
Common Desktop Environment:
Desktop KornShell User’s Guide

Please

Recycle

Copyright 1994 Hewlett-Packard Company
Copyright 1994 International Business Machines Corp.
Copyright 1994 Novell, Inc.
Copyright 1994 Sun Microsystems, Inc.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. HEWLETT-PACKARD COMPANY, INTERNATIONAL BUSINESS MACHINES CORP.,
SUN MICROSYSTEMS, INC., AND UNIX SYSTEMS LABORATORIES, INC., MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Printing History:

iii

Contents

Preface. vii

1. Introduction to Desktop KornShell . 11

Using Desktop KornShell to Create Motif Applications 11

Resources . 12

Unsupported Resources . 13

dtksh app-defaults File . 14

Variable Values. 15

Return Values . 16

Immediate Return Value . 17

Initializing the Xt Intrinsics . 18

Creating Widgets . 18

Using a Callback . 20

Registering a Callback. 20

Passing Data to a Callback . 20

2. A Sample Script. 23

iv Desktop KornShell User’s Guide

Writing the Script . 23

Adding a Callback . 25

3. Advanced Topics . 27

Using Context Variables . 27

Event Handler Context Variables. 27

Translation Context Variables. 28

Workspace Callback Context Variables 28

Input Context Variables . 28

Accessing Event Subfields . 30

Responding to a Window Manager Close Notice 31

Responding to a Session Manager Save State Notice 31

Cooperating with Workspace Manager. 35

Creating Localized Shell Scripts. 35

Using dtksh to Access X Drawing Functions 36

Setting Widget Translations . 37

 . 38

4. A Complex Script . 39

Using script_find . 39

Analyzing script_find . 42

Functions and Callbacks . 42

Main Script . 44

A. dtksh Commands . 51

Built-in Xlib Commands . 52

Built-in Xt Intrinsic Commands . 54

Contents v

Built-in Motif Commands . 58

Built-in Common Desktop Environment Application Help
Commands . 70

Built-in Localization Commands . 71

Built-in libDt Session Management Commands 72

Built-in libDt Workspace Management Commands 73

Built-in libDt Action Commands . 74

Built-in libDt Data-Typing Commands . 75

Miscellaneous Built-in libDt Commands 77

Built-in Desktop Services Message Set Commands. 77

B. dtksh Convenience Functions. 87

DtkshAddButtons . 88

DtkshSetReturnKeyControls . 89

DtkshUnder, DtkshOver, DtkshRightOf, and DtkshLeftOf . . . 90

DtkshFloatRight, DtkshFloatLeft, DtkshFloatTop, and
DtkshFloatBottom . 91

DtkshAnchorRight, DtkshAnchorLeft, DtkshAnchorTop, and
DtkshAnchorBottom . 92

DtkshSpanWidth and DtkshSpanHeight 93

DtkshDisplayInformationDialog, DtkshDisplayQuestionDialog,
DtDisplayWarningDialog, DtkshDisplayWorkingDialog, and
DtkshDisplayErrorDialog . 94

DtkshDisplayQuickHelpDialog and DtkshDisplayHelpDialog 95

C. The script_find Script . 97

Listing for script_find . 97

Find.sticky. 105

vi Desktop KornShell User’s Guide

Find.help . 105

Index . 107

vii

Preface

The Desktop KornShell User’s Guide provides the information you need to create
Motif applications with KornShell (kshell) scripts. In addition to the basic
information you’ll need to get started, several example scripts of increasing
complexity are described. Throughout this guide the term dtksh means the
Desktop KornShell.

Who Should Use This Guide

This guide is intended for programmers who want a quick and easy means of
creating Motif applications, but don’t have the time, knowledge, or inclination
to use the C programming language. A good understanding of kshell
programming, Motif, the Xt Intrinsics, and, to a lesser extent, Xlib is needed.
An understanding of C would also be helpful.

How This Guide Is Organized

Chapter 1, “Introduction to Desktop KornShell,” describes the basic
information you need to begin writing Motif applications in dtksh scripts.

Chapter 2, “A Sample Script,” describes two simple dtksh scripts. The first
script creates a push button widget within a bulletin board widget. The second
script expands the first by adding a callback for the push button.

Chapter 3, “Advanced Topics,” describes more advanced topics pertaining to
dtksh scripts.

viii Desktop KornShell User’s Guide

Chapter 4, “A Complex Script,” describes a much more complex script than
either of the ones described in Chapter 2. This script creates a graphic interface
to the find command.

Appendix A, “dtksh Commands,” lists all the dtksh commands.

Appendix B, “dtksh Convenience Functions,” contains man pages for
commands or functions that are not documented elsewhere.

Appendix C, “Listing for script_find,” contains the complete listing of the
complex script described in Chapter 4.

Related Books

The following books provide information on kshell programming, Motif, the Xt
Intrinsics, and Xlib:

• Desktop KornShell Graphical Programming For the Common Desktop Environment
Version 1.0, by J. Stephen Pendergrast, Jr., published by Addison-Wesley,
Reading, MA 01867.

• The New KornShell Command and Programming Language, by Morris I. Bolsky
and David G. Korn, published by Prentice-Hall, Englewood Cliffs, NJ 07632.

• KornShell Programming Tutorial, by Barry Rosenberg, published by Addison-
Wesley, Reading, MA 01867.

• OSF/Motif Programmer’s Guide, Open Software Foundation, 11 Cambridge
Center, Cambridge, MA 02142, published by Prentice-Hall, Englewood
Cliffs, NJ 07632.

• OSF/Motif Programmer’s Reference, Open Software Foundation, 11 Cambridge
Center, Cambridge, MA 02142, published by Prentice-Hall, Englewood
Cliffs, NJ 07632.

• OSF/Motif Reference Guide, by Douglas A. Young, published by Prentice-Hall,
Englewood Cliffs, NJ 07632.

• Mastering OSF/Motif Widgets (Second Edition), by Donald L. McMinds,
published by Addison-Wesley, Reading, MA 01867

• The X Window System Programming and Applications with Xt OSF/Motif
Edition, by Douglas A. Young, published by Prentice-Hall, Englewood Cliffs,
NJ 07632.

Preface ix

• The Definitive Guides to the X Window System, Volume 1: Xlib Programming
Manual, by Adrian Nye, published by O'Reilly and Associates, Sebastopol,
CA 95472.

• The Definitive Guides to the X Window System, Volume 2: Xlib Reference Manual,
edited by Adrian Nye, published by O'Reilly and Associates, Sebastopol,
CA 95472.

• The Definitive Guides to the X Window System, Volume 3: X Window System
User's Guide, by Valerie Quercia and Tim O'Reilly, published by O'Reilly and
Associates, Sebastopol, CA 95472.

• The Definitive Guides to the X Window System, Volume 4: X Toolkit Intrinsics
Programming Manual, by Adrian Nye and Tim O'Reilly, published by
O'Reilly and Associates, Sebastopol, CA 95472.

• The Definitive Guides to the X Window System, Volume 5: X Toolkit Intrinsics
Reference Manual, edited by Tim O'Reilly, published by O'Reilly and
Associates, Sebastopol, CA 95472.

• The Definitive Guides to the X Window System, Volume 6: Motif Programming
Manual, by Dan Heller, published by O'Reilly and Associates, Sebastopol,
CA 95472.

What Typographic Changes and Symbols Mean

The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or

Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; onscreen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail .

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

x Desktop KornShell User’s Guide

Code samples may display the following:

% UNIX C shell prompt system%

$ UNIX Bourne and Korn shell
prompt

system$

Superuser prompt, all shells system#

Table P-1 Typographic Conventions

Typeface or

Symbol Meaning Example

11

Introduction to Desktop KornShell 1

Desktop KornShell(ldtksh) provides kshell scripts with the means for easily
accessing most of the existing Xt and Motif™ functions. dtksh is based on
ksh-93 , which provides a powerful set of tools and commands for the shell
programmer, and which supports the standard set of kshell programming
commands.

dtksh supports all the features and commands provided by ksh-93 . In
addition, dtksh supports a large selection of the libDt functions, most of the
widget-related Motif functions, a large subset of the Xt Intrinsics functions, and
a small subset of the Xlib functions. All the supported functions are listed in
Appendix A.

Using Desktop KornShell to Create Motif Applications

This section describes how to use dtksh to create Motif applications. To
successfully use dtksh , you should have experience with Xlib, the Xt
Intrinsics, the Motif widgets, and KornShell programming. It is also helpful to
know the C programming language. If you are not familiar with any of these,
you should refer to the appropriate documentation. Even if you are familiar
with these systems, you should have access to the applicable man pages for
reference.

In addition, your system should have these libraries:

• libDtHelp
• libDtSvc
• libX11

12 Desktop KornShell User’s Guide

1

• libXm
• libXt
• libtt

Resources

Resources are widget variables that you use to define attributes such as size,
location, or color. Each widget usually has a combination of its own resources,
plus resources it inherits from higher level widgets. Xt Intrinsics and Motif
resource names consist of a prefix (XtN or XmN) followed by the base name.
The first letter of the base name is always lowercase, and the first letter of
subsequent words within the base name is always uppercase. The convention
for resource names in dtksh scripts is to delete the prefix and use the base
name. Thus, the resource XmNtopShadowColor becomes topShadowColor .

