U-Boot because of the
118  * EMAC driver, that need it's buffer descriptor to be located in non cached
119  * memory.
120  *
121  * If at some time this restriction doesn't apply anymore, just define
122  * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup
123  * everything correctly.
124  */
125 #ifdef CFG_ENABLE_SDRAM_CACHE
126 #define MY_TLB_WORD2_I_ENABLE   0                       /* enable caching on SDRAM */
127 #else
128 #define MY_TLB_WORD2_I_ENABLE   TLB_WORD2_I_ENABLE      /* disable caching on SDRAM */
129 #endif
130
131 /* Private Structure Definitions */
132
133 /* enum only to ease code for cas latency setting */
134 typedef enum ddr_cas_id {
135         DDR_CAS_2      = 20,
136         DDR_CAS_2_5    = 25,
137         DDR_CAS_3      = 30,
138         DDR_CAS_4      = 40,
139         DDR_CAS_5      = 50
140 } ddr_cas_id_t;
141
142 /*-----------------------------------------------------------------------------+
143  * Prototypes
144  *-----------------------------------------------------------------------------*/
145 static unsigned long sdram_memsize(void);
146 void program_tlb(u32 start, u32 size, u32 tlb_word2_i_value);
147 static void get_spd_info(unsigned long *dimm_populated,
148                          unsigned char *iic0_dimm_addr,
149                          unsigned long num_dimm_banks);
150 static void check_mem_type(unsigned long *dimm_populated,
151                            unsigned char *iic0_dimm_addr,
152                            unsigned long num_dimm_banks);
153 static void check_frequency(unsigned long *dimm_populated,
154                             unsigned char *iic0_dimm_addr,
155                             unsigned long num_dimm_banks);
156 static void check_rank_number(unsigned long *dimm_populated,
157                               unsigned char *iic0_dimm_addr,
158                               unsigned long num_dimm_banks);
159 static void check_voltage_type(unsigned long *dimm_populated,
160                                unsigned char *iic0_dimm_addr,
161                                unsigned long num_dimm_banks);
162 static void program_memory_queue(unsigned long *dimm_populated,
163                                  unsigned char *iic0_dimm_addr,
164                                  unsigned long num_dimm_banks);
165 static void program_codt(unsigned long *dimm_populated,
166                          unsigned char *iic0_dimm_addr,
167                          unsigned long num_dimm_banks);
168 static void program_mode(unsigned long *dimm_populated,
169                          unsigned char *iic0_dimm_addr,
170                          unsigned long num_dimm_banks,
171                          ddr_cas_id_t *selected_cas,
172                          int *write_recovery);
173 static void program_tr(unsigned long *dimm_populated,
174                        unsigned char *iic0_dimm_addr,
175                        unsigned long num_dimm_banks);
176 static void program_rtr(unsigned long *dimm_populated,
177                         unsigned char *iic0_dimm_addr,
178                         unsigned long num_dimm_banks);
179 static void program_bxcf(unsigned long *dimm_populated,
180                          unsigned char *iic0_dimm_addr,
181                          unsigned long num_dimm_banks);
182 static void program_copt1(unsigned long *dimm_populated,
183                           unsigned char *iic0_dimm_addr,
184                           unsigned long num_dimm_banks);
185 static void program_initplr(unsigned long *dimm_populated,
186                             unsigned char *iic0_dimm_addr,
187                             unsigned long num_dimm_banks,
188                             ddr_cas_id_t selected_cas,
189                             int write_recovery);
190 static unsigned long is_ecc_enabled(void);
191 static void program_ecc(unsigned long *dimm_populated,
192                         unsigned char *iic0_dimm_addr,
193                         unsigned long num_dimm_banks,
194                         unsigned long tlb_word2_i_value);
195 static void program_ecc_addr(unsigned long start_address,
196                              unsigned long num_bytes,
197                              unsigned long tlb_word2_i_value);
198 static void program_DQS_calibration(unsigned long *dimm_populated,
199                                     unsigned char *iic0_dimm_addr,
200                                     unsigned long num_dimm_banks);
201 #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
202 static void     test(void);
203 #else
204 static void     DQS_calibration_process(void);
205 #endif
206 #if defined(DEBUG)
207 static void ppc440sp_sdram_register_dump(void);
208 #endif
209 int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
210 void dcbz_area(u32 start_address, u32 num_bytes);
211 void dflush(void);
212
213 static u32 mfdcr_any(u32 dcr)
214 {
215         u32 val;
216
217         switch (dcr) {
218         case SDRAM_R0BAS + 0:
219                 val = mfdcr(SDRAM_R0BAS + 0);
220                 break;
221         case SDRAM_R0BAS + 1:
222                 val = mfdcr(SDRAM_R0BAS + 1);
223                 break;
224         case SDRAM_R0BAS + 2:
225                 val = mfdcr(SDRAM_R0BAS + 2);
226                 break;
227         case SDRAM_R0BAS + 3:
228                 val = mfdcr(SDRAM_R0BAS + 3);
229                 break;
230         default:
231                 printf("DCR %d not defined in case statement!!!\n", dcr);
232                 val = 0; /* just to satisfy the compiler */
233         }
234
235         return val;
236 }
237
238 static void mtdcr_any(u32 dcr, u32 val)
239 {
240         switch (dcr) {
241         case SDRAM_R0BAS + 0:
242                 mtdcr(SDRAM_R0BAS + 0, val);
243                 break;
244         case SDRAM_R0BAS + 1:
245                 mtdcr(SDRAM_R0BAS + 1, val);
246                 break;
247         case SDRAM_R0BAS + 2:
248                 mtdcr(SDRAM_R0BAS + 2, val);
249                 break;
250         case SDRAM_R0BAS + 3:
251                 mtdcr(SDRAM_R0BAS + 3, val);
252                 break;
253         default:
254                 printf("DCR %d not defined in case statement!!!\n", dcr);
255         }
256 }
257
258 static void wait_ddr_idle(void)
259 {
260         u32 val;
261
262         do {
263                 mfsdram(SDRAM_MCSTAT, val);
264         } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
265 }
266
267 static unsigned char spd_read(uchar chip, uint addr)
268 {
269         unsigned char data[2];
270
271         if (i2c_probe(chip) == 0)
272                 if (i2c_read(chip, addr, 1, data, 1) == 0)
273                         return data[0];
274
275         return 0;
276 }
277
278 /*-----------------------------------------------------------------------------+
279  * sdram_memsize
280  *-----------------------------------------------------------------------------*/
281 static unsigned long sdram_memsize(void)
282 {
283         unsigned long mem_size;
284         unsigned long mcopt2;
285         unsigned long mcstat;
286         unsigned long mb0cf;
287         unsigned long sdsz;
288         unsigned long i;
289
290         mem_size = 0;
291
292         mfsdram(SDRAM_MCOPT2, mcopt2);
293         mfsdram(SDRAM_MCSTAT, mcstat);
294
295         /* DDR controller must be enabled and not in self-refresh. */
296         /* Otherwise memsize is zero. */
297         if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
298             && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
299             && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
300                 == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
301                 for (i = 0; i < MAXBXCF; i++) {
302                         mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
303                         /* Banks enabled */
304                         if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
305                                 sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
306
307                                 switch(sdsz) {
308                                 case SDRAM_RXBAS_SDSZ_8:
309                                         mem_size+=8;
310                                         break;
311                                 case SDRAM_RXBAS_SDSZ_16:
312                                         mem_size+=16;
313                                         break;
314                                 case SDRAM_RXBAS_SDSZ_32:
315                                         mem_size+=32;
316                                         break;
317                                 case SDRAM_RXBAS_SDSZ_64:
318                                         mem_size+=64;
319                                         break;
320                                 case SDRAM_RXBAS_SDSZ_128:
321                                         mem_size+=128;
322                                         break;
323                                 case SDRAM_RXBAS_SDSZ_256:
324                                         mem_size+=256;
325                                         break;
326                                 case SDRAM_RXBAS_SDSZ_512:
327                                         mem_size+=512;
328                                         break;
329                                 case SDRAM_RXBAS_SDSZ_1024:
330                                         mem_size+=1024;
331                                         break;
332                                 case SDRAM_RXBAS_SDSZ_2048:
333                                         mem_size+=2048;
334                                         break;
335                                 case SDRAM_RXBAS_SDSZ_4096:
336                                         mem_size+=4096;
337                                         break;
338                                 default:
339                                         mem_size=0;
340                                         break;
341                                 }
342                         }
343                 }
344         }
345
346         mem_size *= 1024 * 1024;
347         return(mem_size);
348 }
349
350 /*-----------------------------------------------------------------------------+
351  * initdram.  Initializes the 440SP Memory Queue and DDR SDRAM controller.
352  * Note: This routine runs from flash with a stack set up in the chip's
353  * sram space.  It is important that the routine does not require .sbss, .bss or
354  * .data sections.  It also cannot call routines that require these sections.
355  *-----------------------------------------------------------------------------*/
356 /*-----------------------------------------------------------------------------
357  * Function:     initdram
358  * Description:  Configures SDRAM memory banks for DDR operation.
359  *               Auto Memory Configuration option reads the DDR SDRAM EEPROMs
360  *               via the IIC bus and then configures the DDR SDRAM memory
361  *               banks appropriately. If Auto Memory Configuration is
362  *               not used, it is assumed that no DIMM is plugged
363  *-----------------------------------------------------------------------------*/
364 long int initdram(int board_type)
365 {
366         unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
367         unsigned char spd0[MAX_SPD_BYTES];
368         unsigned char spd1[MAX_SPD_BYTES];
369         unsigned char *dimm_spd[MAXDIMMS];
370         unsigned long dimm_populated[MAXDIMMS];
371         unsigned long num_dimm_banks;               /* on board dimm banks */
372         unsigned long val;
373         ddr_cas_id_t  selected_cas;
374         int write_recovery;
375         unsigned long dram_size = 0;
376
377         num_dimm_banks = sizeof(iic0_dimm_addr);
378
379         /*------------------------------------------------------------------
380          * Set up an array of SPD matrixes.
381          *-----------------------------------------------------------------*/
382         dimm_spd[0] = spd0;
383         dimm_spd[1] = spd1;
384
385         /*------------------------------------------------------------------
386          * Reset the DDR-SDRAM controller.
387          *-----------------------------------------------------------------*/
388         mtsdr(SDR0_SRST, (0x80000000 >> 10));
389         mtsdr(SDR0_SRST, 0x00000000);
390
391         /*
392          * Make sure I2C controller is initialized
393          * before continuing.
394          */
395
396         /* switch to correct I2C bus */
397         I2C_SET_BUS(CFG_SPD_BUS_NUM);
398         i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
399
400         /*------------------------------------------------------------------
401          * Clear out the serial presence detect buffers.
402          * Perform IIC reads from the dimm.  Fill in the spds.
403          * Check to see if the dimm slots are populated
404          *-----------------------------------------------------------------*/
405         get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
406
407         /*------------------------------------------------------------------
408          * Check the memory type for the dimms plugged.
409          *-----------------------------------------------------------------*/
410         check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
411
412         /*------------------------------------------------------------------
413          * Check the frequency supported for the dimms plugged.
414          *-----------------------------------------------------------------*/
415         check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
416
417         /*------------------------------------------------------------------
418          * Check the total rank number.
419          *-----------------------------------------------------------------*/
420         check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
421
422         /*------------------------------------------------------------------
423          * Check the voltage type for the dimms plugged.
424          *-----------------------------------------------------------------*/
425         check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
426
427         /*------------------------------------------------------------------
428          * Program SDRAM controller options 2 register
429          * Except Enabling of the memory controller.
430          *-----------------------------------------------------------------*/
431         mfsdram(SDRAM_MCOPT2, val);
432         mtsdram(SDRAM_MCOPT2,
433                 (val &
434                  ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
435                    SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
436                    SDRAM_MCOPT2_ISIE_MASK))
437                 | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
438                    SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
439                    SDRAM_MCOPT2_ISIE_ENABLE));
440
441         /*------------------------------------------------------------------
442          * Program SDRAM controller options 1 register
443          * Note: Does not enable the memory controller.
444          *-----------------------------------------------------------------*/
445         program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
446
447         /*------------------------------------------------------------------
448          * Set the SDRAM Controller On Die Termination Register
449          *-----------------------------------------------------------------*/
450         program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
451
452         /*------------------------------------------------------------------
453          * Program SDRAM refresh register.
