
Common Desktop Environment:
ToolTalk Messaging Overview

Please

Recycle

Copyright 1994, 1995 Hewlett-Packard Company
Copyright 1994, 1995 International Business Machines Corp.
Copyright 1994, 1995 Sun Microsystems, Inc.
Copyright 1994, 1995 Novell, Inc.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

The code and documentation for the DtComboBox and DtSpinBox widgets were contributed by Interleaf, Inc. Copyright 1993,
Interleaf, Inc.

ToolTalk is a registered trademark of Sun Microsystems, Inc.

UNIX is a trademark exclusively licensed through X/Open Company, Ltd.

OSF/Motif and Motif are trademarks of Open Software Foundation, Ltd.

X Window System is a trademark of X Consortium, Inc.

PostScript is a trademark of Adobe Systems, Inc., which may be registered in certain jurisdictions.

iii

Table of Contents

1. Introducing the ToolTalk Service . 1

What Kind of Work Problems Can the ToolTalk Service Solve? 3

Tool Inter-changeability . 3

Control Integration . 3

Network-Transparent Events . 4

Automatic Tool Invocation . 4

 Distributed-Object System. 4

Persistent Objects . 4

Scenarios Illustrating How the ToolTalk Service Helps Solve
Work Problems. 5

How Applications Use ToolTalk Messages 9

Sending ToolTalk Messages . 9

Message Patterns . 10

Receiving ToolTalk Messages . 10

ToolTalk Message Distribution. 11

Process-Oriented Messages . 11

iv CDE ToolTalk Messaging Overview

Object-Oriented Messages . 11

Determining Message Delivery . 12

Modifying Applications to Use the ToolTalk Service 13

2. How to Use ToolTalk Messaging . 15

Telling Your Application about ToolTalk Functionality 15

Using the Messaging Toolkit and Including ToolTalk
Commands . 15

Using the ToolTalk Libraries. 16

Before You Start Coding . 16

What Is the Difference Between an Event and an Operation? 17

Developing a Scenario. 18

Preparing Your Application for Communication. 20

Creating a Ptype File . 20

Tasks Every ToolTalk-aware Application Needs to Perform 22

Tasks ToolTalk-aware Editor Applications Need to Perform 24

Optional Tasks ToolTalk-aware Editor Applications Can
Perform . 26

3. Using TTSnoop to Debug Messages and Patterns 29

About TTSnoop . 29

Where to Find TTSnoop . 29

Starting TTSnoop . 30

Composing and Sending Messages . 31

Composing and Registering Patterns . 31

Displaying Message Components . 31

Sending Pre-Created Messages . 32

Table of Contents v

Receiving Messages . 32

Stop Receiving Messages . 32

4. Using ToolTalk Tracing . 33

Accessing ToolTalk Tracing. 33

Controlling Tracing . 34

Controlling libtt Tracing . 34

Controlling Client-Side Tracing . 34

Tracing Message Traffic in a ToolTalk Session 35

Tracing ToolTalk Calls and Messages through the Server. 38

Formats of Traced Functions . 39

Examples. 41

Settings for ToolTalk Tracing . 45

A. The Messaging Toolkit. 47

General Description of the ToolTalk Messaging Toolkit 47

Toolkit Conventions. 50

Using the Messaging Toolkit When Writing Applications 50

The ToolTalk Messaging Toolkit. 51

B. The CoEd Demonstration Program . 95

The CoEd Ptype File . 95

The CoEd.C File . 97

The Coeditor.C File . 101

C. New ToolTalk Functions . 125

D. Examples. 135

Example Ttdt_contract_cb . 135

vi CDE ToolTalk Messaging Overview

Example Ttdt_file_cb . 138

Example Ttmedia_load_msg_cb . 140

Example Ttmedia_load_pat_cb . 141

Example Ptype Signature for Ttmedia_ptype_declare Function 143

Example for Xt Input Handler Function 145

vii

Figures

Figure 1-1 Applications Using the ToolTalk Service. 2

viii CDE ToolTalk Messaging Overview

ix

Tables

Table 3-1 TTSnoop Buttons . 30

Table 3-2 Message Button Display Window Options 31

Table 4-1 Session_Trace Agurments . 36

Table 4-2 Error Messages Returned by Session_Trace Request. 37

Table 4-3 tttrace Options . 38

Table 4-4 Reasons for Dispatch Trace . 40

Table 4-5 tttrace Script Commands . 45

Table A-1 ToolTalk Messaging Toolkit Functions 48

Table A-2 Messaging Toolkit Conventions . 50

Table A-3 Effect of event Parameter . 52

Table A-4 Possible Errors Returned by ttdt_file_event 53

Table A-5 Parameters taken by Ttdt_file_cb . 54

Table A-6 Possible Errors Returned by ttdt_file_join 55

Table A-7 Possible Errors Returned by ttdt_file_notice 57

Table A-8 Possible Errors Returned by ttdt_file_quit. 58

Table A-9 Possible Errors Returned by ttdt_file_request. 60

x CDE ToolTalk Messaging Overview

Table A-10 Parameters Taken by the Ttdt_contract_cb Argument 62

Table A-11 Requests for which ttdt_message_accept Registers 63

Table A-12 Possible Errors Returned by ttdt_message_accept 64

Table A-13 Possible Errors Returned by ttdt_Revert 67

Table A-14 Possible Returns of the ttdt_Save function 69

Table A-15 Possible Errors Returned by the ttdt_sender_imprint_on. . . . 71

Table A-16 Standard Messages for which the ttdt_session_join Registers 72

Table A-17 Parameters taken by Ttdt_session_cb. 74

Table A-18 Possible Errors Returned by the ttdt_session_join 74

Table A-19 Possible Errors Returned by the ttdt_session_quit. 76

Table A-20 Possible Errors Returned by the ttdt_subcontract_manage . . 77

Table A-21 Possible Errors Returned by the ttmedia_Deposit 78

Table A-22 Parameters Taken by the Ttmedia_load_msg_cb 81

Table A-23 Possible Errors Returned by the ttmedia_load 82

Table A-24 Possible Errors Returned by the ttmedia_load_reply 83

Table A-25 Parameters Taken by Ttmedia_load_pat_cb 85

Table A-26 Possible Errors Returned by the ttmedia_ptype_declare 86

Table A-27 Possible Errors Returned by the tttk_message_abandon 87

Table A-28 Possible Errors Returned by the tttk_message_create 89

Table C-1 Possible Errors Returned by tt_file_netfile 126

Table C-2 Possible Errors Returned by tt_host_file_netfile. 127

Table C-3 Possible Errors Returned by tt_host_netfile_file. 129

Table C-4 Possible Errors Returned by tt_netfile_file 132

Tables xi

xii CDE ToolTalk Messaging Overview

xiii

Code Samples

Code Example 2-1 Including Messaging Information 16

Code Example 2-2 CoEd Ptype File . 21

Code Example 4-1 Registering a Pattern and Sending a Notice 42

Code Example 4-2 ttsession’s View of Trace . 43

Code Example B-1 CoEd Ptype File . 95

Code Example B-2 The CoEd.C File. 97

Code Example B-3 The CoEditor.C File. 101

Code Example D-1 Typical Algorithm of Ttdt_contract_cb 135

Code Example D-2 Typical Algorithm of Ttdt_file_cb 138

Code Example D-3 Typical Algorithm of Ttmedia_load_msg_cb 140

Code Example D-4 Typical Algorithm of Ttmedia_load_pat_cb 141

Code Example D-5 Example of Media Ptype Signature Layout 143

Code Example D-6 Xt Input Handler Function Example 145

xiv CDE ToolTalk Messaging Overview

xv

Preface

This book describes the Common Desktop Environment (CDE) components,
commands, and error messages of the ToolTalk® service.

Note – In-depth information about the functionality of the ToolTalk service in
general is beyond the scope of this book. That is, CDE ToolTalk Messaging
Overview does not describe ToolTalk APIs or commands, or other ToolTalk
functionality not specifically related to this release of the ToolTalk service for
the Common Desktop Environment. See the ToolTalk Reference Manual and the
ToolTalk User’s Guide for this information.

Who Should Use This Book

This manual is for developers who create or maintain applications that use the
ToolTalk service to inter-operate with other applications in Common Desktop
Environment. This manual assumes familiarity with the ToolTalk service and
its functionality, UNIX™ operating system commands, system administrator
commands, and system terminology.

!

xvi CDE ToolTalk Messaging Overview

How This Book Is Organized

This book is organized as follows:

Chapter 1, “Introducing the ToolTalk Service,” describes how the ToolTalk
service works and how it uses information that your application supplies to
deliver messages; how applications use the ToolTalk service; and application
and ToolTalk components.

Chapter 2, “How to Use ToolTalk Messaging,” contains the information you
need to write an application using the ToolTalk service in the Common
Desktop Environment, including the kinds of ToolTalk toolkit messages that
need to be included in your application in order for it to inter-operate with
other ToolTalk-aware Common Desktop Environment-compliant applications.

Chapter 3, “Using TTSnoop to Debug Messages and Patterns,” describes how
to create and send custom-constructed ToolTalk messages, and also how to
selectively monitor any or all ToolTalk messages.

Chapter 4, “Using ToolTalk Tracing,” describes how a ToolTalk pattern
matches and delivers every message ttsession sees.

Appendix A, “The Messaging Toolkit,” describes some of the application
program interface (API functions) that are a part of the messaging toolkit.

Appendix B, “The CoEd Demonstration Program,” gives the ToolTalk-related
portions of the ptype, header, and .c files of the ToolTalk demo program
CoEd.

Appendix C, “New ToolTalk Functions,” describes the ToolTalk functions that
map filenames between local and canonical paths.

xvii

Related Books and Other Documentation

CDE ToolTalk Messaging Overview does not provide in-depth information about
ToolTalk and its functionality. In addition to the ToolTalk product base
documentation (that is, ToolTalk User’s Guide and the ToolTalk Reference Manual),
the following related ToolTalk documentation provide in-depth information
about the ToolTalk functionality that is beyond the scope of this book:

• The ToolTalk Service - An Inter-Operability Solution
(Published by SunSoft Press/PTR Prentice Hall, ISBN 013-088717-X)
This book describes ToolTalk and its functionality in depth, and is
appropriate for all platforms to which ToolTalk has been ported. It is
available at your local bookstore or directly from PTR Prentice Hall.

• ToolTalk and Open Protocols
by Astrid M. Julienne and Brian Holtz
(Published by SunSoft Press/PTR Prentice Hall, ISBN 013-031055-7)
This book describes how to create and develop open protocols for
applications that use a messaging service to communicate with other
applications. The general principles described in this book provide an
application with the flexibility required for users to easily inter-change
tools. It is available at your local bookstore or directly from PTR Prentice
Hall.

• ToolTalk Message Sets

• ToolTalk Desktop Services Message Set
These conventions apply to any tools in a POSIX or X11 environment. In
addition to standard messages for these environments, the Desktop
conventions define data types and error codes that apply to all of the
ToolTalk inter-client conventions.

• ToolTalk Document and Media Exchange Message Set
Allows a tool to be a container for arbitrary media, or to be a media
player/editor that can be driven from such a container.

• CASE Inter-Operability Message Set
An open specification defining abstract, framework-neutral message
interfaces for CASE set-up by Sunsoft, DEC, and SGI. This work has been
merged with HP’s CASE Communique work, which defined message
interfaces for HP’s SoftBench Broadcast Message Server framework, and
was submitted as a joint draft to ANSI X3H6. As of this writing, ANSI

xviii CDE ToolTalk Messaging Overview

X3H6 is still reviewing the joint submission draft. More information on
the draft X3H6 standard can be retrieved from ftp.netcom.com, in
/pub/X3H6; or you can contact:

X3 Secretariat
Computer and Business Equipment Manufactures Assoc
1250 Eye St NW
Washington DC 20005-3922

Telephone: (202) 737-8888 (press ‘1’ twice)
Fax: (202) 638-4922 or (202) 628-2829

ToolTalk News Group

The ToolTalk news group is:

alt.soft-sys.tooltalk

19

Introducing the ToolTalk Service 1

As computer users increasingly demand that independently developed
applications work together, inter-operability is becoming an important theme
for software developers. By cooperatively using each other’s facilities,
inter-operating applications offer users capabilities that would be difficult to
provide in a single application. The ToolTalk service is designed to facilitate the
development of inter-operating applications that serve individuals and work
groups.

The ToolTalk service enables independent applications to communicate with
each other without having direct knowledge of each other. Applications create
and send ToolTalk messages to communicate with each other. The ToolTalk
service receives these messages, determines the recipients, and then delivers
the messages to the appropriate applications, as shown in Figure 1-1.

20 CDE ToolTalk Messaging Overview

1

Figure 1-1 Applications Using the ToolTalk Service

Application
A

Application
B

Application
C

Application
D

The ToolTalk Service

Introducing the ToolTalk Service 21

1

What Kind of Work Problems Can the ToolTalk Service Solve?

This section describes some of the inter-operability problems the ToolTalk
service is designed to solve. The ToolTalk service is the appropriate technology
to use if your application needs:

• Tool inter-changeability
• Control integration
• Network-transparent events that are not owned by any well-known server

(for example, an X server) and that do not have any predictable set of
listeners

• Automatic tool invocation
• A widely-available distributed object system
• Persistent objects

Of course, there are some inter-operability problems for which the ToolTalk
service may not be the appropriate technology to use. However, when your
application needs to solve both sorts of problems (that is, a combination of
those inter-operability problems for which the ToolTalk service is designed to
solve and those problems for which it is not designed), you can use the
ToolTalk service in combination with other technologies.

Tool Inter-changeability

Use the ToolTalk service when you want plug-and-play capability. The term
plug-and-play means that any tool can be replaced by any other tool that
follows the same protocol. That is, any tool that follows a given ToolTalk
protocol can be placed (plugged) into your computing environment and
perform (play) those functions indicated by the protocol. Tools can be mixed
and matched, without modification and without having any specific built-in
knowledge of each other.

Control Integration

Use the ToolTalk service when your application requires control integration.
The term control integration indicates a group of tools working together toward
a common end without direct user intervention. The ToolTalk service enables
control integration through its easy and flexible facilities for issuing arbitrary
requests, either to specific tool instances or to anonymous service providers.

22 CDE ToolTalk Messaging Overview

1

Network-Transparent Events

Use the ToolTalk service when your application needs to generate or receive
network-transparent events. To be useful, traditional event mechanisms (such
as signals and window-system events) require special circumstances; for
example, you must know a process or window ID. The ToolTalk service allows
events to be expressed naturally: in terms of the file to which the event refers,
or the group of processes on the network to which the event is applicable. The
ToolTalk service delivers events (called notices) to any interested process
anywhere on the network. ToolTalk notices are a flexible and easy way to
provide extensibility for your system.

Automatic Tool Invocation

Use the ToolTalk service when your application needs network-transparent
automatic invocation. The ToolTalk service lets you describe the messages that,
when sent from any location on the network, should cause your tool to be
invoked. The ToolTalk auto-start facility is easier to use and less host-specific
than the conventional inetd(1) facility.

 Distributed-Object System

Use ToolTalk when you need to build your application on a distributed-object
system that is available across a wide variety of platforms. ToolTalk’s object
system can be used by any application on all the popular UNIX platforms,
regardless of whether the application

• Is single- or multi-threaded
• Has a command-line or graphical user interface
• Uses its own event loop, or that of a window-system toolkit

Note – Programs coded to the ToolTalk object-oriented messaging interface are
not portable to CORBA-compliant systems without source changes.

Persistent Objects

Use the ToolTalk service when your application needs to place objects
unobtrusively in the UNIX file system.

Introducing the ToolTalk Service 23

1

Scenarios Illustrating How the ToolTalk Service Helps Solve Work Problems

The scenarios in this section illustrate how the ToolTalk service helps users
solve their work problems. The message protocols used in these scenarios are
hypothetical.

Using the ToolTalk Desktop Services Message Set

The ToolTalk Desktop Services Message Set allows an application to integrate
and control other applications without user intervention. This section presents
two scenarios (“The Smart Desktop” and “Integrated Toolsets” on page 24) that
show how the Desktop Services Message Set might be implemented.

The Smart Desktop

Note – The scenario in this section is intended to illustrate how the ToolTalk
service can be used in an application-level program that interprets user
requests; it is not intended to illustrate how the Common Desktop
Environment product implements the ToolTalk service to interpret user
requests.

A common user requirement for a graphic user interface (GUI) front-end is the
ability to have data files be aware (or “know”) of their applications. To do this,
an application-level program is needed to interpret the user’s requests.
Examples of application-level programs (known as smart desktops) are the
Apple Macintosh® finder, Microsoft Windows™ File Manager, and the
Common Desktop Desktop File Manager. The key common requirements for
smart desktops are:

1. Takes a file

2. Determines its application

3. Invokes the application

The ToolTalk Service provides additional flexibility by allowing classes of tools
to edit a specific data type. The following scenario illustrates how the Desktop
Services Message Set might be implemented as a smart desktop transparent to
the end-user.

1. Diane double-clicks on the File Manager icon.

24 CDE ToolTalk Messaging Overview

1

• The File Manager opens and displays the files in Diane’s current directory.

2. Diane double-clicks on an icon for a data file.

a. The File Manager requests that the file represented by the icon be
displayed. The File Manager encodes the file type in the display message.

b. The ToolTalk session manager matches the pattern in the display message
to a registered application (in this case, the Icon Editor), and finds an
instance of the application running on Diane’s desktop.

Note – If the ToolTalk session manager does not find a running instance of the
application, it checks the statically-defined process types (ptypes) and starts
an application that best matches the pattern in the message. If none of the
ptypes matches, the session manager returns failure to the File Manager
application.

c. The Icon Editor accepts the display message, de-iconifies itself, and raises
itself to the top of the display.

3. Diane manually edits the file.

Integrated Toolsets

Another significant application for which the Desktop Services Message Set
can be implemented is integrated toolsets. These environments can be applied in
vertical applications (such as a CASE developer toolset) or in horizontal
environments (such as compound documents). Common to both of these
applications is the premise that the overall solution is built from specialized
applications designed to perform one particular task well. Examples of
integrated toolset applications are text editors, drawing packages, video or
audio display tools, compiler front-ends, and debuggers. The integrated toolset
environment requires applications to interact by calling on each other to
handle user requests. For example, to display video, an editor calls a video
display program; or to check a block of completed code, an editor calls a
compiler.

The following scenario shows how the Desktop Services Message Set might be
implemented as an integrated toolset:

1. Bruce is working on a compound document using his favorite editor.
He decides to change the some of the source code text.

Introducing the ToolTalk Service 25

1

2. Bruce double-clicks on the source code text.

a. The Document Editor first determines the text represents source code
and then determines which file contains the source code.

b. The Document Editor sends an edit message request, using the file name
as a parameter for the message.

c. The ToolTalk session manager matches the pattern in the edit message to
a registered application (in this case, the Source Code Editor), and finds
an instance of the application running on Bruce’s desktop.

Note – If the ToolTalk session manager does not find a running instance of the
application, it checks the statically-defined ptypes and starts an application
that best matches the pattern in the message. If none of the ptypes matches, the
session manager returns failure to the Document Editor application.

d. The Source Code Editor accepts the edit message request.

e. The Source Code Editor determines that the source code file is under
configuration control, and sends a message to check out the file.

f. The Source Code Control application accepts the message and creates a
read-write copy of the requested file. It then passes the name of the file
back to the Source Code Editor.

g. The Source Code Editor opens a window that contains the source file.

3. Bruce edits the source code text.

Using the ToolTalk Document and Media Exchange Message Set

The ToolTalk Document and Media Exchange Message Set is very flexible and
robust. This section illustrates three uses of the ToolTalk Document and Media
Exchange Message Set:

• Integrating multimedia into an authoring application
• Adding multimedia extensions to an existing application
• Extending the cut-and-paste facility of X with a media-translation facility

26 CDE ToolTalk Messaging Overview

1

Integrating Multimedia Functionality

Integrating multimedia functionality into an application allows end-users of
the application to embed various media types in their documents.

Typically, an icon that represents the media object is embedded in the
document. Upon selection of an embedded object, the ToolTalk service
automatically invokes an appropriate external media application and the object
is played as illustrated in the following scenario.

1. Daniel opens a document that contains multimedia objects.

2. The window shows the document with several icons representing various
media types (such as sound, video, and graphics).

3. Daniel double-clicks on the sound icon.
A sound application (called a player) is launched and the embedded
recording is played.

4. To edit the recording, Daniel clicks once on the icon to select it and uses the
third mouse button to display an Edit menu.
An editing application is launched, and Daniel edits the media object.

Adding Multimedia Extensions to Existing Applications

The ToolTalk Document and Media Exchange Message Set also allows an
application to use other multimedia applications to extend its features or
capabilities. For example, a Calendar Manager can be extended to use the
Audio Tool to play a sound file as a reminder of an appointment, as illustrated
in the following scenario:

1. Shelby opens her Calendar Manager and sets an appointment.

2. Shelby clicks on an Audio Response button, which causes the Audio Tool to
start.

3. Shelby records her message; for example, “Bring the report.”

When Shelby’s appointment reminder is executed, the Calendar Manager will
start the Audio Tool and play Shelby’s recorded reminder.

Introducing the ToolTalk Service 27

1

Extending the X Cut-and-Paste Facility

The ToolTalk Document and Media Exchange Message Set can support an
extensible, open-ended translation facility. The following scenario illustrates
how an extensible multimedia cut and paste facility could work:

1. Maria opens two documents that are different media types.

2. Maria selects a portion of Document A and cuts the portion using the
standard X-windowing cut facility.

3. Maria then pastes the cut portion into Document B.

a. Document B negotiates the transfer of the cut data with Document A.

b. If Document B does not understand any of the types offered by
Document A, it requests that Document A sends it a tagged media type.
Document B uses the tagged media type to broadcast a ToolTalk message
requesting a translation of the media type to a media type it understands.

c. A registered translation utility accepts the request and returns the
translated version of the media type to Document B.

d. The paste of the translated data into Document B is performed.