Some Xt and Motif commands allow the shell script to pass in a variable
number of parameters, representing resource-value pairs. This is similar to the
argument list passed to the corresponding Xt or Motif C function. Examples
include any of the commands used to create a widget, plus the XtSetValues
command. In dtksh , resources are specified by a string with the following
syntax:

resource: value

where resource is the name of the resource and value is the value assigned to the
resource. dtksh automatically converts the value string to an appropriate
internal representation. For example:

XtSetValues $WIDGET height:100 width:200 resizePolicy:RESIZE_ANY
XmCreateLabel LABEL $PARENT myLabel labelString:”Close Dialog”

When you retrieve widget resource values using XtGetValues , the return
value is placed in an environment variable. Thus, unlike the Xt Intrinsics, the
dtksh version of XtGetValues uses a name:(environment) variable pair,
rather than a name:value pair. For example:

XtGetValues $WIDGET height:HEIGHT resizePolicy:POLICY
 sensitive:SENSITIVE
echo $HEIGHT
echo $POLICY
echo $SENSITIVE

The preceding dtksh segment might produce this output:

Introduction to Desktop KornShell 13

1

100
RESIZE ANY
TRUE

Certain types of resource values, including string tables and bit masks, have
special representation. For example, the List widget allows a string table to be
specified for both the items and selectedItems resources. In dtksh , a
string table is represented as a comma-separated list of strings, which is similar
to how Motif treats them. When a resource that returns a string table is
queried using XtGetValues , the resulting value is a comma-separated set of
strings.

A resource that expects a bit mask value to be passed to it expects the mask to
be specified as a string composed of the various mask values separated by the
|(bar) character. When a resource that returns a bit mask is queried, the return
value is a string representing the enabled bits, separated by the | character. For
example, you could use the following command to set the mwmFunctions
resource for the VendorShell widget class:

XtSetValues mwmFunctions: MWM_FUNC_ALL|MWM_FUNC_RESIZE

Unsupported Resources

dtksh supports most of the Motif resources. The following lists unsupported
resources. Resources with an * (asterisk) can be specified at widget creation
time by using XtSetValues , but can’t be retrieved using XtGetValues .

• All widget and gadget Classes:

• Any fontlist resource *
• Any pixmap resource *

• Composite:

• insertPosition
• children

• Core:

• accelerators
• translations *
• colormap

• XmText :

• selectionArray
• selectionArrayCount

• ApplicationShell :

• argv

14 Desktop KornShell User’s Guide

1

• WMShell :

• iconWindow
• windowGroup

• Shell :

• createPopupChildrenProc
• XmSelectionBox :

• textAccelerators
• Manager , Primitive , and Gadget Subclasses:

• userData
• XmFileSelectionBox :

• dirSearchProc
• fileSearchProc
• qualifySearchDataProc

dtksh app-defaults File

The dtksh app-defaults file, named Dtksh , is found in a location based on
the following path description:

/usr/dt/app-defaults/<LANG>

The only information contained in this app-defaults file is the inclusion of
the standard Dt base app-defaults file. The following is a listing of the
dtksh app-defaults file:

#include "Dt"

The file Dt is also located in /usr/dt/app-defaults/<LANG> and is shown in
the following listing.
*foregroundThreshold:70

!###
!#
!# Help system specific resources
!#
!###

!#
!# Display Area Colors
!#
!# These resources set the colors for the display area (where
!# actual help text is displayed). The resources are complex
!# because they have to override the standard color resources

Introduction to Desktop KornShell 15

1

!# in all cases.
!#
*XmDialogShell.DtHelpDialog*DisplayArea.background: White
*XmDialogShell*XmDialogShell.DtHelpDialog*DisplayArea.background:
White
*XmDialogShell.DtHelpDialog*DisplayArea.foreground: Black
*XmDialogShell*XmDialogShell.DtHelpDialog*DisplayArea.foreground:
Black

!#
!# Menu Accelerators
!#
!# The following resources establish keyboard accelerators
!# for the most frequently accessed menu commands.
!#

*DtHelpDialogWidget*searchMenu.keyword.acceleratorText: Ctrl+I
*DtHelpDialogWidget*searchMenu.keyword.accelerator: Ctrl<Key>i
*DtHelpDialogWidget*navigateMenu.backTrack.acceleratorText: Ctrl+B
*DtHelpDialogWidget*navigateMenu.backTrack.accelerator: Ctrl<Key>b
*DtHelpDialogWidget*navigateMenu.homeTopic.acceleratorText: Ctrl+H
*DtHelpDialogWidget*navigateMenu.homeTopic.accelerator: Ctrl<Key>h
*DtHelpDialogWidget*fileMenu.close.acceleratorText: Alt+F4
*DtHelpDialogWidget*fileMenu.close.accelerator: Alt<Key>f4

Variable Values

This section describes the types of values for some of the variables in a dtksh
app-defaults file.

Defined Values

The C bindings of the interfaces to X, Xt and Motif include many nonstring
values that are defined in header files. The general format of such values
consists of an Xt or Xm prefix followed by a descriptive name. For example,
one of the constraint values for a child of a form widget is XmATTACH_FORM.
Equivalent values are specified in dtksh by dropping the prefix, just as in a
Motif defaults file:

• XmDIALOG_COMMAND_TEXTbecomes DIALOG_COMMAND_TEXT
• XtATTACH_FORMbecomes ATTACH_FORM

16 Desktop KornShell User’s Guide

1

Boolean Values

You can specify a Boolean value as a parameter to a dtksh command using the
words True or False; case is not significant. A Boolean result is returned as
either True or False, using all lowercase letters.

Return Values

Graphical commands in dtksh fall into one of four categories, based on the
definition of the corresponding C function:

1. The function is void and returns no values. Example: XtMapWidget()

2. The function is void, but returns one or more values through reference
parameters. Example: XmGetColors()

3. The function returns a non-Boolean value. Example:
XtCreateManagedWidget()

4. The function returns a Boolean value. Example: XtIsSensitive()

Category 1

A dtksh category 1 command follows the calling sequence of its
corresponding C function. The number and order of parameters can be
determined by looking at the standard documentation for the function.
Example:

 XtMapWidget $FORM

Category 2

A dtksh category 2 command also generally follows the calling sequence of its
corresponding C function. It returns a value in an environment variable,
instead of passing a pointer to a return variable. Example:

XmGetColors $FORM $BG FOREGROUND TOPSHADOW BOTTOMSHADOW SELECT
echo “Foreground color = “ $FOREGROUND

Introduction to Desktop KornShell 17

1

Category 3

A dtksh category 3 command differs slightly from its corresponding C
function. Where the C function returns its value as the value of the procedure
call, a dtksh command requires an additional parameter. This parameter is
the name of an environment variable into which the return value is to be
placed. It is always the first parameter. Example:

XmTextGetString TEXT_VALUE $TEXT_WIDGET
echo “The value of the text field is “$TEXT_VALUE

Category 4

A dtksh category 4 command returns a value that can be used in a conditional
expression just as in C. If the C function also returns values through reference
variables (as in category 2), the dtksh command also uses variable names for
the corresponding parameters. Example:

if XmIsTraversable $PUSH_BUTTON; then
echo “The pushbutton is traversable”
else
echo “The pushbutton is not traversable”
fi

Generally, the order and type of parameters passed to a command matches
those passed to the corresponding C function, except as noted for category 3
commands.

Immediate Return Value

Many of the category 3 commands return a single value using an environment
variable specified as the first parameter to the command (for these special
commands, the first parameter has the name variable). If this return value is
immediately used in an expression, the special environment variable "-" may
be used in place of a variable name. When dtksh encounters "-" as the name
of the environment variable in which the return value is to be returned, it
instead returns the result as the value of the command. This allows the shell
script to embed the command call in another command call. This feature only
works for commands that return a single value, and the value is returned in
the first parameter. For example:

XtDisplay DISPLAY $FORM

XSync $DISPLAY true

18 Desktop KornShell User’s Guide

1

can be replaced by the equivalent statement:

XSync $(XtDisplay "-" $FORM) true

The reference to $DISPLAY is replaced with the value returned by the call to
XtDisplay .

This capability is available for all category 3 commands except those that create
a widget, those that return more than a single value, and those whose first
parameter is not a named variable. Commands that do not accept "-" as the
environment variable name include the following:

• XtInitialize()
• XtCreateApplicationShell()
• XtCreatePopupShell()
• XtCreateManagedWidget()
• XtCreateWidget()
• All commands of the form:

XmCreate...()

• Most commands of the form:

tt_...()

Initializing the Xt Intrinsics

A dtksh script must first initialize the Xt Intrinsics before it can call any of the
Xlib, Xt, Motif, or libDt commands. You accomplish this by invoking the
XtInitialize command, which returns an application shell widget. As is
true for all dtksh commands that return a widget ID, XtInitialize returns
the widget ID in the environment variable that is the first argument. For
example, in:

XtInitialize TOPLEVEL myShellName Dtksh $0 “$@”

the widget ID is returned in the environment variable TOPLEVEL.

dtksh provides a default app-defaults file, which is used if the call to
XtInitialize specifies an application class name of Dtksh . This
app-defaults file contains the standard set of Dt application default values, so
dtksh applications have a consistent look with other Dt applications.

Creating Widgets

There are several commands you can use to create widgets:

Introduction to Desktop KornShell 19

1

XtCreateWidget Creates an unmanaged widget.

XtCreateManagedWidget Creates a managed widget.

XtCreateApplicationShell Creates an application shell.

XtCreatePopupShell Creates a pop-up shell.

XmCreate <widgettypes> Creates an unmanaged widget.

There is a specific format for each of these commands that you must follow.
For example, suppose you want to create an unmanaged push button widget
as a child of the top-level widget. You can use either XtCreateWidget or
XmCreatePushButton . The formats for these commands are:

• XtCreateWidget variable name widgetclass $parent [resource:value ...]
• XmCreatePushButton variable $parent name [resource:value ...]