454          *-----------------------------------------------------------------*/
455         program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
456
457         /*------------------------------------------------------------------
458          * Program SDRAM mode register.
459          *-----------------------------------------------------------------*/
460         program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
461                      &selected_cas, &write_recovery);
462
463         /*------------------------------------------------------------------
464          * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
465          *-----------------------------------------------------------------*/
466         mfsdram(SDRAM_WRDTR, val);
467         mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
468                 (SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
469
470         /*------------------------------------------------------------------
471          * Set the SDRAM Clock Timing Register
472          *-----------------------------------------------------------------*/
473         mfsdram(SDRAM_CLKTR, val);
474         mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_0_DEG);
475
476         /*------------------------------------------------------------------
477          * Program the BxCF registers.
478          *-----------------------------------------------------------------*/
479         program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
480
481         /*------------------------------------------------------------------
482          * Program SDRAM timing registers.
483          *-----------------------------------------------------------------*/
484         program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
485
486         /*------------------------------------------------------------------
487          * Set the Extended Mode register
488          *-----------------------------------------------------------------*/
489         mfsdram(SDRAM_MEMODE, val);
490         mtsdram(SDRAM_MEMODE,
491                 (val & ~(SDRAM_MEMODE_DIC_MASK  | SDRAM_MEMODE_DLL_MASK |
492                          SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
493                 (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
494                  | SDRAM_MEMODE_RTT_75OHM | SDRAM_MEMODE_DQS_ENABLE));
495
496         /*------------------------------------------------------------------
497          * Program Initialization preload registers.
498          *-----------------------------------------------------------------*/
499         program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
500                         selected_cas, write_recovery);
501
502         /*------------------------------------------------------------------
503          * Delay to ensure 200usec have elapsed since reset.
504          *-----------------------------------------------------------------*/
505         udelay(400);
506
507         /*------------------------------------------------------------------
508          * Set the memory queue core base addr.
509          *-----------------------------------------------------------------*/
510         program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
511
512         /*------------------------------------------------------------------
513          * Program SDRAM controller options 2 register
514          * Enable the memory controller.
515          *-----------------------------------------------------------------*/
516         mfsdram(SDRAM_MCOPT2, val);
517         mtsdram(SDRAM_MCOPT2,
518                 (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
519                          SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
520                 (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
521
522         /*------------------------------------------------------------------
523          * Wait for SDRAM_CFG0_DC_EN to complete.
524          *-----------------------------------------------------------------*/
525         do {
526                 mfsdram(SDRAM_MCSTAT, val);
527         } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
528
529         /* get installed memory size */
530         dram_size = sdram_memsize();
531
532         /* and program tlb entries for this size (dynamic) */
533         program_tlb(0, dram_size, MY_TLB_WORD2_I_ENABLE);
534
535         /*------------------------------------------------------------------
536          * DQS calibration.
537          *-----------------------------------------------------------------*/
538         program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
539
540         /*------------------------------------------------------------------
541          * If ecc is enabled, initialize the parity bits.
542          *-----------------------------------------------------------------*/
543         program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, MY_TLB_WORD2_I_ENABLE);
544
545 #ifdef DEBUG
546         ppc440sp_sdram_register_dump();
547 #endif
548
549         return dram_size;
550 }
551
552 static void get_spd_info(unsigned long *dimm_populated,
553                          unsigned char *iic0_dimm_addr,
554                          unsigned long num_dimm_banks)
555 {
556         unsigned long dimm_num;
557         unsigned long dimm_found;
558         unsigned char num_of_bytes;
559         unsigned char total_size;
560
561         dimm_found = FALSE;
562         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
563                 num_of_bytes = 0;
564                 total_size = 0;
565
566                 num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
567                 debug("\nspd_read(0x%x) returned %d\n",
568                       iic0_dimm_addr[dimm_num], num_of_bytes);
569                 total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
570                 debug("spd_read(0x%x) returned %d\n",
571                       iic0_dimm_addr[dimm_num], total_size);
572
573                 if ((num_of_bytes != 0) && (total_size != 0)) {
574                         dimm_populated[dimm_num] = TRUE;
575                         dimm_found = TRUE;
576                         debug("DIMM slot %lu: populated\n", dimm_num);
577                 } else {
578                         dimm_populated[dimm_num] = FALSE;
579                         debug("DIMM slot %lu: Not populated\n", dimm_num);
580                 }
581         }
582
583         if (dimm_found == FALSE) {
584                 printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
585                 hang();
586         }
587 }
588
589 #ifdef CONFIG_ADD_RAM_INFO
590 void board_add_ram_info(int use_default)
591 {
592         if (is_ecc_enabled())
593                 puts(" (ECC enabled)");
594         else
595                 puts(" (ECC not enabled)");
596 }
597 #endif
598
599 /*------------------------------------------------------------------
600  * For the memory DIMMs installed, this routine verifies that they
601  * really are DDR specific DIMMs.
602  *-----------------------------------------------------------------*/
603 static void check_mem_type(unsigned long *dimm_populated,
604                            unsigned char *iic0_dimm_addr,
605                            unsigned long num_dimm_banks)
606 {
607         unsigned long dimm_num;
608         unsigned long dimm_type;
609
610         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
611                 if (dimm_populated[dimm_num] == TRUE) {
612                         dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
613                         switch (dimm_type) {
614                         case 1:
615                                 printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
616                                        "slot %d.\n", (unsigned int)dimm_num);
617                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
618                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
619                                 hang();
620                                 break;
621                         case 2:
622                                 printf("ERROR: EDO DIMM detected in slot %d.\n",
623                                        (unsigned int)dimm_num);
624                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
625                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
626                                 hang();
627                                 break;
628                         case 3:
629                                 printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
630                                        (unsigned int)dimm_num);
631                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
632                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
633                                 hang();
634                                 break;
635                         case 4:
636                                 printf("ERROR: SDRAM DIMM detected in slot %d.\n",
637                                        (unsigned int)dimm_num);
638                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
639                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
640                                 hang();
641                                 break;
642                         case 5:
643                                 printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
644                                        (unsigned int)dimm_num);
645                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
646                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
647                                 hang();
648                                 break;
649                         case 6:
650                                 printf("ERROR: SGRAM DIMM detected in slot %d.\n",
651                                        (unsigned int)dimm_num);
652                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
653                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
654                                 hang();
655                                 break;
656                         case 7:
657                                 debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
658                                 dimm_populated[dimm_num] = SDRAM_DDR1;
659                                 break;
660                         case 8:
661                                 debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
662                                 dimm_populated[dimm_num] = SDRAM_DDR2;
663                                 break;
664                         default:
665                                 printf("ERROR: Unknown DIMM detected in slot %d.\n",
666                                        (unsigned int)dimm_num);
667                                 printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
668                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
669                                 hang();
670                                 break;
671                         }
672                 }
673         }
674         for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
675                 if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
676                     && (dimm_populated[dimm_num]   != SDRAM_NONE)
677                     && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
678                         printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
679                         hang();
680                 }
681         }
682 }
683
684 /*------------------------------------------------------------------
685  * For the memory DIMMs installed, this routine verifies that
686  * frequency previously calculated is supported.
687  *-----------------------------------------------------------------*/
688 static void check_frequency(unsigned long *dimm_populated,
689                             unsigned char *iic0_dimm_addr,
690                             unsigned long num_dimm_banks)
691 {
692         unsigned long dimm_num;
693         unsigned long tcyc_reg;
694         unsigned long cycle_time;
695         unsigned long calc_cycle_time;
696         unsigned long sdram_freq;
697         unsigned long sdr_ddrpll;
698         PPC440_SYS_INFO board_cfg;
699
700         /*------------------------------------------------------------------
701          * Get the board configuration info.
702          *-----------------------------------------------------------------*/
703         get_sys_info(&board_cfg);
704
705         mfsdr(sdr_ddr0, sdr_ddrpll);
706         sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
707
708         /*
709          * calc_cycle_time is calculated from DDR frequency set by board/chip
710          * and is expressed in multiple of 10 picoseconds
711          * to match the way DIMM cycle time is calculated below.
712          */
713         calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
714
715         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
716                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
717                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
718                         /*
719                          * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
720                          * the higher order nibble (bits 4-7) designates the cycle time
721                          * to a granularity of 1ns;
722                          * the value presented by the lower order nibble (bits 0-3)
723                          * has a granularity of .1ns and is added to the value designated
724                          * by the higher nibble. In addition, four lines of the lower order
725                          * nibble are assigned to support +.25,+.33, +.66 and +.75.
726                          */
727                          /* Convert from hex to decimal */
728                         if ((tcyc_reg & 0x0F) == 0x0D)
729                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
730                         else if ((tcyc_reg & 0x0F) == 0x0C)
731                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
732                         else if ((tcyc_reg & 0x0F) == 0x0B)
733                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
734                         else if ((tcyc_reg & 0x0F) == 0x0A)
735                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
736                         else
737                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
738                                         ((tcyc_reg & 0x0F)*10);
739
740                         if  (cycle_time > (calc_cycle_time + 10)) {
741                                 /*
742                                  * the provided sdram cycle_time is too small
743                                  * for the available DIMM cycle_time.
744                                  * The additionnal 100ps is here to accept a small incertainty.
745                                  */
746                                 printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
747                                        "slot %d \n while calculated cycle time is %d ps.\n",
748                                        (unsigned int)(cycle_time*10),
749                                        (unsigned int)dimm_num,
750                                        (unsigned int)(calc_cycle_time*10));
751                                 printf("Replace the DIMM, or change DDR frequency via "
752                                        "strapping bits.\n\n");
753                                 hang();
754                         }
755                 }
756         }
757 }
758
759 /*------------------------------------------------------------------
760  * For the memory DIMMs installed, this routine verifies two
761  * ranks/banks maximum are availables.
762  *-----------------------------------------------------------------*/
763 static void check_rank_number(unsigned long *dimm_populated,
764                               unsigned char *iic0_dimm_addr,
765                               unsigned long num_dimm_banks)
766 {
767         unsigned long dimm_num;
768         unsigned long dimm_rank;
769         unsigned long total_rank = 0;
770
771         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
772                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
773                         dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
774                         if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
775                                 dimm_rank = (dimm_rank & 0x0F) +1;
776                         else
777                                 dimm_rank = dimm_rank & 0x0F;
778
779
780                         if (dimm_rank > MAXRANKS) {
781                                 printf("ERROR: DRAM DIMM detected with %d ranks in "
782                                        "slot %d is not supported.\n", dimm_rank, dimm_num);
783                                 printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
784                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
785                                 hang();
786                         } else
787                                 total_rank += dimm_rank;
788                 }
789                 if (total_rank > MAXRANKS) {
790                         printf("ERROR: DRAM DIMM detected with a total of %d ranks "
791                                "for all slots.\n", (unsigned int)total_rank);
792                         printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
793                         printf("Remove one of the DIMM modules.\n\n");
794                         hang();
795                 }
796         }
797 }
798
799 /*------------------------------------------------------------------
800  * only support 2.5V modules.
801  * This routine verifies this.
802  *-----------------------------------------------------------------*/
803 static void check_voltage_type(unsigned long *dimm_populated,
804                                unsigned char *iic0_dimm_addr,
805                                unsigned long num_dimm_banks)
806 {
807         unsigned long dimm_num;
808         unsigned long voltage_type;
809
810         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
811                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
812                         voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
813                         switch (voltage_type) {
814                         case 0x00:
815                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
816                                 printf("This DIMM is 5.0 Volt/TTL.\n");
817                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
818                                        (unsigned int)dimm_num);
819                                 hang();
820                                 break;
821                         case 0x01:
822                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
823                                 printf("This DIMM is LVTTL.\n");
824                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
825                                        (unsigned int)dimm_num);
826                                 hang();
827                                 break;
828                         case 0x02:
829                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
830                                 printf("This DIMM is 1.5 Volt.\n");
831                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
832                                        (unsigned int)dimm_num);
833                                 hang();
834                                 break;
835                         case 0x03:
836                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
837                                 printf("This DIMM is 3.3 Volt/TTL.\n");
838                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
839                                        (unsigned int)dimm_num);
840                                 hang();
841                                 break;
842                         case 0x04:
843                                 /* 2.5 Voltage only for DDR1 */
844                                 break;
845                         case 0x05:
846                                 /* 1.8 Voltage only for DDR2 */
847                                 break;
848                         default:
849                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
850                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
851                                        (unsigned int)dimm_num);
852                                 hang();
853                                 break;
854                         }
855                 }
856         }
857 }
858
859 /*-----------------------------------------------------------------------------+
860  * program_copt1.