How Applications Use ToolTalk Messages

Applications create, send, and receive ToolTalk messages to communicate with
other applications. Senders create, fill in, and send a message; the ToolTalk
service determines the recipients and delivers the message to the recipients.
Recipients retrieve messages, examine the information in the message, and
then either discard the message or perform an operation and reply with the
results.

Sending ToolTalk Messages

ToolTalk messages are simple structures that contain fields for address, subject,
and delivery information. To send a ToolTalk message, an application obtains
an empty message, fills in the message attributes, and sends the message. The
sending application needs to provide the following information:

• Is the message a notice or a request (that is, should the recipient respond to
the message)?

28 CDE ToolTalk Messaging Overview

1

• What interest does the recipient share with the sender? (For example, is the
recipient running in a specific user session or interested in a specific file?)

To narrow the focus of the message delivery, the sending application can
provide more information in the message.

Message Patterns

An important ToolTalk feature is that senders need to know little about the
recipients because applications that want to receive messages explicitly state
what message they want to receive. This information is registered with the
ToolTalk service in the form of message patterns.

Applications can provide message patterns to the ToolTalk service at
installation time and while the application is running. Message patterns are
created similarly to the way a message is created; both use the same type of
information. For each type of message an application wants to receive, it
obtains an empty message pattern, fills in the attributes, and registers the
pattern with the ToolTalk service. These message patterns usually match the
message protocols that applications have agreed to use. Applications can add
more patterns for individual use.

When the ToolTalk service receives a message from a sending application, it
compares the information in the message to the register patterns. Once matches
have been found, the ToolTalk service delivers copies of the message to all
recipients.

For each pattern that describes a message an application wants to receive, the
application declares whether it can handle or observe the message. Although
many applications can observe a message, only one application can handle the
message to ensure that a requested operation is performed only once. If the
ToolTalk service cannot find a handler for a request, it returns the message to
the sending application indicating that delivery failed.

Receiving ToolTalk Messages

When the ToolTalk service determines that a message needs to be delivered to
a specific process, it creates a copy of the message and notifies the process that
a message is waiting. If a receiving application is not running, the ToolTalk
service looks for instructions (provided by the application at installation time)
on how to start the application.

Introducing the ToolTalk Service 29

1

The process retrieves the message and examines its contents.

• If the message contains a notice that an operation has been performed, the
process reads the information and then discards the message.

• If the message contains a request to perform an operation, the process
performs the operation and returns the result of the operation in a reply to
the original message. Once the reply has been sent, the process discards the
original message.

ToolTalk Message Distribution

The ToolTalk service provides two methods of addressing messages:
process-oriented messages and object-oriented messages.

Process-Oriented Messages

Process-oriented messages are addressed to processes. Applications that create
a process-oriented message address the message to either a specific process or
to a particular type of process. Process-oriented messages are a good way for
existing applications to begin communication with other applications.
Modifications to support process-oriented messages are straightforward and
usually take a short time to implement.

Object-Oriented Messages

Object-oriented messages are addressed to objects managed by applications.
Applications that create an object-oriented message address the message to
either a specific object or to a particular type of object. Object-oriented
messages are particularly useful for applications that currently use objects or
that are to be designed around objects. If an existing application is not
object-oriented, the ToolTalk service allows applications to identify portions of
application data as objects so that applications can begin to communicate about
these objects.

Note – Programs coded to the ToolTalk object-oriented messaging interface are
not portable to CORBA-compliant systems without source changes.

30 CDE ToolTalk Messaging Overview

1

Determining Message Delivery

To determine which groups receive messages, you scope your messages.
Scoping limits the delivery of messages to a particular session or file.

Sessions

A session is a group of processes that have an instance of the ToolTalk message
server in common. When a process opens communication with the ToolTalk
service, a default session is located (or created, if a session does not already
exist) and a process identifier (procid) is assigned to the process. Default sessions
are located either through an environment variable (called “process tree
sessions”) or through the X display (called “X sessions”).

The concept of a session is important in the delivery of messages. Senders can
scope a message to a session and the ToolTalk service will deliver it to all
processes that have message patterns that reference the current session. To
update message patterns with the current session identifier (sessid), applications
join the session.

Files

A container for data that is of interest to applications is called a file in this
book.

The concept of a file is important in the delivery of messages. Senders can
scope a message to a file and the ToolTalk service will deliver it to all processes
that have message patterns that reference the file without regard to the
process’s default session. To update message patterns with the current file path
name, applications join the file.

You can also scope a message to a file within a session. The ToolTalk service
will deliver the message to all processes that reference both the file and session
in their message patterns.

Note – The file scoping feature is restricted to NFS® and UFS file systems.

Introducing the ToolTalk Service 31

1

Modifying Applications to Use the ToolTalk Service

Before you modify your application to use the ToolTalk service, you must
define (or locate) a ToolTalk message protocol: a set of ToolTalk messages that
describe operations applications agree to perform. The message protocol
specification includes the set of messages and how applications should behave
when they receive the messages.

To use the ToolTalk service, an application calls ToolTalk functions from the
ToolTalk API. The ToolTalk API provides functions to register with the
ToolTalk service, to create message patterns, to send messages, to receive
messages, to examine message information, and so on. To modify your
application to use the ToolTalk service, you must first include the ToolTalk API
header file in your program. You also need to modify your application to:

• Initialize the ToolTalk service and join a session
• Register message patterns with the ToolTalk service
• Send and receive messages
• Unregister message patterns and leave your ToolTalk session

32 CDE ToolTalk Messaging Overview

1

33

How to Use ToolTalk Messaging 2

Note – The code examples shown in this chapter are taken from a ToolTalk
demo program called CoEd. See Appendix B, “The CoEd Demonstration
Program,” for a listing of the source code showing how ToolTalk-related code
is included in the header and .c files for this program.

Telling Your Application about ToolTalk Functionality

Before your application can utilize the inter-operability functionality provided
by the ToolTalk service and the Messaging Toolkit, it needs to know where the
ToolTalk libraries and toolkit reside.

Using the Messaging Toolkit and Including ToolTalk Commands

To use the ToolTalk service, an application calls ToolTalk functions from the
ToolTalk API. The Messaging Toolkit provides functions such as functions to
register with the ToolTalk service, to create message patterns, to send
messages, to receive messages, and to examine message information. To
modify your application to use the ToolTalk service and toolkit, you must
include the appropriate header files in your application’s .h file.

#include <Tt/tt_c.h> // ToolTalk Header File
#include <Tt/tttk.h> // Messaging Toolkit Header File

34 CDE ToolTalk Messaging Overview

2

Your application also needs to know about the new ToolTalk commands that
are in its .c file. Place this information in your application’s .h file, too.

Code Example 2-1 shows how the header file information is included in the
CoEditor.h file.

Using the ToolTalk Libraries

You need to change the makefile of your application so that it uses the ToolTalk
libraries. To do this, add the -ltt option as follows:

Before You Start Coding

Before you can incorporate the Messaging Toolkit functionality into your
application, you need to determine the way that your tool will work with other
tools. There are several basic questions you need to ask:

1. How will these tools work together?

2. What kinds of operations can these tools perform?

3. What kinds of operations can these tools ask other tools to perform?

4. What events will these tools generate which may interest other tools? (What
types of messages will these tools want to send?)

Code Example 2-1 Including Messaging Information

#ifndef CoEditor_h
#define CoEditor_h

#include <X11/Intrinsic.h>
#include <Tt/tt_c.h> // ToolTalk Header
#include <Tt/tttk.h> // Messaging Toolkit Header

LOCAL_LIBRARIES = -ltt $(XAWLIB) $(XMULIB) $(XTOOLLIB) $(XLIB)

How to Use ToolTalk Messaging 35

2

5. What events generated by other tools will be of interest to these tools?
(What types of messages will these tools want to receive?)

To best answer these questions, you need to understand the difference between
events and operations, and how the ToolTalk service handles messages
regarding each of these.

What Is the Difference Between an Event and an Operation?

An event is an announcement that something has happened. An event is simply
a news bulletin. The sending process has no formal expectations as to whether
any other process will hear about the event, or whether an action is taken as a
consequence of the event. When a process uses the ToolTalk service to inform
interested processes that an event has occurred, it sends a notice. Since the
sending process does not expect a reply, an event cannot fail.

An operation is an inquiry or an action. The requesting process makes an
inquiry or requests that an operation be performed. The requesting process
expects a result to be returned and needs to be informed of the status of the
inquiry or action. When a process uses the ToolTalk service to ask another tool
to perform an operation, it sends a request. The ToolTalk service delivers the
request to interested processes and informs the sending process of the status of
the request.

Sending Notices

When your application sends a ToolTalk notice, it will not receive a reply or be
informed about whether or not any tool pays attention to the notice. It is
important to make the notice an impartial report of the event as it happens.

For example, if your tool sends the Desktop Services message Modified, it
may expect any listening tools to react in a given way. However, your tool
should not care, and does not need to be informed, about whether any or no
other tool reacts to the message; it only wants to report the event:

THE_USER_HAS_MADE_CHANGES_TO_THIS.

Sending Requests

When your application sends a ToolTalk request, it expects one tool to perform
the indicated operation, or to answer the inquiry, and return a reply message.
For example, if your tool sends the Desktop Services message Get_Modified,

36 CDE ToolTalk Messaging Overview

2

it should expect notification that the message was delivered and the action
performed. The ToolTalk service guarantees that either a reply will be returned
by the receiving process or the sender will be informed of the request’s failure.

You can identify requests in three ways:

1. By dentifying the operations requested by your tool that can fail.

2. By identifying the operations your tool can perform for other tools.

3. By identifying the operations your tool will want other tools to perform.

A good method to use to identify these operations is to develop a scenario that
outlines the order of events and operations that you expect your tool to
perform and have performed.

Developing a Scenario

A scenario outlines the order of the events and operations that a tool will
expect to perform and have performed. For example, the following scenario
outlines the events that the ToolTalk demo program CoEd expects to perform
and have performed:

1. User double-clicks on a document icon in the File Manager.
The file opens in the editor, which is started by the system if one is not
already running.

If another tool has modifications to the text pending for the document, User
is asked whether the other tool should save the text changes or revert to the
last saved version of the document.

2. User inserts text.

3. User saves the document.
If another tool has modifications pending for the document, User is asked
whether to modify the document.

4. User exits the editor.
If text has unsaved changes, User is asked whether to save or discard the
changes before quitting the file.

Once the scenario is done, you can answer your basic questions.

How to Use ToolTalk Messaging 37

2

How Will the Tools Work Together?

• The File Manager will request that CoEd open a document for editing.
• Each instance of CoEd will notify other interested instances of changes it

makes to the state of the document.

What Kinds of OperationsDo the Tools Perform?

• Each instance of CoEd can answer questions about itself and its state, such
as “What is your status?”

• Each instance of CoEd has the capability of performing operations such as:

• Iconifying and de-iconifying
• Raising to front and lowering to back
• Editing a document
• Displaying a document
• Quitting

What Kinds of Operations Can the Tools Ask Other Tools to Perform?

• The File Manager must request that CoEd open a document for editing.
• An instance of CoEd can ask another instance of CoEd to save changes to

the open document.
• An instance of CoEd can ask another instance of CoEd to revert to the last

saved version of the open document.

What Events Will the Tools Generate that May Interest Other Tools?

• The document has been opened.
• The document has been modified.
• The document has been reverted to last saved version.
• The document has been saved.
• An instance of CoEd has been exited.

What Events Generated by Other Tools Will Be of Interest to This Tool?

• The document has been opened.
• The document has been modified.
• The document has been reverted to last saved version.
• The document has been saved.
• An instance of CoEd has been exited.

38 CDE ToolTalk Messaging Overview

2

Preparing Your Application for Communication

The ToolTalk service provides you with a complete set of functions for
application integration. Using the functionality provided with the ToolTalk
Messaging Toolkit, your applications can be made to “speak” to other
applications that are ToolTalk-compliant. This section describes how to add the
kinds of ToolTalk functions you need to include in your application so that it
can communicate with other ToolTalk-aware applications that follow the same
protocols.

Creating a Ptype File

The ToolTalk types mechanism is designed to help the ToolTalk service route
messages. When your tool declares a ptype, the message patterns listed in it
are automatically registered; the ToolTalk service then matches messages it
receives to these registered patterns. These static message patterns remain in
effect until the tool closes communication with the ToolTalk service.

The ToolTalk Types Database already has installed ptypes for tools bundled
with this release. You can extract a list of the installed ptypes from the ToolTalk
Types Database, as follows:

The names of the ptypes will be printed out in source format.

For all other tools (that is, tools that are not included in this release), you need
to first create a ptype file to define the ptype for your application, and then
compile the ptype with the ToolTalk type compiler, tt_type_comp . To define
a ptype, you need to include the following information in a file:

• A process-type identifier (ptid).

• An optional start string – The ToolTalk service will execute this command, if
necessary, to start a process running the program.

• Signatures – Describes the TT_PROCEDURE-addressed messages that the
program wants to receive. Messages to be observed are described separately
from messages to be handled.

% tt_type_comp -d user|system|network -P

How to Use ToolTalk Messaging 39

2

To create a ptype file, you can use any text editor (such as vi , emacs, or
dtpad). Code Example 2-2 shows a snippet from the ptype file for the CoEd
application.

After you have created the ptype file, you need to install the ptype. To do this,
run the ToolTalk type compiler. On the command line, type the following:

where CoEd.ptype is the name of the CoED ptype file.

Testing for Existing Ptypes in Current Session

The ToolTalk service provides a simple function to test if a given ptype is
already registered in the current session.

where ptid is the identifier of the session to test for registration.

Code Example 2-2 CoEd Ptype File

ptype DT_CoEd { /* Process type identifier */
 start "CoEd"; /* Start string */
 handle: /* Receiving process */

/*
 * Display ISO_Latin_1
 */
session Display(in ISO_Latin_1 contents) => start opnum = 1; /* Signature */

/* NOTE: A signature is divided
 * into two parts by the => as follows:
 * Part 1 specifies how the message is to be matched;
 * Part 2 specifies what is to be taken when
 * a match occurs.
 */

}

% tt_type_comp CoEd.ptype

// Test for existing ptype registered in current session
tt_ptype_exists(const char *ptid)

40 CDE ToolTalk Messaging Overview

2

Merging a Compiled Ptype File into a Currently Running ttsession

The ToolTalk service provides a function to merge a compiled ToolTalk type file
into the currently running ttsession :

where current_session is the current default ToolTalk session and
compiled_types_file is the name of the compiled ToolTalk types file. This function
adds new types and replaces existing types of the same name; other existing
types remain unchanged.

Tasks Every ToolTalk-aware Application Needs to Perform

There are a number of tasks every ToolTalk-aware application needs to
perform, including:

• Initializing the toolkit
• Joining a ToolTalk session and registering patterns
• Adding the ToolTalk service to its event loop

This section provides examples of the ToolTalk code you need to include in
your application so that it can perform these tasks.

Note – The code snippets used in this section are taken from the CoEd.C file.
This file contains the general commands any application needs to perform that
are not specific to any particular application. See Appendix B, “The CoEd
Demonstration Program,” for the detailed source code.

// Merge new compiled ptypes into currently running ttsession
tt_session_types_load(current_session, compiled_types_file)

How to Use ToolTalk Messaging 41

2

Initializing the Toolkit

Your application needs to initialize and register with the initial ToolTalk
session. To do so, it first needs to obtain a process identifier (procid). The
following code snippet shows how to obtain a procid and how to initialize the
toolkit.

Caution – Your application must call ttdt_open before any other calls are
made; otherwise, errors may occur.

Joining the ToolTalk Session and Registering Message Patterns

Before your application can receive messages, it must join a ToolTalk session
and register the message patterns that are to be matched.

Adding the ToolTalk Service to Event Loop

Your application also needs to add the ToolTalk service to its event loop.

// Obtain process identifier
int myTtFd;

// Initialize toolkit and create a ToolTalk communication endpoint
char *myProcID = ttdt_open(&myTtFd, ToolName, “SunSoft”, “%I”, 1);

// Join a ToolTalk session and register patterns and default callbacks
sessPats = ttdt_session_join(0, 0, session_shell, this, 1);

}

// Process ToolTalk events for Xt Clients
 XtAppAddInput(myContext, myTtFd, (XtPointer)XtInputReadMask, tttk_Xt_input_handler,

 myProcID);

!

42 CDE ToolTalk Messaging Overview

2

Tasks ToolTalk-aware Editor Applications Need to Perform

In addition to the duties described in the section “Tasks Every ToolTalk-aware
Application Needs to Perform,” ToolTalk-aware editor applications also need
to perform other tasks, including:

• Declaring a ptype
• Processing the start string message
• Passing a media callback

• Failing a message
• Replying when a request has been completed

This section provides examples of the ToolTalk code you need to include in
your editor application so that it can perform these additional tasks.

Note – The code snippets used in this section are taken from the CoEditor.C
file. This file contains specific commands for editor applications. See
Appendix B, “The CoEd Demonstration Program,” for the detailed source
code.

Writing a Media Load Pattern Callback

There is one step you need to perform before you code your editor application
to include any ToolTalk functions: you need to write a media load pattern
callback routine. For example,

This callback is passed to the media load function at runtime.

Tt_message
CoEditor::loadISOLatin1_(

Tt_message msg,
void *pWidget,
Ttttk_op op,
Tt_status diagnosis,
unsigned char *contents,
int len,
char *file,
char *docname

)

How to Use ToolTalk Messaging 43

2

Declaring a Ptype

Since type information is specified only once (when your application is
installed), your application needs to only declare its ptype each time it starts.

Passing Media Load Pattern Callbacks

The media load pattern callback routine you wrote previously is passed in at
runtime. The callbacks are registered when your application joins the session.
When your tool agrees to handle a request, a callback message is sent. A
callback message is also sent if a file is joined or if a message is failed.

Replying When Request Is Completed

After your application has completed the operation request, it must reply to
the sending application. The following message returns the edited contents of
text to the sender.

// Join the session and register patterns and callbacks
sessPats = ttdt_session_join(0, 0, session_shell, this, 1);

// Accept responsibility to handle a request
_contractPats = ttdt_message_accept(msg, CoEditor::_contractCB_, shell, this, 1, 1);

// Optional task: Join a file (Can be called recursively)
if (_filePats == 0) {_filePats = ttdt_file_join(_file, TT_SCOPE_NONE, 1,

 CoEditor::_fileCB_, this);
}

// Fail a message
tttk_message_fail(msg, TT_DESKTOP_ENODATA, 0, 1);

// Reply to media load pattern callback
// with edited contents of text
ttmedia_load_reply(_contract, (unsigned char *)contents,

len, 1);

44 CDE ToolTalk Messaging Overview

2

Optional Tasks ToolTalk-aware Editor Applications Can Perform

In addition to the tasks described in the section “Tasks ToolTalk-aware Editor
Applications Need to Perform,” editor applications can also perform other
optional tasks such as tasks that use desktop file interfaces to coordinate with
other editors. This section provides examples of some of the ToolTalk code you
need to include in your editor application so that it can perform these optional
tasks.

Note – The code snippets used in this section are taken from the CoEditor.C
file. This file contains specific commands for editor applications. See
Appendix B, “The CoEd Demonstration Program,” for the detailed source
code.

Requesting Modify, Revert, or Save Operations

The following code snippet asks a file whether it has any changes pending:

The following code snippet reverts a file to its last version:

The following code snippet saves pending changes to a file:

// Does the file have any changes pending?
_modifiedByOther = ttdt_Get_Modified(_ contract, _file, TT_BOTH,

 10 * timeOutFactor);

// Revert file to last version
status = ttdt_Revert(_contract, _file, TT_BOTH,

 10 * timeOutFactor);

// Save pending changes
status = ttdt_Save(_contract, _file, TT_BOTH,

 10 * timeOutFactor);

How to Use ToolTalk Messaging 45

2

Notifying When a File Is Modified, Reverted, or Saved

The following code snippet announces to interested tools that your application
has changes pending for the file:

The following code snippet announces to interested tools that your application
has reverted the file to its last saved version:

The following code snippet announces to interested tools that your application
has saved its pending changes for the file.

Quitting a File

The following code snippet unregisters interest in ToolTalk events about a file
and destroys the patterns.

// File has been modified
ttdt_file_event(_contract, TTDT_MODIFIED, _filePats, 1);

// File has been reverted to last version
ttdt_file_event(_contract, TTDT_REVERTED, _filePats, 1);

// File has been saved
ttdt_file_event(_contract, TTDT_SAVED, _filePats, 1);

// Unregister interest in ToolTalk events and destroy patterns
status = ttdt_file_quit(_filePats, 1);

_filePats = 0;

46 CDE ToolTalk Messaging Overview

2

47

Using TTSnoop to Debug
Messages and Patterns 3

TTSnoop is a tool provided to create and send custom-constructed ToolTalk
messages. You can also use TTSnoop as a tool to selectively monitor any or all
ToolTalk messages.

About TTSnoop

TTSnoop is a useful interactive tool that you can use to become familiar with
TookTalk concepts and API calls as well as to perform demonstrations. In
addition, TTSnoop is a valuable debugging tool when you are developing
applications.

You can use TTSnoop to monitor for messages that match more than one
pattern. When a matched message is displayed, the name of the pattern that
matched the entry can also be displayed.

You can add, edit, or delete messages and patterns to scrollable lists. TTSnoop
allows the definitions of multiple patterns and messages to be saved and
loaded from files. You can also define, save, and reload patterns and messages
particular to a category of applications (for example, DeskSet™ tools) as well
as associate messages and patterns with a user-defined name.

Where to Find TTSnoop

The TTSnoop program resides in the directory /usr/dt/bin/ttsnoop .

48 CDE ToolTalk Messaging Overview

3

Starting TTSnoop

To start the program, enter the following command on the command line:

The -t option displays the ToolTalk API calls that are being used to construct a
particular pattern or message. Table 3-1 describes the buttons that are displayed
when TTSnoop starts.