The actual commands to create a push button widget are:

XtCreateWidget BUTTON button XmPushButton $TOPLEVEL
XmCreatePushButton BUTTON $TOPLEVEL button

Each of the preceeding commands do exactly the same thing: create an
unmanaged push button. Note that no resource values are set. Suppose that
you want the background color of the push button to be red, and the
foreground color to be black. You can set the values of these resources this
way:

XtCreateWidget BUTTON button XmPushButton $TOPLEVEL \
background:Red \
foreground:Black
XmCreatePushButton BUTTON $TOPLEVEL button\
background:Red \
foreground:Black

All of the C functions that create a widget return a widget ID, or ID. The
corresponding dtksh commands set an environment variable equal to the
widget ID. These are category 3 commands, so the first argument is the name
of the environment variable in which to return the widget ID. The widget ID
is an ASCII string used by dtksh to access the actual widget pointer. Either of
the following commands could be used to create a new form widget; however,
in each case the widget ID for the new form widget is returned in the
environment variable FORM:

• XtCreateManagedWidget FORM name XmForm $PARENT
• XmCreateForm FORM $PARENT name

20 Desktop KornShell User’s Guide

1

After either of these commands, you can use $FORM to reference the new form
widget. For example, you could use this command to create a label widget
within the new form widget:

XmCreateLabel LABEL $FORM name\
labelString:”Hi Mom” \
CH_FORM \
leftAttachment:ATTACH_FORM

Note – There is a special widget ID called NULL, provided for cases where a
shell script may need to specify a NULL widget. For example, to disable the
defaultButton resource for a form widget, use the command
XtSetValues $FORM defaultButton:NULL

Using a Callback

A callback is a function or procedure that is executed when an event or
combination of events occurs. For example, a callback is used to achieve the
desired result when a push button is “pressed.” It is easy for a dtksh shell
script to assign a command to be activated whenever a particular callback is
invoked for a widget. The command could be as simple as a string of
commands blocked together, or the name of the shell function to invoke.

Registering a Callback

An application registers a callback with a widget to specify a condition in
which it is interested and to specify what action should occur when that
condition occurs. The callback is registered using XtAddCallback . The
action can be any valid dtksh command. For example:

XtAddCallback $WIDGET activateCallback “ActivateProc”
XtAddCallback $WIDGET activateCallback \
 “XtSetSensitive $BUTTON false”

Passing Data to a Callback

A callback needs to be passed context information, so it can determine what
condition led to its call. For a C procedure, this information is typically passed
in a callData structure. For example, a scale widget invoking a
valueChangedCallback passes an instance of the following structure in
callData :

Introduction to Desktop KornShell 21

1

typedef struct {
 int reason;
 XEvent event;
 int value;
}XmScaleCallbackStruct;

The C application’s callback then does something like:

if (scaleCallData->reason == XmCR_VALUE_CHANGED)
{
 eventType = scaleCallData->event->type;
 display = scaleCallData->event->xany.display;
}

Similarly, when a callback is invoked in dtksh , the following special
environment variable is set up before the callback command executes:

CB_WIDGET

This is set to the widget ID for the widget that is invoking the callback.

CB_CALL_DATA

This is set to the address of the callData structure passed by the widget to
the callback.

The CB_CALL_DATA environment variable represents a pointer to a structure,
and access to its fields uses a syntax similar to that of C. Nested environment
variables are defined, named the same as the fields of the structure (but all in
uppercase), and a dot is used to indicate containment of an element in a
structure. Thus, the previous C code to access the callData provided by the
scale widget translates to:

if [${CB_CALL_DATA.REASON} = “CR_VALUE_CHANGED”]; then
 eventType=${CB_CALL_DATA.EVENT.TYPE}
 display=${CB_CALL_DATA.EVENT.XANY.DISPLAY}
fi

The same is true of the event structure within the callData structure.

For most callback structures, the shell script is able to reference any of the
fields defined for the particular callback structure, using the technique
described earlier. In most cases, the shell script is not able to alter the values of
the fields within these structures. The exception to this is the
XmTextVerifyCallbackStruct , which is available during the
losingFocusCallback , the modifyVerifyCallback and the
motionVerifyCallback for the text widget. dtksh supports the

22 Desktop KornShell User’s Guide

1

modification of certain fields within this structure, to the extent that it is
supported by Motif. The following fields within the callback structure are
capable of being modified:

• CB_CALL_DATA.DOIT
• CB_CALL_DATA.STARTPOS
• CB_CALL_DATA.TEXT.PTR
• CB_CALL_DATA.TEXT.LENGTH
• CB_CALL_DATA.TEXT.FORMAT

This is an example of how one of these fields can be modified:

• CB_CALL_DATA.DOIT=”false”
• CB_CALL_DATA.TEXT.PTR=”*”
• CB_CALL_DATA.TEXT.LENGTH=1

23

A Sample Script 2

This chapter shows you how to use what you learned about dtksh in Chapter
1. The two simple scripts described here should give you a good start at
writing your own scripts.

Writing the Script

This script creates a bulletin board widget within which a push button widget
is placed. The script is kept simple by not including any callbacks. The second
script includes a callback.

 Here’s the first script:

#!/usr/dt/bin/dtksh
XtInitialize TOPLEVEL dttest1 Dtksh $0
XtSetValues $TOPLEVEL title:“dttest1”
XtCreateManagedWidget BBOARD bboard XmBulletinBoard $TOPLEVEL \
 resizePolicy:RESIZE_NONE height:150 width:250\
 background:SkyBlue
XtCreateManagedWidget BUTTON pushbutton XmPushButton $BBOARD \
 background:goldenrod \
 foreground:MidnightBlue \
 labelString:”Push Here” \
 height:30 width:100 x:75 y:60 shadowThickness:3
XtRealizeWidget $TOPLEVEL
XtMainLoop

24 Desktop KornShell User’s Guide

2

Figure 2-1 shows the window that the first script produces.

Figure 2-1 Window from script dttest

The first line of the script:

#!/usr/dt/bin/dtksh

tells the operating system that this script should be executed using
/usr/dt/bin/dtksh rather than the standard shell.

The next line initializes the Xt Intrinsics.

XtInitialize TOPLEVEL dttest1 Dtksh $0

The name of the top-level widget is saved in the environment variable
$TOPLEVEL, the shell widget name is dttest1 , the application class name is
Dtksh, and the application name is given by the dtksh variable $0 .

The next line sets the title resource to the name of the script.

XtSetValues $TOPLEVEL title:”dttest1”

Notice that there is no space between the colon after the resource name (title)
and its value. An error message appears if you have a space between them.

The next four lines create a bulletin board widget and set some of its resources.

XtCreateManagedWidget BBOARD bboard XmBbulletinBoard $TOPLEVEL \
 resizePolicy:RESIZE_NONE \
 background:SkyBlue\
 height:150 width:250

The bulletin board widget’s ID is saved in the environment variable $BBOARD.
The widget’s name is bboard . This name is used by the Xt Intrinsics to set the
values of resources that might be named in an external resource file. The
widget class is XmBulletinBoard . The bulletin board’s parent widget is the
widget ID contained in the environment variable $TOPLEVEL. This is the topl-

A Sample Script 25

2

evel widget created by the initializion command in the first line. The \
(backslash) at the end of the line tells dtksh that this command continues on
the next line.

The next six lines create a push button widget as a child of the bulletin board,
and set some of the push button’s resources.

XtCreateManagedWidget BUTTON pushbutton XmPushButton $BBOARD \
 background:goldenrod \
 foreground:MidnightBlue \
 labelString:”Push Here”\
 height:30 width:100 x:75 y:60\
 shadowThickness:3

This is basically the same procedure used to create the bulletin board, except
that the variable, name, class, and parent are different.

The next line causes the toplevel widget and all its children to be realized.

XtRealizeWidget $TOPLEVEL

Finally, the XtMainLoop command initiates a loop processing of events for the
widgets.

XtMainLoop

In this script, all that happens is the window appears on the display. It stays
there until you terminate the script, either by choosing Close on the Window
Manager menu or by pressing CTRL C in the terminal window from which
you executed the script.

Adding a Callback

To provide a function for the push button so that when it is pressed a message
appears in the terminal window and the script terminates, you have to add a
callback. Also, you must tell the push button about the existence of this
callback. The following is the script with the new code added:

#!/usr/dt/bin/dtksh

activateCB() {
 echo “Pushbutton activated; normal termination.”
 exit 0
}

XtInitialize TOPLEVEL dttest2 Dtksh $0

26 Desktop KornShell User’s Guide

2

XtSetValues $TOPLEVEL title:”dttest2”
XtCreateManagedWidget BBOARD bboard XmBulletinBoard $TOPLEVEL \
 resizePolicy:RESIZE_NONE \
 background:SkyBlue \
 height:150 width:250
XtCreateManagedWidget BUTTON pushbutton XmPushButton $BBOARD \
 background:goldenrod \
 foreground:MidnightBlue \
 labelString:”Push Here”\
 height:30 width:100 x:75 y:60 shadowThickness:3

XtAddCallback $BUTTON activateCallback activateCB
XtRealizeWidget $TOPLEVEL
XtMainLoop

The callback is the function activateCB() . You typically add the callback to
the push button after it (the push button) has been created:

XtAddCallback $BUTTON activateCallback activateCB

Now the pushbutton knows about the callback. When you click the push
button, the function activateCB() is executed, and the message
“Pushbutton activated; normal termination. ” appears in the
terminal window from which you executed the script. The script is terminated
by the call to the function exit 0 .

27

Advanced Topics 3

Now that you have the basic information about dtksh , this chapter introduces
you to more advanced topics.

Using Context Variables

dtksh has a number of variables that provide context to certain aspects of an
application.

Event Handler Context Variables

An application registers event handlers with a widget to specify an action to
occur when one of the specified events occurs. The action can be any arbitrary
dtksh command line. For example:

XtAddEventHandler $W "Button2MotionMask" false "ActivateProc"
XtAddEventHandler $W "ButtonPressMask|ButtonReleaseMask" \
 false "echo action"

Two environment variables are defined to provide context to the event handler:

EH_WIDGET Set to the ID of the widget for which the event handler
is registered.

EH_EVENT Set to the address of the XEvent which triggered the
event handler.