861  *-----------------------------------------------------------------------------*/
862 static void program_copt1(unsigned long *dimm_populated,
863                           unsigned char *iic0_dimm_addr,
864                           unsigned long num_dimm_banks)
865 {
866         unsigned long dimm_num;
867         unsigned long mcopt1;
868         unsigned long ecc_enabled;
869         unsigned long ecc = 0;
870         unsigned long data_width = 0;
871         unsigned long dimm_32bit;
872         unsigned long dimm_64bit;
873         unsigned long registered = 0;
874         unsigned long attribute = 0;
875         unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
876         unsigned long bankcount;
877         unsigned long ddrtype;
878         unsigned long val;
879
880         ecc_enabled = TRUE;
881         dimm_32bit = FALSE;
882         dimm_64bit = FALSE;
883         buf0 = FALSE;
884         buf1 = FALSE;
885
886         /*------------------------------------------------------------------
887          * Set memory controller options reg 1, SDRAM_MCOPT1.
888          *-----------------------------------------------------------------*/
889         mfsdram(SDRAM_MCOPT1, val);
890         mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
891                          SDRAM_MCOPT1_PMU_MASK  | SDRAM_MCOPT1_DMWD_MASK |
892                          SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
893                          SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
894                          SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
895                          SDRAM_MCOPT1_DREF_MASK);
896
897         mcopt1 |= SDRAM_MCOPT1_QDEP;
898         mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
899         mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
900         mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
901         mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
902         mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
903
904         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
905                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
906                         /* test ecc support */
907                         ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
908                         if (ecc != 0x02) /* ecc not supported */
909                                 ecc_enabled = FALSE;
910
911                         /* test bank count */
912                         bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
913                         if (bankcount == 0x04) /* bank count = 4 */
914                                 mcopt1 |= SDRAM_MCOPT1_4_BANKS;
915                         else /* bank count = 8 */
916                                 mcopt1 |= SDRAM_MCOPT1_8_BANKS;
917
918                         /* test DDR type */
919                         ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
920                         /* test for buffered/unbuffered, registered, differential clocks */
921                         registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
922                         attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
923
924                         /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
925                         if (dimm_num == 0) {
926                                 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
927                                         mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
928                                 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
929                                         mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
930                                 if (registered == 1) { /* DDR2 always buffered */
931                                         /* TODO: what about above  comments ? */
932                                         mcopt1 |= SDRAM_MCOPT1_RDEN;
933                                         buf0 = TRUE;
934                                 } else {
935                                         /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
936                                         if ((attribute & 0x02) == 0x00) {
937                                                 /* buffered not supported */
938                                                 buf0 = FALSE;
939                                         } else {
940                                                 mcopt1 |= SDRAM_MCOPT1_RDEN;
941                                                 buf0 = TRUE;
942                                         }
943                                 }
944                         }
945                         else if (dimm_num == 1) {
946                                 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
947                                         mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
948                                 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
949                                         mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
950                                 if (registered == 1) {
951                                         /* DDR2 always buffered */
952                                         mcopt1 |= SDRAM_MCOPT1_RDEN;
953                                         buf1 = TRUE;
954                                 } else {
955                                         if ((attribute & 0x02) == 0x00) {
956                                                 /* buffered not supported */
957                                                 buf1 = FALSE;
958                                         } else {
959                                                 mcopt1 |= SDRAM_MCOPT1_RDEN;
960                                                 buf1 = TRUE;
961                                         }
962                                 }
963                         }
964
965                         /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
966                         data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
967                                 (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
968
969                         switch (data_width) {
970                         case 72:
971                         case 64:
972                                 dimm_64bit = TRUE;
973                                 break;
974                         case 40:
975                         case 32:
976                                 dimm_32bit = TRUE;
977                                 break;
978                         default:
979                                 printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
980                                        data_width);
981                                 printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
982                                 break;
983                         }
984                 }
985         }
986
987         /* verify matching properties */
988         if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
989                 if (buf0 != buf1) {
990                         printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
991                         hang();
992                 }
993         }
994
995         if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
996                 printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
997                 hang();
998         }
999         else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
1000                 mcopt1 |= SDRAM_MCOPT1_DMWD_64;
1001         } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
1002                 mcopt1 |= SDRAM_MCOPT1_DMWD_32;
1003         } else {
1004                 printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
1005                 hang();
1006         }
1007
1008         if (ecc_enabled == TRUE)
1009                 mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
1010         else
1011                 mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
1012
1013         mtsdram(SDRAM_MCOPT1, mcopt1);
1014 }
1015
1016 /*-----------------------------------------------------------------------------+
1017  * program_codt.
1018  *-----------------------------------------------------------------------------*/
1019 static void program_codt(unsigned long *dimm_populated,
1020                          unsigned char *iic0_dimm_addr,
1021                          unsigned long num_dimm_banks)
1022 {
1023         unsigned long codt;
1024         unsigned long modt0 = 0;
1025         unsigned long modt1 = 0;
1026         unsigned long modt2 = 0;
1027         unsigned long modt3 = 0;
1028         unsigned char dimm_num;
1029         unsigned char dimm_rank;
1030         unsigned char total_rank = 0;
1031         unsigned char total_dimm = 0;
1032         unsigned char dimm_type = 0;
1033         unsigned char firstSlot = 0;
1034
1035         /*------------------------------------------------------------------
1036          * Set the SDRAM Controller On Die Termination Register
1037          *-----------------------------------------------------------------*/
1038         mfsdram(SDRAM_CODT, codt);
1039         codt |= (SDRAM_CODT_IO_NMODE
1040                  & (~SDRAM_CODT_DQS_SINGLE_END
1041                     & ~SDRAM_CODT_CKSE_SINGLE_END
1042                     & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
1043                     & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
1044
1045         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1046                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1047                         dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
1048                         if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
1049                                 dimm_rank = (dimm_rank & 0x0F) + 1;
1050                                 dimm_type = SDRAM_DDR2;
1051                         } else {
1052                                 dimm_rank = dimm_rank & 0x0F;
1053                                 dimm_type = SDRAM_DDR1;
1054                         }
1055
1056                         total_rank += dimm_rank;
1057                         total_dimm++;
1058                         if ((dimm_num == 0) && (total_dimm == 1))
1059                                 firstSlot = TRUE;
1060                         else
1061                                 firstSlot = FALSE;
1062                 }
1063         }
1064         if (dimm_type == SDRAM_DDR2) {
1065                 codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
1066                 if ((total_dimm == 1) && (firstSlot == TRUE)) {
1067                         if (total_rank == 1) {
1068                                 codt |= CALC_ODT_R(0);
1069                                 modt0 = CALC_ODT_W(0);
1070                                 modt1 = 0x00000000;
1071                                 modt2 = 0x00000000;
1072                                 modt3 = 0x00000000;
1073                         }
1074                         if (total_rank == 2) {
1075                                 codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
1076                                 modt0 = CALC_ODT_W(0);
1077                                 modt1 = CALC_ODT_W(0);
1078                                 modt2 = 0x00000000;
1079                                 modt3 = 0x00000000;
1080                         }
1081                 } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
1082                         if (total_rank == 1) {
1083                                 codt |= CALC_ODT_R(2);
1084                                 modt0 = 0x00000000;
1085                                 modt1 = 0x00000000;
1086                                 modt2 = CALC_ODT_W(2);
1087                                 modt3 = 0x00000000;
1088                         }
1089                         if (total_rank == 2) {
1090                                 codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
1091                                 modt0 = 0x00000000;
1092                                 modt1 = 0x00000000;
1093                                 modt2 = CALC_ODT_W(2);
1094                                 modt3 = CALC_ODT_W(2);
1095                         }
1096                 }
1097                 if (total_dimm == 2) {
1098                         if (total_rank == 2) {
1099                                 codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
1100                                 modt0 = CALC_ODT_RW(2);
1101                                 modt1 = 0x00000000;
1102                                 modt2 = CALC_ODT_RW(0);
1103                                 modt3 = 0x00000000;
1104                         }
1105                         if (total_rank == 4) {
1106                                 codt |= CALC_ODT_R(0) | CALC_ODT_R(1) | CALC_ODT_R(2) | CALC_ODT_R(3);
1107                                 modt0 = CALC_ODT_RW(2);
1108                                 modt1 = 0x00000000;
1109                                 modt2 = CALC_ODT_RW(0);
1110                                 modt3 = 0x00000000;
1111                         }
1112                 }
1113         } else {
1114                 codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
1115                 modt0 = 0x00000000;
1116                 modt1 = 0x00000000;
1117                 modt2 = 0x00000000;
1118                 modt3 = 0x00000000;
1119
1120                 if (total_dimm == 1) {
1121                         if (total_rank == 1)
1122                                 codt |= 0x00800000;
1123                         if (total_rank == 2)
1124                                 codt |= 0x02800000;
1125                 }
1126                 if (total_dimm == 2) {
1127                         if (total_rank == 2)
1128                                 codt |= 0x08800000;
1129                         if (total_rank == 4)
1130                                 codt |= 0x2a800000;
1131                 }
1132         }
1133
1134         debug("nb of dimm %d\n", total_dimm);
1135         debug("nb of rank %d\n", total_rank);
1136         if (total_dimm == 1)
1137                 debug("dimm in slot %d\n", firstSlot);
1138
1139         mtsdram(SDRAM_CODT, codt);
1140         mtsdram(SDRAM_MODT0, modt0);
1141         mtsdram(SDRAM_MODT1, modt1);
1142         mtsdram(SDRAM_MODT2, modt2);
1143         mtsdram(SDRAM_MODT3, modt3);
1144 }
1145
1146 /*-----------------------------------------------------------------------------+
1147  * program_initplr.
1148  *-----------------------------------------------------------------------------*/
1149 static void program_initplr(unsigned long *dimm_populated,
1150                             unsigned char *iic0_dimm_addr,
1151                             unsigned long num_dimm_banks,
1152                             ddr_cas_id_t selected_cas,
1153                             int write_recovery)
1154 {
1155         u32 cas = 0;
1156         u32 odt = 0;
1157         u32 ods = 0;
1158         u32 mr;
1159         u32 wr;
1160         u32 emr;
1161         u32 emr2;
1162         u32 emr3;
1163         int dimm_num;
1164         int total_dimm = 0;
1165
1166         /******************************************************
1167          ** Assumption: if more than one DIMM, all DIMMs are the same
1168          **             as already checked in check_memory_type
1169          ******************************************************/
1170
1171         if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
1172                 mtsdram(SDRAM_INITPLR0, 0x81B80000);
1173                 mtsdram(SDRAM_INITPLR1, 0x81900400);
1174                 mtsdram(SDRAM_INITPLR2, 0x81810000);
1175                 mtsdram(SDRAM_INITPLR3, 0xff800162);
1176                 mtsdram(SDRAM_INITPLR4, 0x81900400);
1177                 mtsdram(SDRAM_INITPLR5, 0x86080000);
1178                 mtsdram(SDRAM_INITPLR6, 0x86080000);
1179                 mtsdram(SDRAM_INITPLR7, 0x81000062);
1180         } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
1181                 switch (selected_cas) {
1182                 case DDR_CAS_3:
1183                         cas = 3 << 4;
1184                         break;
1185                 case DDR_CAS_4:
1186                         cas = 4 << 4;
1187                         break;
1188                 case DDR_CAS_5:
1189                         cas = 5 << 4;
1190                         break;
1191                 default:
1192                         printf("ERROR: ucode error on selected_cas value %d", selected_cas);
1193                         hang();
1194                         break;
1195                 }
1196
1197 #if 0
1198                 /*
1199                  * ToDo - Still a problem with the write recovery:
1200                  * On the Corsair CM2X512-5400C4 module, setting write recovery
1201                  * in the INITPLR reg to the value calculated in program_mode()
1202                  * results in not correctly working DDR2 memory (crash after
1203                  * relocation).
1204                  *
1205                  * So for now, set the write recovery to 3. This seems to work
1206                  * on the Corair module too.