Note – To obtain help for individual buttons and settings, place the mouse over
the button or setting and click the F1 key or Help key on your keyboard.

ttsnoop [-t]

Table 3-1 TTSnoop Buttons

Button Description

Start Click this button to activate message reception. TTSnoop will
display any incoming messages that match the patterns you
register.

Stop Click this button to stop receiving messages.

Clear Click this button to clear the window.

About TTSnoop Click this button to obtain general help for TTSnoop.

Display Click this button to display a panel of checkboxes to highlight
specific ToolTalk message components on the TTSnoop display
subwindow.

Messages Click this button to display a panel that enables you to create,
store, and send ToolTalk messages.

Patterns Click this button to display a panel that enables you to
compose and register ToolTalk patterns.

Send Messages Click this button to send messages that were stored using the
Messages display.

Using TTSnoop to Debug Messages and Patterns 49

3

Composing and Sending Messages

When you click the Messages button on the main display window, a display
panel containing the choices shown in Table 3-2 is displayed.

Composing and Registering Patterns

When you click the Patterns button on the main display window, a display
panel is displayed.

Click the Apply button to register your pattern. Once a pattern is registered,
you can use TTSnoop as a debugging tool to observe what messages are being
sent by other applications.

Click the Edit Receive Contexts button to add, change, and delete receive
message contexts in patterns. The window displayed enables you to edit
contexts to be registered with your patterns.

Displaying Message Components

When you click the Display button on the main display window, a display
panel of checkboxes is displayed.

When you select a checkbox and click the Apply button, the specified ToolTalk
message component is displayed until you make another selection and apply
the change.

Table 3-2 Message Button Display Window Options

Button Description

Add Message Click this button to store the current message settings. Once the
messages are stored, you can recall and send these messages
using the Send Message button on the main display window.

Edit Contexts Click this button to add, change, and delete send message
contexts. The display window displayed allows you to edit
contexts to be sent with your messages.

Send Message Click this button to send the newly created message.

50 CDE ToolTalk Messaging Overview

3

Sending Pre-Created Messages

When you click the Send Message button on the main display window, you
can send one of the messages you created and stored using the Messages
display.

Receiving Messages

When you click the Start button on the main display window, TTSnoop will
display any incoming messages that match the patterns you registered.

Stop Receiving Messages

When you click the Stop button on the main display window, TTSnoop will
stop receiving messages.

51

Using ToolTalk Tracing 4

The ToolTalk ttsession trace shows how ToolTalk pattern matches and delivers
every message ttsession sees. ToolTalk tracing for this release also

• Displays a single client’s interactions with ToolTalk. This feature allows
implementors to focus on only one client.

• Filters the ttsession trace by, for example, message type, sender, or receiver.

Accessing ToolTalk Tracing

A command new for this release, tttrace , is the primary way to access
ToolTalk tracing. This command is similar in purpose and command-line
interface to the truss command. It enables you to control the three kinds of
ToolTalk tracing. The tttrace command has two fundamental modes: server
mode and client mode.

• In server mode, tttrace directs the indicated session to trace by sending it
a Session_Trace request.

• In client mode, tttrace sets an environment variable and executes the
ToolTalk client command given on the command line. The environment
variable in the executed client instructs libtt whether, and how, to trace
client messaging and client API calls.

Note – tttrace is not downward compatible with older servers or with
clients using older versions of libtt . While tttrace will detect and diagnose
older servers, it fails silently on clients using older versions of libtt .

52 CDE ToolTalk Messaging Overview

4

Controlling Tracing

Controlling libtt Tracing

One way to control libtt ’s tracing behavior is to set the environment variable
$TT_TRACE_SCRIPT .

Note – libtt ’s tracing fails gracefully if the variable’s value is corrupt or
inconsistent.

Controlling Client-Side Tracing

The tt_trace_control call sets or clears an internal flag to control all
client-side tracing. You can use this call to trace suspect areas in your code. The
format of this call is:

where option 0 to turn traciing off; 1 to turn tracing on; and -1 to toggle tracing
on and off. When tracing is on, the extent of tracing is controlled by the
TT_TRACE_SCRIPT variable or tracefile. This call returns the previous setting
of the trace flag.

int tt_trace_control(int option)

Using ToolTalk Tracing 53

4

Tracing Message Traffic in a ToolTalk Session

The Session_Trace request is a ToolTalk request that ttsession registers to
handle itself; that is, ttsession is the handler for the Session_Trace request. This
request can be sent by any ToolTalk client, and, although not recommended,
other ToolTalk clients can register to handle this request. (Note: This method
will cause tracing to not work.) The syntax for this request is:

The Session_Trace request turns message tracing in the scoped-to session on or
off.

• If tracing is on and the file attribute of the request is set, subsequent trace
output is appended to the file named by the attribute.

• If tracing is on and the file attribute is not set, tracing continues to the
current trace.

By default, daemon mode causes the output to go to the console of the host on
which ttsession is running; job-control mode causes the output to go to
ttsession’s standard error. Table 4-1 describes the required and optional
arguments for this request.

[file]Session_Trace(in boolean on,
in boolean follow
[in attribute toPrint
|in state toTrace
|in op toTrace
|in handler_ptype toTrace
|in sender_ptype toTrace][...]);

54 CDE ToolTalk Messaging Overview

4

Table 4-1 Session_Trace Agurments

Argument Description

boolean on Require
d

Turn tracing on or off. If no toTrace arguments
are included and on is true, the previous trace
settings are restored.

boolean follow Require
d

Turn on client-side tracing for Invoked clients.

attribute toPrint Optional Print attribute(s) for each message traced.
Valid attributes are:
• none–print only a one-line description of

traced messages (default)
• all–print all attributes of traced messages

state toTrace Optional State(s) through which to trace messages. In
addition to the Tt_states defined in tt_c.h ,
valid states are:
• edge–messages entering initial (TT_SENT)

and final (TT_HANDLED, TT_FAILED)
states.

• deliver–all state changes and all client
deliveries.

• dispatch–deliver + all patterns considered for
matching. (default)

op toTrace

sender_ptype toTrace

handler_ptype toTrace

Optional
Optional
Optional

Trace messages that have toTrace as a value for
the indicated message attribute.
• Any number of toTrace arguments may be

included in the request.
• toTrace may include sh wildcard characters.
• If no toTrace argument is included for a

given message attribute, no value of that
attribute excludes a message from tracing.

Using ToolTalk Tracing 55

4

The current session tracing behavior changes only if this request is not failed.
On failure, the tt_message_status of the reply is set to one of the errors
described in Table 4-2.

Table 4-2 Error Messages Returned by Session_Trace Request

Error Description

TT_ERR_NO_MATCH No handler could be found for the request.

TT_ERR_APPFIRST + EACCES ttsession does not have permission to open or
create the trace file.

TT_ERR_APPFIRST + EISDIR The trace file is a directory.

TT_ERR_APPFIRST + ENOSPC There is not enough space in the target file system
to create the trace file.

TT_ERR_APPFIRST + EEXIST Tracing is already occurring on another file.
ttsession resets the file attribute of the reply to
name the existing trace file. To trace to a different
file, first turn off tracing to the current trace file.

56 CDE ToolTalk Messaging Overview

4

Tracing ToolTalk Calls and Messages through the Server

The tttrace function traces message traffic through the server for the
indicated ToolTalk session, or runs a command with ToolTalk client tracing
turned on. If neither the session nor the command is given, the default session
is traced. By default, tracing terminates when tttrace exits. The syntax for
this function is:

Table 4-3 describes the tttrace options.

tttrace [-0FCa] [-o outfile] [-S session | command]
tttrace [-e script | -f scriptfile] [-S session | command]

Table 4-3 tttrace Options

Option Description

-0 Turns off message tracing in session, or runs the specified command
without message tracing (that is, with only call tracing).

-F Follows all children forked by the indicated command, or
subsequently started in session by ttsession. Normally, only the
indicated command or a ttsession instance is traced. When the -F
option is specified, the process ID is included with each line of trace
output to indicate which process generated it.

-C Do not trace client calls into the ToolTalk API. The default is to trace
the calls.

-a Prints all attributes, arguments, and context slots of traced messages.
The default is to use only a single line when printing a message on the
trace output.

-o outfile The file to be used for the trace output. For session tracing, output
goes to standard output of tttrace.

-S session The session to trace. Defaults to the default session; that is, the
session that tt_open would contact.

command The ToolTalk client command to invoke and trace.

-e script The script to be used as a ttrace setting.

-f scriptfile The file from which to read the tttrace settings.

Using ToolTalk Tracing 57

4

tttrace is implemented purely as a ToolTalk client, using the message
interface to ttsession and the TT_TRACE_SCRIPT environment variable. If this
variable is set, it tells libtt to turn on client-side tracing as specified in the
trace script. If the first character of the value is ’.’ or ’/’, the value is taken to be
the path name of file containing the trace script to use; otherwise, the value is
taken to be an inline trace script.

Formats of Traced Functions

The following is an example of how a traced ToolTalk function looks.

Message Summary Format

The -a option prints message attributes after a one-line summary of the
message, as follows:

State Change Format

State changes are indicated by the following format:

Message Delivery Format

Deliveries are indicated by the following indicated:

Table 4-4 dexplains the messages you may receive during a dispatch trace.

[pid] function_name(params) = return_value (Tt_status)

Tt_state Tt_paradigm Tt_class (Tt_disposition in Tt_scope): status == Tt_status

old_state => new_state.

Tt_message => procid recipient_procid

58 CDE ToolTalk Messaging Overview

4

Table 4-4 Reasons for Dispatch Trace

Message Explanation

tt_message_send The message to send.

tt_message_reject The message was rejected.

tt_message_fail The message failed.

tt_message_reply The reply to a message.

tt_session_join The session to join.

tt_file_join The file to join.

tt_message_reply A client called the indicated function.

tt_message_send_on_exi
t

ttsession is dispatching on_exit messages for a client
that disconnected before calling tt_close .

tt_message_accept ttsession is dispatching messages that had been
blocked while a ptype was being started. The started
client has now called either tt_message_accept or
tt_message_reply to indicate that the ptype
should be unblocked.

TT_ERR_PTYPE_START A ptype instance was started to receive the message,
but the start command exited before it connected to
ttsession.

TT_ERR_PROCID ttsession lost its connection to the client that was
working on this request.

ttsession -> ttsession Another session wants this session to find recipients
for the message.

ttsession <- ttsession Another session wants to update (for example, fail) a
message originating in this session.

Using ToolTalk Tracing 59

4

Matching Format

When dispatching is being traced, matching is indicated by one of the
following formats:

The pattern or signature is printed, followed by:

Examples

This sections contains examples of how to use the tttrace function.

Registering a Pattern and Sending a Matching Notice

To register a pattern and send a notice that matches the pattern, type:

Code Example 4-1 shows the results.

Tt_message & Tt_pattern {
Tt_message & ptype ptid {
Tt_message & otype otid {

} == match_score; [/* mismatch_reason */]

% tttrace -a myclientprogram

60 CDE ToolTalk Messaging Overview

4

Code Example 4-1 Registering a Pattern and Sending a Notice

tt_open() = 0x51708=="7.jOHHM X 129.144.153.55 0" (TT_OK)
tt_fd() = 11 (TT_OK)
tt_pattern_create() = 0x50318 (TT_OK)
tt_pattern_category_set(0x50318, TT_OBSERVE) = 0 (TT_OK)
tt_pattern_scope_add(0x50318, TT_SESSION) = 0 (TT_OK)
tt_pattern_op_add(0x50318, 0x2f308=="Hello World") = 0 (TT_OK)
tt_default_session() = 0x519e0=="X 129.144.153.55 0" (TT_OK)
tt_pattern_session_add(0x50318, 0x519e0=="X 129.144.153.55 0") = 0 (TT_OK)
tt_pattern_register(0x50318) = 0 (TT_OK)
tt_message_create() = 0x51af0 (TT_OK)
tt_message_class_set(0x51af0, TT_NOTICE) = 0 (TT_OK)
tt_message_address_set(0x51af0, TT_PROCEDURE) = 0 (TT_OK)
tt_message_scope_set(0x51af0, TT_SESSION) = 0 (TT_OK)
tt_message_op_set(0x51af0, 0x2f308=="Hello World") = 0 (TT_OK)
tt_message_send(0x51af0) ...

TT_CREATED => TT_SENT:
TT_SENT TT_PROCEDURE TT_NOTICE (TT_DISCARD in TT_SESSION): 0 == TT_OK
id: 0 7.jOHHM X 129.144.153.55 0
op: Hello World
session: X 129.144.153.55 0
sender: 7.jOHHM X 129.144.153.55 0

= 0 (TT_OK)
tt_message_receive() ...

Tt_message => procid <7.jOHHM X 129.144.153.55 0>
TT_SENT TT_PROCEDURE TT_NOTICE (TT_DISCARD in TT_SESSION): 0 == TT_OK
id: 0 7.jOHHM X 129.144.153.55 0
op: Hello World
session:X 129.144.153.55 0
sender: 7.jOHHM X 129.144.153.55 0
pattern:0:7.jOHHM X 129.144.153.55 0

= 0x51af0 (TT_OK)

Using ToolTalk Tracing 61

4

To see ttsession’s view of the message flow, type:

ttsession’s view of mylientprogram’s message flow is shown in

Code Example 4-2.

% tttrace -a

Code Example 4-2 ttsession’s View of Trace

tt_message_reply:
TT_SENT => TT_HANDLED:
TT_HANDLED TT_PROCEDURE TT_REQUEST (TT_DISCARD in TT_SESSION): 0 == TT_OK
id: 0 2.jOHHM X 129.144.153.55 0
op: Session_Trace
args: TT_IN string: "> /tmp/traceAAAa002oL; version 1; states"[...]
session:X 129.144.153.55 0
sender: 2.jOHHM X 129.144.153.55 0
pattern:0:X 129.144.153.55 0
handler:0.jOHHM X 129.144.153.55 0
Tt_message => procid <2.jOHHM X 129.144.153.55 0>

tt_message_send:
TT_CREATED TT_PROCEDURE TT_NOTICE (TT_DISCARD in TT_SESSION): 0 == TT_OK
id: 0 7.jOHHM X 129.144.153.55 0
op: Hello World
session:X 129.144.153.55 0
sender:7.jOHHM X 129.144.153.55 0
TT_CREATED => TT_SENT:
TT_SENT TT_PROCEDURE TT_NOTICE (TT_DISCARD in TT_SESSION): 0 == TT_OK
id: 0 7.jOHHM X 129.144.153.55 0
op: Hello World
session:X 129.144.153.55 0
sender: 7.jOHHM X 129.144.153.55 0
Tt_message & Tt_pattern {
id: 0:7.jOHHM X 129.144.153.55 0
category:TT_OBSERVE
scopes: TT_SESSION
sessions:X 129.144.153.55 0
ops: Hello World
} == 3;
Tt_message => procid <7.jOHHM X 129.144.153.55 0>

62 CDE ToolTalk Messaging Overview

4

Note – The first message traced will almost always be ttsession’s reply to the
request sent to it by tttrace .

Tracing a Message Flow

To trace the message flow in a specific, non-default session, type:

where "01 15303 1342177284 1 0 13691 129.144.153.55 2" is the specific, non-default
session to be traced.

"01 15303 1342177284 1 0 13691 129.144.153.55 2" is the

% tttrace -S "01 15303 1342177284 1 0 13691 129.144.153.55 2"

Using ToolTalk Tracing 63

4

Settings for ToolTalk Tracing

A tttrace script contains settings that control ToolTalk calls and messages. A
tttrace script consists of commands separated by semicolons or newlines. If
conflicting values are given for a setting, the last value is the one used.
Table 4-5 describes these commands.

Table 4-5 tttrace Script Commands

Command Description

version n The version of the tttracefile command syntax used. The current
version is 1.

follow [off | on] Sets whether to follow all children forked by the traced client or
subsequently started in the traced session. Default is off .

[> | >>] outfile File to be used for the trace output. By default, trace output goes to standard
error. Normal shell interpretation of > and >> applies.

functions [all | none |
func...]

ToolTalk API functions to trace. func may include shell wildcard characters.
Default is all .

attributes [all | none] none (default) means use only a single line when printing a message on the
trace output; all means print all attributes, arguments, and context slots of
traced messages.

states [none | edge |
deliver | dispatch |
Tt_state]...

State(s) through which to trace messages. In addition to the Tt_states defined
in tt_c.h , valid states are:
• none – disable all message tracing
• edge – messages entering initial (TT_SENT) and final (TT_HANDLED,

TT_FAILED) states.
• deliver – all state changes and all client deliveries.
• dispatch – deliver plus all patterns considered for matching (default).

ops toTrace...
sender_ptypes toTrace...
handler_ptypes toTrace...

Trace messages that have toTrace as a value for the indicated message
attribute. toTrace may include shell wildcard characters. If no toTrace

argument is included for a given message attribute, then no value of that
attribute excludes a message from tracing.

64 CDE ToolTalk Messaging Overview

4

65

The Messaging Toolkit A

The ToolTalk Messaging Toolkit is a higher-level interface of the ToolTalk API.
It provides common definitions and conventions to easily integrate basic
ToolTalk messages and functionality into an application for optimum
inter-operability with other applications that follow the same message
protocols.

Although most of the messages in the ToolTalk Messaging Toolkit are the
messages in the standard ToolTalk message sets, the functions of the Messaging
Toolkit transparently take care of several tasks that would otherwise need to be
coded separately. For example, the ttdt_file_join function will register a
pattern to observe Deleted, Reverted, Moved, and Saved notices for the
specified file in the specified scope; it also invokes a callback message.

General Description of the ToolTalk Messaging Toolkit

Inter-operability is an important theme if independently developed
applications are to work together. The messages in the toolkit have been agreed
upon by developers of inter-operating applications; the protocols form a small,
well-defined interface that maximizes application autonomy.

The ToolTalk Messaging Toolkit plays a key role in application inter-operability
and offers complete support for messaging. The message protocol specification
includes the set of messages and how applications should behave when they
receive the messages. These messages can be retrofitted to any existing

66 CDE ToolTalk Messaging Overview

A

application to leverage the functionality of the application. You can easily add
these messages to existing applications to send, receive, and use shared
information.

Tools that follow the ToolTalk messaging conventions will not use the same
ToolTalk syntax for different semantics, nor will tools fail to talk to each other
because they use different ToolTalk syntax for identical semantics. If these
protocols are observed, cooperating applications can be modified, even
replaced, without affecting one another.

Most of the messages in the Messaging Toolkit are the messages in the
standard ToolTalk message sets. For detailed descriptions of the standard
ToolTalk message sets, see the ToolTalk Reference Manual. Table A-1 lists the
functions described in this chapter that partly comprise the ToolTalk
Messaging Toolkit.

Table A-1 ToolTalk Messaging Toolkit Functions

Function Description

ttdt_close Destroys a ToolTalk communication
endpoint

ttdt_file_event Announces an event about a file

ttdt_file_join Registers to observe ToolTalk events
about a file

ttdt_file_notice Creates and sends a standard ToolTalk
notice about a file

ttdt_file_quit Unregisters interest in ToolTalk events
about a file

ttdt_file_request Creates and sends a standard ToolTalk
request about a file

ttdt_Get_Modified Asks if any ToolTalk client has changes
pending on a file

ttdt_message_accept Accepts the responsibility for handling a
ToolTalk request

ttdt_open Creates a ToolTalk communication
endpoint

ttdt_Revert Requests that a ToolTalk client revert to
the last saved version of a file

The Messaging Toolkit 67

A

ttdt_Save Requests that a ToolTalk client save a file

ttdt_sender_imprint_on Causes a tool to emulate the behavior
and characteristics of the specified
ToolTalk tool

ttdt_session_join Joins a ToolTalk session and registers
patterns and default callbacks for many
standard desktop messages

ttdt_session_quit Unregisters any patterns and default
callbacks registered when session joined,
and quits the ToolTalk session

ttdt_subcontract_manage Manages outstanding requests

ttmedia_Deposit Sends a Deposit request to checkpoint a
document

ttmedia_load Creates and sends a Media Exchange
request to display, edit, or compose a
document

ttmedia_load_reply Replies to a Display, Edit, or Compose
request

ttmedia_ptype_declare Declares the ptype of a Media Exchange
media editor

tttk_block_while Blocks the program while awaiting a
condition such as a reply

tttk_message_abandon Fails or rejects a message, then destroys it

tttk_message_create Creates a message that conforms to
messaging conventions

tttk_message_fail Fails a message

tttk_message_receive Retrieves next ToolTalk message

tttk_message_reject Rejects a message

tttk_op_string Returns a string for the operation

tttk_string_op Returns the operation for the string

tttk_Xt_input_handler Processes ToolTalk events for Xt clients

Table A-1 ToolTalk Messaging Toolkit Functions (Continued)

Function Description

68 CDE ToolTalk Messaging Overview

A

Toolkit Conventions

Most of the messaging conventions for the toolkit consist of descriptions of the
standard ToolTalk message sets. This section describes conventions not related
to any particular standard message set.

Using the Messaging Toolkit When Writing Applications

To use the toolkit, include the ToolTalk Messaging Toolkit header file:

Table A-2 Messaging Toolkit Conventions

Field Description

fileAttrib Indicates whether the file attribute of the message can or needs to be set. The ToolTalk service
allows each message to refer to a file, and has a mechanism (called “file-scoping”) for
delivering messages to clients that are “interested in” the named file.

opName The name of the operation or event (also called “op”). It is important that different tools use
the same opName to mean the same thing. Unless a message is a standard one, its opName
must be unique; for example, prefix the opName with Company_Product (such as
Acme_HoarkTool_Hoark_My_Frammistat).

requiredArgs Arguments that must always be included in the message.

optionalArgs Extra arguments that may be included in a message. Any optional arguments in a message
must be in the specified order and must follow the required arguments.

vtype argumentName A description of a particular argument. A vtype is a programmer-defined string that describes
what kind of data a message argument contains. The ToolTalk service uses vtypes only for
matching sent message instances with registered message patterns. Every vtype should by
convention map to a single, well-known data type.