Access to the fields within the XEvent structure is shown in the following
example:

28 Desktop KornShell User’s Guide

3

 if [${EH_EVENT.TYPE} = "ButtonPress"]; then
 echo "X = "${EH_EVENT.XBUTTON.X}
 echo "Y = "${EH_EVENT.XBUTTON.Y}
 elif [${EH_EVENT.TYPE} = "KeyPress"]; then
 echo "X = "${EH_EVENT.XKEY.X}
 echo "Y = "${EH_EVENT.XKEY.Y}
 fi

Translation Context Variables

The Xt Intrinsics provides for event translations to be registered for a widget.
Context for event translation is provided in the same way it is provided for
event handlers. The two variables defined for translation commands are:

TRANSLATION_WIDGET Set to the widget handle for the widget for
which the translation is registered.

TRANSLATION_EVENT Set to the address of the XEvent that
triggered the translation.

Dot-notation provides access to the fields of the event:

echo "Event type = "${TRANSLATION_EVENT.TYPE}
echo "Display = "${TRANSLATION_EVENT.XANY.DISPLAY}

Workspace Callback Context Variables

An application has the ability to register a callback function that is invoked
whenever the user changes to a new workspace. When the callback is invoked,
two special environment variables are set, and can be accessed by the shell
callback code:

CB_WIDGET Set to the ID for the widget that is invoking the
callback.

CB_CALL_DATA Set to the X atom that uniquely identifies the new
workspace. This can be converted to its string
representation, using the XmGetAtomName command.

Input Context Variables

The Xt Intrinsics provides the XtAddInput facility, which allows an
application to register interest in any data available from a particular file
descriptor. When programming in C, the application provides a handler

Advanced Topics 29

3

function, which is invoked when input is available. It is up to the handler to
read the data from the input source and to handle character escaping and line
continuations.

dtksh also supports the XtAddInput facility, but takes it a step further and
makes it easier for shell programmers to use. By default, when a shell script
registers interest in a file descriptor, dtksh invokes the shell script's input
handler only when a complete line of text has been received. A complete line
of text is defined as a line terminated either by an unescaped newline character
or by the end of the file. The input handler is also called if no data is available
and the end of the file has been reached. The handler can then use
XtRemoveInput to remove the input source and to close the file descriptor.
The advantage of this default behavior is that input handlers need not be
concerned with escape processing or with handling line continuations. The
disadvantage is that it assumes that all of the input is line-oriented and
contains no binary information.

dtksh also supports a “raw” input mode if the input source contains binary
information or if the input handler wants to read the data from the input
source directly. In raw mode, dtksh does not read any of the data from the
input source. Whenever dtksh is notified that input is available on the input
source, it invokes the shell script's input handler. It is then the handler's
responsibility to read the incoming data, perform any required buffering and
escape processing, and detect when the end of the file has been reached (so
that the input source can be removed and the file descriptor closed). This
mode seldom needs to be used by a dtksh script.

Whether the input handler has been configured to operate in the default mode
or in raw mode, dtksh sets up several environment variables before calling the
shell script's input handler. These environment variables provide the input
handler with everything needed to handle the incoming data. The
environment variables are:

INPUT_LINE If operating in the default mode, this variable contains
the next complete line of input available from the input
source. If INPUT_EOF is true, then there is no data in
this buffer. If operating in raw mode, then this variable
always contains an empty string.

INPUT_EOF If operating in the default mode, this variable is set to
false anytime INPUT_LINE contains data, and it is set
to true when the end of file is reached. When the end
of file is reached, the shell script's input handler should

30 Desktop KornShell User’s Guide

3

unregister the input source and close the file descriptor.
If operating in raw mode, this variable is always set to
false.

INPUT_SOURCE This indicates the file descriptor for which input is
available. If operating in raw mode, this file descriptor
is used to obtain the pending input. The file descriptor
is also used to close the input source, when no longer
needed.

INPUT_ID This indicates the ID returned by XtAddInput , when
the input source was originally registered. This
information is needed to remove the input source with
XtRemoveInput .

Accessing Event Subfields

The XEvent structure has many different configurations, based on the event's
type. dtksh provides access only to the most frequently used XEvents . Any of
the other standard XEvents can be accessed using the event type XANY,
followed by any of the subfields defined by the XANY event structure, which
includes the following subfields:

• ${TRANSLATION_EVENT.XANY.TYPE}
• ${TRANSLATION_EVENT.XANY.SERIAL}
• ${TRANSLATION_EVENT.XANY.SEND_EVENT}
• ${TRANSLATION_EVENT.XANY.DISPLAY}
• ${TRANSLATION_EVENT.XANY.WINDOW}

dtksh supports full access to all of the event fields for the following event
types:

• XANY
• XBUTTON
• XEXPOSE
• XNOEXPOSE
• XGRAPHICSEXPOSE
• XKEY
• XMOTION

The following examples show how the subfields for the preceding event types
can be accessed:

 ${TRANSLATION_EVENT.XBUTTON.X}
 $(CB_CALL_DATA.EVENT.XKEY.STATE}

Advanced Topics 31

3

 ${EH_EVENT.XGRAPHICSEXPOSE.WIDTH}

Responding to a Window Manager Close Notice

When the user selects Close from the Window Manager menu for an
application, the application is terminated unless it has arranged to “catch” the
Close notification. If the application does not catch the notification, then
multiple windows managed by the application all disappear and application
data may be left in an undesirable state. To avoid this, dtksh provides for
catching and handling the Close notification. The application must:

• Define a procedure to handle the Close notification
• Request notification when Close is selected
• Override the response, so the application is not shut down

The following code illustrates this processing.

This is the `callback' invoked when the user selects
the `Close' menu item
WMCallback()
{
echo "User has selected the Close menu item"
}
Create the toplevel application shell
XtInitialize TOPLEVEL test Dtksh $0 "$@"
XtDisplay DISPLAY $TOPLEVEL

Request notification when the user selects the `Close'
menu item
XmInternAtom DELETE_ATOM $DISPLAY "WM_DELETE_WINDOW" false
XmAddWMProtocolCallback $TOPLEVEL $DELETE_ATOM "WMCallback"

Ask Motif to not automatically close down your
application window
XtSetValues $TOPLEVEL deleteResponse:DO_NOTHING

Responding to a Session Manager Save State Notice

Session Manager allows applications to save their current state when the user
terminates the current session, so that when the user later restarts the session,
an application can return to the state it was in. In dtksh , this is accomplished

32 Desktop KornShell User’s Guide

3

by setting up a handler in a similar way of handling a Close notification. If a
handler is not set up, the application has to be restarted manually in the new
session, and the application does not retain any state.

To set up a handler to save the current state, the application must:

• Define functions to save the state at the end of the session and to restore it
on startup

• Register interest in the Session Manager notification
• Register the function to save the state
• At startup, determine whether the saved state should be restored

The following code illustrates this process.

#! /usr/dt/bin/dtksh
Function invoked when the session is being ended by the user
SessionCallback()
{
 # Get the name of the file into which we should save our
 # session information
 if DtSessionSavePath $TOPLEVEL PATH SAVEFILE; then
 exec 9>$PATH

 # Save off whether we are currently in an iconified state
 if DtShellIsIconified $TOPLEVEL ; then
 print -u9 `Iconified'
 else
 print -u9 `Deiconified'
 fi

 # Save off the list of workspaces we currently reside in
 if DtWsmGetWorkspacesOccupied $(XtDisplay "-" $TOPLEVEL) \
 $(XtWindow "-" $TOPLEVEL) \
 CURRENT_WS_LIST ;
 then
 # Map the comma-separated list of atoms into
 # their string representation
 oldIFS=$IFS
 IFS=","
 for item in $CURRENT_WS_LIST;
 do
 XmGetAtomName NAME $(XtDisplay "-" $TOPLEVEL) \
 $item
 print -u9 $NAME
 done
 IFS=$oldIFS

Advanced Topics 33

3

 fi

 exec 9<&-

 # Let the session manager know how to invoke us when
 # the session is restored
 DtSetStartupCommand $TOPLEVEL \
 "/usr/dt/contrib/dtksh/SessionTest $SAVEFILE"
 else
 echo "DtSessionSavePath FAILED!!"
 exit -3
 fi
}

Function invoked during a restore session; restores the
application to its previous state
RestoreSession()
{
 # Retrieve the path where our session file resides
 if DtSessionRestorePath $TOPLEVEL PATH $1; then
 exec 9<$PATH
 read -u9 ICONIFY

 # Extract and restore our iconified state
 case $ICONIFY in
 Iconified) DtSetIconifyHint $TOPLEVEL True;;
 *) DtSetIconifyHint $TOPLEVEL False;
 esac

 # Extract the list of workspaces we belong in, convert
 # them to atoms, and ask the Workspace Manager to relocate
 # us to those workspaces
 WS_LIST=""
 while read -u9 NAME
 do
 XmInternAtom ATOM $(XtDisplay "-" $TOPLEVEL) \
 $NAME False
 if [${#WS_LIST} -gt 0]; then
 WS_LIST=$WS_LIST,$ATOM
 else
 WS_LIST=$ATOM
 fi
 done

 DtWsmSetWorkspacesOccupied $(XtDisplay "-" $TOPLEVEL) \
 $(XtWindow "-" $TOPLEVEL) $WS_LIST

34 Desktop KornShell User’s Guide

3

 exec 9<&-
 else
 echo "DtSessionRestorePath FAILED!!"
 exit -3
 fi
}
################## Create the Main UI #######################
XtInitialize TOPLEVEL wmProtTest Dtksh $0 "$@"
XtCreateManagedWidget DA da XmDrawingArea $TOPLEVEL \
 height:200 width:200
XmInternAtom SAVE_SESSION_ATOM $(XtDisplay "-" $TOPLEVEL) \
 "WM_SAVE_YOURSELF" False

If a command-line argument was supplied, then treat it as the
name of the session file
if (($# > 0))
then
 # Restore to the state specified in the passed-in session file
 XtSetValues $TOPLEVEL mappedWhenManaged:False
 XtRealizeWidget $TOPLEVEL
 XSync $(XtDisplay "-" $TOPLEVEL) False
 RestoreSession $1
 XtSetValues $TOPLEVEL mappedWhenManaged:True
 XtPopup $TOPLEVEL GrabNone
else
 # This is not a session restore, so come up in the default state
 XtRealizeWidget $TOPLEVEL
 XSync $(XtDisplay "-" $TOPLEVEL) False
fi

Register the fact that we are interested in participating in
session management
XmAddWMProtocols $TOPLEVEL $SAVE_SESSION_ATOM
XmAddWMProtocolCallback $TOPLEVEL $SAVE_SESSION_ATOM \
 SessionCallback

XtMainLoop

Advanced Topics 35

3

Cooperating with Workspace Manager

dtksh provides access to all of the major Workspace Manager functions of the
Dt libraries, including functions for querying and setting the set of workspaces
with which an application is associated; for querying the list of all workspaces;
for querying and setting the current workspace; and for requesting that an
application be notified any time the user changes to a different workspace.