1207                  *
1208                  * 2007-03-01, sr
1209                  */
1210                 switch (write_recovery) {
1211                 case 3:
1212                         wr = WRITE_RECOV_3;
1213                         break;
1214                 case 4:
1215                         wr = WRITE_RECOV_4;
1216                         break;
1217                 case 5:
1218                         wr = WRITE_RECOV_5;
1219                         break;
1220                 case 6:
1221                         wr = WRITE_RECOV_6;
1222                         break;
1223                 default:
1224                         printf("ERROR: write recovery not support (%d)", write_recovery);
1225                         hang();
1226                         break;
1227                 }
1228 #else
1229                 wr = WRITE_RECOV_3; /* test-only, see description above */
1230 #endif
1231
1232                 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
1233                         if (dimm_populated[dimm_num] != SDRAM_NONE)
1234                                 total_dimm++;
1235                 if (total_dimm == 1) {
1236                         odt = ODT_150_OHM;
1237                         ods = ODS_FULL;
1238                 } else if (total_dimm == 2) {
1239                         odt = ODT_75_OHM;
1240                         ods = ODS_REDUCED;
1241                 } else {
1242                         printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
1243                         hang();
1244                 }
1245
1246                 mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
1247                 emr = CMD_EMR | SELECT_EMR | odt | ods;
1248                 emr2 = CMD_EMR | SELECT_EMR2;
1249                 emr3 = CMD_EMR | SELECT_EMR3;
1250                 mtsdram(SDRAM_INITPLR0,  0xB5000000 | CMD_NOP);         /* NOP */
1251                 udelay(1000);
1252                 mtsdram(SDRAM_INITPLR1,  0x82000400 | CMD_PRECHARGE);   /* precharge 8 DDR clock cycle */
1253                 mtsdram(SDRAM_INITPLR2,  0x80800000 | emr2);            /* EMR2 */
1254                 mtsdram(SDRAM_INITPLR3,  0x80800000 | emr3);            /* EMR3 */
1255                 mtsdram(SDRAM_INITPLR4,  0x80800000 | emr);             /* EMR DLL ENABLE */
1256                 mtsdram(SDRAM_INITPLR5,  0x80800000 | mr | DLL_RESET);  /* MR w/ DLL reset */
1257                 udelay(1000);
1258                 mtsdram(SDRAM_INITPLR6,  0x82000400 | CMD_PRECHARGE);   /* precharge 8 DDR clock cycle */
1259                 mtsdram(SDRAM_INITPLR7,  0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1260                 mtsdram(SDRAM_INITPLR8,  0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1261                 mtsdram(SDRAM_INITPLR9,  0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1262                 mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1263                 mtsdram(SDRAM_INITPLR11, 0x80000000 | mr);              /* MR w/o DLL reset */
1264                 mtsdram(SDRAM_INITPLR12, 0x80800380 | emr);             /* EMR OCD Default */
1265                 mtsdram(SDRAM_INITPLR13, 0x80800000 | emr);             /* EMR OCD Exit */
1266         } else {
1267                 printf("ERROR: ucode error as unknown DDR type in program_initplr");
1268                 hang();
1269         }
1270 }
1271
1272 /*------------------------------------------------------------------
1273  * This routine programs the SDRAM_MMODE register.
1274  * the selected_cas is an output parameter, that will be passed
1275  * by caller to call the above program_initplr( )
1276  *-----------------------------------------------------------------*/
1277 static void program_mode(unsigned long *dimm_populated,
1278                          unsigned char *iic0_dimm_addr,
1279                          unsigned long num_dimm_banks,
1280                          ddr_cas_id_t *selected_cas,
1281                          int *write_recovery)
1282 {
1283         unsigned long dimm_num;
1284         unsigned long sdram_ddr1;
1285         unsigned long t_wr_ns;
1286         unsigned long t_wr_clk;
1287         unsigned long cas_bit;
1288         unsigned long cas_index;
1289         unsigned long sdram_freq;
1290         unsigned long ddr_check;
1291         unsigned long mmode;
1292         unsigned long tcyc_reg;
1293         unsigned long cycle_2_0_clk;
1294         unsigned long cycle_2_5_clk;
1295         unsigned long cycle_3_0_clk;
1296         unsigned long cycle_4_0_clk;
1297         unsigned long cycle_5_0_clk;
1298         unsigned long max_2_0_tcyc_ns_x_100;
1299         unsigned long max_2_5_tcyc_ns_x_100;
1300         unsigned long max_3_0_tcyc_ns_x_100;
1301         unsigned long max_4_0_tcyc_ns_x_100;
1302         unsigned long max_5_0_tcyc_ns_x_100;
1303         unsigned long cycle_time_ns_x_100[3];
1304         PPC440_SYS_INFO board_cfg;
1305         unsigned char cas_2_0_available;
1306         unsigned char cas_2_5_available;
1307         unsigned char cas_3_0_available;
1308         unsigned char cas_4_0_available;
1309         unsigned char cas_5_0_available;
1310         unsigned long sdr_ddrpll;
1311
1312         /*------------------------------------------------------------------
1313          * Get the board configuration info.
1314          *-----------------------------------------------------------------*/
1315         get_sys_info(&board_cfg);
1316
1317         mfsdr(sdr_ddr0, sdr_ddrpll);
1318         sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
1319
1320         /*------------------------------------------------------------------
1321          * Handle the timing.  We need to find the worst case timing of all
1322          * the dimm modules installed.
1323          *-----------------------------------------------------------------*/
1324         t_wr_ns = 0;
1325         cas_2_0_available = TRUE;
1326         cas_2_5_available = TRUE;
1327         cas_3_0_available = TRUE;
1328         cas_4_0_available = TRUE;
1329         cas_5_0_available = TRUE;
1330         max_2_0_tcyc_ns_x_100 = 10;
1331         max_2_5_tcyc_ns_x_100 = 10;
1332         max_3_0_tcyc_ns_x_100 = 10;
1333         max_4_0_tcyc_ns_x_100 = 10;
1334         max_5_0_tcyc_ns_x_100 = 10;
1335         sdram_ddr1 = TRUE;
1336
1337         /* loop through all the DIMM slots on the board */
1338         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1339                 /* If a dimm is installed in a particular slot ... */
1340                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1341                         if (dimm_populated[dimm_num] == SDRAM_DDR1)
1342                                 sdram_ddr1 = TRUE;
1343                         else
1344                                 sdram_ddr1 = FALSE;
1345
1346                         /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /*  not used in this loop. */
1347                         cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
1348
1349                         /* For a particular DIMM, grab the three CAS values it supports */
1350                         for (cas_index = 0; cas_index < 3; cas_index++) {
1351                                 switch (cas_index) {
1352                                 case 0:
1353                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
1354                                         break;
1355                                 case 1:
1356                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
1357                                         break;
1358                                 default:
1359                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
1360                                         break;
1361                                 }
1362
1363                                 if ((tcyc_reg & 0x0F) >= 10) {
1364                                         if ((tcyc_reg & 0x0F) == 0x0D) {
1365                                                 /* Convert from hex to decimal */
1366                                                 cycle_time_ns_x_100[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
1367                                         } else {
1368                                                 printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
1369                                                        "in slot %d\n", (unsigned int)dimm_num);
1370                                                 hang();
1371                                         }
1372                                 } else {
1373                                         /* Convert from hex to decimal */
1374                                         cycle_time_ns_x_100[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 100) +
1375                                                 ((tcyc_reg & 0x0F)*10);
1376                                 }
1377                         }
1378
1379                         /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
1380                         /* supported for a particular DIMM. */
1381                         cas_index = 0;
1382
1383                         if (sdram_ddr1) {
1384                                 /*
1385                                  * DDR devices use the following bitmask for CAS latency:
1386                                  *  Bit   7    6    5    4    3    2    1    0
1387                                  *       TBD  4.0  3.5  3.0  2.5  2.0  1.5  1.0
1388                                  */
1389                                 if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
1390                                         max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
1391                                         cas_index++;
1392                                 } else {
1393                                         if (cas_index != 0)
1394                                                 cas_index++;
1395                                         cas_4_0_available = FALSE;
1396                                 }
1397
1398                                 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
1399                                         max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
1400                                         cas_index++;
1401                                 } else {
1402                                         if (cas_index != 0)
1403                                                 cas_index++;
1404                                         cas_3_0_available = FALSE;
1405                                 }
1406
1407                                 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
1408                                         max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
1409                                         cas_index++;
1410                                 } else {
1411                                         if (cas_index != 0)
1412                                                 cas_index++;
1413                                         cas_2_5_available = FALSE;
1414                                 }
1415
1416                                 if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
1417                                         max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
1418                                         cas_index++;
1419                                 } else {
1420                                         if (cas_index != 0)
1421                                                 cas_index++;
1422                                         cas_2_0_available = FALSE;
1423                                 }
1424                         } else {
1425                                 /*
1426                                  * DDR2 devices use the following bitmask for CAS latency:
1427                                  *  Bit   7    6    5    4    3    2    1    0
1428                                  *       TBD  6.0  5.0  4.0  3.0  2.0  TBD  TBD
1429                                  */
1430                                 if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
1431                                         max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
1432                                         cas_index++;
1433                                 } else {
1434                                         if (cas_index != 0)
1435                                                 cas_index++;
1436                                         cas_5_0_available = FALSE;
1437                                 }
1438
1439                                 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
1440                                         max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
1441                                         cas_index++;
1442                                 } else {
1443                                         if (cas_index != 0)
1444                                                 cas_index++;
1445                                         cas_4_0_available = FALSE;
1446                                 }
1447
1448                                 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
1449                                         max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
1450                                         cas_index++;
1451                                 } else {
1452                                         if (cas_index != 0)
1453                                                 cas_index++;
1454                                         cas_3_0_available = FALSE;
1455                                 }
1456                         }
1457                 }
1458         }
1459
1460         /*------------------------------------------------------------------
1461          * Set the SDRAM mode, SDRAM_MMODE
1462          *-----------------------------------------------------------------*/
1463         mfsdram(SDRAM_MMODE, mmode);
1464         mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
1465
1466         cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100);
1467         cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100);
1468         cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100);
1469         cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100);
1470         cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100);
1471
1472         if (sdram_ddr1 == TRUE) { /* DDR1 */
1473                 if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
1474                         mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
1475                         *selected_cas = DDR_CAS_2;
1476                 } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
1477                         mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
1478                         *selected_cas = DDR_CAS_2_5;
1479                 } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1480                         mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
1481                         *selected_cas = DDR_CAS_3;
1482                 } else {
1483                         printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1484                         printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
1485                         printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
1486                         hang();
1487                 }
1488         } else { /* DDR2 */
1489                 if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1490                         mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
1491                         *selected_cas = DDR_CAS_3;
1492                 } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
1493                         mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
1494                         *selected_cas = DDR_CAS_4;
1495                 } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
1496                         mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
1497                         *selected_cas = DDR_CAS_5;
1498                 } else {
1499                         printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1500                         printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
1501                         printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
1502                         hang();
1503                 }
1504         }
1505
1506         if (sdram_ddr1 == TRUE)
1507                 mmode |= SDRAM_MMODE_WR_DDR1;
1508         else {
1509
1510                 /* loop through all the DIMM slots on the board */
1511                 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1512                         /* If a dimm is installed in a particular slot ... */
1513                         if (dimm_populated[dimm_num] != SDRAM_NONE)
1514                                 t_wr_ns = max(t_wr_ns,
1515                                               spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1516                 }
1517
1518                 /*
1519                  * convert from nanoseconds to ddr clocks
1520                  * round up if necessary
1521                  */
1522                 t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
1523                 ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
1524                 if (sdram_freq != ddr_check)
1525                         t_wr_clk++;
1526
1527                 switch (t_wr_clk) {
1528                 case 0:
1529                 case 1:
1530                 case 2:
1531                 case 3:
1532                         mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
1533                         break;
1534                 case 4:
1535                         mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
1536                         break;
1537                 case 5:
1538                         mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
1539                         break;
1540                 default:
1541                         mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
1542                         break;
1543                 }
1544                 *write_recovery = t_wr_clk;
1545         }
1546
1547         debug("CAS latency = %d\n", *selected_cas);
1548         debug("Write recovery = %d\n", *write_recovery);
1549
1550         mtsdram(SDRAM_MMODE, mmode);
1551 }
1552
1553 /*-----------------------------------------------------------------------------+
1554  * program_rtr.