#include <Tt/tttk.h>

The Messaging Toolkit 69

A

The ToolTalk Messaging Toolkit

This section contains a description of functions that are part of the ToolTalk
Messaging Toolkit.

ttdt_close

The ttdt_close function destroys a ToolTalk communication endpoint. This
function calls the ToolTalk function tt_close .

• If the value of procid is != 0 , this function calls

tt_default_procid_set(procid)

• If the value of new_procid is != 0 , this function calls

tt_default_procid_set(new_procid)

• If the sendStopped parameter is set, this function sends a Stopped notice.

The ttdt_close function can return any error returned by the ToolTalk
functions tt_default_procid_set and tt_close . If the Sending notice
fails, no errors are propagated.

Tt_status ttdt_close(const char * procid,
const char * new_procid,
int sendStopped);

70 CDE ToolTalk Messaging Overview

A

ttdt_file_event

The ttdt_file_event function uses the ToolTalk service to announce an
event about a file. This function creates and, optionally, sends a ToolTalk notice
that announces an event pertaining to a specified file. This file is indicated in
the path name that was passed to the ttdt_file_join function when the
patterns were created.

• Table A-3 describes the effect of the value of the event parameter on the
announcement made.

• If the send parameter is set, this function sends the Modified notice in the
scope.

• If the context parameter is a value other than zero, messages created by
this routine inherit all contexts whose slotname begins with ENV_.

Table A-4 lists the possible errors that can be returned by this function.

Tt_status ttdt_file_event(Tt_message context,
Tttk_op event,
Tt_pattern * patterns,
int send);

Table A-3 Effect of event Parameter

Event Announced Announcement

TTDT_MODIFIED Registers in the scope passed to the ttdt_file_join
function to announce the event to interested tools that handle
Get_Modified, Save, and Revert requests.

TTDT_SAVED,
TTDT_REVERTED

Unregisters handler patterns for Get_Modified, Save, and
Revert requests.
If the send parameter is set, this function sends a Saved or
Reverted notice, respectively, in the scope.

The Messaging Toolkit 71

A

Table A-4 Possible Errors Returned by ttdt_file_event

Error Returned Description

TT_DESKTOP_EINVAL The event notice was invalid.
Valid event notices are TTDT_MODIFIED, TTD_TSAVED,
and TTDT_REVERTED.

TT_ERR_POINTER The patterns parameter was null.

TT_ERR_OVERFLOW The ToolTalk service has received the maximum amount
of active messages (2000) it can properly handle.

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running. This
error indicates that the ToolTalk service is either not
installed or not installed correctly.

72 CDE ToolTalk Messaging Overview

A

ttdt_file_join

The ttdt_file_join function registers to observe ToolTalk events on the
specified file. It registers in the scope to observe Deleted, Modified, Reverted,
Moved, and Saved notices.

• The callback message argument Ttdt_file_cb takes the parameters listed
in Table A-5.

• If the value of the_scope parameter is zero (that is, TT_SCOPE_NONE), the
file scope is set to the default (TT_BOTH); however, if, for example, the
ToolTalk database server rpc.ttdbserver is not installed on the file server
that owns pathname , the file scope is set to TT_FILE_IN_SESSION .

Tt_message (*Ttdt_file_cb)(Tt_message msg,
Tttk_op op,
char * pathname,
void * clientdata,
int same_euid_egid,
int same_procid);

Tt_pattern * ttdt_file_join(const char * pathname,
Tt_scope the_scope,
int join,
Ttdt_file_cb cb,
void * clientdata);

Table A-5 Parameters taken by Ttdt_file_cb

Parameter Description

message The message being sent.

op The operation being requested.

pathname The path name of the file to which the message pertains. This
copy can be freed with the ToolTalk function tt_free .

clientdata The client data contained in the message.

same_euid_egid A flag that identifies the sender; if this value is true, the sender
can be trusted.

same_procid A flag that identifies the sender; if this value is true, the sender
is the same procid as the receiver.

The Messaging Toolkit 73

A

The ttdt_file_join function associates the value of the_scope and a
copy of pathname with the Tt_patterns returned to allow the
ttdt_file_quit function to access the patterns. The caller can modify or
free pathname after the ttdt_file_join call returns.

• If the value of the join parameter is true, this function calls

tt_file_join(pathname)

This function returns a null-terminated array of Tt_pattern . Use the
ttdt_file_quit function to destroy the array. If an error is returned, the
returned array is an error pointer that can be decoded with tt_ptr_error .
Table A-6 is a list of the possible errors returned by the ttdt_file_join
function.

Table A-6 Possible Errors Returned by ttdt_file_join

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service tries
to restart ttsession if it is not running. This error indicates that
the ToolTalk service is either not installed or not installed
correctly.

TT_ERR_DBAVAIL The ToolTalk service could not access the ToolTalk database
needed for this operation.

TT_ERR_DBEXIST The ToolTalk service did not find the specified ToolTalk
database in the expected place.

TT_ERR_PATH The ToolTalk service was not able to read a directory in the
specified file path name.

TT_ERR_NOMEM There is not enough memory available to perform the
operation.

74 CDE ToolTalk Messaging Overview

A

ttdt_file_notice

The ttdt_file_notice function creates and, optionally, sends a standard
ToolTalk notice about a file. Use this function to create the following standard
file notices: Created, Deleted, Moved, Reverted, Saved, and Modified.

Note – The ttdt_file_event function is a higher-level interface than the
ttdt_file_notice function and is the preferred method to send all notices
except the Moved notice.

• If the context parameter is a value other than zero, messages created by
this routine inherit all contexts whose slotname begins with ENV_.

• This function creates a notice with the specified op and scope parameters,
and sets its file attribute to pathname parameter.

• If the send_and_destroy parameter is set, this function sends the message
and then destroys it.

If the value of the send_and_destroy parameter is false, the created
message is returned; if the value of the send_and_destroy parameter is
true, zero is returned.

If an error occurs, an error pointer is returned. Use tt_ptr_error to find out
the Tt_status . Table A-7 describes possible errors returned by this function.

Tt_message ttdt_file_notice(Tt_message context,
Tttk_op op,
Tt_scope scope,
const char * pathname,
int send_and_destroy);

The Messaging Toolkit 75

A

Table A-7 Possible Errors Returned by ttdt_file_notice

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running. This
error indicates that the ToolTalk service is either not
installed or not installed correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_NOMEM There is not enough memory available to perform the
operation.

TT_ERR_OVERFLOW The ToolTalk service has received the maximum amount
of active messages (2000) it can properly handle.

TT_ERR_DBAVAIL The ToolTalk service could not access the ToolTalk
database needed for this operation.

TT_ERR_DBEXIST The ToolTalk service did not find the specified ToolTalk
database in the expected place.

TT_DESKTOP_EINVAL The operation was moved, and the value of the
send_and_destroy parameter was true.

TT_ERR_POINTER The path name was null, or was a ToolTalk error pointer.

76 CDE ToolTalk Messaging Overview

A

ttdt_file_quit

The ttdt_file_quit function unregisters interest in ToolTalk events about a
file. This function destroys patterns. If the quit parameter is set, this function
calls

tt_file_quit(pathname)

Use this function to unregister interest in the path name that was passed to the
ttdt_file_join function when patterns was created. Table A-8 lists the
possible errors returned by this function.

Tt_status ttdt_file_quit(Tt_pattern * patterns,
 int quit);

Table A-8 Possible Errors Returned by ttdt_file_quit

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service tries
to restart ttsession if it is not running. This error indicates that
the ToolTalk service is either not installed or not installed
correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_DBAVAIL The ToolTalk service could not access the ToolTalk database
needed for this operation.

TT_ERR_DBEXIST The ToolTalk service did not find the specified ToolTalk
database in the expected place.

TT_ERR_POINTER The patterns were null or otherwise invalid.

The Messaging Toolkit 77

A

ttdt_file_request

The ttdt_file_request function creates, and optionally sends, any
standard Desktop file-scoped request (such as Get_Modified, Save, and
Revert).

Note – This function is a lower-level interface than the ttdt_Get_Modified ,
ttdt_Save , and ttdt_Revert functions, which create and send the request
and then block on its reply.

The ttdt_file_request function creates a request with the specified op and
scope , and sets its file attribute to pathname . Per Desktop messaging
conventions, an unset Tt_mode argument of TT_IN and the vtype File is
added to the request; and if the specified operation is TTDT_GET_MODIFIED,
an unset Tt_mode argument of TT_OUT and the vtype Boolean is also added
to the request.

If context is not zero, the request created by this routine inherits from
context all contexts whose slotname are prefixed with ENV_.

This function installs cb as a message callback for the created request, and
ensures that client data will be passed into the callback. If send is true, this
function sends the request before returning the handle to it.

This function returns the created Tt_message when successful. If an error
occurs, an error pointer is returned. Use tt_ptr_error to find out the
Tt_status. Table A-8 lists the possible errors returned by this function.

Tt_message ttdt_file_request(
Tt_message context,
Tttk_op op,
Tt_scope scope,
const char pathname,
Ttdt_file_cb cb,
void client_data,
int send_and_destroy

);

78 CDE ToolTalk Messaging Overview

A

Table A-9 Possible Errors Returned by ttdt_file_request

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service
tries to restart ttsession if it is not running. This error
indicates that the ToolTalk service is either not installed or
not installed correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_NOMEM There is not enough available memory to perform the
operation.

TT_ERR_OVERFLOW The ToolTalk service has received the maximum amount of
active messages (2000) it can properly handle.

TT_ERR_DBAVAIL The ToolTalk service could not access the ToolTalk database
needed for this operation.

TT_ERR_DBEXIST The ToolTalk service did not find the specified ToolTalk
database in the expected place.

TT_ERR_POINTER The path name was null or otherwise invalid.

The Messaging Toolkit 79

A

ttdt_Get_Modified

The ttdt_Get_Modified function asks if any ToolTalk client has changes
pending on a file. This function sends a Get_Modified request and waits for a
reply.

• If the context parameter is a value other than zero, messages created by
this routine inherit all contexts whose slotname begins with ENV_.

• The Get_Modified request asks if any ToolTalk client has changes pending
on pathname that it intends to make persistent.

• The the_scope parameter indicates the scope in which the Get_Modified
request is sent. If the value of this parameter is zero (that is,
TT_SCOPE_NONE), the file scope is set to the default (TT_BOTH); however, if,
for example, the ToolTalk database server rpc.ttdbserver is not installed
on the file server that owns pathname , the file scope is set to
TT_FILE_IN_SESSION .

• The app2run and ms_timeout parameters are passed to the
tttk_block_while function to block on the reply to the Get_Modified
request sent by this function.

If the Get_Modified request receives an affirmative reply within the specified
time out, the ttdt_Get_Modified function returns non-zero; otherwise, it
returns zero. This call does not return any errors.

int ttdt_Get_Modified(Tt_message context,
const char * pathname,
Tt_scope the_scope,
XtAppContext app2run,
int ms_timeout);

80 CDE ToolTalk Messaging Overview

A

ttdt_message_accept

The ttdt_message_accept function accepts a contract to handle a ToolTalk
request. A tool calls this function when it wants to accept responsibility for
handling (that is, failing or rejecting) a request.

A Ttdt_contract_cb argument takes the parameters listed in Table A-10.

If the callback processes the message msg successfully, it returns zero;
otherwise, it returns a tt_error_pointer cast to Tt_message .

If the callback does not consume the message msg, it returns the message and
passes the TT_CALLBACK_CONTINUE routine down the call stack to offer the
message to other callbacks, or to return it to the tt_message_receive call.

The ttdt_message_accept function registers in the default session for the
handler-addressed requests described in Table A-11.

Tt_pattern * ttdt_message_accept(Tt_message contract,
 Ttdt_contract_cb cb,
 void * clientdata,
 Widget shell,
 int accept,
 int sendStatus);

Table A-10 Parameters Taken by the Ttdt_contract_cb Argument

Parameter Description

Tt_message msg The request in the sent state.
The client program must either fail, reject, or reply to
the message.

Tttk_op op The operation of the incoming request.

Widget shell The shell passed to the ttdt_message_accept
function.

void *clientdata The client data passed to the ttdt_message_accept
function.

Tt_message contract The contract passed to the ttdt_message_accept
function.

The Messaging Toolkit 81

A

If the contract argument has a TT_WRN_START_MESSAGE message status,
the message caused the tool to be started.

Table A-11 Requests for which ttdt_message_accept Registers

Request How Request Is Handled

Get_Geometr
y,
Set_Geometr
y

If the shell parameter is not null, these requests are handled transparently; if the shell parameter is
null and the cb parameter is not null, these requests are passed to the callback routine; otherwise, these
requests fail with the error TT_DESKTOP_ENOTSUP.

Get_Iconifi
ed,
Set_Iconifi
ed

If the shell parameter is not null, these requests are handled transparently; if the shell parameter is
null and the cb parameter is not null, these requests are passed to the callback routine; otherwise, these
requests fail with the error TT_DESKTOP_ENOTSUP.

Get_Mapped,
 Set_Mapped

If the shell parameter is not null, these requests are handled transparently; if the shell parameter is
null and the cb parameter is not null, these requests are passed to the callback routine; otherwise, these
requests fail with the error TT_DESKTOP_ENOTSUP.

Raise If the shell parameter is not null, this request is handled transparently; if the shell parameter is null
and the cb parameter is not null, these requests are passed to the callback routine; otherwise, these
requests fail with the error TT_DESKTOP_ENOTSUP.

Lower If the shell parameter is not null, this request is handled transparently; if the shell parameter is null
and the cb parameter is not null, these requests are passed to the callback routine; otherwise, these
requests fail with the error TT_DESKTOP_ENOTSUP.

Get_XInfo,
Set_XInfo

If the shell parameter is not null, these requests are handled transparently; if the shell parameter is
null and the cb parameter is not null, these requests are passed to the callback routine; otherwise, these
requests fail with the error TT_DESKTOP_ENOTSUP.

Pause If the cb parameter is not null, this request is passed to the callback routine; otherwise, it fails with the
error TT_DESKTOP_ENOTSUP.

Resume If the cb parameter is not null, this request is passed to the callback routine; otherwise, it fails with the
error TT_DESKTOP_ENOTSUP.

Quit If the cb parameter is not null, this request is passed to the callback routine; otherwise, it fails with the
error TT_DESKTOP_ENOTSUP.

Get_Status If the cb parameter is not null, this request is passed to the callback routine; otherwise, it fails with the
error TT_DESKTOP_ENOTSUP.

82 CDE ToolTalk Messaging Overview

A

Note – The started tool should join any scopes it wants to serve before
accepting the contract so that it will receive any other messages already
dispatched to its ptype; otherwise, the tool should undeclare its ptype while it
is busy. If the tool does not join any scopes, the dispatched messages will cause
other instances of the ptype to be started.

If the accept argument is true, the ttdt_message_accept function calls

tt_message_accept(contract)

If the sendStatus argument is true, the ttdt_message_accept function
sends a Status notice to the requestor, using the parameters (if any) passed to
the ttdt_open function.

This function returns a null-terminated array of Tt_pattern . Use the
tttk_patterns_destroy function to destroy the array. If an error is
returned, the returned array is an error pointer that can be decoded with
tt_ptr_error . Table A-12 is a list of the possible errors returned by the
ttdt_message_accept function.

Table A-12 Possible Errors Returned by ttdt_message_accept

Returned Error Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service tries
to restart ttsession if it is not running. This error indicates that
the ToolTalk service is either not installed or not installed
correctly.

TT_ERR_POINTER The pointer passed does not point at an object of the correct
type for this operation. For example, the pointer may point to
an integer when a character string is needed.

TT_ERR_UNIMP The ttsession for the default session is a version (1.0 or 1.0.1)
that does not support the tt_message_accept function.
Note: If the contract argument has a TT_WRN_START_MESSAGE
message status, messages to the tool’s ptype will remain blocked
until the contract is rejected, replied to, or failed.

The Messaging Toolkit 83

A

ttdt_open

The ttdt_open function creates a ToolTalk communication endpoint. This
function calls tt_open and tt_fd functions. The ttdt_open function
associates toolname , vendor , and version with the created procid. It
initializes the new procid’s default contexts from environ(5) . If the
sendStarted argument is set, this function sends a Started notice.

The ttdt_open function returns the created procid in a string that can be
freed with the tt_free function.

This function can return any error returned by the tt_open and tt_fd
functions. If the Started notice fails, errors are not propagated.

 char * ttdt_open(int * ttfd,
 const char * toolname,
 const char * vendor,
 const char * version,
 int sendStarted);

84 CDE ToolTalk Messaging Overview

A

ttdt_Revert

The ttdt_Revert function requests a ToolTalk client to revert a file. It sends a
Revert request in the_scope and waits for a reply. The Revert request asks
the handling ToolTalk client to discard any changes pending on pathname.

• If the context parameter is a value other than zero, messages created by
this routine inherit all contexts whose slotname begins with ENV_.

• If the value of the the_scope parameter is zero (that is, TT_SCOPE_NONE),
the file scope is set to the default (TT_BOTH); however, if, for example, the
ToolTalk database server rpc.ttdbserver is not installed on the file server that
owns pathname , the file scope is set to TT_FILE_IN_SESSION .

• The app2run and ms_timeout parameters are passed to the
tttk_block_while function to block on the reply to the Revert request
sent by this function.

If the request receives an affirmative reply within the indicated timeout, the
ttdt_Revert function returns TT_OK; otherwise, it returns either the
tt_message_status of the failure reply, or one of the errors listed in
Table A-13.

Tt_status ttdt_Revert(Tt_message context,
const char * pathname,
Tt_scope the_scope,
XtAppContext app2run,
int ms_timeout);

The Messaging Toolkit 85

A

Table A-13 Possible Errors Returned by ttdt_Revert

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running.
This error indicates that the ToolTalk service is either
not installed or not installed correctly.

TT_ERR_PROCID The process identifier specified is out of date or
invalid.

TT_ERR_NOMEM There is not enough memory available to perform the
operation.

TT_ERR_OVERFLOW The ToolTalk service has received the maximum
amount of active messages (2000) it can properly
handle.

TT_ERR_DBAVAIL The ToolTalk service could not access the ToolTalk
database needed for this operation.

TT_ERR_DBEXIST The ToolTalk service did not find the specified
ToolTalk database in the expected place.

TT_DESKTOP_ETIMEOUT No reply was received before the allotted timeout.

TT_DESKTOP_EPROTO The request was failed; however, the handler set the
tt_message_status of the failure reply to TT_OK
instead of a specific error status.

TT_ERR_POINTER Path name was null, or was a ToolTalk error pointer.

86 CDE ToolTalk Messaging Overview

A

ttdt_Save

The ttdt_Save function requests a ToolTalk client to save a file. It sends a
Save request in the_scope and waits for a reply. The Save request asks the
handling ToolTalk client to discard any changes pending on pathname.

• If the context parameter is a value other than zero, messages created by
this routine inherit all contexts whose slotname begins with ENV_.

• If the value of the the_scope parameter is zero (that is, TT_SCOPE_NONE),
the file scope is set to the default (TT_BOTH); however, if, for example, the
ToolTalk database server rpc.ttdbserver is not installed on the file
server that owns pathname , the file scope is set to TT_FILE_IN_SESSION .

• The app2run and ms_timeout parameters are passed to the
tttk_block_while function to block on the reply to the Save request sent
by this function.

If the request receives an affirmative reply within the indicated timeout, the
ttdt_Save function returns TT_OK; otherwise, it returns either the
tt_message_status of the failure reply, or one of the errors listed in
Table A-14.

Tt_status ttdt_Save(Tt_message context,
 const char * pathname,
 Tt_scope the_scope,
 XtAppContext app2run,
 int ms_timeout);

The Messaging Toolkit 87

A

Table A-14 Possible Returns of the ttdt_Save function

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running.
This error indicates that the ToolTalk service is either
not installed or not installed correctly.

TT_ERR_PROCID The process identifier specified is out of date or
invalid.

TT_ERR_NOMEM There is not enough memory available to perform the
operation.

TT_ERR_OVERFLOW The ToolTalk service has received the maximum
amount of active messages (2000) it can properly
handle.

TT_ERR_DBAVAIL The ToolTalk service could not access the ToolTalk
database needed for this operation.

TT_ERR_DBEXIST The ToolTalk service did not find the specified
ToolTalk database in the expected place.

TT_DESKTOP_ETIMEOUT No reply was received before the allotted timeout.

TT_DESKTOP_EPROTO The request was failed; however, the handler set the
tt_message_status of the failure reply to TT_OK
instead of a specific error status.

TT_ERR_POINTER Path name was null, or was a ToolTalk error pointer.

88 CDE ToolTalk Messaging Overview

A

ttdt_sender_imprint_on

The ttdt_sender_imprint_on function causes the calling tool (“ToolB”) to
adopt the behavior and certain characteristics of another tool (“ToolA”). ToolB
adopts ToolA’s X11 display, locale, and current working directory; it also learns
ToolA’s X11 geometry so that it can position itself appropriately.

If the display parameter is null, the environment variable $DISPLAY is set to
ToolA’s display; otherwise, ToolA’s display is returned in this parameter. The
returned value is a string that can be freed with the ToolTalk tt_free
function.

This function sends a Get_Geometry request to ToolA. If ToolA does not return
a value for any or all of the geometry parameters:

• If a value for the width parameter is not returned, it is set to -1 .
• If a value for the height parameter is not returned, it is set to -1 .
• If a value for the xoffset parameter is not returned, it is set to INT_MAX.
• If a value for the yoffset parameter is not returned, it is set to INT_MAX.

If the width , height , xoffset , and yoffset parameters in the
ttdt_sender_imprint_on function are all set to null, a Get_Geometry
request is not sent to ToolA.