From a user's perspective, workspaces are identified by a set of names, but
from the Workspace Manager's standpoint, workspaces are identified by X
atoms. Whenever the shell script asks for a list of workspace identifiers, a
string of X atoms is returned. If more than one X atom is present, then the list
is comma-separated. The Workspace Manager expects that the shell script
uses the same format when passing workspace identifiers back to it. During a
given session, it is safe for the shell script to work with the X atoms, since they
remain constant over the lifetime of the session. However, as was shown in the
Session Manager shell script example in the previous section, if the shell script
is going to save and restore workspace identifiers, the identifiers must be
converted from their X atom representation to a string before they are saved.
Then, when the session is restored, the shell script needs to remap the names
into X atoms before passing the information on to the Workspace Manager.
Mapping between X atoms and strings, and between strings and X atoms, is
accomplished using the following two commands:

• XmInternAtom ATOM $DISPLAY $WORKSPACE_NAME false
• XmGetAtomName NAME $DISPLAY $ATOM

Specific dtksh commands for dealing with workspace management are
documented in “Built-in libDt Session Management Commands” in Appendix
A.

Creating Localized Shell Scripts

dtksh scripts are internationalized and then localized in a process similar to C
applications. All strings that may be presented to the user are identified in the
script. A post-processor extracts the strings from the script and, from them,
builds a catalogue, which can then be translated to any desired locale. When
the script executes, the current locale determines which message catalog is
searched for strings to display. When a string is to be presented, it is identified

36 Desktop KornShell User’s Guide

3

by a message-set ID (corresponding to the catalog) and a message number
within the set. These values determine what text the user sees. The following
code illustrates the process:

Attempt to open our message catalog
catopen MSG_CAT_ID "myCatalog.cat"

The localized button label is in set 1, and is message # 2
XtCreatePushButton OK $PARENT ok \
 labelString:$(catgets $MSG_CAT_ID 1 2 "OK")

The localized button label is in set 1, and is message #3
XtCreatePushButton CANCEL $PARENT cancel \
 labelString:$(catgets $MSG_CAT_ID 1 3 "Cancel")

Close the message catalog, when no longer needed
catclose $MSG_CAT_ID

It is important to note that the file descriptor returned by catopen must be
closed using catclose and not by using the kshell exec command.

Using dtksh to Access X Drawing Functions

dtksh commands include standard Xlib drawing functions to draw lines,
points, segments, rectangles, arcs, and polygons. In the standard C
programming environment, these functions take a graphics context (GC) as an
argument, in addition to the drawing data. In dtksh drawing functions, a
collection of GC options are specified in the parameter list to the command.

By default, the drawing commands create a GC that is used for that specific
command and then discarded. If the script specifies the -gc option, the name
of a graphics context object can be passed to the command. This GC is used in
interpreting the command, and the variable is updated with any modifications
to the GC performed by the command.

-gc <GC> <GC> is the name of an environment
variable which has not yet been initialized
or which has been left holding a graphic
context by a previous drawing command.
If this option is specified, then it must be
the first GC option specified.

-foreground <color> The foreground color, which may be either
the name of a color or a pixel number.

Advanced Topics 37

3

-background <color> The background color, which may be either
the name of a color or a pixel number.

-font The name of the font to be used.

-line_width <number> The line width to be used during drawing.

-function <drawing function> The drawing function, which can be xor,
or, clear, and, copy, noop, nor,
nand, set, invert, equiv,
andReverse, orReverse, or
copyInverted .

-line_style <style> The line style, which can be any of the
following: LineSolid , LineDoubleDash ,
or LineOnOffDash .

Setting Widget Translations

dtksh provides mechanisms for augmenting, overriding, and removing
widget translations, much as in the C programming environment. In C, an
application installs a set of translation action procedures, which can then be
attached to specific sequences of events (translations are composed of an event
sequence and the associated action procedure). Translations within dtksh are
handled in a similar fashion, except only a single action procedure is available.
This action procedure, named ksh_eval , interprets any parameters passed to
it as dtksh commands and evaluates them when the translation is triggered.
The following shell script segment gives an example of how translations can be
used:

BtnDownProcedure()
{
 echo "Button Down event occurred in button "$1
}
XtCreateManagedWidget BUTTON1 button1 XmPushButton $PARENT \
 labelString:"Button 1" \
 translations:'#augment
 <EnterNotify>:ksh_eval("echo Button1 entered")
 <Btn1Down>:ksh_eval("BtnDownProcedure 1")'
XtCreateManagedWidget BUTTON2 button2 XmPushButton $PARENT \
 labelString:"Button 2"
XtOverrideTranslations $BUTTON2 \
 '#override
 <Btn1Down>:ksh_eval("BtnDownProcedure 2")'

38 Desktop KornShell User’s Guide

3

39

A Complex Script 4

This chapter describes a much more complex script than that described in
Chapter 2. Because of its length, the entire script is listed in Appendix C.
Remember that this guide is not a tutorial on KornShell programming. If you
are not familiar with KornShell programming, you should obtain a book on the
subject and have it handy for reference.

Using script_find

The script, script_find , demonstrates how you can use dtksh to provide a
graphical interface to the find command. script_find produces a window
within which you can specify parameters for the find command. To fully
understand the script, you should be familiar with the find command and
you should have its man page available. A number of the toggle button menu
choices in the window produced by script_find require some knowledge of
the find command.

The script’s window allows you to specify a search directory and a file name.
Other options allow you to place restrictions on the type of file system to
search and the file type on which to match. Figure 4-1 shows the script’s
window.

40 Desktop KornShell User’s Guide

4

Figure 4-1 Window for script_find

Enter the search directory and file name you’re looking for in the text fields at
the top of the window. In addition, select any applicable choice (or choices)
from the five toggle buttons. You can further restrict the search with the option
menus. When you have made all the necessary selections, click OK. If all is
well, a window appears shortly thereafter and displays the results of the find
operation. An error dialog appears if you don’t specify a search directory or
file name, or if the specified search directory is invalid. For example, suppose
you want to find a file called two_letter_calls , and you think it resides
somewhere in the directory /users/dlm . When you enter the directory in the
Search Directory text field, you inadvertently type /users/dln instead of
/users/dlm . When you click OK or Apply, script_find can’t find the
directory /users/dln , so it creates the error dialog to notify you of this.

A Complex Script 41

4

Figure 4-2 script_find error dialog

When you correct the mistake, script_find then executes properly and
creates a dtterm window within which it displays the complete path of the
file you requested, providing that the file is found.

Figure 4-3 Window showing complete path

If script_find cannot find the file in the specified directory, nothing appears
in the dtterm window.

42 Desktop KornShell User’s Guide

4

Analyzing script_find

The structure of script_find is similar to a C program: some functions and
callbacks appear first, followed by the main script.

The first two lines of the script are important, and should be included in every
dtksh script you write:

#! /usr/dt/bin/dtksh
. /usr/dt/lib/dtksh/DtFunc.dtsh

The first line executes the dtksh system and the second loads the dtksh
convenience functions. The second line wasn’t used in the scripts described in
Chapter 2 because those scripts did not use any dtksh convenience functions.

Functions and Callbacks

script_find has the following functions and callbacks:

• PostErrorDialog()
• OkCallback()
• LoadStickyValues()
• EvalCmd()
• RetrieveAndSaveCurrentValues()

PostErrorDialog()

This function is called when an error is detected, such as when the user enters
an invalid directory. The function calls the convenience function
DtkshDisplayErrorDialog() which displays a dialog box whose title is
Find Error and whose message is contained in the variable $1, which is passed
from the calling location.

dialogPostErrorDialog()
{
 DtDisplayErrorDialog “Find Error” “$1” \
 DIALOG_PRIMARY_APPLICATION_MODAL
}

The last parameter, DIALOG_PRIMARY_APPLICATION_MODAL, tells dtksh to create
a dialog that must be responded to before any other interaction can occur.

A Complex Script 43

4

OkCallback()

OkCallback() is called when either the OK or Apply button on the main
script_find window is pressed. If the OK button is pressed, the script_find
window is unmanaged. For either Apply or OK, the input search directory is
validated; if it is invalid, then OkCallback() calls PostErrorDialog() . If it
is valid, checks are made on the status of the toggle buttons on the
script_find window and corresponding adjustments are made to the
variable $CMD. This variable contains the entire command that is ultimately
executed.

LoadStickyValues()

This function is called from the main program after the window has been
created and managed. It loads all the values from the most recent execution of
the script. These values are saved in a file called Find.sticky by the
function RetrieveandSaveCurrentValues() .

EvalCmd()

EvalCmd() is used by LoadStickyValues() to evaluate each line in
Find.sticky as a dtksh command. The following is a list of a
Find.sticky file:

XmTextSetString $SD “/users/dlm”
XmTextFieldSetInsertionPosition $SD 10
XmTextSetString $FNP “two_letter_calls”
XmTextFieldSetInsertionPosition $FNP 16
XtSetValues $FSTYPE menuHistory:$NODIR
XtSetValues $FILETYPE menuHistory:$NOTYPE
XmToggleButtonSetState $T2 true false
XmToggleButtonSetState $T4 true false

RetrievAndSaveCurrentValues()

RetrieveAndSaveCurrentValues() retrieves the current settings and
values of the widgets in the script_find window and saves them in the file
Find.sticky . Find.sticky is then used by LoadStickyValues() the next
time the script is executed.