1555  *-----------------------------------------------------------------------------*/
1556 static void program_rtr(unsigned long *dimm_populated,
1557                         unsigned char *iic0_dimm_addr,
1558                         unsigned long num_dimm_banks)
1559 {
1560         PPC440_SYS_INFO board_cfg;
1561         unsigned long max_refresh_rate;
1562         unsigned long dimm_num;
1563         unsigned long refresh_rate_type;
1564         unsigned long refresh_rate;
1565         unsigned long rint;
1566         unsigned long sdram_freq;
1567         unsigned long sdr_ddrpll;
1568         unsigned long val;
1569
1570         /*------------------------------------------------------------------
1571          * Get the board configuration info.
1572          *-----------------------------------------------------------------*/
1573         get_sys_info(&board_cfg);
1574
1575         /*------------------------------------------------------------------
1576          * Set the SDRAM Refresh Timing Register, SDRAM_RTR
1577          *-----------------------------------------------------------------*/
1578         mfsdr(sdr_ddr0, sdr_ddrpll);
1579         sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1580
1581         max_refresh_rate = 0;
1582         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1583                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1584
1585                         refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
1586                         refresh_rate_type &= 0x7F;
1587                         switch (refresh_rate_type) {
1588                         case 0:
1589                                 refresh_rate =  15625;
1590                                 break;
1591                         case 1:
1592                                 refresh_rate =   3906;
1593                                 break;
1594                         case 2:
1595                                 refresh_rate =   7812;
1596                                 break;
1597                         case 3:
1598                                 refresh_rate =  31250;
1599                                 break;
1600                         case 4:
1601                                 refresh_rate =  62500;
1602                                 break;
1603                         case 5:
1604                                 refresh_rate = 125000;
1605                                 break;
1606                         default:
1607                                 refresh_rate = 0;
1608                                 printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
1609                                        (unsigned int)dimm_num);
1610                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
1611                                 hang();
1612                                 break;
1613                         }
1614
1615                         max_refresh_rate = max(max_refresh_rate, refresh_rate);
1616                 }
1617         }
1618
1619         rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
1620         mfsdram(SDRAM_RTR, val);
1621         mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
1622                 (SDRAM_RTR_RINT_ENCODE(rint)));
1623 }
1624
1625 /*------------------------------------------------------------------
1626  * This routine programs the SDRAM_TRx registers.
1627  *-----------------------------------------------------------------*/
1628 static void program_tr(unsigned long *dimm_populated,
1629                        unsigned char *iic0_dimm_addr,
1630                        unsigned long num_dimm_banks)
1631 {
1632         unsigned long dimm_num;
1633         unsigned long sdram_ddr1;
1634         unsigned long t_rp_ns;
1635         unsigned long t_rcd_ns;
1636         unsigned long t_rrd_ns;
1637         unsigned long t_ras_ns;
1638         unsigned long t_rc_ns;
1639         unsigned long t_rfc_ns;
1640         unsigned long t_wpc_ns;
1641         unsigned long t_wtr_ns;
1642         unsigned long t_rpc_ns;
1643         unsigned long t_rp_clk;
1644         unsigned long t_rcd_clk;
1645         unsigned long t_rrd_clk;
1646         unsigned long t_ras_clk;
1647         unsigned long t_rc_clk;
1648         unsigned long t_rfc_clk;
1649         unsigned long t_wpc_clk;
1650         unsigned long t_wtr_clk;
1651         unsigned long t_rpc_clk;
1652         unsigned long sdtr1, sdtr2, sdtr3;
1653         unsigned long ddr_check;
1654         unsigned long sdram_freq;
1655         unsigned long sdr_ddrpll;
1656
1657         PPC440_SYS_INFO board_cfg;
1658
1659         /*------------------------------------------------------------------
1660          * Get the board configuration info.
1661          *-----------------------------------------------------------------*/
1662         get_sys_info(&board_cfg);
1663
1664         mfsdr(sdr_ddr0, sdr_ddrpll);
1665         sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1666
1667         /*------------------------------------------------------------------
1668          * Handle the timing.  We need to find the worst case timing of all
1669          * the dimm modules installed.
1670          *-----------------------------------------------------------------*/
1671         t_rp_ns = 0;
1672         t_rrd_ns = 0;
1673         t_rcd_ns = 0;
1674         t_ras_ns = 0;
1675         t_rc_ns = 0;
1676         t_rfc_ns = 0;
1677         t_wpc_ns = 0;
1678         t_wtr_ns = 0;
1679         t_rpc_ns = 0;
1680         sdram_ddr1 = TRUE;
1681
1682         /* loop through all the DIMM slots on the board */
1683         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1684                 /* If a dimm is installed in a particular slot ... */
1685                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1686                         if (dimm_populated[dimm_num] == SDRAM_DDR2)
1687                                 sdram_ddr1 = TRUE;
1688                         else
1689                                 sdram_ddr1 = FALSE;
1690
1691                         t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
1692                         t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
1693                         t_rp_ns  = max(t_rp_ns,  spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
1694                         t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
1695                         t_rc_ns  = max(t_rc_ns,  spd_read(iic0_dimm_addr[dimm_num], 41));
1696                         t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
1697                 }
1698         }
1699
1700         /*------------------------------------------------------------------
1701          * Set the SDRAM Timing Reg 1, SDRAM_TR1
1702          *-----------------------------------------------------------------*/
1703         mfsdram(SDRAM_SDTR1, sdtr1);
1704         sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
1705                    SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
1706
1707         /* default values */
1708         sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
1709         sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
1710
1711         /* normal operations */
1712         sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
1713         sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
1714
1715         mtsdram(SDRAM_SDTR1, sdtr1);
1716
1717         /*------------------------------------------------------------------
1718          * Set the SDRAM Timing Reg 2, SDRAM_TR2
1719          *-----------------------------------------------------------------*/
1720         mfsdram(SDRAM_SDTR2, sdtr2);
1721         sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK  | SDRAM_SDTR2_WTR_MASK |
1722                    SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
1723                    SDRAM_SDTR2_RPC_MASK  | SDRAM_SDTR2_RP_MASK  |
1724                    SDRAM_SDTR2_RRD_MASK);
1725
1726         /*
1727          * convert t_rcd from nanoseconds to ddr clocks
1728          * round up if necessary
1729          */
1730         t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
1731         ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
1732         if (sdram_freq != ddr_check)
1733                 t_rcd_clk++;
1734
1735         switch (t_rcd_clk) {
1736         case 0:
1737         case 1:
1738                 sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
1739                 break;
1740         case 2:
1741                 sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
1742                 break;
1743         case 3:
1744                 sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
1745                 break;
1746         case 4:
1747                 sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
1748                 break;
1749         default:
1750                 sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
1751                 break;
1752         }
1753
1754         if (sdram_ddr1 == TRUE) { /* DDR1 */
1755                 if (sdram_freq < 200000000) {
1756                         sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1757                         sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1758                         sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1759                 } else {
1760                         sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1761                         sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1762                         sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1763                 }
1764         } else { /* DDR2 */
1765                 /* loop through all the DIMM slots on the board */
1766                 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1767                         /* If a dimm is installed in a particular slot ... */
1768                         if (dimm_populated[dimm_num] != SDRAM_NONE) {
1769                                 t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1770                                 t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
1771                                 t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
1772                         }
1773                 }
1774
1775                 /*
1776                  * convert from nanoseconds to ddr clocks
1777                  * round up if necessary
1778                  */
1779                 t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
1780                 ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
1781                 if (sdram_freq != ddr_check)
1782                         t_wpc_clk++;
1783
1784                 switch (t_wpc_clk) {
1785                 case 0:
1786                 case 1:
1787                 case 2:
1788                         sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1789                         break;
1790                 case 3:
1791                         sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1792                         break;
1793                 case 4:
1794                         sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
1795                         break;
1796                 case 5:
1797                         sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
1798                         break;
1799                 default:
1800                         sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
1801                         break;
1802                 }
1803
1804                 /*
1805                  * convert from nanoseconds to ddr clocks
1806                  * round up if necessary
1807                  */
1808                 t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
1809                 ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
1810                 if (sdram_freq != ddr_check)
1811                         t_wtr_clk++;
1812
1813                 switch (t_wtr_clk) {
1814                 case 0:
1815                 case 1:
1816                         sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1817                         break;
1818                 case 2:
1819                         sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1820                         break;
1821                 case 3:
1822                         sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
1823                         break;
1824                 default:
1825                         sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
1826                         break;
1827                 }
1828
1829                 /*
1830                  * convert from nanoseconds to ddr clocks
1831                  * round up if necessary
1832                  */
1833                 t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
1834                 ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
1835                 if (sdram_freq != ddr_check)
1836                         t_rpc_clk++;
1837
1838                 switch (t_rpc_clk) {
1839                 case 0:
1840                 case 1:
1841                 case 2:
1842                         sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1843                         break;
1844                 case 3:
1845                         sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
1846                         break;
1847                 default:
1848                         sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
1849                         break;
1850                 }
1851         }
1852
1853         /* default value */
1854         sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
1855
1856         /*
1857          * convert t_rrd from nanoseconds to ddr clocks
1858          * round up if necessary
1859          */
1860         t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
1861         ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
1862         if (sdram_freq != ddr_check)
1863                 t_rrd_clk++;
1864
1865         if (t_rrd_clk == 3)
1866                 sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
1867         else
1868                 sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
1869
1870         /*
1871          * convert t_rp from nanoseconds to ddr clocks
1872          * round up if necessary
1873          */
1874         t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
1875         ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
1876         if (sdram_freq != ddr_check)
1877                 t_rp_clk++;
1878
1879         switch (t_rp_clk) {
1880         case 0:
1881         case 1:
1882         case 2:
1883         case 3:
1884                 sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
1885                 break;
1886         case 4:
1887                 sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
1888                 break;
1889         case 5:
1890                 sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
1891                 break;
1892         case 6:
1893                 sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
1894                 break;
1895         default:
1896                 sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
1897                 break;
1898         }
1899
1900         mtsdram(SDRAM_SDTR2, sdtr2);
1901
1902         /*------------------------------------------------------------------
1903          * Set the SDRAM Timing Reg 3, SDRAM_TR3
1904          *-----------------------------------------------------------------*/
1905         mfsdram(SDRAM_SDTR3, sdtr3);
1906         sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK  | SDRAM_SDTR3_RC_MASK |
1907                    SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
1908
1909         /*
1910          * convert t_ras from nanoseconds to ddr clocks
1911          * round up if necessary
1912          */
1913         t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
1914         ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
1915         if (sdram_freq != ddr_check)
1916                 t_ras_clk++;
1917
1918         sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
1919
1920         /*
1921          * convert t_rc from nanoseconds to ddr clocks
1922          * round up if necessary
1923          */
1924         t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
1925         ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
1926         if (sdram_freq != ddr_check)
1927                 t_rc_clk++;
1928
1929         sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
1930
1931         /* default xcs value */
1932         sdtr3 |= SDRAM_SDTR3_XCS;
1933
1934         /*
1935          * convert t_rfc from nanoseconds to ddr clocks
1936          * round up if necessary
1937          */
1938         t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
1939         ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
1940         if (sdram_freq != ddr_check)
1941                 t_rfc_clk++;
1942
1943         sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
1944
1945         mtsdram(SDRAM_SDTR3, sdtr3);
1946 }
1947
1948 /*-----------------------------------------------------------------------------+
1949  * program_bxcf.
1950  *-----------------------------------------------------------------------------*/
1951 static void program_bxcf(unsigned long *dimm_populated,
1952                          unsigned char *iic0_dimm_addr,
1953                          unsigned long num_dimm_banks)
1954 {
1955         unsigned long dimm_num;
1956         unsigned long num_col_addr;
1957         unsigned long num_ranks;
1958         unsigned long num_banks;
1959         unsigned long mode;
1960         unsigned long ind_rank;
1961         unsigned long ind;
1962         unsigned long ind_bank;
1963         unsigned long bank_0_populated;
1964
1965         /*------------------------------------------------------------------
1966          * Set the BxCF regs.  First, wipe out the bank config registers.