The app2run and ms_timeout parameters are passed to the
tttk_block_while function to block on the replies to the Get_Geometry
request sent by this function.

Table A-15 lists the possible errors that can be returned by this function.

Tt_status ttdt_sender_imprint_on(const char * handler,
Tt_message contract,
char ** display,
int * width,
int * height,
int * xoffset,
int * yoffset,
XtAppContext app2run,
int ms_timeout);

The Messaging Toolkit 89

A

Table A-15 Possible Errors Returned by the ttdt_sender_imprint_on

Error Returned Description

TT_DESKTOP_ETIMEDOUT One or more of the sent requests did not complete
before the allotted timeout.

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running.
This error indicates that the ToolTalk service is either
not installed or not installed correctly.

TT_ERR_PROCID The process identifier specified is out of date or
invalid.

TT_ERR_NOMEM There is not enough memory available to perform
the operation.

TT_ERR_OVERFLOW The ToolTalk service has received the maximum
amount of active messages (2000) it can properly
handle.

90 CDE ToolTalk Messaging Overview

A

ttdt_session_join

The ttdt_session_join function joins a ToolTalk session as a “good
desktop citizen”; that is, it registers patterns and default callbacks for many
standard desktop message interfaces when it joins the session sessid .
Table A-16 lists the message interfaces for which this function currently
registers.

Tt_message (*Ttdt_contract_cb)(Tt_message msg,
void * clientdata
Tt_message contract);

Tt_pattern * ttdt_session_join(const char * sessid,
 Ttdt_session_cb cb,
 Widget shell,
 void * clientdata,
 int join);

Table A-16 Standard Messages for which the ttdt_session_join Registers

Request How Message Is Handled

Get_Environment,
Set_Environment

These messages are handled transparently.

Get_Locale,
Set_Locale

These messages are handled transparently.

Get_Situation,
Set_Situation

These messages are handled transparently.

Signal This message is handled transparently.

Get_Sysinfo This message is handled transparently.

Get_Geometry,
Set_Geometry

If the value of the shell parameter is not null and the shell is a realized mappedWhenManaged

applicationShellWidget, these messages are handled transparently; if the shell is not a
mappedWhenManaged applicationShellWidget, these messages fail with the error
TT_DESKTOP_ENOTSUP.

Get_Iconified,
Get_Iconified

If the value of the shell parameter is not null and the shell is a realized mappedWhenManaged

applicationShellWidget, these messages are handled transparently; if the shell is not a
mappedWhenManaged applicationShellWidget, these messages fail with the error
TT_DESKTOP_ENOTSUP.

The Messaging Toolkit 91

A

Get_Mapped,
Set_Mapped

If the value of the shell parameter is not null and the shell is a realized mappedWhenManaged

applicationShellWidget, these messages are handled transparently; if the shell is not a
mappedWhenManaged applicationShellWidget, these messages fail with the error
TT_DESKTOP_ENOTSUP.

Raise If the value of the shell parameter is not null and the shell is a realized mappedWhenManaged

applicationShellWidget, this message is handled transparently; if the shell is not a
mappedWhenManaged applicationShellWidget, this message fails with the error
TT_DESKTOP_ENOTSUP.

Lower If the value of the shell parameter is not null and the shell is a realized mappedWhenManaged

applicationShellWidget, this message is handled transparently; if the shell is not a
mappedWhenManaged applicationShellWidget, this message fails with the error
TT_DESKTOP_ENOTSUP.

Get_XInfo If the value of the shell parameter is not null, this message is handled transparently; otherwise,
this message fails with the error TT_DESKTOP_ENOTSUP.

Set_XInfo If the value of the shell parameter is not null and the shell is a realized mappedWhenManaged

applicationShellWidget, this message is handled transparently; if the shell is not a
mappedWhenManaged applicationShellWidget, this message fails with the error
TT_DESKTOP_ENOTSUP.

Pause If the cb parameter is not null, this message is passed to the callback; the cb parameter is null, this
message fails with the error TT_DESKTOP_ENOTSUP.

Resume If the cb parameter is not null, this message is passed to the callback; the cb parameter is null, this
message fails with the error TT_DESKTOP_ENOTSUP.

Quit If the cb parameter is not null, this message is passed to the callback; the cb parameter is null, this
message fails with the error TT_DESKTOP_ENOTSUP.

Get_Status If the cb parameter is not null, this message is passed to the callback; the cb parameter is null, this
message fails with the error TT_DESKTOP_ENOTSUP.

Do_Command If the cb parameter is not null, this message is passed to the callback; the cb parameter is null, this
message fails with the error TT_DESKTOP_ENOTSUP.

Table A-16 Standard Messages for which the ttdt_session_join Registers (Continued)

Request How Message Is Handled

92 CDE ToolTalk Messaging Overview

A

If the sessid parameter is null, the default session is joined.

If the join parameter is set, the specified session is joined.

A Ttdt_contract_cb message takes the parameters described in Table A-17.
If the callback does not consume the message, it returns the message; if it
consumes the message, it returns either zero or a error pointer cast to
Tt_message .

The ttdt_session_join function returns a null-terminated array of
Tt_pattern , which can be passed to the ttdt_session_quit function to be
destroyed. If an error occurs, the returned array that is an error pointer. Use
tt_ptr_error to find the Tt_status . Table A-18 lists the possible errors
returned.

Table A-17 Parameters taken by Ttdt_session_cb

Parameter Description

Tt_message msg The request in the sent state.
The client program must either fail, reject, or reply to the
message.
Note: Destroy the message msg after it is processed.

void *clientdata The clientdata passed to either the ttdt_session_join
or ttdt_message_accept function.

Tt_message
contract

The contract passed to the ttdt_message_accept
function. If the callback is installed by the
ttdt_session_join function, the value for the
contract parameter is always zero.

Table A-18 Possible Errors Returned by the ttdt_session_join

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service tries
to restart ttsession if it is not running. This error indicates that
the ToolTalk service is either not installed or not installed
correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_SESSION An out-of-date or invalid ToolTalk session was specified.

The Messaging Toolkit 93

A

TT_ERR_POINTER The pointer passed does not point at an object of the correct
type for this operation. For example, the pointer may point to
an integer when a character string is needed.

TT_ERR_NOMEM There is not enough memory available to perform the
operation.

Table A-18 Possible Errors Returned by the ttdt_session_join (Continued)

Error Returned Description

94 CDE ToolTalk Messaging Overview

A

ttdt_session_quit

The ttdt_session_quit function quits a ToolTalk session as a “good
desktop citizen”; that is, it unregisters all the patterns and default callback it
registered when it joined the session.

This function destroys all patterns in sess_pats . If the quit parameter is set,
it quits the session sessid ; if the sessid parameter is null, it quits the default
session.

Table A-19 lists the errors that can be returned by this function.

Tt_status ttdt_session_quit(const char * sessid,
 Tt_pattern * sess_pats,
 int quit);

Table A-19 Possible Errors Returned by the ttdt_session_quit

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service tries
to restart ttsession if it is not running. This error indicates that
the ToolTalk service is either not installed or not installed
correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_SESSION An out-of-date or invalid ToolTalk session was specified.

TT_ERR_POINTER The pointer passed does not point at an object of the correct
type for this operation. For example, the pointer may point to
an integer when a character string is needed.

The Messaging Toolkit 95

A

ttdt_subcontract_manage

The ttdt_subcontract_manage function manages an outstanding request.
It allows the requesting tool to manage the standard Desktop interactions with
the tool that is handling the request. This function registers in the default
session for TT_HANDLER-addressed Get_Geometry and Get_XInfo requests,
and Status notices.

If the shell parameter is null, the request or notice is passed to the cb
parameter; otherwise, the request is handled transparently.

The ttdt_subcontract_manage function returns a null-terminated array of
Tt_pattern, which can be passed to the ttdt_session_quit function to be
destroyed. If an error occurs, the returned array that is an error pointer. Use
tt_ptr_error to find the Tt_status . Table A-20 lists the possible errors
returned.

Tt_pattern * ttdt_subcontract_manage(Tt_message subcontract,
Ttdt_contract_cb cb,
Widget shell,
void * clientdata);

Table A-20 Possible Errors Returned by the ttdt_subcontract_manage

Error Returned Description

TT_ERR_NOMEM There is not enough memory available to perform the
operation.

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service tries
to restart ttsession if it is not running. This error indicates that
the ToolTalk service is either not installed or not installed
correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_POINTER The subcontract parameter was not a valid Tt_message .

TT_ERR_EINVAL Both the shell and cb parameters were null.

96 CDE ToolTalk Messaging Overview

A

ttmedia_Deposit

The ttmedia_Deposit function sends a Deposit request to checkpoint a
document that was the subject of a Media Exchange load_contract request such
as Edit, Compose, or Open.

This function creates and sends a Deposit request and returns the success or
failure of that request.

• load_contract is the request that caused this editor to load the document
• buffer_id is the id of the buffer this editor created if the document was

loaded by an Open request
• media_type is the vtype of the contents argument of the sent request
• new_contents and new_len are the values for the contents argument

After the request is sent, app2run and ms_timeout are passed to the
tttk_block_while function to wait for the reply.

Tt_status ttmedia_Deposit(Tt_message load_contract,
const char * buffer_id,
const char * media_type,
const unsigned char * new_contents,
int new_len,
const char * pathname,
XtAppContext app2run,
int ms_timeout);

Table A-21 Possible Errors Returned by the ttmedia_Deposit

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running. This
error indicates that the ToolTalk service is either not
installed or not installed correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_NOMEM There is not enough available memory to perform the
operation.

TT_ERR_OVERFLOW The ToolTalk service has received the maximum amount
of active messages (2000) it can properly handle.

The Messaging Toolkit 97

A

TT_ERR_DBAVAIL The ToolTalk service could not access the ToolTalk
database needed for this operation.

TT_ERR_DBEXIST The ToolTalk service did not find the specified ToolTalk
database in the expected place.

TT_DESKTOP_ETIMEOU
T

No reply was received before the allotted timeout.

TT_ERR_POINTER Path name was null, or was a ToolTalk error pointer.

Table A-21 Possible Errors Returned by the ttmedia_Deposit (Continued)

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running. This
error indicates that the ToolTalk service is either not
installed or not installed correctly.

98 CDE ToolTalk Messaging Overview

A

ttmedia_load

The ttmedia_load function creates and, optionally, sends a Media
Exchange request to display, edit, or compose a document. This function
creates and sends Display, Edit, or Compose requests.

Note – Use the ttdt_subcontract_manage function immediately after
sending the request created by this message to manage the standard
interactions with the handler of the request.

If value of the context argument is not zero, messages created by this routine
inherit all contexts whose slotname begins with ENV_.

The clientdata argument is passed to the cb argument when the reply is
received, or when intermediate versions of the document are checkpointed
through Deposit requests.

The op argument must be either TTME_DISPLAY, TTME_EDIT, or
TTME_COMPOSE.

The media_type argument names the data format of the document. This
argument usually determines which application is chosen to handle the
request.

Tt_message (*Ttmedia_load_msg_cb)(Tt_message msg,
void * clientdata,
Tttk_op op,
unsigned char * contents,
int len,
char * file);

Tt_message ttmedia_load(Tt_message context,
Ttmedia_load_msg_cb cb,
void * clientdata,
Tttk_op op,
const char * media_type,
const unsigned char* contents,
int len,
const char * file,
const char * docname,
int send);

The Messaging Toolkit 99

A

The contents and len arguments specify the document. If the value of both
of these arguments is zero and the value of the file argument is not zero, the
document is assumed to be contained in the specified file.

If the docname argument is not null, it is used as the title of the document.

If the send argument is true, the message is sent before it is returned.

Table A-22 lists the parameters taken by a Ttmedia_load_msg_cb message.

If the message is processed successfully, the callback returns zero; if the
processing results in an error, the callback returns an error pointer cast to
Tt_message .

If the callback does not consume the message msg, it returns the message and
the toolkit passes the TT_CALLBACK_CONTINUE routine down the call stack to
offer the message to other callbacks, or to return it to the
tt_message_receive call.

Upon completion, the ttmedia_load function returns the request it was
asked to build. If an error occurs, this function returns an error pointer. Use
tt_ptr_error to find the Tt_status . Table A-23 lists the possible errors
returned.

Table A-22 Parameters Taken by the Ttmedia_load_msg_cb

Parameter Description

Tt_message msg The reply to the request, or a Deposit request with a
messageID argument that names the tt_message_id of
the load request. If the value of this parameter is a
Deposit request, the client program must either fail or
reply to the request.
Note: Destroy the message msg after it is processed.

Tttk_op op The operation of the message (either TTME_DEPOSIT or
the operation passed to the ttmedia_load message).

unsigned char *
contents
int len
char *file

The contents of the arriving document. If the len
argument is zero, the document is contained in the
specified file. If the contents or file arguments are
non-null, use the ToolTalk function tt_free to free them.

void *clientdata The client data passed to the ttmedia_load message.

100 CDE ToolTalk Messaging Overview

A

Table A-23 Possible Errors Returned by the ttmedia_load

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running. This
error indicates that the ToolTalk service is either not
installed or not installed correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_NOMEM There is not enough memory available to perform the
operation.

TT_ERR_OVERFLOW The ToolTalk service has received the maximum amount
of active messages (2000) it can properly handle.

The Messaging Toolkit 101

A

ttmedia_load_reply

Use the ttmedia_load_reply function to reply to a Media Exchange request
to display, edit, or compose a document.

If both the new_contents and new_len arguments are non-zero, their value
is used to set the new contents of the document in the appropriate output
argument of the contract argument. If the reply_and_destroy argument
is true, a reply is made to the contract argument and then the message is
destroyed.

Table A-24 lists the possible errors returned.

Tt_message ttmedia_load_reply(Tt_message contract,
const unsigned char * new_contents,
int new_len,
int reply_and_destroy);

Table A-24 Possible Errors Returned by the ttmedia_load_reply

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running. This
error indicates that the ToolTalk service is either not
installed or not installed correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_NUM

TT_ERR_NOTHANDLER

102 CDE ToolTalk Messaging Overview

A

ttmedia_ptype_declare

The ttmedia_ptype_declare function declares the ptype of a Media
Exchange media editor. This function initializes an editor that implements the
Media Exchange message interface for a particular media type.

• It calls the cb argument when the editor is asked to edit a document of the
kind supported by ptype .

• It installs a toolkit-internal operation number (opnum) callback on a series of
signatures that the ptype is assumed to contain. The toolkit-internal opnum
callback passes clientdata to the cb argument when a request is received
that matches one of these signatures. The opnums start at base_opnum ,
which must be zero or a multiple of 1000.

• If the declare argument is true, it calls

tt_ptype_declare(ptype)

If the ptype implements several different media types, the
ttmedia_ptype_declare function can be called multiple times. Each call
must have a different base_opnum value.

Note – The ttmedia_ptype_declare function can be called multiple times;
however, the declare argument can “true” only once.

Table A-25 lists the parameters taken by a Ttmedia_load_pat_cb message.

Tt_message (*Ttmedia_load_pat_cb)(Tt_message msg,
void * clientdata,
Tttk_op op,
Tt_status diagnosis,
unsigned char * contents,
int len,
char * file,
char * docname);

Tt_status ttmedia_ptype_declare(const char * ptype,
 int base_opnum,
 Ttmedia_load_pat_cb cb,
 void * clientdata,
 int declare);

The Messaging Toolkit 103

A

If the message is processed successfully, the callback returns zero; if the
processing results in an error, the callback returns an error pointer cast to
Tt_message .

If the callback does not consume the message msg and the value of the
diagnosis argument is not TT_OK, it returns the message and the toolkit
passes the TT_CALLBACK_CONTINUE routine down the call stack to offer the
message to other callbacks, or to return it to the tt_message_receive call.

If an error occurs, this function returns one of the errors listed in Table A-26.

Table A-25 Parameters Taken by Ttmedia_load_pat_cb

Parameter Description

Tt_message msg The request sent. The client program must either fail,
reject, or reply to the request.

Tttk_op op The operation of the incoming request (either
TTME_COMPOSE, TTME_EDIT, or TTME_DISPLAY.

Tt_status diagnosis The error code with which the toolkit recommends the
request should be failed (for example,
TT_DESKTOP_ENODATA). If the diagnosis is not TT_OK
and the callback routine returns the message msg, the
toolkit fails the message msg and destroys it.

unsigned char *
contents
int len
char *file

The contents of the arriving document. If the len
argument is zero, the document is contained in
specified file. If value of the contents or file
arguments is non-null, use the ToolTalk function
tt_free to free them.

char * docname The name of the document, if any.

void * clientdata The client data passed to the
ttmedia_ptype_declare message.

104 CDE ToolTalk Messaging Overview

A

tttk_block_while

The tttk_block_while function blocks the program while it awaits a reply
for the ms_timout time.

Table A-26 Possible Errors Returned by the ttmedia_ptype_declare

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service tries
to restart ttsession if it is not running. This error indicates that
the ToolTalk service is either not installed or not installed
correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_PTYPE The ToolTalk service could not locate the specified ptype.

TT_ERR_POINTER The pointer passed does not point at an object of the correct
type for this operation. For example, the pointer may point to
an integer when a character string is needed.

Tt_status tttk_block_while(
const int *blocked,
int ms_timeout);

The Messaging Toolkit 105

A

tttk_message_abandon

The tttk_message_abandon function abandons the request, and then
destroys it.

Note – A program should abandon a message when it does not understand the
message and wants to dispose of it.

If an error occurs, this function returns one of the errors listed in Table A-27.

Tt_status tttk_message_abandon(Tt_message msg);

Table A-27 Possible Errors Returned by the tttk_message_abandon

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running.
This error indicates that the ToolTalk service is either
not installed or not installed correctly.

TT_ERR_POINTER The pointer passed does not point at an object of the
correct type for this operation. For example, the
pointer may point to an integer when a character
string is needed.

TT_ERR_NOTHANDLER

106 CDE ToolTalk Messaging Overview

A

tttk_message_create

The tttk_message_create function creates a message that conforms to the
conventions. This function provides a simple way to create a message that
propagates inherited contexts from one message to another.

The tttk_message_create function creates a message and copies onto it all
the context slots from context whose slotname begins with ENV_. The created
message is given a Tt_class value of the_class and a Tt_scope value of
the_scope .

If the handler parameter is null, the message is given a Tt_address of
TT_PROCEDURE; otherwise, the message is TT_HANDLER-addressed to that
procid.

If the op argument is not null, the message’s op argument is set to that value.

If the callback argument is not null, it is added to the message as a message
callback.

If successful, the tttk_message_create function returns the created
Tt_message , which can be modified, sent, and destroyed in the same way as
any other Tt_message .

If an error occurs, an error pointer is returned. Use tt_ptr_error to find the
Tt_status . Table A-28 lists the possible errors returned.

Tt_message tttk_message_create(Tt_message context,
Tt_class the_class,
Tt_scope the_scope,
const char * handler,
const char * op,
Tt_message_callback callback);

The Messaging Toolkit 107

A

Table A-28 Possible Errors Returned by the tttk_message_create

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service tries
to restart ttsession if it is not running. This error indicates that
the ToolTalk service is either not installed or not installed
correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_NOMEM There is not enough memory available to perform the
operation.

108 CDE ToolTalk Messaging Overview

A

tttk_message_destroy

The tttk_message_destroy function destroys any message that conforms to
the conventions.

Note – This message can be used in place of the tt_message_destroy
message.

The tttk_message_destroy function destroys any patterns that may have
been stored on the message by the ttdt_message_accept or
ttdt_subcontract_manage functions and then passes the message msg to
the tt_message_destroy function.

This function returns the value returned by the tt_message_destroy
function.

Tt_status tttk_message_destroy(Tt_message msg);

The Messaging Toolkit 109

A

tttk_message_fail

The tttk_mesage_fail function fails the message msg and then destroys it.

Note – A program should abandon a message when it does not understand the
message and wants to dispose of it.

A message whose state is TT_SENT can be failed. If the message is a
handler-addressed message, or if it has a tt_message_status of
TT_WRN_START_MESSAGE, it can be failed.

This function returns TT_DESKTOP_ENOTSUP.

tttk_message_receive

The tttk_message_receive function calls the tt_message_receive
function to retrieve the next ToolTalk message.

If procid != 0, this function calls

tt_default_procid_set(procid)

Tt_status tttk_message_fail(
Tt_message msg,
Tt_status status,
const char *status_string,
int destroy

);

Tt_status tttk_message_receive(const char*procid);

110 CDE ToolTalk Messaging Overview

A

tttk_message_reject

The tttk_message_reject function rejects the message msg and then
destroys it.

Note – A program should abandon a message when it does not understand the
message and wants to dispose of it.

A message whose state is TT_SENT can be rejected. If the message is not a
handler-addressed message, or if it has a tt_message_status other than
TT_WRN_START_MESSAGE, it can be rejected.

This function returns TT_DESKTOP_ENOTSUP.

tttk_op_string

The tttk_op_string function returns string for the operation op if
successful; otherwise, this function returns zero.

Note – Use the tt_free function to free the string returned.

The tttk_string_op function returns a string containg the operation for the
specified string. On error, this function returns TTDT_OP_NONE.

Tt_status tttk_message_reject(
Tt_message msg,
Tt_status status,
const char* status_string,
int destroy};

char *tttk_op_string(Tttk_op op};

Tttk_op tttk_string_op(const char * opstring);

The Messaging Toolkit 111

A

tttk_Xt_input_handler

The tttk_Xt_input_handler function processes ToolTalk events for Xt
clients. Use this function as your Xt input handler unless you expect some
messages not to be consumed by callbacks.

This function passes the procid argument to the tttk_message_receive
function and passes any returned message (that is, messages that are not
consumed by callbacks) to the tttk_message_abandon function.