44 Desktop KornShell User’s Guide

4

Main Script

The remainder of the script is the equivalent of Main() in a C program. It
initializes the Xt Intrinsics and creates all the widgets used in the
script_find window. The set -f in the first line tells dtksh to suppress
expansion of wildcard characters in path names. This is necessary so that the
find command can perform this expansion.

The script_find window (see Figure 4-4) consists of a Form widget with
four areas. The areas are marked by Separator widgets, and each area has
several widgets, all of which are children of the Form.

Figure 4-4 Widgets in script_find window

The widgets are created in sequence by area, from top to bottom.

Initialize

Initialize is accomplished by the Xt Intrinsics function XtInitialize :

XtInitialize TOPLEVEL find Dtksh $0 “${@:-}”

A Complex Script 45

4

This creates a top-level shell that serves as the parent of a Form widget, which
is created next.

Create a Form Widget

A Form widget is used as the main parent widget. Form is a Manager widget
that allows you to place constraints on its children. Most of the widgets in the
main script_find window are children of the Form. The description of the
creation of the rest of the widgets is separated into the four areas of the
window (see Figure 4-4).

 First Area

The first area consists of two Label widgets, two TextField widgets, and a
Separator widget that separates the first and second areas.

Figure 4-5 First area of script_find Window

The following code segment creates and positions the first Label widget and
positions it within the Form using the DtkshAnchorTop and
DtkshAnchorLeft convenience functions:

XtCreateManagedWidget SDLABEL sdlabel XmLabel $FORM \
 labelString:”Search Directory:” \
 $(DtkshAnchorTop 12) \
 $(DtkshAnchorLeft 10)

The following code segment creates and positions the first TextField widget.
Note that it is positioned in relation to both the Form and the Label widget.

XtCreateManagedWidget SD sd XmText $FORM \
 columns:30 \
 value:”.” \
 $(DtkshAnchorTop 6) \
 $(DtkshRightOf $SDLABEL 10) \
 $(DtkshAnchorRight 10) \

46 Desktop KornShell User’s Guide

4

 navigationType:EXCLUSIVE_TAB_GROUP
XmTextFieldSetInsertionPosition $SD 1

The remaining Label widget and TextField widget are created in the same
manner.

The Separator widget is created as a child of the Form widget and positioned
under the second TextField widget.

XtCreateManagedWidget SEP sep XmSeparator $FORM \
 separatorType:SINGLE_DASHED_LINE \
 $(DtkshUnder $FNP 10) \
 $(DtkshSpanWidth)

Second Area

The second area consists of a RowColumn widget, five ToggleButton gadgets,
and another Separator widget.

Figure 4-6 Second Area of script_find Window

A gadget is a widget that relies on its parent for many of its attributes, thus
saving memory resources.

The RowColumn widget is created as a child of the Form widget, and
positioned directly under the Separator widget created in the first area.

XtCreateManagedWidget RC rc XmRowColumn $FORM \

 orientation:HORIZONTAL \

 numColumns:3 \

 packing:PACK_COLUMN \

 $(DtkshUnder $SEP 10) \

 $(DtkshSpanWidth 10 10) \

 navigationType:EXCLUSIVE_TAB_GROUP

A Complex Script 47

4

The five ToggleButton gadgets are created as children of the RowColumn using
the convenience function DtkshAddButtons :

DtkshAddButtons -w $RC XmToggleButtonGadget \
 T1 “Cross Mount Points” ““\
 T2 “Print Matching Filenames” ““\
 T3 “Search Hidden Subdirectories” ““\
 T4 “Follow Symbolic Links” ““\
 T5 “Descend Subdirectories First” ““

Another Separator is then created to separate the second and third areas. Note
that this Separator widget ID is called SEP2.

XtCreateManagedWidget SEP2 sep XmSeparator $FORM \
 separatorType:SINGLE_DASHED_LINE \
 $(DtkshUnder $RC 10) \
 $(DtkshSpanWidth)

Third Area

The third area consists of two option menus and another Separator widget.

Figure 4-7 Third area of script_find Window

The Option Menus are pull-down menus. When the user clicks the option
menu button, a menu pane with a number of choices appears. The user drags
the pointer to the appropriate choice and releases the mouse button. The menu
pane disappears and the option menu button label displays the new choice.

The first option menu menu pane consists of a number of push button gadgets,
representing various restrictions that can be imposed upon the find
command:

XmCreatePulldownMenu PANE $FORM pane
DtkshAddButtons -w $PANE XmPushButtonGadget \
 NODIR “no restrictions” ““\
 NFS “nfs” ““\
 CDFS “cdfs” ““\

48 Desktop KornShell User’s Guide

4

 HFS “hfs” ““
Next, the Option Menu button itself is created and managed, with the
menu pane just created ($PANE) identified as a subMenuId:
XmCreateOptionMenu FSTYPE $FORM fstype \
 labelString:”Restrict Search To File System Type:” \
 menuHistory:$NODIR \
 subMenuId:$PANE \
 $(DtkshUnder $SEP2 20) \
 $(DtkshSpanWidth 10 10) \
 navigationType:EXCLUSIVE_TAB_GROUP
XtManageChild $FSTYPE

The second option menu button is created in the same manner. It provides
further restrictions on the find command.

The third separator is created in the same manner as the other separators.

Fourth Area

The fourth area consists of four push button widgets, all children of the Form
widget.

The four push buttons are used as follows:

• OK executes the find command with the parameters input in the
script_find window and removes the script_find window.

• Apply executes the find command with the parameters input in the
script_find window but does not remove the script_find window.

• Close terminates script_find without executing the find command.

• Help creates a dialog box with information on the use of script_find .

The push buttons are created and positioned in much the same manner as any
of the other widgets, although they are each labeled differently. The following
code segment shows how the OK push button is created:

XtCreateManagedWidget OK ok XmPushButton $FORM \
 labelString:”Ok” \
 $(DtkshUnder $SEP3 10) \

A Complex Script 49

4

 $(DtkshFloatLeft 4) \
 $(DtkshFloatRight 24) \
 $(DtkshAnchorBottom 10)
XtAddCallback $OK activateCallback “OkCallback”

Set Operating Parameters

XtSetValues is used to set some initial operating parameters:

XtSetValues $FORM \
 initialFocus:$SD \
 defaultButton:$OK \
 cancelButton:$CLOSE \
 navigationType:EXCLUSIVE_TAB_GROUP

• Initial focus is set to the first TextField widget in the first area.
• Default button is set to the OK push button in the fourth area.
• Cancel button is set to the Close button in the fourth area.
• Navigation type is set to EXCLUSIVE_TAB_GROUP.

The following line configures the TextField widgets so that pressing the return
key does not activate the default button within the Form. See the description
of EXCLUSIVE_TAB_GROUP in Appendix B for more information on its use.

DtkshSetReturnKeyControls $SD $FNP $FORM $OK

Realize and Loop

The last three lines of the script load the previous values of the script_find
window, realize the top-level widget, and then enter a loop waiting for user
input.

LoadStickyValues

XtRealizeWidget $TOPLEVEL
XtMainLoop

50 Desktop KornShell User’s Guide

4

51

dtksh Commands A

This appendix contains a list of the commands supported by dtksh . Many of
these commands are almost identical to their Motif, Xt Intrinsics, or Xlib
counterparts. Commands that return a value must have the return variable as
an environment variable that is the first parameter in the call. Some
commands have more differences.

The following subsections give a synopsis of each of the dtksh commands. In
general, parameter ordering and types are the same as for corresponding C
procedures; exceptions are noted. For more detail on the functionality and
parameters of a command, see the standard documentation for the
corresponding Xlib, Xt Intrinsics, or Motif procedure.

In the command definitions, parameters named var, var2, var3, and so on,
indicate that the shell script should supply the name of an environment
variable into which some value will be returned. The word variable indicates
an environment variable that accepts a return value.

Commands that return a Boolean value (which can be used directly as part of
an if statement), are noted as such.

Parameters enclosed within [] are optional.

52 Desktop KornShell User’s Guide

A

Built-in Xlib Commands

XBell display volume

XClearArea display drawable [optional GC arguments] x y width height
 exposures

XClearWindow display drawable

XCopyArea display src dest srcX srcY width height destX destY [optional GC
 arguments]

XDefineCursor display window cursor

XDrawArc display drawable [optional GC arguments] x y width height angle1
 angle2

XDrawLine display drawable [optional GC arguments] x1 y1 x2 y2

XDrawLines display drawable [-coordinateMode] [optional GC arguments] x1 y1
 x2 y2 [x3 y3 ...]

where coordinateMode is either CoordModeOrigin or
CoordModePrevious .

XDrawPoint display drawable [optional GC arguments] x y

XDrawPoints display drawable [-coordinateMode] [optional GC arguments] x1 y1
 [x2 y2 x3 y3 ...]

where coordinateMode is either CoordModeOrigin or
CoordModePrevious .

XDrawRectangle display drawable [optional GC arguments] x y width height

XDrawSegments display drawable [optional GC arguments] x1 y1 x2 y2 [x3 y3 x4
 y4 ...]

XDrawString display drawable [optional GC arguments] x y string

XDrawImageString display drawable [optional GC arguments] x y string

XFillArc display drawable [optional GC arguments] x y width height angle1
 angle2

XFillPolygon display drawable [-shape] [-coordinateMode] [optional GC
 arguments] x1 y1 x2 y2 ...

dtksh Commands 53

A

where shape is either Complex , Convex, or Nonconvex, and
coordinateMode is either CoordModeOrigin or CoordModePrevious.