1967          *-----------------------------------------------------------------*/
1968         mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF);
1969         mtdcr(SDRAMC_CFGDATA, 0x00000000);
1970         mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF);
1971         mtdcr(SDRAMC_CFGDATA, 0x00000000);
1972         mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF);
1973         mtdcr(SDRAMC_CFGDATA, 0x00000000);
1974         mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF);
1975         mtdcr(SDRAMC_CFGDATA, 0x00000000);
1976
1977         mode = SDRAM_BXCF_M_BE_ENABLE;
1978
1979         bank_0_populated = 0;
1980
1981         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1982                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1983                         num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
1984                         num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
1985                         if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
1986                                 num_ranks = (num_ranks & 0x0F) +1;
1987                         else
1988                                 num_ranks = num_ranks & 0x0F;
1989
1990                         num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
1991
1992                         for (ind_bank = 0; ind_bank < 2; ind_bank++) {
1993                                 if (num_banks == 4)
1994                                         ind = 0;
1995                                 else
1996                                         ind = 5;
1997                                 switch (num_col_addr) {
1998                                 case 0x08:
1999                                         mode |= (SDRAM_BXCF_M_AM_0 + ind);
2000                                         break;
2001                                 case 0x09:
2002                                         mode |= (SDRAM_BXCF_M_AM_1 + ind);
2003                                         break;
2004                                 case 0x0A:
2005                                         mode |= (SDRAM_BXCF_M_AM_2 + ind);
2006                                         break;
2007                                 case 0x0B:
2008                                         mode |= (SDRAM_BXCF_M_AM_3 + ind);
2009                                         break;
2010                                 case 0x0C:
2011                                         mode |= (SDRAM_BXCF_M_AM_4 + ind);
2012                                         break;
2013                                 default:
2014                                         printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
2015                                                (unsigned int)dimm_num);
2016                                         printf("ERROR: Unsupported value for number of "
2017                                                "column addresses: %d.\n", (unsigned int)num_col_addr);
2018                                         printf("Replace the DIMM module with a supported DIMM.\n\n");
2019                                         hang();
2020                                 }
2021                         }
2022
2023                         if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
2024                                 bank_0_populated = 1;
2025
2026                         for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
2027                                 mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2));
2028                                 mtdcr(SDRAMC_CFGDATA, mode);
2029                         }
2030                 }
2031         }
2032 }
2033
2034 /*------------------------------------------------------------------
2035  * program memory queue.
2036  *-----------------------------------------------------------------*/
2037 static void program_memory_queue(unsigned long *dimm_populated,
2038                                  unsigned char *iic0_dimm_addr,
2039                                  unsigned long num_dimm_banks)
2040 {
2041         unsigned long dimm_num;
2042         unsigned long rank_base_addr;
2043         unsigned long rank_reg;
2044         unsigned long rank_size_bytes;
2045         unsigned long rank_size_id;
2046         unsigned long num_ranks;
2047         unsigned long baseadd_size;
2048         unsigned long i;
2049         unsigned long bank_0_populated = 0;
2050
2051         /*------------------------------------------------------------------
2052          * Reset the rank_base_address.
2053          *-----------------------------------------------------------------*/
2054         rank_reg   = SDRAM_R0BAS;
2055
2056         rank_base_addr = 0x00000000;
2057
2058         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
2059                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
2060                         num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
2061                         if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
2062                                 num_ranks = (num_ranks & 0x0F) + 1;
2063                         else
2064                                 num_ranks = num_ranks & 0x0F;
2065
2066                         rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
2067
2068                         /*------------------------------------------------------------------
2069                          * Set the sizes
2070                          *-----------------------------------------------------------------*/
2071                         baseadd_size = 0;
2072                         rank_size_bytes = 1024 * 1024 * rank_size_id;
2073                         switch (rank_size_id) {
2074                         case 0x02:
2075                                 baseadd_size |= SDRAM_RXBAS_SDSZ_8;
2076                                 break;
2077                         case 0x04:
2078                                 baseadd_size |= SDRAM_RXBAS_SDSZ_16;
2079                                 break;
2080                         case 0x08:
2081                                 baseadd_size |= SDRAM_RXBAS_SDSZ_32;
2082                                 break;
2083                         case 0x10:
2084                                 baseadd_size |= SDRAM_RXBAS_SDSZ_64;
2085                                 break;
2086                         case 0x20:
2087                                 baseadd_size |= SDRAM_RXBAS_SDSZ_128;
2088                                 break;
2089                         case 0x40:
2090                                 baseadd_size |= SDRAM_RXBAS_SDSZ_256;
2091                                 break;
2092                         case 0x80:
2093                                 baseadd_size |= SDRAM_RXBAS_SDSZ_512;
2094                                 break;
2095                         default:
2096                                 printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
2097                                        (unsigned int)dimm_num);
2098                                 printf("ERROR: Unsupported value for the banksize: %d.\n",
2099                                        (unsigned int)rank_size_id);
2100                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
2101                                 hang();
2102                         }
2103
2104                         if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
2105                                 bank_0_populated = 1;
2106
2107                         for (i = 0; i < num_ranks; i++) {
2108                                 mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
2109                                           (rank_base_addr & SDRAM_RXBAS_SDBA_MASK) |
2110                                           baseadd_size);
2111                                 rank_base_addr += rank_size_bytes;
2112                         }
2113                 }
2114         }
2115 }
2116
2117 /*-----------------------------------------------------------------------------+
2118  * is_ecc_enabled.
2119  *-----------------------------------------------------------------------------*/
2120 static unsigned long is_ecc_enabled(void)
2121 {
2122         unsigned long dimm_num;
2123         unsigned long ecc;
2124         unsigned long val;
2125
2126         ecc = 0;
2127         /* loop through all the DIMM slots on the board */
2128         for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2129                 mfsdram(SDRAM_MCOPT1, val);
2130                 ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
2131         }
2132
2133         return(ecc);
2134 }
2135
2136 /*-----------------------------------------------------------------------------+
2137  * program_ecc.
2138  *-----------------------------------------------------------------------------*/
2139 static void program_ecc(unsigned long *dimm_populated,
2140                         unsigned char *iic0_dimm_addr,
2141                         unsigned long num_dimm_banks,
2142                         unsigned long tlb_word2_i_value)
2143 {
2144         unsigned long mcopt1;
2145         unsigned long mcopt2;
2146         unsigned long mcstat;
2147         unsigned long dimm_num;
2148         unsigned long ecc;
2149
2150         ecc = 0;
2151         /* loop through all the DIMM slots on the board */
2152         for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2153                 /* If a dimm is installed in a particular slot ... */
2154                 if (dimm_populated[dimm_num] != SDRAM_NONE)
2155                         ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
2156         }
2157         if (ecc == 0)
2158                 return;
2159
2160         mfsdram(SDRAM_MCOPT1, mcopt1);
2161         mfsdram(SDRAM_MCOPT2, mcopt2);
2162
2163         if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2164                 /* DDR controller must be enabled and not in self-refresh. */
2165                 mfsdram(SDRAM_MCSTAT, mcstat);
2166                 if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
2167                     && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
2168                     && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
2169                         == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
2170
2171                         program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
2172                 }
2173         }
2174
2175         return;
2176 }
2177
2178 #ifdef CONFIG_ECC_ERROR_RESET
2179 /*
2180  * Check for ECC errors and reset board upon any error here
2181  *
2182  * On the Katmai 440SPe eval board, from time to time, the first
2183  * lword write access after DDR2 initializazion with ECC checking
2184  * enabled, leads to an ECC error. I couldn't find a configuration
2185  * without this happening. On my board with the current setup it
2186  * happens about 1 from 10 times.
2187  *
2188  * The ECC modules used for testing are:
2189  * - Kingston ValueRAM KVR667D2E5/512 (tested with 1 and 2 DIMM's)
2190  *
2191  * This has to get fixed for the Katmai and tested for the other
2192  * board (440SP/440SPe) that will eventually use this code in the
2193  * future.
2194  *
2195  * 2007-03-01, sr
2196  */
2197 static void check_ecc(void)
2198 {
2199         u32 val;
2200
2201         mfsdram(SDRAM_ECCCR, val);
2202         if (val != 0) {
2203                 printf("\nECC error: MCIF0_ECCES=%08lx MQ0_ESL=%08lx address=%08lx\n",
2204                        val, mfdcr(0x4c), mfdcr(0x4e));
2205                 printf("ECC error occured, resetting board...\n");
2206                 do_reset(NULL, 0, 0, NULL);
2207         }
2208 }
2209 #endif
2210
2211 /*-----------------------------------------------------------------------------+
2212  * program_ecc_addr.
2213  *-----------------------------------------------------------------------------*/
2214 static void program_ecc_addr(unsigned long start_address,
2215                              unsigned long num_bytes,
2216                              unsigned long tlb_word2_i_value)
2217 {
2218         unsigned long current_address;
2219         unsigned long end_address;
2220         unsigned long address_increment;
2221         unsigned long mcopt1;
2222         char str[] = "ECC generation...";
2223         int i;
2224
2225         current_address = start_address;
2226         mfsdram(SDRAM_MCOPT1, mcopt1);
2227         if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2228                 mtsdram(SDRAM_MCOPT1,
2229                         (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
2230                 sync();
2231                 eieio();
2232                 wait_ddr_idle();
2233
2234                 puts(str);
2235                 if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
2236                         /* ECC bit set method for non-cached memory */
2237                         if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
2238                                 address_increment = 4;
2239                         else
2240                                 address_increment = 8;
2241                         end_address = current_address + num_bytes;
2242
2243                         while (current_address < end_address) {
2244                                 *((unsigned long *)current_address) = 0x00000000;
2245                                 current_address += address_increment;
2246                         }
2247                 } else {
2248                         /* ECC bit set method for cached memory */
2249                         dcbz_area(start_address, num_bytes);
2250                         dflush();
2251                 }
2252                 for (i=0; i<strlen(str); i++)
2253                         putc('\b');
2254
2255                 sync();
2256                 eieio();
2257                 wait_ddr_idle();
2258
2259                 /* clear ECC error repoting registers */
2260                 mtsdram(SDRAM_ECCCR, 0xffffffff);
2261                 mtdcr(0x4c, 0xffffffff);
2262
2263                 mtsdram(SDRAM_MCOPT1,
2264                         (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
2265                 sync();
2266                 eieio();
2267                 wait_ddr_idle();
2268
2269 #ifdef CONFIG_ECC_ERROR_RESET
2270                 /*
2271                  * One write to 0 is enough to trigger this ECC error
2272                  * (see description above)
2273                  */
2274                 out_be32(0, 0x12345678);
2275                 check_ecc();
2276 #endif
2277         }
2278 }
2279
2280 /*-----------------------------------------------------------------------------+
2281  * program_DQS_calibration.
2282  *-----------------------------------------------------------------------------*/
2283 static void program_DQS_calibration(unsigned long *dimm_populated,
2284                                     unsigned char *iic0_dimm_addr,
2285                                     unsigned long num_dimm_banks)
2286 {
2287         unsigned long val;
2288
2289 #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
2290         mtsdram(SDRAM_RQDC, 0x80000037);
2291         mtsdram(SDRAM_RDCC, 0x40000000);
2292         mtsdram(SDRAM_RFDC, 0x000001DF);
2293
2294         test();
2295 #else
2296         /*------------------------------------------------------------------
2297          * Program RDCC register
2298          * Read sample cycle auto-update enable
2299          *-----------------------------------------------------------------*/
2300
2301         /*
2302          * Modified for the Katmai platform:  with some DIMMs, the DDR2
2303          * controller automatically selects the T2 read cycle, but this
2304          * proves unreliable.  Go ahead and force the DDR2 controller
2305          * to use the T4 sample and disable the automatic update of the
2306          * RDSS field.
2307          */
2308         mfsdram(SDRAM_RDCC, val);
2309         mtsdram(SDRAM_RDCC,
2310                 (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
2311                 | (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE));
2312
2313         /*------------------------------------------------------------------
2314          * Program RQDC register
2315          * Internal DQS delay mechanism enable
2316          *-----------------------------------------------------------------*/
2317         mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
2318
2319         /*------------------------------------------------------------------
2320          * Program RFDC register
2321          * Set Feedback Fractional Oversample
2322          * Auto-detect read sample cycle enable
2323          *-----------------------------------------------------------------*/
2324         mfsdram(SDRAM_RFDC, val);
2325         mtsdram(SDRAM_RFDC,
2326                 (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
2327                          SDRAM_RFDC_RFFD_MASK))
2328                 | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
2329                    SDRAM_RFDC_RFFD_ENCODE(0)));
2330
2331         DQS_calibration_process();
2332 #endif
2333 }
2334
2335 static u32 short_mem_test(void)
2336 {
2337         u32 *membase;
2338         u32 bxcr_num;
2339         u32 bxcf;
2340         int i;
2341         int j;
2342         u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
2343                 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2344                  0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2345                 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2346                  0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2347                 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2348                  0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2349                 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2350                  0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2351                 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2352                  0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2353                 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2354                  0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2355                 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2356                  0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2357                 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2358                  0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
2359
2360         for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
2361                 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
2362
2363                 /* Banks enabled */
2364                 if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
2365
2366                         /* Bank is enabled */
2367                         membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
2368
2369                         /*------------------------------------------------------------------
2370                          * Run the short memory test.