If this function returns the error TT_ERR_NOMP, the tttk_Xt_input_handler
function will pass the id parameter to the XtRemoveInput function.

void tttk_Xt_input_handler(XtPointer procid,
 int * source,
 XtInputId * id);

112 CDE ToolTalk Messaging Overview

A

113

The CoEd Demonstration Program B

This appendix contains the files and source code listing showing the ToolTalk
related code for a ToolTalk demonstration program called CoEd. The CoEd
demo program uses the ToolTalk Desktop Services message set. It illustrates
how an editor can use the ToolTalk service to keep all changes made by the
user in sync if multiple instances of the editor are editing the same file at the
same time.

The CoEd Ptype File

The CoEd ptype file, shown in Code Example B-1.

Code Example B-1 CoEd Ptype File

ptype DT_CoEd { /* Process type identifier */
 start "CoEd"; /* Start string */
 handle: /* Receiving process */

/*
 * Display ISO_Latin_1
 */
session Display(in ISO_Latin_1 contents) => start opnum = 1; /* Signature */
session Display(in ISO_Latin_1 contents,

 in messageID counterfoil) => start opnum = 2;
session Display(in ISO_Latin_1 contents,

 in title docName) => start opnum = 3;
session Display(in ISO_Latin_1 contents,

114 ToolTalk Messaging Overview—September 1994

B

 in messageID counterfoil,
 in title docName) => start opnum = 4;

/*
 * Edit ISO_Latin_1
 */
session Edit(inout ISO_Latin_1 contents) => start opnum = 101;
session Edit(inout ISO_Latin_1 contents,

in messageID counterfoil) => start opnum = 102;
session Edit(inout ISO_Latin_1 contents,

in title docName) => start opnum = 103;
session Edit(inout ISO_Latin_1 contents,

in messageID counterfoil,
in title docName) => start opnum = 104;

/*
 * Compose ISO_Latin_1
 */
session Edit(out ISO_Latin_1 contents) => start opnum = 201;
session Edit(out ISO_Latin_1 contents,

in messageID counterfoil) => start opnum = 202;
session Edit(out ISO_Latin_1 contents,

in title docName) => start opnum = 203;
session Edit(out ISO_Latin_1 contents,

in messageID counterfoil,
in title docName) => start opnum = 204;

/*
 * Open an ISO_Latin_1 buffer
 */
session Open(in ISO_Latin_1 contents,

out bufferID docBuf,
in boolean readOnly) => start opnum = 400;

session Open(in ISO_Latin_1 contents,
out bufferID docBuf,
in boolean readOnly,
in boolean mapped) => start opnum = 401;

session Open(in ISO_Latin_1 contents,
out bufferID docBuf,
in boolean readOnly,
in boolean mapped,
in integer shareLevel) => start opnum = 402;

Code Example B-1 CoEd Ptype File (Continued)

The CoEd Demonstration Program 115

B

The CoEd.C File

The CoEd.C file, shown in Code Example B-2, shows the ToolTalk code that
needs to be included in every application to initialize the toolkit, join a
ToolTalk session and registering patterns, and add the ToolTalk service to its
event loop.

Note – This file also contains ToolTalk code that is specific to CoEd in its role as
an editor application. This code includes declaring a ptype and processing the
start message.

session Open(in ISO_Latin_1 contents,
out bufferID docBuf,
in boolean readOnly,
in boolean mapped,
in integer shareLevel,
in locator initialPos) => start opnum = 403;

};

Code Example B-2 The CoEd.C File

/*
 * CoEd.cc
 *
 * Copyright (c) 1991,1993 by Sun Microsystems.
 */

#include <stdlib.h>
#include <desktop/tttk.h> // Include the ToolTalk messaging toolkit
#include <CoEd.h>
#include “CoEditor.h”
#include “CoEdTextBuffer.h”

XtAppContext myContext;
Widget myTopWidget = 0;

Code Example B-1 CoEd Ptype File (Continued)

116 ToolTalk Messaging Overview—September 1994

B

Display *myDpy;
int abortCode= 0;
Tt_pattern *sessPats= 0; // Patterns returned when
session joined
int timeOutFactor = 1000;
int maxBuffers = 1000;
int *pArgc;
char **globalArgv;

const char *ToolName= “CoEd”;
const char *usage =
“Usage: CoEd [-p01] [-w n] [-t n] [file]\n”
“ -p print ToolTalk procid\n”
“ -0 do not open an initial composition window\n”
“ -1 be a single-buffer editor\n”
“ -w sleep for n seconds before coming up\n”
“ -t use n as timeout factor, in milliseconds (default: 1000)\n”
;

void
main(

int argc,
char **argv

)
{

static const char *here = “main()”;
int delay = 0;
int printid = 0;
int compose = 1;
char *file = 0;

OlToolkitInitialize(0);
XtToolkitInitialize();
myContext = XtCreateApplicationContext();
//
// This display may get closed, and another opened, inside
// CoEditor::_init(), if e.g. our parent is on a different screen
//
pArgc = &argc;
globalArgv = argv;
myDpy = XtOpenDisplay(myContext, 0, 0, “CoEd”, 0, 0, &argc, argv);

Code Example B-2 The CoEd.C File (Continued)

The CoEd Demonstration Program 117

B

int c;
while ((c = getopt(argc, argv, “p01w:t:”)) != -1) {

switch (c) {
 case ‘p’:
printid = 1;
break;

 case ‘0’:
compose = 0;
break;

 case ‘1’:
maxBuffers = 1;
break;

 case ‘w’:
delay = atoi(optarg);
break;

 case ‘t’:
timeOutFactor = atoi(optarg);
break;

 default:
fputs(usage, stderr);
exit(1);
}

}
if (optind < argc) {

file = argv[optind];
}
while (delay > 0) {

sleep(1);
delay--;

}

int myTtFd; // Obtain process identifier
// Initialize toolkit and create a ToolTalk communication endpoint
char *myProcID = ttdt_open(&myTtFd, ToolName, “SunSoft”, “%I”, 1);

// Declare ptype
ttmedia_ptype_declare(“DT_CoEd”, 0, CoEditor::loadISOLatin1_,

 (void *)&myTopWidget, 1);

// Process the message that started us, if any
tttk_Xt_input_handler(0, 0, 0);
if (abortCode != 0) {

Code Example B-2 The CoEd.C File (Continued)

118 ToolTalk Messaging Overview—September 1994

B

// Error in message that caused us to start.
exit(abortCode);

}

if (CoEditor::numEditors == 0) {
// started by hand, not by ToolTalk
if (file == 0) {
if (compose) {

new CoEditor(&myTopWidget);
}
} else {

new CoEditor(&myTopWidget, file);
}

}
//
// If sessPats is unset, then we have not joined the desktop
// session yet. So join it.
//
if (sessPats == 0) {

Widget session_shell = CoEditor::editors[0]->shell;
if (maxBuffers > 1) {

//
// In multi-window mode, no single window is the
// distinguished window.
//
session_shell = myTopWidget;

}
sessPats = ttdt_session_join(0, 0, session_shell, 0, 1);

}

 XtAppAddInput(myContext, myTtFd, (XtPointer)XtInputReadMask,
 tttk_Xt_input_handler, myProcID);

XtAppMainLoop(myContext);
}

Code Example B-2 The CoEd.C File (Continued)

The CoEd Demonstration Program 119

B

The Coeditor.C File

The Coeditor.C file, shown in Code Example B-3, shows the ToolTalk code that
needs to be included in every editor application to pass a media callback and
reply when a request has been completed. It also shows other optional ToolTalk
functions that can be included in an editor application.

Note – Ellipses (...) indicates code that has been omitted.

Code Example B-3 The CoEditor.C File

...

CoEditor::CoEditor(
Widget *parent

)
{

_init();
_init(parent);

}

CoEditor::CoEditor(
Widget *parent,
const char *file

)
{

_init();
_init(parent);
_load(file);

}

CoEditor::CoEditor(
Widget *parent,
Tt_messagemsg,
const char * /*docname*/,
Tt_status &status

)
{

_init();
status = _init(msg);
if (status != TT_OK) {

120 ToolTalk Messaging Overview—September 1994

B

return;
}
_init(parent);
status = _acceptContract(msg);

}

CoEditor::CoEditor(
Widget *parent,
Tt_message msg,
int /*readOnly*/,
const char *file,
const char * /*docname*/,
Tt_status &status

)
{

_init();
status = _init(msg);
if (status != TT_OK) {

return;
}
_init(parent);
status = _load(file);
if (status != TT_OK) {

return;
}
status = _acceptContract(msg);

}

CoEditor::CoEditor(
Widget *parent,
Tt_messagemsg,
int /*readOnly*/,
unsigned char *contents,
int /*len*/,
const char * /*docname*/,
Tt_status &status

)
{

_init();
status = _init(msg);
if (status != TT_OK) {

return;

Code Example B-3 The CoEditor.C File (Continued)

The CoEd Demonstration Program 121

B

}
_init(parent);
XtVaSetValues((Widget)_text,

XtNsourceType, (XtArgVal)OL_STRING_SOURCE,
XtNsource, (XtArgVal)contents,
NULL);

_textBuf = OlTextEditTextBuffer(_text);
RegisterTextBufferUpdate(_textBuf, CoEditor::_textUpdateCB_,

 (caddr_t)this);
status = _acceptContract(msg);

}

CoEditor::~CoEditor()
{

//
// No need for a separate save if we are sending the document
// back in a reply.
//
if (_contract == 0) {

if (_modifiedByMe) {
// we revert before quitting if we don’t want to save
_save();
}

} else {
int len;
char *contents = _contents(&len);
// Reply to media load callback with edited contents of text
ttmedia_load_reply(_contract, (unsigned char *)contents,

 len, 1);
if (contents != 0) {
XtFree(contents);
}

_contract = 0;
}
numEditors--; // XXX assumes user destroys windows LIFO!

}

Tt_message
CoEditor::loadISOLatin1_(

Tt_message msg,
Tttk_op op,
Tt_status diagnosis,

Code Example B-3 The CoEditor.C File (Continued)

122 ToolTalk Messaging Overview—September 1994

B

unsigned char *contents,
int len,
char *file,
char *docname,
void *pWidget

)
{

static const char *here = “CoEditor::loadISOLatin1_()”;

Tt_status status = TT_OK;
CoEditor *coEditor = 0;
if (diagnosis != TT_OK) {

// toolkit detected an error
if (tt_message_status(msg) == TT_WRN_START_MESSAGE) {
//
// Error is in start message! We now have no
// reason to live, so tell main() to exit().
//
abortCode = 2;
}
// let toolkit handle the error
return msg;

}
if ((op == TTME_COMPOSE) && (file == 0)) {

coEditor = new CoEditor((Widget *)pWidget, msg, docname,
 status);

} else if (len > 0) {
coEditor = new CoEditor((Widget *)pWidget, msg,

 (op == TTME_DISPLAY),
 contents, len, docname, status);

} else if (file != 0) {
coEditor = new CoEditor((Widget *)pWidget, msg,

 (op == TTME_DISPLAY),
 file, docname, status);

} else {
// Fail a message
tttk_message_fail(msg, TT_DESKTOP_ENODATA, 0, 1);

}
tt_free((caddr_t)contents);
tt_free(file);
tt_free(docname);
return 0;

Code Example B-3 The CoEditor.C File (Continued)

The CoEd Demonstration Program 123

B

}

void
CoEditor::_init()
{

_baseFrame = 0;
_controls = 0;
_fileBut = 0;
_editBut = 0;
_scrolledWin= 0;
_text = 0;
_textBuf = 0;
_modifiedByMe= FALSE;
_modifiedByOther= 0;
_contract = 0;
_contractPats= 0;
_filePats = 0;
_file = 0;
_x = INT_MAX;
_y = INT_MAX;
_w = INT_MAX;
_h = INT_MAX;

}

Tt_status
CoEditor::_init(

Tt_message msg
)
{

int width, height, xOffset, yOffset;
width = height = xOffset = yOffset = INT_MAX;
_contract = msg;
ttdt_sender_imprint_on(0, msg, 0, &_w, &_h, &_x, &_y,

10 * timeOutFactor);
return TT_OK;

}

typedef enum {
Open,
Save,
SaveAs,
Revert

Code Example B-3 The CoEditor.C File (Continued)

124 ToolTalk Messaging Overview—September 1994

B

} FileOp;

static const char *fileButs[] = {
“Open...”,
“Save”,
“Save as...”,
“Revert”

};

const int numFileButs = sizeof(fileButs) / sizeof(const char *);

typedef enum {
Undo,
Cut,
Copy,
Paste,
Delete,
SelText,
SelAppt

} EditOp;

static const char *editButs[] = {
“Undo”,
“Cut”,
“Copy”,
“Paste”,
“Delete”,
“Text as ISO_Latin_1”,
“Text as Appointment”

};

const int numEditButs = sizeof(editButs) / sizeof(const char *);

void
CoEditor::_init(

Widget *parent
)
{

if (*parent == 0) {
if (_contract != 0) {
//
// Re-open display, since $DISPLAY may have changed by

Code Example B-3 The CoEditor.C File (Continued)

The CoEd Demonstration Program 125

B

// ttdt_sender_imprint_on().
//
XtCloseDisplay(myDpy);
myDpy = XtOpenDisplay(myContext, 0, 0, “CoEd”, 0, 0,

 pArgc, globalArgv);
}
*parent = XtAppCreateShell(0, “CoEd”,

applicationShellWidgetClass, myDpy, 0, 0);
XtVaSetValues(*parent,
 XtNmappedWhenManaged, False,
 XtNheight, 1,
 XtNwidth, 1,
 0);
XtRealizeWidget(*parent);

}
shell = XtCreatePopupShell(“CoEd”,

applicationShellWidgetClass, *parent, 0, 0);
XtVaSetValues(shell, XtNuserData, this, 0);
// Pop up next to our parent
if ((_x != INT_MAX) && (_y != INT_MAX) && (_w != INT_MAX)) {

// XXX Be smarter about picking a geometry
Dimension x= _x + _w;
Dimension y= _y;
XtVaSetValues(shell, XtNx, x, XtNy, y, 0);

}
XtAddCallback(shell, XtNdestroyCallback, CoEditor::_destroyCB_,

 this);
OlAddCallback(shell, XtNwmProtocol, CoEditor::_wmProtocolCB_, this);
_baseFrame = XtVaCreateManagedWidget(

“baseFrame”, rubberTileWidgetClass, shell, 0);
_controls = XtVaCreateManagedWidget(“controls”,

controlAreaWidgetClass, _baseFrame,
XtNweight, (XtArgVal)0,
0);

_fileBut = XtVaCreateManagedWidget(“File”,
menuButtonWidgetClass, _controls, 0);

Widget menuPane;
XtVaGetValues(_fileBut, XtNmenuPane, &menuPane, 0);
for (int i = 0; i < numFileButs; i++) {

Widget but = XtVaCreateManagedWidget(fileButs[i],
oblongButtonWidgetClass, menuPane,
XtNuserData, i, 0);

Code Example B-3 The CoEditor.C File (Continued)

126 ToolTalk Messaging Overview—September 1994

B

XtAddCallback(but, XtNselect, CoEditor::_fileButsCB_, this);
}
_editBut = XtVaCreateManagedWidget(“Edit”,

menuButtonWidgetClass, _controls, 0);
XtVaGetValues(_editBut, XtNmenuPane, &menuPane, 0);
for (i = 0; i < numEditButs; i++) {

Widget but = XtVaCreateManagedWidget(editButs[i],
oblongButtonWidgetClass, menuPane,
XtNuserData, i, 0);

XtAddCallback(but, XtNselect, CoEditor::_editButsCB_, this);
}

_scrolledWin = XtVaCreateManagedWidget(
“scrolledWin”, scrolledWindowWidgetClass,
_baseFrame,
XtNforceVerticalSB,(XtArgVal)True,
0);

_text = (TextEditWidget)XtVaCreateManagedWidget(
“text”, textEditWidgetClass, _scrolledWin,
0);

XtVaSetValues((Widget)_text, XtNuserData, this, 0);

XtRealizeWidget(shell);
XtPopup(shell, XtGrabNone);
if (numEditors < MaxEditors) {

editors[numEditors] = this;
numEditors++;

}
if (numEditors >= maxBuffers) {

tt_ptype_undeclare(“DT_CoEd”);
}

}

Tt_status
CoEditor::_unload()
{

Tt_status status = TT_OK;
if (_filePats != 0) {

// Unregister interest in ToolTalk events and destroy patterns
status = ttdt_file_quit(_filePats, 1);
_filePats = 0;

}

Code Example B-3 The CoEditor.C File (Continued)

The CoEd Demonstration Program 127

B

if (_file != 0) {
free(_file);
_file = 0;

}
return status;

}

Tt_status
CoEditor::_load(

const char *file
)
{

int reloading = 1;
if (file != 0) {

if ((_file != 0) && (strcmp(file, _file) != 0)) {
reloading = 0;
_unload();
} else {
_file = strdup(file);
}

}
// Join a file Can be called recursively, below

if (_filePats == 0) {
_filePats = ttdt_file_join(_file, TT_SCOPE_NONE, 1,

 CoEditor::_fileCB_, this);
}
XtVaSetValues((Widget)_text,

XtNsourceType, (XtArgVal)OL_DISK_SOURCE,
XtNsource, (XtArgVal)_file,
NULL);

_textBuf = OlTextEditTextBuffer(_text);
RegisterTextBufferUpdate(_textBuf, CoEditor::_textUpdateCB_,

 (caddr_t)this);
if (_modifiedByMe && reloading) {

ttdt_file_event(_contract, TTDT_REVERTED, _filePats, 1);
}
_modifiedByMe = 0;

// Does the file have any changes pending?
_modifiedByOther = ttdt_Get_Modified(_contract, _file, TT_BOTH,

 10 * timeOutFactor);
if (_modifiedByOther) {

int choice = userChoice(myContext, _baseFrame,

Code Example B-3 The CoEditor.C File (Continued)

128 ToolTalk Messaging Overview—September 1994

B

“Another tool has modifications pending for “
“this file.\nDo you want to ask it to save “
“or revert the file?”, 3, “Save”, “Revert”,
“Ignore”);

Tt_status status = TT_OK;
switch (choice) {
 case 0:

// Save pending changes
status = ttdt_Save(_contract, _file, TT_BOTH,

 10 * timeOutFactor);
break;

 case 1:
// Revert file to last version
status = ttdt_Revert(_contract, _file, TT_BOTH,

 10 * timeOutFactor);
break;
}
if (status != TT_OK) {
char *s = tt_status_message(status);
userChoice(myContext, _baseFrame, s, 1, “Okay”);
tt_free(s);
} else if (choice == 0) {
// file was saved, so reload
return _load(0);
} else if (choice == 1) {
// file was reverted
_modifiedByOther = 0;
}

}
return TT_OK;

}

Tt_status
CoEditor::_load(

unsigned char *contents,
int //len

)
{

_unload();
XtVaSetValues((Widget)_text,

XtNsourceType, (XtArgVal)OL_DISK_SOURCE,
XtNsource, (XtArgVal)contents,

Code Example B-3 The CoEditor.C File (Continued)

The CoEd Demonstration Program 129

B

NULL);
_textBuf = OlTextEditTextBuffer(_text);
RegisterTextBufferUpdate(_textBuf, CoEditor::_textUpdateCB_,

 (caddr_t)this);
_modifiedByMe = 0;
_modifiedByOther = 0;
return TT_OK;

}

//
// Caller responsible for reporting any errors to user
//
Tt_status
CoEditor::_save()
{

Tt_status status;
if (_file != 0) {

if (SaveTextBuffer(_textBuf, _file) != SAVE_SUCCESS) {
return TT_DESKTOP_EIO;

}
_modifiedByMe = 0;
_modifiedByOther = 0;
// File has been saved
ttdt_file_event(_contract, TTDT_SAVED, _filePats, 1);

}
if (_contract != 0) {

int len= 0;
char *contents= 0;
if (_file == 0) {
// If you worry that the buffer might be big,
// you could instead try a a temp file to
// transfer the data “out of band”.
contents = _contents(&len);
}
status = ttmedia_Deposit(_contract, 0, “ISO_Latin_1”,

 (unsigned char *)contents,
 len, _file, 10 * timeOutFactor);

if (status != TT_OK) {
return status;
}
_modifiedByMe = 0;
_modifiedByOther = 0;

Code Example B-3 The CoEditor.C File (Continued)

130 ToolTalk Messaging Overview—September 1994

B

if (contents != 0) {
XtFree(contents);

}
}
return status;

}

Tt_status
CoEditor::_revert() // XXX how about we always just send Revert? :-)
{

if (! _modifiedByMe) {
return TT_OK;

}
return _load(0); // XXX what if it’s not a file? keep last deposit

}

void
CoEditor::_destroyCB_(

Widget w,
XtPointer coEditor,
XtPointer call_data

)
{

((CoEditor *)coEditor)->_destroyCB(w, call_data);
}

void
CoEditor::_destroyCB(

Widget ,
XtPointer //call_data

)
{

delete this;
}

void
CoEditor::_wmProtocolCB_(

Widget w,
XtPointer coEditor,
XtPointer wmMsg

)
{

Code Example B-3 The CoEditor.C File (Continued)

The CoEd Demonstration Program 131

B

((CoEditor *)coEditor)->_wmProtocolCB(w, (OlWMProtocolVerify*)wmMsg);
}

void
CoEditor::_wmProtocolCB(

Widget w,
OlWMProtocolVerify *wmMsg

)
{

switch (wmMsg->msgtype) {
 case OL_WM_DELETE_WINDOW:

if (_modifiedByMe) {
int choice =

userChoice(myContext, _baseFrame,
 “The text has unsaved changes.”,
 3, “Save, then Quit”,
 “Discard, then Quit”,
 “Cancel”);

switch (choice) {
 case 0:

break;
 case 1:

_revert();
break;

 case 2:
return;