XFillRectangle display drawable [optional GC arguments] x y width height

XFlush display

XHeightOfScreen variable screen

XRaiseWindow display window

XRootWindowOfScreen variable screen

XSync display discard

where discard is either true or false.

XTextWidth variable fontName string

Note – The XTextWidth command is different from the corresponding Xlib
procedure because it takes the name of a font instead of a pointer to a font
structure.

XUndefineCursor display window

XWidthOfScreen variable screen

54 Desktop KornShell User’s Guide

A

Built-in Xt Intrinsic Commands

All the Xt Intrinsics commands used to create a new widget require that you
specify a widget class for the new widget. The widget (or gadget) class name is
the standard class name provided by Motif. For example, the class name for a
Motif push button widget is XmPushButton , while the class name for the
Motif label gadget is XmLabelGadget .

XtAddCallback widgetHandle callbackName ksh-command

where callbackName is one of the standard Motif or Xt callback names, with
the Xt or Xm prefix dropped. For example, activateCallback .

XtAddEventHandler widgetHandle eventMask nonMaskableFlag ksh-command

where eventMask is of the form mask|mask|mask and the mask components
are any of the standard set of X event masks, and nonMaskableFlag is either
true or false .

XtAddInput variable [-r] fileDescriptor ksh-command

Registers the indicated file descriptor with the X Toolkit as an alternate
input source. It is the responsibility of the shell script’s input handler to
unregister the input source when it is no longer needed and to close the file
descriptor.

If the -r option is specified (raw mode), then dtksh does not automatically
read any of the data available from the input source; it will be up to the
specified kshell command to read all data. If the -r option is not specified,
then the command specified in ksh-command is invoked only when a full
line is read (that is, a line terminated by either an unescaped newline
character or the end of the file) or when the end of the file is reached. The
raw mode is useful for handlers that expect to process nontextual data, or
for handlers that do not want dtksh automatically reading in a line of data.
When the end of file is detected, it is the shell script’s input handler’s
responsibility to use XtRemoveInput to remove the input source and to
close the file descriptor, if necessary.

In all cases, several environment variables are set up, which can be used by
the handler. These include:

INPUT_LINE Empty if in raw mode; otherwise, it contains the next
line to be processed.

dtksh Commands 55

A

INPUT_EOF Set to true if end-of-file is reached; otherwise, set to
false.

INPUT_SOURCE File descriptor associated with this input source.

INPUT_ID The ID associated with this input handler; returned by
XtAddInput ().

XtAddTimeout variable interval ksh-command

XtAddWorkProc variable ksh-command

In dtksh , the kshell command is typically a kshell function name. Like
regular work procedures, this function is expected to return a value that
indicates whether the work procedure wants to be called again, or whether
it has completed its work and can be automatically unregistered. If the
dtksh function returns 0, then the work procedure remains registered; any
other value causes the work procedure to be automatically unregistered.

XtAugmentTranslations widgetHandle translations

XtCreateApplicationShell variable applicationName widgetClass
 [resource:value ...]

XtCallCallbacks widgetHandle callbackName

where callbackName is one of the standard Motif or Xt callback names, with
the Xt or Xm prefix dropped; for example, activateCallback.

XtClass variable widgetHandle

Returns the name of the widget class associated with the passed-in widget
handle.

XtCreateManagedWidget variable widgetName widgetClass
 parentWidgetHandle [resource:value ...]

XtCreatePopupShell variable widgetName widgetClass
 parentWidgetHandle [resource:value ...]

XtCreateWidget variable widgetName widgetClass
 parentWidgetHandle [resource:value ...]

XtDestroyWidget widgetHandle [widgetHandle ...]

XtDisplay variable widgetHandle

56 Desktop KornShell User’s Guide

A

XtDisplayOfObject variable widgetHandle

XtGetValues widgetHandle resource:var1 [resource:var2 ...]

XtHasCallbacks variable widgetHandle callbackName

where callbackName is one of the standard Motif or Xt callback names, with
the Xt or Xm prefix dropped; for example, activateCallback.

variable is set to one of the strings CallbackNoList , CallbackHasNone ,
or CallbackHasSome .

XtInitialize variable shellName applicationClassName applicationName
 [arguments]

Using Dtksh as the applicationClassName causes the application to use the
default dtksh app-defaults file. The arguments parameter is used to
reference any command-line arguments that might have been specified by
the user of the shell script; these are typically referred to using the shell
syntax of "$@".

Returns a value which can be used in a conditional statement.

XtIsManaged widgetHandle

Returns a value which can be used in a conditional statement.

XtIsSubclass widgetHandle widgetClass

where widgetClass is the name of a widget class. Returns a value which can
be used in a conditional statement.

XtNameToWidget variable referenceWidget name

XtIsRealized widgetHandle

Returns a value which can be used in a conditional statement.

XtIsSensitive widgetHandle

Returns a value which can be used in a conditional statement.

XtIsShell widgetHandle

Returns a value which can be used in a conditional statement.

XtLastTimestampProcessed variable display

dtksh Commands 57

A

XtMainLoop

XtManageChild widgetHandle

XtManageChildren widgetHandle [widgetHandle ...]

XtMapWidget widgetHandle

XtOverrideTranslations widgetHandle translations

XtParent variable widgetHandle

XtPopdown widgetHandle

XtPopup widgetHandle grabType

where grabType is one of the strings GrabNone , GrabNonexclusive or
GrabExclusive .

XtRealizeWidget widgetHandle

XtRemoveAllCallbacks widgetHandle callbackName

where callbackName is one of the standard Motif or Xt callback names, with
the Xt or Xm prefix dropped; for example, activateCallback

XtRemoveCallback widgetHandle callbackName ksh-command

where callbackName is one of the standard Motif or Xt callback names, with
the Xt or Xm prefix dropped; for example, activateCallback . As is true
with traditional Xt callbacks, when a callback is removed, the same kshell
command string must be specified as was specified when the callback was
originally registered.

XtRemoveEventHandler widgetHandle eventMask nonMaskableFlag
 ksh-command

where eventMask is of the form mask|mask|mask and the mask components
are any of the standard set of X event masks; that is. ButtonPressMask where
nonMaskableFlag is either true or false.

As is true with traditional Xt event handlers, when an event handler is
removed, the same eventMask, nonMaskableFlag setting, and kshell command
string must be specified as was specified when the event handler was
originally registered.

58 Desktop KornShell User’s Guide

A

XtRemoveInput inputId

where inputId is the handle that was returned in the specified environment
variable when the alternate input source was registered using the
XtAddInput command.

XtRemoveTimeOut timeoutId

where timeoutId is the handle that was returned in the specified environment
variable when the timeout was registered using the XtAddTimeOut
command.

XtRemoveWorkProc workprocID

where workprocID is the handle that was returned in the specified
environment variable when the work procedure was registered using the
XtAddWorkProc command.

XtScreen variable widgetHandle

XtSetSensitive widgetHandle state

where state is either true or false.

XtSetValues widgetHandle resource:value [resource:value ...]

XtUninstallTranslations widgetHandle

XtUnmanageChild widgetHandle

XtUnmanageChildren widgetHandle [widgetHandle ...]

XtUnmapWidget widgetHandle

XtUnrealizeWidget widgetHandle

XtWindow variable widgetHandle

Built-in Motif Commands

XmAddWMProtocolCallback widgetHandle protocolAtom ksh-command

where protocolAtom is typically obtained using the XmInternAtom
command.

dtksh Commands 59

A

XmAddWMProtocols widgetHandle protocolAtom [protocolAtom ...]

where protocolAtom is typically obtained using the XmInternAtom command.

XmCommandAppendValue widgetHandle string

XmCommandError widgetHandle errorString

XmCommandGetChild variable widgetHandle childType

where childType is one of the strings DIALOG_COMMAND_TEXT,
DIALOG_PROMPT_LABEL, DIALOG_HISTORY_LIST, or
DIALOG_WORK_AREA.

XmCommandSetValue widgetHandle commandString

XmCreateArrowButton variable parentWidgetHandle name [resource:value ...]

XmCreateArrowButtonGadget variable parentWidgetHandle name
[resource:value ...]

XmCreateBulletinBoard variable parentWidgetHandle name [resource:value ...]

XmCreateBulletinBoardDialog variable parentWidgetHandle name
[resource:value ...]

XmCreateCascadeButton variable parentWidgetHandle name [resource:value ...]

XmCreateCascadeButtonGadget variable parentWidgetHandle name
[resource:value ...]

XmCreateCommand variable parentWidgetHandle name [resource:value ...]

XmCreateDialogShell variable parentWidgetHandle name [resource:value ...]

XmCreateDrawingArea variable parentWidgetHandle name [resource:value ...]

XmCreateDrawnButton variable parentWidgetHandle name [resource:value ...]

XmCreateErrorDialog variable parentWidgetHandle name [resource:value ...]

XmCreateFileSelectionBox variable parentWidgetHandle name
[resource:value ...]

XmCreateFileSelectionDialog variable parentWidgetHandle name
[resource:value ...]

60 Desktop KornShell User’s Guide

A

XmCreateForm variable parentWidgetHandle name [resource:value ...]

XmCreateFormDialog variable parentWidgetHandle name [resource:value ...]

XmCreateFrame variable parentWidgetHandle name [resource:value ...]

XmCreateInformationDialog variable parentWidgetHandle name
[resource:value ...]

XmCreateLabel variable parentWidgetHandle name [resource:value ...]

XmCreateLabelGadget variable parentWidgetHandle name [resource:value ...]

XmCreateList variable parentWidgetHandle name [resource:value ...]

XmCreateMainWindow variable parentWidgetHandle name [resource:value ...]

XmCreateMenuBar variable parentWidgetHandle name [resource:value ...]

XmCreateMenuShell variable parentWidgetHandle name [resource:value ...]

XmCreateMessageBox variable parentWidgetHandle name [resource:value ...]

XmCreateMessageDialog variable parentWidgetHandle name
 [resource:value ...]

XmCreateOptionMenu variable parentWidgetHandle name [resource:value ...]