2371                          *-----------------------------------------------------------------*/
2372                         for (i = 0; i < NUMMEMTESTS; i++) {
2373                                 for (j = 0; j < NUMMEMWORDS; j++) {
2374                                         membase[j] = test[i][j];
2375                                         ppcDcbf((u32)&(membase[j]));
2376                                 }
2377                                 sync();
2378                                 for (j = 0; j < NUMMEMWORDS; j++) {
2379                                         if (membase[j] != test[i][j]) {
2380                                                 ppcDcbf((u32)&(membase[j]));
2381                                                 break;
2382                                         }
2383                                         ppcDcbf((u32)&(membase[j]));
2384                                 }
2385                                 sync();
2386                                 if (j < NUMMEMWORDS)
2387                                         break;
2388                         }
2389                         if (i < NUMMEMTESTS)
2390                                 break;
2391                 }       /* if bank enabled */
2392         }               /* for bxcf_num */
2393
2394         return bxcr_num;
2395 }
2396
2397 #ifndef HARD_CODED_DQS
2398 /*-----------------------------------------------------------------------------+
2399  * DQS_calibration_process.
2400  *-----------------------------------------------------------------------------*/
2401 static void DQS_calibration_process(void)
2402 {
2403         unsigned long ecc_temp;
2404         unsigned long rfdc_reg;
2405         unsigned long rffd;
2406         unsigned long rqdc_reg;
2407         unsigned long rqfd;
2408         unsigned long bxcr_num;
2409         unsigned long val;
2410         long rqfd_average;
2411         long rffd_average;
2412         long max_start;
2413         long min_end;
2414         unsigned long begin_rqfd[MAXRANKS];
2415         unsigned long begin_rffd[MAXRANKS];
2416         unsigned long end_rqfd[MAXRANKS];
2417         unsigned long end_rffd[MAXRANKS];
2418         char window_found;
2419         unsigned long dlycal;
2420         unsigned long dly_val;
2421         unsigned long max_pass_length;
2422         unsigned long current_pass_length;
2423         unsigned long current_fail_length;
2424         unsigned long current_start;
2425         long max_end;
2426         unsigned char fail_found;
2427         unsigned char pass_found;
2428
2429         /*------------------------------------------------------------------
2430          * Test to determine the best read clock delay tuning bits.
2431          *
2432          * Before the DDR controller can be used, the read clock delay needs to be
2433          * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2434          * This value cannot be hardcoded into the program because it changes
2435          * depending on the board's setup and environment.
2436          * To do this, all delay values are tested to see if they
2437          * work or not.  By doing this, you get groups of fails with groups of
2438          * passing values.  The idea is to find the start and end of a passing
2439          * window and take the center of it to use as the read clock delay.
2440          *
2441          * A failure has to be seen first so that when we hit a pass, we know
2442          * that it is truely the start of the window.  If we get passing values
2443          * to start off with, we don't know if we are at the start of the window.
2444          *
2445          * The code assumes that a failure will always be found.
2446          * If a failure is not found, there is no easy way to get the middle
2447          * of the passing window.  I guess we can pretty much pick any value
2448          * but some values will be better than others.  Since the lowest speed
2449          * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2450          * from experimentation it is safe to say you will always have a failure.
2451          *-----------------------------------------------------------------*/
2452         mfsdram(SDRAM_MCOPT1, ecc_temp);
2453         ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
2454         mfsdram(SDRAM_MCOPT1, val);
2455         mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
2456                 SDRAM_MCOPT1_MCHK_NON);
2457
2458         max_start = 0;
2459         min_end = 0;
2460         begin_rqfd[0] = 0;
2461         begin_rffd[0] = 0;
2462         begin_rqfd[1] = 0;
2463         begin_rffd[1] = 0;
2464         end_rqfd[0] = 0;
2465         end_rffd[0] = 0;
2466         end_rqfd[1] = 0;
2467         end_rffd[1] = 0;
2468         window_found = FALSE;
2469
2470         max_pass_length = 0;
2471         max_start = 0;
2472         max_end = 0;
2473         current_pass_length = 0;
2474         current_fail_length = 0;
2475         current_start = 0;
2476         window_found = FALSE;
2477         fail_found = FALSE;
2478         pass_found = FALSE;
2479
2480         /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
2481         /* rqdc_reg = mfsdram(SDRAM_RQDC) & ~(SDRAM_RQDC_RQFD_MASK); */
2482
2483         /*
2484          * get the delay line calibration register value
2485          */
2486         mfsdram(SDRAM_DLCR, dlycal);
2487         dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
2488
2489         for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
2490                 mfsdram(SDRAM_RFDC, rfdc_reg);
2491                 rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
2492
2493                 /*------------------------------------------------------------------
2494                  * Set the timing reg for the test.
2495                  *-----------------------------------------------------------------*/
2496                 mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
2497
2498                 /* do the small memory test */
2499                 bxcr_num = short_mem_test();
2500
2501                 /*------------------------------------------------------------------
2502                  * See if the rffd value passed.
2503                  *-----------------------------------------------------------------*/
2504                 if (bxcr_num == MAXBXCF) {
2505                         if (fail_found == TRUE) {
2506                                 pass_found = TRUE;
2507                                 if (current_pass_length == 0)
2508                                         current_start = rffd;
2509
2510                                 current_fail_length = 0;
2511                                 current_pass_length++;
2512
2513                                 if (current_pass_length > max_pass_length) {
2514                                         max_pass_length = current_pass_length;
2515                                         max_start = current_start;
2516                                         max_end = rffd;
2517                                 }
2518                         }
2519                 } else {
2520                         current_pass_length = 0;
2521                         current_fail_length++;
2522
2523                         if (current_fail_length >= (dly_val >> 2)) {
2524                                 if (fail_found == FALSE) {
2525                                         fail_found = TRUE;
2526                                 } else if (pass_found == TRUE) {
2527                                         window_found = TRUE;
2528                                         break;
2529                                 }
2530                         }
2531                 }
2532         }               /* for rffd */
2533
2534
2535         /*------------------------------------------------------------------
2536          * Set the average RFFD value
2537          *-----------------------------------------------------------------*/
2538         rffd_average = ((max_start + max_end) >> 1);
2539
2540         if (rffd_average < 0)
2541                 rffd_average = 0;
2542
2543         if (rffd_average > SDRAM_RFDC_RFFD_MAX)
2544                 rffd_average = SDRAM_RFDC_RFFD_MAX;
2545         /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
2546         mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
2547
2548         max_pass_length = 0;
2549         max_start = 0;
2550         max_end = 0;
2551         current_pass_length = 0;
2552         current_fail_length = 0;
2553         current_start = 0;
2554         window_found = FALSE;
2555         fail_found = FALSE;
2556         pass_found = FALSE;
2557
2558         for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
2559                 mfsdram(SDRAM_RQDC, rqdc_reg);
2560                 rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
2561
2562                 /*------------------------------------------------------------------
2563                  * Set the timing reg for the test.
2564                  *-----------------------------------------------------------------*/
2565                 mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
2566
2567                 /* do the small memory test */
2568                 bxcr_num = short_mem_test();
2569
2570                 /*------------------------------------------------------------------
2571                  * See if the rffd value passed.
2572                  *-----------------------------------------------------------------*/
2573                 if (bxcr_num == MAXBXCF) {
2574                         if (fail_found == TRUE) {
2575                                 pass_found = TRUE;
2576                                 if (current_pass_length == 0)
2577                                         current_start = rqfd;
2578
2579                                 current_fail_length = 0;
2580                                 current_pass_length++;
2581
2582                                 if (current_pass_length > max_pass_length) {
2583                                         max_pass_length = current_pass_length;
2584                                         max_start = current_start;
2585                                         max_end = rqfd;
2586                                 }
2587                         }
2588                 } else {
2589                         current_pass_length = 0;
2590                         current_fail_length++;
2591
2592                         if (fail_found == FALSE) {
2593                                 fail_found = TRUE;
2594                         } else if (pass_found == TRUE) {
2595                                 window_found = TRUE;
2596                                 break;
2597                         }
2598                 }
2599         }
2600
2601         /*------------------------------------------------------------------
2602          * Make sure we found the valid read passing window.  Halt if not
2603          *-----------------------------------------------------------------*/
2604         if (window_found == FALSE) {
2605                 printf("ERROR: Cannot determine a common read delay for the "
2606                        "DIMM(s) installed.\n");
2607                 debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
2608                 hang();
2609         }
2610
2611         rqfd_average = ((max_start + max_end) >> 1);
2612
2613         if (rqfd_average < 0)
2614                 rqfd_average = 0;
2615
2616         if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
2617                 rqfd_average = SDRAM_RQDC_RQFD_MAX;
2618
2619         /*------------------------------------------------------------------
2620          * Restore the ECC variable to what it originally was
2621          *-----------------------------------------------------------------*/
2622         mfsdram(SDRAM_MCOPT1, val);
2623         mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) | ecc_temp);
2624
2625         mtsdram(SDRAM_RQDC,
2626                 (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
2627                 SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
2628
2629         mfsdram(SDRAM_DLCR, val);
2630         debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
2631         mfsdram(SDRAM_RQDC, val);
2632         debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2633         mfsdram(SDRAM_RFDC, val);
2634         debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2635 }
2636 #else /* calibration test with hardvalues */
2637 /*-----------------------------------------------------------------------------+
2638  * DQS_calibration_process.
2639  *-----------------------------------------------------------------------------*/
2640 static void test(void)
2641 {
2642         unsigned long dimm_num;
2643         unsigned long ecc_temp;
2644         unsigned long i, j;
2645         unsigned long *membase;
2646         unsigned long bxcf[MAXRANKS];
2647         unsigned long val;
2648         char window_found;
2649         char begin_found[MAXDIMMS];
2650         char end_found[MAXDIMMS];
2651         char search_end[MAXDIMMS];
2652         unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
2653                 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2654                  0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2655                 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2656                  0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2657                 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2658                  0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2659                 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2660                  0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2661                 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2662                  0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2663                 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2664                  0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2665                 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2666                  0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2667                 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2668                  0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
2669
2670         /*------------------------------------------------------------------
2671          * Test to determine the best read clock delay tuning bits.
2672          *
2673          * Before the DDR controller can be used, the read clock delay needs to be
2674          * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2675          * This value cannot be hardcoded into the program because it changes
2676          * depending on the board's setup and environment.
2677          * To do this, all delay values are tested to see if they
2678          * work or not.  By doing this, you get groups of fails with groups of
2679          * passing values.  The idea is to find the start and end of a passing
2680          * window and take the center of it to use as the read clock delay.
2681          *
2682          * A failure has to be seen first so that when we hit a pass, we know
2683          * that it is truely the start of the window.  If we get passing values
2684          * to start off with, we don't know if we are at the start of the window.
2685          *
2686          * The code assumes that a failure will always be found.
2687          * If a failure is not found, there is no easy way to get the middle
2688          * of the passing window.  I guess we can pretty much pick any value
2689          * but some values will be better than others.  Since the lowest speed
2690          * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2691          * from experimentation it is safe to say you will always have a failure.
2692          *-----------------------------------------------------------------*/
2693         mfsdram(SDRAM_MCOPT1, ecc_temp);
2694         ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
2695         mfsdram(SDRAM_MCOPT1, val);
2696         mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
2697                 SDRAM_MCOPT1_MCHK_NON);
2698
2699         window_found = FALSE;
2700         begin_found[0] = FALSE;
2701         end_found[0] = FALSE;
2702         search_end[0] = FALSE;
2703         begin_found[1] = FALSE;
2704         end_found[1] = FALSE;
2705         search_end[1] = FALSE;
2706
2707         for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2708                 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
2709
2710                 /* Banks enabled */
2711                 if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
2712
2713                         /* Bank is enabled */
2714                         membase =
2715                                 (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
2716
2717                         /*------------------------------------------------------------------
2718                          * Run the short memory test.