}
}
if (numEditors > 1) {
XtDestroyWidget(shell);
} else {
// XXX OlWmProtocolAction() doesn’t call destructor?!
delete this;
OlWMProtocolAction(w, wmMsg, OL_DEFAULTACTION);
}
break;

 default:
OlWMProtocolAction(w, wmMsg, OL_DEFAULTACTION);
break;

}
}

Code Example B-3 The CoEditor.C File (Continued)

132 ToolTalk Messaging Overview—September 1994

B

void
CoEditor::_fileButsCB_(

Widget button,
XtPointer coEditor,
XtPointer call_data

)
{

((CoEditor *)coEditor)->_fileButsCB(button, call_data);
}

void
CoEditor::_fileButsCB(

Widget button,
XtPointer //call_data

)
{

FileOp op;
XtVaGetValues(button, XtNuserData, &op, 0);
Tt_status status = TT_OK;
switch (op) {
 case Open:

break;
 case Revert:

status =_revert();
break;

 case Save:
status =_save();
break;

 case SaveAs:
break;

}
if (status != TT_OK) {

_adviseUser(status);
}

}

void
CoEditor::_editButsCB_(

Widget button,
XtPointer coEditor,
XtPointer call_data

)

Code Example B-3 The CoEditor.C File (Continued)

The CoEd Demonstration Program 133

B

{
((CoEditor *)coEditor)->_editButsCB(button, call_data);

}

void
CoEditor::_editButsCB(

Widget button,
XtPointer //call_data

)
{

EditOp op;
XtVaGetValues(button, XtNuserData, &op, 0);
Tt_status status = TT_OK;
switch (op) {

int len;
char *contents;
const char *mediaType;
Tt_messagemsg;
Tt_pattern *pats;

 case SelText:
 case SelAppt:

if (op == SelText) {
mediaType = “ISO_Latin_1”;

} else {
mediaType = “DT_CM_Appointment”;
}
//contents = _selection(&len);
contents = _contents(&len);
if (len <= 0) {
return;
}
// Media load callback
msg = ttmedia_load(_contract, CoEditor::_mediaLoadMsgCB_,

 this, TTME_EDIT, mediaType,
 (unsigned char *)contents, len, 0, 0, 1);

if (contents != 0) {
XtFree(contents);
}
status = tt_ptr_error(msg);
if (status != TT_OK) {
break;
}

Code Example B-3 The CoEditor.C File (Continued)

134 ToolTalk Messaging Overview—September 1994

B

pats = ttdt_subcontract_manage(msg, 0, shell, this);
status = tt_ptr_error(pats);
if (status != TT_OK) {
break;
}
break;

}
if (status != TT_OK) {

char *s = tt_status_message(status);
char buf[1024];
sprintf(buf, “%d: %s”, status, s);
tt_free(s);
userChoice(myContext, _baseFrame, buf, 1, “Okay”);

}
}

char *
CoEditor::_contents(

int *len
)
{

_textBuf = OlTextEditTextBuffer(_text);
TextLocation start = { 0, 0, 0 };
TextLocation end = LastTextBufferLocation(_textBuf);
char *contents = GetTextBufferBlock(_textBuf, start, end);

*len = 0;
if (contents != 0) {

*len = strlen(contents);
}
return contents;

}

Tt_status
CoEditor::_acceptContract(

Tt_message msg
)
{

static const char *here = “CoEditor::_acceptContract()”;

_contract = msg;
if (tt_message_status(msg) == TT_WRN_START_MESSAGE) {

Code Example B-3 The CoEditor.C File (Continued)

The CoEd Demonstration Program 135

B

//
// Join session before accepting start message,
// to prevent unnecessary starts of our ptype
//
Widget session_shell = shell;
if (maxBuffers > 1) {
//
// If we are in multi-window mode, just use
// our unmapped toplevel shell as our session
// shell, since we do not know if any particular
// window will exist the whole time we are in
// the session.
//
session_shell = XtParent(shell);
}
// Join the session and register patterns and callbacks
sessPats = ttdt_session_join(0, 0, session_shell, this, 1);

}
// Accept responsibility to handle a request

_contractPats = ttdt_message_accept(
msg, CoEditor::_contractCB_, shell, this,
1, 1);

Tt_status status = tt_ptr_error(_contractPats);
if (status != TT_OK) {

return status;
}
return status;

}

Tt_message
CoEditor::_contractCB_(

Tt_message, //msg,
Tttk_op , //op,
Widget , //shell,
void *, //coEditor,
Tt_message //Contract

)
{

return 0;
}

void

Code Example B-3 The CoEditor.C File (Continued)

136 ToolTalk Messaging Overview—September 1994

B

CoEditor::_editButCB_(
Widget w,
XtPointer coEditor,
XtPointer call_data

)
{

((CoEditor *)coEditor)->_editButCB(w, call_data);
}

void
CoEditor::_editButCB(

Widget ,
XtPointer //call_data

)
{

int len;
char *contents = _contents(&len);

// Media Load Callback
Tt_message msg = ttmedia_load(_contract, CoEditor::_mediaLoadMsgCB_,

 this, TTME_EDIT, “ISO_Latin_1”,
 (unsigned char *)contents,
 len, 0, 0, 1);

if (contents != 0) {
XtFree(contents);

}
Tt_pattern *pats = ttdt_subcontract_manage(msg, 0, shell, this);

}

Tt_message
CoEditor::_mediaLoadMsgCB_(

Tt_message msg,
Tttk_op op,
unsigned char *contents,
int len,
char *file,
void *clientData

)
{

return ((CoEditor *)clientData)->_mediaLoadMsgCB(msg, op,
contents, len, file);

Code Example B-3 The CoEditor.C File (Continued)

The CoEd Demonstration Program 137

B

}

Tt_message
CoEditor::_mediaLoadMsgCB(

Tt_message msg,
Tttk_op,
unsigned char *contents,
int len,
char *file

)
{

if (len > 0) {
XtVaSetValues((Widget)_text,
XtNsourceType, (XtArgVal)OL_STRING_SOURCE,
XtNsource, (XtArgVal)contents,
NULL);
_textBuf = OlTextEditTextBuffer(_text);
RegisterTextBufferUpdate(_textBuf, CoEditor::_textUpdateCB_,

 (caddr_t)this);
// ReplaceBlockInTextBuffer

} else if (file != 0) {
}
tt_message_destroy(msg);
return 0;

}

void
CoEditor::_textUpdateCB_(

XtPointer coEditor,
XtPointer pTextBuffer,
EditResult status

)
{

if (coEditor == 0) {
return;

}
((CoEditor *)coEditor)->_textUpdateCB((TextBuffer *)pTextBuffer,

 status);
}

void
CoEditor::_textUpdateCB(

Code Example B-3 The CoEditor.C File (Continued)

138 ToolTalk Messaging Overview—September 1994

B

TextBuffer *textBuf,
EditResult //editStatus

)
{

//Tt_status status;
if (_textBuf != textBuf) {

fprintf(stderr, “_textBuf != textBuf”);
}
if ((! _modifiedByMe) && TextBufferModified(_textBuf)) {

_modifiedByMe = TRUE;
// File has changes pending
ttdt_file_event(_contract, TTDT_MODIFIED, _filePats, 1);

}
}

Tt_message
CoEditor::_fileCB_(

Tt_message msg,
Tttk_op op,
char *pathname,
void *coEditor,
int trust,
int me

)
{

tt_free(pathname);
if (coEditor == 0) {

return msg;
}
return ((CoEditor *)coEditor)->_fileCB(msg, op, pathname,

trust, me);
}

Tt_message
CoEditor::_fileCB(

Tt_message msg,
Tttk_op op,
char *pathname,
int, //trust
int //me

)
{

Code Example B-3 The CoEditor.C File (Continued)

The CoEd Demonstration Program 139

B

tt_free(pathname);
Tt_status status = TT_OK;
switch (op) {
 case TTDT_MODIFIED:

if (_modifiedByMe) {
// Hmm, the other editor either doesn’t know or
// doesn’t care that we are already modifying the
// file, so the last saver will win.
// XXX Or: a race condition has arisen!
} else {
// Interrogate user if she ever modifies the buffer
_modifiedByOther = 1;
XtAddCallback((Widget)_text, XtNmodifyVerification,

(XtCallbackProc)CoEditor::_textModifyCB_, 0);
}
break;

 case TTDT_GET_MODIFIED:
tt_message_arg_ival_set(msg, 1, _modifiedByMe);
tt_message_reply(msg);
break;

 case TTDT_SAVE:
status = _save();
if (status == TT_OK) {
tt_message_reply(msg);
} else {
// Fail message
tttk_message_fail(msg, status, 0, 0);
}
break;

 case TTDT_REVERT:
status = _revert();
if (status == TT_OK) {
tt_message_reply(msg);
} else {
// Fail message
tttk_message_fail(msg, status, 0, 0);
}
break;

 case TTDT_REVERTED:
 case TTDT_SAVED:
 case TTDT_MOVED:
 case TTDT_DELETED:

Code Example B-3 The CoEditor.C File (Continued)

140 ToolTalk Messaging Overview—September 1994

B

printf(“CoEditor::_fileCB(): %s\n”, tttk_op_string(op));
break;

}
tt_message_destroy(msg);
return 0;

}

void
CoEditor::_textModifyCB_(

TextEditWidget text,
XtPointer ,
OlTextModifyCallData *mod

)
{

CoEditor *coEditor = 0;
XtVaGetValues((Widget)text, XtNuserData, &coEditor, 0);
if (coEditor == 0) {

return;
}
coEditor->_textModifyCB(mod);

}

void
CoEditor::_textModifyCB(

OlTextModifyCallData *mod
)
{

if (_modifiedByOther != 1) {
return;

}
int cancel = userChoice(myContext, _baseFrame,

 “Another tool has modifications pending for this file.\n”
 “Are you sure you want to start modifying the file?”,
 2, “Modify”, “Cancel”);

if (cancel) {
mod->ok = FALSE;

}
_modifiedByOther = 2;

}

void
CoEditor::_adviseUser(

Code Example B-3 The CoEditor.C File (Continued)

The CoEd Demonstration Program 141

B

Tt_status status
)
{

char *s = tt_status_message(status);
char buf[1024];
sprintf(buf, “%d: %s”, status, s);
tt_free(s);
userChoice(myContext, _baseFrame, buf, 1, “Okay”);

}

Code Example B-3 The CoEditor.C File (Continued)

142 ToolTalk Messaging Overview—September 1994

B

143

New ToolTalk Functions C

This chapter describes ToolTalk functions that are new for this release. To use
these functions, you need to include the ToolTalk header file:

tt_error

The tt_error function is a publicly-known null function. This function is
called by the ToolTalk library just before it returns from any ToolTalk API call
that has a status other than TT_OK. The name of the function that is about to
return and the status code is passed. You can use this call to set a dbx
breakpoint in tt_error to quickly catch and trace back any ToolTalk errors.
You can also interpose this function, for example, to log ToolTalk errors to
stderr . The following code example shows how an application might do this.

#include <Tt/tt_c.h>

void tt_error(const char *funcname, Tt_status status)

void tt_error(const char *funcname, Tt_status status) {
fprintf(stderr, “ToolTalk function %s returned %s.\n”,

funcname, tt_status_message(status));
}

144 CDE ToolTalk Messaging Overview

C

tt_file_netfile

The tt_file_netfile function maps between local and canonical path
names. It converts the file specified in filename to a netfilename that can
be passed to other hosts on the network. The filename is an absolute or
relative path name that is valid on the local host. The last component of
filename is not required; however, every other component of filename
must exist.

Note – You do not need to call the tt_open function before you use this
function.

This function returns either an error pointer or, if successful, a newly-allocated
null-terminated string of an unspecified format, which may be passed to the
tt_netfile_file function.

Use tt_ptr_error to extract a status from an error pointer. Possible errors
are described in Table C-1.

To free allocated strings, use either the tt_free or tt_release call.

To convert the file back to a local file name for the same file, use the
tt_netfile_file function.

char * tt_file_netfile(const char * filename);

Table C-1 Possible Errors Returned by tt_file_netfile

Error Description

TT_ERR_PATH filename is a path that is not valid on this host

TT_ERR_DBAVAIL rpc.ttdbserverd could not be reached on host

TT_ERR_DBEXIST rpc.ttdbserverd does not appear to be properly installed on
host

New ToolTalk Functions 145

C

tt_host_file_netfile

The tt_host_file_netfile function maps between local and canonical
path names on a remote host. It converts the file specified in host to a
netfilename that can be passed to other hosts on the network. The
filename is an absolute or relative path name that is valid on the remote host.
The last component of filename is not required; however, every other
component of filename must exist.

Note – You do not need to call the tt_open function before you use this
function.

This function returns either an error pointer or, if successful, a newly-allocated
null-terminated string of an unspecified format, which may be passed to the
tt_netfile_file function.

Use tt_ptr_error to extract a status from an error pointer. Possible errors
are described in Table C-2.

• To free allocated strings, use either the tt_free or tt_release call.

To convert the file back to a local file name for the same file, use the
tt_host_netfile_file function.

char *tt_host_file_netfile(const char * host,
const char * filename);

Table C-2 Possible Errors Returned by tt_host_file_netfile

Error Description

TT_ERR_PATH filename is a path that is not valid on the remote host

TT_ERR_DBAVAIL rpc.ttdbserverd could not be reached on host

TT_ERR_DBEXIST rpc.ttdbserverd does not appear to be properly installed
on host

TT_ERR_UNIMP rpc.ttdbserverd version does not support the
tt_host_file_netfile function

146 CDE ToolTalk Messaging Overview

C

tt_host_netfile_file

The tt_host_file_netfile function maps between local and canonical
path names on the remote host. It converts the file specified netfilename to a
path namethat is valid on the remote host. The netfilename is a copy of a
null-terminated string returned by the tt_netfile_file function.

Note – You do not need to call the tt_open function before you use this
function.

If the specified file is not currently mounted on the local host, a path name in
the form of

is constructed, where:

DTMOUNTPOINT is the intended mount point for the automounter’s host
map. You can also specify this mount point with the environment variable
DTMOUNTPOINT.

host is the host that contains the file.

filepath is the path to the file contained on the host.

This function returns either an error pointer or, if successful, a newly-allocated
null-terminated local file name.

Use tt_ptr_error to extract a status from an error pointer. Possible errors
are described in Table C-3.

char *tt_host_netfile_file(const char * host,
const char * netfilename);

/ DTMOUNTPOINT/ host/ filepath

New ToolTalk Functions 147

C

To free allocated strings, use either the tt_free or tt_release call.

To convert the file back to a local file name for the same file, use the
tt_host_file_netfile function.

Table C-3 Possible Errors Returned by tt_host_netfile_file

Errors Description

TT_ERR_PATH netfilename is not a valid netfilename

TT_ERR_DBAVAIL rpc.ttdbserverd could not be reached on host

TT_ERR_DBEXIST rpc.ttdbserverd does not appear to be properly installed on
host

TT_ERR_UNIMP rpc.ttdbserverd version does not support the
tt_host_netfile_file function

148 CDE ToolTalk Messaging Overview

C

tt_message_print

The tt_message_print function allows you to print out messages that are
received by not understood.

To free allocated strings, use either the tt_free or tt_release call.

This function returns either the error TT_ERR_POINTER or, if successful, the
message m in a buffer allocated by ToolTalk (in the same manner as is done in
other ToolTalk API calls such as tt_X_session).

char * tt_message_print(Tt_message m);

New ToolTalk Functions 149

C

tt_netfile_file

The tt_netfile_file function maps between canonical and local path
names. It converts the file specified netfilename to a path name that is valid
on the local host. The netfilename is a copy of a null-terminated string
returned by tt_netfile_file .

Note – You do not need to call the tt_open function before you use this
function.

If the specified file is not currently mounted on the local host, a path name in
the form of

is constructed, where:

DTMOUNTPOINT is the intended mount point for the automounter’s host
map. You can also specify this mount point with the environment variable
DTMOUNTPOINT.

host is the host that contains the file.

filepath is the path to the file contained on the host.

This function returns either an error pointer or, if successful, a newly-allocated
null-terminated local file name.

Use tt_ptr_error to extract a status from an error pointer. Possible errors
are described in Table C-4.

char * tt_netfile_file(const char * netfilename);

/ DTMOUNTPOINT/ host/ filepath

150 CDE ToolTalk Messaging Overview

C

To free allocated strings, use either the tt_free or tt_release call.

To convert the file back to a net file name for the same file, use the
tt_file_netfile function.

Table C-4 Possible Errors Returned by tt_netfile_file

Error Description

TT_ERR_PATH netfilename is not a valid netfilename

TT_ERR_DBAVAIL rpc.ttdbserverd could not be reached on host

TT_ERR_DBEXIST rpc.ttdbserverd does not appear to be properly installed on
host

New ToolTalk Functions 151

C

tt_pattern_print

The tt_pattern_print function allows you to print out patterns.

To free allocated strings, use either the tt_free or tt_release call.

This function returns either the error TT_ERR_POINTER or, if successful, the
pattern p in a buffer allocated by ToolTalk (in the same manner as is done in
other ToolTalk API calls such as tt_X_session).

char * tt_message_print(Tt_pattern p);

152 CDE ToolTalk Messaging Overview

C

153

Examples D

Example Ttdt_contract_cb

Code Example D-1 is an example of a typical algorithm of a
Ttdt_contract_cb callback for an application that handles its own
Pause/Resume/Quit requests but allows the toolkit to handle the X11-related
requests.

Note – This example callback deals with the case when the contract parameter
has a value other than zero and can, therefore, also be used as the
Ttdt_contract_cb callback passed to ttdt_message_accept .

Code Example D-1 Typical Algorithm of Ttdt_contract_cb

Tt_message
myContractCB(
 Tt_message msg,
 void *clientdata,
 Tt_message contract
)
{
 char *opString = tt_message_op(msg);
 Tttk_op op = tttk_string_op(opString);
 tt_free(opString);
 int silent = 0;

154 CDE ToolTalk Messaging Overview

D

 int force = 0;
 Boolean cancel = False;
 Boolean sensitive = True;
 char *status, command;
 switch (op) {
 case TTDT_QUIT:
 tt_message_arg_ival(msg, 0, &silent);
 tt_message_arg_ival(msg, 1, &force);
 if (contract == 0) {
 /* Quit entire application */
 cancel = ! myQuitWholeApp(silent, force);
 } else {
 /* Quit just the specified request being worked on */
 cancel = ! myCancelThisRequest(contract, silent, force);
 }
 if (cancel) {
 /* User canceled Quit; fail the Quit request */
 tttk_message_fail(msg, TT_DESKTOP_ECANCELED, 0, 1);
 } else {
 tt_message_reply(msg);
 tttk_message_destroy(msg);
 }
 return 0;
 case TTDT_PAUSE:
 sensitive = False;
 case TTDT_RESUME:
 if (contract == 0) {
 int already = 1;
 if (XtIsSensitive(myTopShell) != sensitive) {
 already = 0;
 XtSetSensitive(myTopShell, sensitive);
 }
 if (already) {
 tt_message_status_set(msg,TT_DESKTOP_EALREADY);
 }
 } else {
 if (XtIsSensitive(thisShell) == sensitive) {
 tt_message_status_set(msg,TT_DESKTOP_EALREADY);
 } else {
 XtSetSensitive(thisShell, sensitive);
 }
 }

Code Example D-1 Typical Algorithm of Ttdt_contract_cb (Continued)

Examples 155

D

 tt_message_reply(msg);
 tttk_message_destroy(msg);
 return 0;
 case TTDT_GET_STATUS:
 if (contract == 0) {
 status = "Message about status of entire app";
 } else {
 status = "Message about status of this request";
 }
 tt_message_arg_val_set(msg, 0, status);
 tt_message_reply(msg);
 tttk_message_destroy(msg);
 return 0;
 case TTDT_DO_COMMAND:
 if (! haveExtensionLanguage) {
 tttk_message_fail(msg, TT_DESKTOP_ENOTSUP, 0, 1);
 return 0;
 }
 command = tt_message_arg_val(msg, 0);
 result = myEval(command);
 tt_free(command);
 tt_message_status_set(msg, result);
 if (tt_is_err(result)) {
 tttk_message_fail(msg, result, 0, 1);
 } else {
 tt_message_reply(msg);
 tttk_message_destroy(msg);
 }
 return 0;
 }
 /* Unrecognized message; do not consume it */
 return msg;
}

Code Example D-1 Typical Algorithm of Ttdt_contract_cb (Continued)

156 CDE ToolTalk Messaging Overview

D

Example Ttdt_file_cb

Code Example D-2 is an example of a typical algorithm of this callback.

Code Example D-2 Typical Algorithm of Ttdt_file_cb

Tt_message
myFileCB(
 Tt_message msg,
 Tttk_op op,
 char *pathname,
 int trust,
 int isMe
)
{
 tt_free(pathname);
 Tt_status status = TT_OK;
 switch (op) {
 case TTDT_MODIFIED:
 if ((_modifiedByMe) && (! isMe)) {
 // Hmm, the other editor either does not know or
 // does not care that we are already modifying the
 // file, so the last saver will win.
 } else {
 // Interrogate user if she ever modifies the buffer
 _modifiedByOther = 1;
 XtAddCallback(myTextWidget, XmNmodifyVerifyCallback,
 myTextModifyCB, 0);
 }
 break;
 case TTDT_GET_MODIFIED:
 tt_message_arg_ival_set(msg, 1, _modifiedByMe);
 tt_message_reply(msg);
 break;
 case TTDT_SAVE:
 status = mySave(trust);
 if (status == TT_OK) {
 tt_message_reply(msg);
 } else {
 tttk_message_fail(msg, status, 0, 0);
 }
 break;
 case TTDT_REVERT:

Examples 157

D

 status = myRevert(trust);
 if (status == TT_OK) {
 tt_message_reply(msg);
 } else {
 tttk_message_fail(msg, status, 0, 0);
 }
 break;
 case TTDT_REVERTED:
 if (! isMe) {
 _modifiedByOther = 0;
 }
 break;
 case TTDT_SAVED:
 if (! isMe) {
 _modifiedByOther = 0;
 int choice = myUserChoice(myContext, myBaseFrame,
 "Another tool has saved "
 "this file.", 2, "Ignore",
 "Revert");
 switch (choice) {
 case 1:
 myRevert(1);
 break;
 }
 }
 break;
 case TTDT_MOVED:
 case TTDT_DELETED:
 // Do something appropriate
 break;
 }
 tttk_message_destroy(msg);
 return 0;
}

Code Example D-2 Typical Algorithm of Ttdt_file_cb (Continued)

158 CDE ToolTalk Messaging Overview

D

Example Ttmedia_load_msg_cb

Code Example D-3 is an example of a typical algorithm of this callback.