2719                          *-----------------------------------------------------------------*/
2720                         for (i = 0; i < NUMMEMTESTS; i++) {
2721                                 for (j = 0; j < NUMMEMWORDS; j++) {
2722                                         membase[j] = test[i][j];
2723                                         ppcDcbf((u32)&(membase[j]));
2724                                 }
2725                                 sync();
2726                                 for (j = 0; j < NUMMEMWORDS; j++) {
2727                                         if (membase[j] != test[i][j]) {
2728                                                 ppcDcbf((u32)&(membase[j]));
2729                                                 break;
2730                                         }
2731                                         ppcDcbf((u32)&(membase[j]));
2732                                 }
2733                                 sync();
2734                                 if (j < NUMMEMWORDS)
2735                                         break;
2736                         }
2737
2738                         /*------------------------------------------------------------------
2739                          * See if the rffd value passed.
2740                          *-----------------------------------------------------------------*/
2741                         if (i < NUMMEMTESTS) {
2742                                 if ((end_found[dimm_num] == FALSE) &&
2743                                     (search_end[dimm_num] == TRUE)) {
2744                                         end_found[dimm_num] = TRUE;
2745                                 }
2746                                 if ((end_found[0] == TRUE) &&
2747                                     (end_found[1] == TRUE))
2748                                         break;
2749                         } else {
2750                                 if (begin_found[dimm_num] == FALSE) {
2751                                         begin_found[dimm_num] = TRUE;
2752                                         search_end[dimm_num] = TRUE;
2753                                 }
2754                         }
2755                 } else {
2756                         begin_found[dimm_num] = TRUE;
2757                         end_found[dimm_num] = TRUE;
2758                 }
2759         }
2760
2761         if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
2762                 window_found = TRUE;
2763
2764         /*------------------------------------------------------------------
2765          * Make sure we found the valid read passing window.  Halt if not
2766          *-----------------------------------------------------------------*/
2767         if (window_found == FALSE) {
2768                 printf("ERROR: Cannot determine a common read delay for the "
2769                        "DIMM(s) installed.\n");
2770                 hang();
2771         }
2772
2773         /*------------------------------------------------------------------
2774          * Restore the ECC variable to what it originally was
2775          *-----------------------------------------------------------------*/
2776         mtsdram(SDRAM_MCOPT1,
2777                 (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
2778                 | ecc_temp);
2779 }
2780 #endif
2781
2782 #if defined(DEBUG)
2783 static void ppc440sp_sdram_register_dump(void)
2784 {
2785         unsigned int sdram_reg;
2786         unsigned int sdram_data;
2787         unsigned int dcr_data;
2788
2789         printf("\n  Register Dump:\n");
2790         sdram_reg = SDRAM_MCSTAT;
2791         mfsdram(sdram_reg, sdram_data);
2792         printf("        SDRAM_MCSTAT    = 0x%08X", sdram_data);
2793         sdram_reg = SDRAM_MCOPT1;
2794         mfsdram(sdram_reg, sdram_data);
2795         printf("        SDRAM_MCOPT1    = 0x%08X\n", sdram_data);
2796         sdram_reg = SDRAM_MCOPT2;
2797         mfsdram(sdram_reg, sdram_data);
2798         printf("        SDRAM_MCOPT2    = 0x%08X", sdram_data);
2799         sdram_reg = SDRAM_MODT0;
2800         mfsdram(sdram_reg, sdram_data);
2801         printf("        SDRAM_MODT0     = 0x%08X\n", sdram_data);
2802         sdram_reg = SDRAM_MODT1;
2803         mfsdram(sdram_reg, sdram_data);
2804         printf("        SDRAM_MODT1     = 0x%08X", sdram_data);
2805         sdram_reg = SDRAM_MODT2;
2806         mfsdram(sdram_reg, sdram_data);
2807         printf("        SDRAM_MODT2     = 0x%08X\n", sdram_data);
2808         sdram_reg = SDRAM_MODT3;
2809         mfsdram(sdram_reg, sdram_data);
2810         printf("        SDRAM_MODT3     = 0x%08X", sdram_data);
2811         sdram_reg = SDRAM_CODT;
2812         mfsdram(sdram_reg, sdram_data);
2813         printf("        SDRAM_CODT      = 0x%08X\n", sdram_data);
2814         sdram_reg = SDRAM_VVPR;
2815         mfsdram(sdram_reg, sdram_data);
2816         printf("        SDRAM_VVPR      = 0x%08X", sdram_data);
2817         sdram_reg = SDRAM_OPARS;
2818         mfsdram(sdram_reg, sdram_data);
2819         printf("        SDRAM_OPARS     = 0x%08X\n", sdram_data);
2820         /*
2821          * OPAR2 is only used as a trigger register.
2822          * No data is contained in this register, and reading or writing
2823          * to is can cause bad things to happen (hangs).  Just skip it
2824          * and report NA
2825          * sdram_reg = SDRAM_OPAR2;
2826          * mfsdram(sdram_reg, sdram_data);
2827          * printf("        SDRAM_OPAR2     = 0x%08X\n", sdram_data);
2828          */
2829         printf("        SDRAM_OPART     = N/A       ");
2830         sdram_reg = SDRAM_RTR;
2831         mfsdram(sdram_reg, sdram_data);
2832         printf("        SDRAM_RTR       = 0x%08X\n", sdram_data);
2833         sdram_reg = SDRAM_MB0CF;
2834         mfsdram(sdram_reg, sdram_data);
2835         printf("        SDRAM_MB0CF     = 0x%08X", sdram_data);
2836         sdram_reg = SDRAM_MB1CF;
2837         mfsdram(sdram_reg, sdram_data);
2838         printf("        SDRAM_MB1CF     = 0x%08X\n", sdram_data);
2839         sdram_reg = SDRAM_MB2CF;
2840         mfsdram(sdram_reg, sdram_data);
2841         printf("        SDRAM_MB2CF     = 0x%08X", sdram_data);
2842         sdram_reg = SDRAM_MB3CF;
2843         mfsdram(sdram_reg, sdram_data);
2844         printf("        SDRAM_MB3CF     = 0x%08X\n", sdram_data);
2845         sdram_reg = SDRAM_INITPLR0;
2846         mfsdram(sdram_reg, sdram_data);
2847         printf("        SDRAM_INITPLR0  = 0x%08X", sdram_data);
2848         sdram_reg = SDRAM_INITPLR1;
2849         mfsdram(sdram_reg, sdram_data);
2850         printf("        SDRAM_INITPLR1  = 0x%08X\n", sdram_data);
2851         sdram_reg = SDRAM_INITPLR2;
2852         mfsdram(sdram_reg, sdram_data);
2853         printf("        SDRAM_INITPLR2  = 0x%08X", sdram_data);
2854         sdram_reg = SDRAM_INITPLR3;
2855         mfsdram(sdram_reg, sdram_data);
2856         printf("        SDRAM_INITPLR3  = 0x%08X\n", sdram_data);
2857         sdram_reg = SDRAM_INITPLR4;
2858         mfsdram(sdram_reg, sdram_data);
2859         printf("        SDRAM_INITPLR4  = 0x%08X", sdram_data);
2860         sdram_reg = SDRAM_INITPLR5;
2861         mfsdram(sdram_reg, sdram_data);
2862         printf("        SDRAM_INITPLR5  = 0x%08X\n", sdram_data);
2863         sdram_reg = SDRAM_INITPLR6;
2864         mfsdram(sdram_reg, sdram_data);
2865         printf("        SDRAM_INITPLR6  = 0x%08X", sdram_data);
2866         sdram_reg = SDRAM_INITPLR7;
2867         mfsdram(sdram_reg, sdram_data);
2868         printf("        SDRAM_INITPLR7  = 0x%08X\n", sdram_data);
2869         sdram_reg = SDRAM_INITPLR8;
2870         mfsdram(sdram_reg, sdram_data);
2871         printf("        SDRAM_INITPLR8  = 0x%08X", sdram_data);
2872         sdram_reg = SDRAM_INITPLR9;
2873         mfsdram(sdram_reg, sdram_data);
2874         printf("        SDRAM_INITPLR9  = 0x%08X\n", sdram_data);
2875         sdram_reg = SDRAM_INITPLR10;
2876         mfsdram(sdram_reg, sdram_data);
2877         printf("        SDRAM_INITPLR10 = 0x%08X", sdram_data);
2878         sdram_reg = SDRAM_INITPLR11;
2879         mfsdram(sdram_reg, sdram_data);
2880         printf("        SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
2881         sdram_reg = SDRAM_INITPLR12;
2882         mfsdram(sdram_reg, sdram_data);
2883         printf("        SDRAM_INITPLR12 = 0x%08X", sdram_data);
2884         sdram_reg = SDRAM_INITPLR13;
2885         mfsdram(sdram_reg, sdram_data);
2886         printf("        SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
2887         sdram_reg = SDRAM_INITPLR14;
2888         mfsdram(sdram_reg, sdram_data);
2889         printf("        SDRAM_INITPLR14 = 0x%08X", sdram_data);
2890         sdram_reg = SDRAM_INITPLR15;
2891         mfsdram(sdram_reg, sdram_data);
2892         printf("        SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
2893         sdram_reg = SDRAM_RQDC;
2894         mfsdram(sdram_reg, sdram_data);
2895         printf("        SDRAM_RQDC      = 0x%08X", sdram_data);
2896         sdram_reg = SDRAM_RFDC;
2897         mfsdram(sdram_reg, sdram_data);
2898         printf("        SDRAM_RFDC      = 0x%08X\n", sdram_data);
2899         sdram_reg = SDRAM_RDCC;
2900         mfsdram(sdram_reg, sdram_data);
2901         printf("        SDRAM_RDCC      = 0x%08X", sdram_data);
2902         sdram_reg = SDRAM_DLCR;
2903         mfsdram(sdram_reg, sdram_data);
2904         printf("        SDRAM_DLCR      = 0x%08X\n", sdram_data);
2905         sdram_reg = SDRAM_CLKTR;
2906         mfsdram(sdram_reg, sdram_data);
2907         printf("        SDRAM_CLKTR     = 0x%08X", sdram_data);
2908         sdram_reg = SDRAM_WRDTR;
2909         mfsdram(sdram_reg, sdram_data);
2910         printf("        SDRAM_WRDTR     = 0x%08X\n", sdram_data);
2911         sdram_reg = SDRAM_SDTR1;
2912         mfsdram(sdram_reg, sdram_data);
2913         printf("        SDRAM_SDTR1     = 0x%08X", sdram_data);
2914         sdram_reg = SDRAM_SDTR2;
2915         mfsdram(sdram_reg, sdram_data);
2916         printf("        SDRAM_SDTR2     = 0x%08X\n", sdram_data);
2917         sdram_reg = SDRAM_SDTR3;
2918         mfsdram(sdram_reg, sdram_data);
2919         printf("        SDRAM_SDTR3     = 0x%08X", sdram_data);
2920         sdram_reg = SDRAM_MMODE;
2921         mfsdram(sdram_reg, sdram_data);
2922         printf("        SDRAM_MMODE     = 0x%08X\n", sdram_data);
2923         sdram_reg = SDRAM_MEMODE;
2924         mfsdram(sdram_reg, sdram_data);
2925         printf("        SDRAM_MEMODE    = 0x%08X", sdram_data);
2926         sdram_reg = SDRAM_ECCCR;
2927         mfsdram(sdram_reg, sdram_data);
2928         printf("        SDRAM_ECCCR     = 0x%08X\n\n", sdram_data);
2929
2930         dcr_data = mfdcr(SDRAM_R0BAS);
2931         printf("        MQ0_B0BAS       = 0x%08X", dcr_data);
2932         dcr_data = mfdcr(SDRAM_R1BAS);
2933         printf("        MQ1_B0BAS       = 0x%08X\n", dcr_data);
2934         dcr_data = mfdcr(SDRAM_R2BAS);
2935         printf("        MQ2_B0BAS       = 0x%08X", dcr_data);
2936         dcr_data = mfdcr(SDRAM_R3BAS);
2937         printf("        MQ3_B0BAS       = 0x%08X\n", dcr_data);
2938 }
2939 #endif
2940 #endif /* CONFIG_SPD_EEPROM */