Code Example D-3 Typical Algorithm of Ttmedia_load_msg_cb

Tt_message
myLoadMsgCB(

Tt_messagemsg,
void *clientData,
Tttk_op op,
unsigned char *contents,
int len,
char *file

)
{

if (len > 0) {
// Replace data with len bytes in contents

} else if (file != 0) {
// Replace data with data read from file

}
if (op == TTME_DEPOSIT) {

tt_message_reply(msg);
}
tttk_message_destroy(msg);
return 0;

}

Examples 159

D

Example Ttmedia_load_pat_cb

Code Example D-4 is an example of a typical algorithm of this callback.

Code Example D-4 Typical Algorithm of Ttmedia_load_pat_cb

Tt_message
myAcmeSheetLoadCB(
 Tt_message msg,
 void *client_data,
 Tttk_op op,
 Tt_status diagnosis,
 unsigned char *contents,
 int len,
 char *file,
 char *docname
)
{
 Tt_status status = TT_OK;
 if (diagnosis != TT_OK) {
 // toolkit detected an error
 if (tt_message_status(msg) == TT_WRN_START_MESSAGE) {
 //
 // Error is in start message! We now have no
 // reason to live, so tell main() to exit().
 //
 myAbortCode = 2;
 }
 // let toolkit handle the error
 return msg;
 }
 if ((op == TTME_COMPOSE) && (file == 0)) {
 // open empty new buffer
 } else if (len > 0) {
 // load contents into new buffer
 } else if (file != 0) {
 if (ttdt_Get_Modified(msg, file, TT_BOTH, myCntxt, 5000)) {
 switch (myUserChoice("Save, Revert, Ignore?")) {
 case 0:
 ttdt_Save(msg, file, TT_BOTH, myCntxt, 5000);
 break;
 case 1:
 ttdt_Revert(msg, file, TT_BOTH, myCntxt, 5000);

160 CDE ToolTalk Messaging Overview

D

 break;
 }
 }
 // load file into new buffer
 } else {
 tttk_message_fail(msg, TT_DESKTOP_ENODATA, 0, 1);
 tt_free(contents); tt_free(file); tt_free(docname);
 return 0;
 }
 int w, h, x, y = INT_MAX;
 ttdt_sender_imprint_on(0, msg, 0, &w, &h, &x, &y, myCntxt, 5000);
 positionMyWindowRelativeTo(w, h, x, y);
 if (maxBuffersAreNowOpen) {
 // Un-volunteer to handle future requests until less busy
 tt_ptype_undeclare("Acme_Calc");
 }
 if (tt_message_status(msg) == TT_WRN_START_MESSAGE) {
 //
 // Join session before accepting start message,
 // to prevent unnecessary starts of our ptype
 //
 ttdt_session_join(0, myContractCB, myShell, 0, 1);
 }
 ttdt_message_accept(msg, myContractCB, myShell, 0, 1, 1);
 tt_free(contents); tt_free(file); tt_free(docname);
 return 0;
}

Code Example D-4 Typical Algorithm of Ttmedia_load_pat_cb (Continued)

Examples 161

D

Example Ptype Signature for Ttmedia_ptype_declare Function

Code Example D-5 is an example of the signature layout of a media ptype.

Code Example D-5 Example of Media Ptype Signature Layout

ptype Acme_Calc {
 start "acalc";
 handle:
 /*
 * Display Acme_Sheet
 * Include in tool’s ptype if tool can display a document.
 */
 session Display(in Acme_Sheet contents) => start opnum = 1;
 session Display(in Acme_Sheet contents,
 in messageID counterfoil) => start opnum = 2;
 session Display(in Acme_Sheet contents,
 in title docName) => start opnum = 3;
 session Display(in Acme_Sheet contents,
 in messageID counterfoil,
 in title docName) => start opnum = 4;
 /*
 * Edit Acme_Sheet
 * Include in tool’s ptype if tool can edit a document.
 */
 session Edit(inout Acme_Sheet contents) => start opnum = 101;
 session Edit(inout Acme_Sheet contents,
 in messageID counterfoil) => start opnum = 102;
 session Edit(inout Acme_Sheet contents,
 in title docName) => start opnum = 103;
 session Edit(inout Acme_Sheet contents,
 in messageID counterfoil,
 in title docName) => start opnum = 104;
 /*
 * Compose Acme_Sheet
 * Include in tool’s ptype if tool can compose a document from scratch.
 */
 session Edit(out Acme_Sheet contents) => start opnum = 201;
 session Edit(out Acme_Sheet contents,
 in messageID counterfoil) => start opnum = 202;
 session Edit(out Acme_Sheet contents,
 in title docName) => start opnum = 203;
 session Edit(out Acme_Sheet contents,

162 CDE ToolTalk Messaging Overview

D

 in messageID counterfoil,
 in title docName) => start opnum = 204;
 /*
 * Mail Acme_Sheet
 * Include in tool’s ptype if tool can mail a document.
 */
 session Mail(in Acme_Sheet contents) => start opnum = 301;
 session Mail(inout Acme_Sheet contents) => start opnum = 311;
 session Mail(inout Acme_Sheet contents,
 in title docName) => start opnum = 313;
 session Mail(out Acme_Sheet contents) => start opnum = 321;
 session Mail(out Acme_Sheet contents,
 in messageID counterfoil) => start opnum = 323;
};

Code Example D-5 Example of Media Ptype Signature Layout (Continued)

Examples 163

D

Example for Xt Input Handler Function

Code Example D-6 is an example for the Xt input handler function.

Code Example D-6 Xt Input Handler Function Example

int myTtFd;
char *myProcID;
myProcID = ttdt_open(&myTtFd, "WhizzyCalc", "Acme", "1.0", 1);
/* ... */
/* Process the message that started us, if any */
tttk_Xt_input_handler(myProcID, 0, 0);
/* ... */
XtAppAddInput(myContext, myTtFd, (XtPointer)XtInputReadMask,
 tttk_Xt_input_handler, myProcID);

164 CDE ToolTalk Messaging Overview

D

165

Index

Symbols
#include <Tt/tt_c.h>, 15

#include <Tt/tttk.h>, 15

$DISPLAY, 70

$DT_TT_TRACE_SCRIPT, 34

/pub/X3H, xviii

/usr/dt/bin/ttsnoop, 29

A
addressing messages, methods of, 11

alt.soft-sys.tooltalk, xviii

application integration, 20

application programming interface
(API), 13

automatic invocation, 4

C
CASE Inter-Operability Message Set, xvii

client mode, 33

CoEd, 95, 97

CoEd demo program, 95

CoEd.C file, 95, 97

Coeditor.C file, 101

CoEditor.h file, 16

Compose request, 80

Computer and Business Equipment
Manufactures Assoc, xviii

control integration, 3

Created notice, 56

D
Deleted notice, 54, 56

demostration programs
CoEd, 95

Deposit request, 80, 81

Desktop Services Message Set, xvii, 5

determining who receive messages, 12

Display request, 80

distributed object system, 4

Do_Command request, 73

Document and Media Exchange Message
Set, xvii, 7

DTMOUNTPOINT, 128, 131

E
Edit request, 80

ENV_, 52, 80

environ(5), 65

environment variables
$DISPLAY, 70
$DT_TT_TRACE_SCRIPT, 34

166 CDE ToolTalk Messaging Overview

DTMOUNTPOINT, 128, 131

error messages
TT_DESKTOP, 85
TT_DESKTOP_EINVAL, 53, 57
TT_DESKTOP_ENOTSUP, 63, 72, 73
TT_DESKTOP_EPROTO, 67, 69
TT_DESKTOP_ETIMEOUT, 67, 69,

71, 79
TT_ERR_DBAVAIL, 55, 57, 58, 60, 67,

69, 79
TT_ERR_DBEXIST, 55, 57, 58, 60, 67,

69, 79
TT_ERR_EINVAL, 77
TT_ERR_NOMEM, 55, 57, 60, 67, 69,

71, 75, 77, 78, 82, 89
TT_ERR_NOMP, 53, 55, 57, 58, 60, 64,

67, 69, 71, 74, 76, 77, 78, 82, 83,
86, 87, 89, 93

TT_ERR_NOTHANDLER, 83, 87
TT_ERR_NUM, 83
TT_ERR_OVERFLOW, 53, 57, 60, 67,

69, 71, 78, 82
TT_ERR_PATH, 55
TT_ERR_POINTER, 53, 57, 58, 60, 64,

67, 69, 75, 76, 77, 79, 86, 87
TT_ERR_PROCID, 57, 58, 60, 67, 69,

71, 74, 76, 77, 78, 82, 83, 86, 89
TT_ERR_PTYPE, 86
TT_ERR_SESSION, 74, 76
TT_ERR_UNIMP, 64

errors returned
TT_ERR_APPFIRST + EACCES, 37
TT_ERR_APPFIRST + EEXIST, 37
TT_ERR_APPFIRST + EISDIR, 37
TT_ERR_APPFIRST + ENOSPC, 37
TT_ERR_DBAVAIL, 126, 127, 129, 132
TT_ERR_DBEXIST, 126, 127, 129, 132
TT_ERR_NO_MATCH, 37
TT_ERR_PATH, 126, 127, 129, 132
TT_ERR_UNIMP, 127, 129

event, defined, 17

F
features, of ToolTalk, 10

file scoping, restrictions, 12

filepath, 128, 131

files
CoEd.C, 95, 97
Coeditor.C, 101
CoEditor.h, 16
Messaging Toolkit header, 15, 16
ToolTalk concept of, 12
ToolTalk header, 15, 16, 125
ToolTalk messaging toolkit

header, 50

ftp.netcomcom, xviii

G
Get_Environment request, 72

Get_Geometry request, 63, 70, 72, 77

Get_Iconified request, 63, 72

Get_Locale request, 72

Get_Mapped request, 63, 73

Get_Modified request, 52, 61

Get_Situation request, 72

Get_Status request, 63, 73

Get_Sysinfo request, 72

Get_XInfo request, 63, 73, 77

H
host, 128, 131

how applications use ToolTalk
messages, 9

I
inter-operability problems, solved by the

ToolTalk service, 3

L
libraries, ToolTalk, 16

libtt, 33

Lower request, 63, 73

-ltt option, 16

Index 167

M
Makefile, changes to your

application’s, 16

mapping, between canonical and local
pathnames, 131

mapping, between local and canonical
pathnames, 126, 127, 128

merging compiled ToolTalk type files into
running ttsession, 22

merging type information, 22

message patterns, 10

message protocol, 13

message sets
toolkit, 62, 64

ttdt_close, 51
ttdt_contract_cb, 74
ttdt_file_event, 52, 56
ttdt_file_join, 52, 54, 58
ttdt_file_notice, 56
ttdt_file_quit, 55, 58
ttdt_file_request, 59
ttdt_Get_Modified, 61
ttdt_open, 65
ttdt_Revert, 66
ttdt_Save, 68
ttdt_sender_imprint_on, 70
ttdt_session_join, 72
ttdt_session_quit, 74, 76, 77
ttdt_subcontract_manage, 77, 80
ttmedia_Deposit, 78
ttmedia_load, 80, 81
ttmedia_load_reply, 83
ttmedia_ptype_declare, 84
tttk_block_while, 61, 66, 68, 70,

86
tttk_message_abandon, 87
tttk_message_create, 88
tttk_message_destroy, 90
tttk_message_fail, 91
tttk_message_receive, 91
tttk_message_reject, 91, 92
tttk_op_string, 92
tttk_patterns_destroy, 64
tttk_Xt_input_handler, 93

messages
determining recipients of, 10
handling, 10
methods of addressing, 11
object-oriented, 11
observing, 10
process-oriented, 11
receiving, 10
sending, 9

Messaging Toolkit header file, 15, 16

messaging toolkit, incorporating, 16

Modified notice, 52, 54, 56

modifying your application to use the
ToolTalk service, 13

Moved notice, 54, 56

N
netfilename, 126, 127, 128, 131

network-transparent events, 4

news group, xviii

notice, 17

O
object-oriented messages, 11

objects, persistent, 4

OMG-compliant systems, 4, 11

operation, defined, 17

P
pathname, 128, 131

Pause request, 63, 73

plug-and-play, 3

process type (ptype), 6, 20

process-oriented messages, 11

process-type identifier (ptid), 20

procid, 23

ptype file, example, 21

ptype, installing, 21

ptypes, check for existing, 21

168 CDE ToolTalk Messaging Overview

ptypes, for tools bundled with this
release, 20

ptypes, for tools not included in this
release, 20

ptypes, merging, 22

Q
Quit request, 63, 73

R
Raise request, 63, 73

receiving ToolTalk messages, 10

recipients, 9

request, 17

requests, identifying, 18

Resume request, 63, 73

Revert request, 52, 66

Reverted notice, 52, 54, 56

rpc.ttdbserverd, 126

S
Save request, 52, 68

Saved notice, 52, 54, 56

scenarios illustrating the ToolTalk service
in use, 5

scope, of this book, xvii

senders, 9

sending ToolTalk messages, 9

server mode, 33

session identifier (sessid), 12

session, ToolTalk concept of, 12

Session_Trace request, 35

Set_Environment request, 72

Set_Geometry request, 63, 72

Set_Iconified request, 63

Set_Locale request, 72

Set_Mapped request, 63, 73

Set_Situation request, 72

Set_XInfo request, 63, 73

Signal request, 72

signatures, 20

start string, 20

Started notice, 65

static message patterns, 20

Status notice, 77

Stopped notice, 51

T
-t option, of ttsnoop command, 30

t_message_id, 81

tdt_Get_Modified, 59

The ToolTalk Service - An Inter-
Operability Solution, ISBN 013-
088717-X, xvii

toolkit messages
ttdt_close, 51
ttdt_contract_cb, 74
ttdt_file_event, 52, 56
ttdt_file_join, 52, 54, 58
ttdt_file_notice, 56
ttdt_file_quit, 55, 58
ttdt_file_request, 59
ttdt_Get_Modified, 61
ttdt_message_accept, 62
ttdt_open, 64, 65
ttdt_Revert, 66
ttdt_Save, 68
ttdt_sender_imprint_on, 70
ttdt_session_join, 72
ttdt_session_quit, 74, 76, 77
ttdt_subcontract_manage, 77, 80
ttmedia_Deposit, 78
ttmedia_load, 80, 81
ttmedia_load_reply, 83
ttmedia_ptype_declare, 84
tttk_block_while, 61, 66, 68, 70, 86
tttk_message_abandon, 87
tttk_message_create, 88
tttk_message_destroy, 90
tttk_message_fail, 91
tttk_message_receive, 91
tttk_message_reject, 91, 92

Index 169

tttk_op_string, 92
tttk_patterns_destroy, 64
tttk_Xt_input_handler, 93

ToolTalk and Open Protocols, ISBN 013-
031055-7, xvii

ToolTalk commands
tttrace, 33

ToolTalk functionality, in-depth
information about, xvii

ToolTalk functions
tt_close, 51
tt_default_procid_set, 51
tt_file_netfile, 132
tt_free, 54, 65, 70, 81, 85, 126, 127, 129,

130, 132, 133
tt_netfile_file, 127
tt_open, 65, 126, 127, 128, 131
tt_ptr_error, 126, 127, 128, 131
tt_release, 126, 127, 129, 130, 132, 133
tt_X_session, 130, 133
tttrace, 38

ToolTalk functions, new
tt_error, 125
tt_file_netfile, 126
tt_host_file_netfile, 127
tt_host_netfile_file, 128
tt_message_print, 130
tt_netfile_file, 126, 127, 129, 131
tt_pattern_print, 133

ToolTalk header file, 15, 16, 125

ToolTalk libraries, 16

ToolTalk message sets
Desktop, 5
Document and Media Exchange, 7

ToolTalk messages, 9

ToolTalk messaging toolkit header file, 50

ToolTalk Reference Manual, xv

ToolTalk service, 1

ToolTalk type compiler, 20, 21

ToolTalk Types Databas, 20

ToolTalk User’s Guide, xv

truss command, 33

TT_BOTH, 54, 61, 66, 68

tt_close function, 51

tt_default_procid_set function, 51

tt_default_procid_set(new_procid), 51

tt_default_procid_set(procid), 51

TT_DESKTOP_EINVAL, 53, 57

TT_DESKTOP_ENODATA, 85

TT_DESKTOP_ENOTSUP, 63, 72, 73

TT_DESKTOP_ETIMEDOUT, 71

TT_DESKTOP_ETIMEOUT, 67, 69, 79

TT_DESKTOP_ETPROTO, 67, 69

TT_ERR_APPFIRST + EACCES, 37

TT_ERR_APPFIRST + EEXIST, 37

TT_ERR_APPFIRST + EISDIR, 37

TT_ERR_APPFIRST + ENOSPC, 37

TT_ERR_DBAVAIL, 55, 57, 58, 60, 67, 69,
79, 126, 127, 129, 132

TT_ERR_DBEXIST, 55, 57, 58, 60, 67, 69,
79, 126, 127, 129, 132

TT_ERR_EINVAL, 77

TT_ERR_NO_MATCH, 37

TT_ERR_NOMEM, 55, 57, 60, 67, 69, 71,
75, 77, 78, 82, 89

TT_ERR_NOMP, 53, 55, 57, 58, 60, 64, 67,
69, 71, 74, 76, 77, 78, 82, 83, 86, 87,
89, 93

TT_ERR_NOTHANDLER, 83, 87

TT_ERR_NUM, 83

TT_ERR_OVERFLOW, 53, 57, 60, 67, 69,
71, 78, 82

TT_ERR_PATH, 55, 126, 127, 129, 132

TT_ERR_POINTER, 53, 57, 58, 60, 64, 67,
69, 75, 76, 77, 79, 86, 87

TT_ERR_PROCID, 57, 58, 60, 67, 69, 71, 74,
76, 77, 78, 82, 83, 86, 89

TT_ERR_PTYPE, 86

TT_ERR_SESSION, 74, 76

TT_ERR_UNIMP, 64, 127, 129

tt_error function, 125

tt_fd, 65

TT_FILE_IN_SESSION, 54, 61, 66, 68

tt_file_join(pathname), 55

170 CDE ToolTalk Messaging Overview

tt_file_netfile function, 126, 132

tt_file_quit(pathname), 58

tt_free, 54

tt_free function, 65, 70, 81, 85, 126, 127,
129, 130, 132, 133

tt_host_file_netfile function, 127

tt_host_netfile_file function, 128

tt_message_accept(contract), 64

tt_message_destroy message, 90

tt_message_print, 130

tt_message_receive, 91

tt_message_status, 66, 68

tt_netfile_file function, 126, 127, 128, 129,
131

tt_open, 38

tt_open function, 65, 126, 127, 128, 131

tt_pattern_print, 133

TT_PROCEDURE, 88

tt_ptr_error, 55, 64, 74, 77, 81, 88

tt_ptr_error function, 126, 127, 128, 131

tt_ptype_declare(ptype), 84

tt_release function, 126, 127, 129, 130, 132,
133

TT_SCOPE_NONE, 54, 61, 66, 68

tt_trace_control call, 34

TT_TRACE_SCRIPT environment
variable, 39

tt_type_comp, 20

TT_WRN_START_MESSAGE, 63, 91, 92

tt_X_session, 130, 133

ttdt_close, 51

Ttdt_contract_cb, 135

ttdt_contract_cb, 74

Ttdt_contract_cb argument, 62

Ttdt_file_cb, 54, 138

ttdt_file_event, 52, 56

ttdt_file_join, 47, 52, 54, 58

ttdt_file_notice, 56

ttdt_file_quit, 55, 58

ttdt_file_request, 59

TTDT_GET_MODIFIED, 59

ttdt_Get_Modified, 61

ttdt_message_accept, 62

ttdt_message_receive, 62

TTDT_MODIFIED, 52

ttdt_open, 64, 65

ttdt_Revert, 59, 66

TTDT_REVERTED, 52

ttdt_Save, 59, 68

TTDT_SAVED, 52

ttdt_sender_imprint_on, 70

ttdt_session_join, 72

ttdt_session_quit, 74, 76, 77

ttdt_subcontract_manage, 77, 80

TTME_COMPOSE, 80, 85

TTME_DEPOSIT, 81

TTME_DISPLAY, 80, 85

TTME_EDIT, 80, 85

ttmedia_Deposit, 78

ttmedia_load, 80, 81

Ttmedia_load_msg_cb, 140

Ttmedia_load_msg_cb message, 81

Ttmedia_load_pat_cb, 141

Ttmedia_load_pat_cb message, 84

ttmedia_load_reply, 83

Ttmedia_ptype_declare, 143

ttmedia_ptype_declare, 84

ttsession trace, 33

TTSnoop, 29

tttk_block_while, 61, 66, 68, 70, 86

tttk_message_abandon, 87, 93

tttk_message_create, 88

tttk_message_destroy, 90

tttk_message_fail, 91

tttk_message_receive, 91

tttk_message_receive function, 93

tttk_message_reject, 91, 92

tttk_op_string, 92

tttk_patterns_destroy, 64

tttk_Xt_input_handler, 93, 145

tttrace, 33

Index 171

tttrace command, 33, 34

tttrace function, 38

type information
merging, 22

types mechanism, 20

X
X3H6 standard, xviii

XtRemoveInput functio, 93

172 CDE ToolTalk Messaging Overview