XmCreatePanedWindow variable parentWidgetHandle name [resource:value ...]

XmCreatePopupMenu variable parentWidgetHandle name [resource:value ...]

XmCreatePromptDialog variable parentWidgetHandle name [resource:value ...]

XmCreatePulldownMenu variable parentWidgetHandle name [resource:value ...]

XmCreatePushButton variable parentWidgetHandle name [resource:value ...]

XmCreatePushButtonGadget variable parentWidgetHandle name
[resource:value ...]

XmCreateQuestionDialog variable parentWidgetHandle name
 [resource:value ...]

XmCreateRadioBox variable parentWidgetHandle name [resource:value ...]

XmCreateRowColumn variable parentWidgetHandle name [resource:value ...]

dtksh Commands 61

A

XmCreateScale variable parentWidgetHandle name [resource:value ...]

XmCreateScrollBar variable parentWidgetHandle name [resource:value ...]

XmCreateScrolledList variable parentWidgetHandle name [resource:value ...]

XmCreateScrolledText variable parentWidgetHandle name [resource:value ...]

XmCreateScrolledWindow variable parentWidgetHandle name
 [resource:value ...]

XmCreateSelectionBox variable parentWidgetHandle name [resource:value ...]

XmCreateSelectionDialog variable parentWidgetHandle name
 [resource:value ...]

XmCreateSeparator variable parentWidgetHandle name [resource:value ...]

XmCreateSeparatorGadget variable parentWidgetHandle name
[resource:value ...]

XmCreateText variable parentWidgetHandle name [resource:value ...]

XmCreateTextField variable parentWidgetHandle name [resource:value ...]

XmCreateToggleButton variable parentWidgetHandle name [resource:value ...]

XmCreateToggleButtonGadget variable parentWidgetHandle name
 [resource:value ...]

XmCreateWarningDialog variable parentWidgetHandle name [resource:value ...]

XmCreateWorkArea variable parentWidgetHandle name [resource:value ...]

XmCreateWorkingDialog variable parentWidgetHandle name
 [resource:value ...]

XmFileSelectionDoSearch widgetHandle directoryMask

XmFileSelectionBoxGetChild variable widgetHandle childType

where childType is one of the strings DIALOG_APPLY_BUTTON,
DIALOG_CANCEL_BUTTON, DIALOG_DEFAULT_BUTTON,
DIALOG_DIR_LIST, DIALOG_DIR_LIST_LABEL,
DIALOG_FILTER_LABEL, DIALOG_FILTER_TEXT,

62 Desktop KornShell User’s Guide

A

DIALOG_HELP_BUTTON, DIALOG_LIST, DIALOG_LIST_LABEL,
DIALOG_OK_BUTTON, DIALOG_SEPARATOR,
DIALOG_SELECTION_LABEL, DIALOG_TEXT, or DIALOG_WORK_AREA.

XmGetAtomNamevariable display atom

XmGetColors widgetHandle background variable var2 var3 var4

The XmGetColors command differs from the C procedure in that it takes a
widgetHandle instead of a screen pointer and a colormap.

XmGetFocusWidget variable widgetHandle

XmGetPostedFromWidget variable widgetHandle

XmGetTabGroup variable widgetHandle

XmGetTearOffControl variable widgetHandle

XmGetVisibility variable widgetHandle

XmInternAtom variable display atomString onlyIfExistsFlag

where onlyIfExistsFlag can be set to either true or false.

XmIsTraversable widgetHandle

Returns a value which can be used in a conditional statement.

XmListAddItem widgetHandle position itemString

The order of the parameters for the XmListAddItem command is not
identical to its corresponding C programming counterpart.

XmListAddItems widgetHandle position itemString [itemString ...]

The order of the parameters for the XmListAddItems command is not
identical to its corresponding C programming counterpart.

XmListAddItemsUnselected widgetHandle position itemString [itemString ...]

The order of the parameters for the XmListAddItemsUnselected
command is not identical to its corresponding C programming counterpart.

dtksh Commands 63

A

XmListAddItemUnselected widgetHandle position itemString

The ordering of the parameters to the XmListAddItemUnselected
command are not identical to its corresponding C programming
counterpart.

XmListDeleteAllItems widgetHandle

XmListDeleteItem widgetHandle itemString

XmListDeleteItems widgetHandle itemString [itemString ...]

XmListDeleteItemsPos widgetHandle itemCount position

XmListDeletePos widgetHandle position

XmListDeletePositions widgetHandle position [position ...]

XmListDeselectAllItems widgetHandle

XmListDeselectItem widgetHandle itemString

XmListDeselectPos widgetHandle position

XmListGetSelectedPos variable widgetHandle

Returns a comma-separated list of indices in variable. Returns a value which
can be used in a conditional statement.

XmListGetKbdItemPos variable widgetHandle

XmListGetMatchPos variable widgetHandle itemString

Returns a comma-separated list of indices in variable. Returns a value which
can be used in a conditional statement.

XmListItemExists widgetHandle itemString

Returns a value which can be used in a conditional statement.

XmListItemPos variable widgetHandle itemString

XmListPosSelected widgetHandle position

Returns a value which can be used in a conditional statement.

64 Desktop KornShell User’s Guide

A

XmListPosToBounds widgetHandle position variable var2 var3 vari4

Returns a value which can be used in a conditional statement.

XmListReplaceItemsPos widgetHandle position itemString [itemString ...]

The order of the parameters for the XmListReplaceItemsPos command is
not identical to its corresponding C programming counterpart.

XmListReplaceItemsPosUnselected widgetHandle position itemString
 [itemString ...]

The order of the parameters for the
XmListReplaceItemsPosUnselected command is not identical to its
corresponding C programming counterpart.

XmListSelectItem widgetHandle itemString notifyFlag

where notifyFlag can be set to either true or false.

XmListSelectPos widgetHandle position notifyFlag

where notifyFlag can be set to either true or false.

XmListSetAddMode widgetHandle state

where state can be set to either true or false.

XmListSetBottomItem widgetHandle itemString

XmListSetBottomPos widgetHandle position

XmListSetHorizPos widgetHandle position

XmListSetItem widgetHandle itemString

XmListSetKbdItemPos widgetHandle position

Returns a value which can be used in a conditional statement.

XmListSetPos widgetHandle position

XmListUpdateSelectedList widgetHandle

XmMainWindowSep1 variable widgetHandle

XmMainWindowSep2 variable widgetHandle

dtksh Commands 65

A

XmMainWindowSep3 variable widgetHandle

XmMainWindowSetAreas widgetHandle menuWidgetHandle
 commandWidgetHandle
 horizontalScrollbarWidgetHandle
 verticalScrollbarWidgetHandle
 workRegionWidgetHandle

XmMenuPosition widgetHandle eventHandle

where eventHandle refers to an X event, which has typically been obtained
by accessing the CB_CALL_DATA.EVENT, EH_EVENT or
TRANSLATION_EVENT environment variables.

XmMessageBoxGetChild variable widgetHandle childType

where childType is one of the strings DIALOG_CANCEL_BUTTON,
DIALOG_DEFAULT_BUTTON, DIALOG_HELP_BUTTON,
DIALOG_MESSAGE_LABEL, DIALOG_OK_BUTTON,
DIALOG_SEPARATOR, or DIALOG_SYMBOL_LABEL.

XmOptionButtonGadget variable widgetHandle

XmOptionLabelGadget variable widgetHandle

XmProcessTraversal widgetHandle direction

where direction is one of the strings TRAVERSE_CURRENT,
TRAVERSE_DOWN, TRAVERSE_HOME, TRAVERSE_LEFT,
TRAVERSE_NEXT, TRAVERSE_NEXT_TAB_GROUP, TRAVERSE_PREV,
TRAVERSE_PREV_TAB_GROUP, TRAVERSE_RIGHT, or TRAVERSE_UP.

Returns a value which can be used in a conditional statement.

XmRemoveWMProtocolCallback widgetHandle protocolAtom ksh-command

where protocolAtom is typically obtained using the XmInternAtom
command.

As is true with traditional Window Manager callbacks, when a callback is
removed, the same kshell command string must be specified, as was
specified when the callback was originally registered.

66 Desktop KornShell User’s Guide

A

XmRemoveWMProtocols widgetHandle protocolAtom [protocolAtom ...]

where protocolAtom is typically obtained using the XmInternAtom
command.

XmScaleGetValue widgetHandle variable

XmScaleSetValue widgetHandle value

XmScrollBarGetValues widgetHandle variable var2 var3 var4

XmScrollBarSetValues widgetHandle value sliderSize increment pageIncrement
 notifyFlag

where notifyFlag can be set to either true or false.

XmScrollVisible widgetHandle widgetHandle leftRightMargin topBottomMargin

XmSelectionBoxGetChild variable widgetHandle childType

where childType is one of the strings DIALOG_CANCEL_BUTTON,
DIALOG_DEFAULT_BUTTON, DIALOG_HELP_BUTTON,
DIALOG_APPLY_BUTTON, DIALOG_LIST, DIALOG_LIST_LABEL,
DIALOG_OK_BUTTON, DIALOG_SELECTION_LABEL,
DIALOG_SEPARATOR, DIALOG_TEXT, or DIALOG_WORK_AREA.

XmTextClearSelection widgetHandle time

where time is typically either obtained from within an X Event or is queried
by a call to the XtLastTimestampProcessed command.

XmTextCopy widgetHandle time

where time is typically either obtained from within an X Event or is queried
by a call to the XtLastTimestampProcessed command.

Returns a value which can be used in a conditional statement.

XmTextCut widgetHandle time

where time is typically either obtained from within an X Event or is queried
by a call to the XtLastTimestampProcessed command.

Returns a value which can be used in a conditional statement.

XmTextDisableRedisplay widgetHandle

dtksh Commands 67

A

XmTextEnableDisplay widgetHandle

XmTextFindString widgetHandle startPosition string direction variable

where direction is one of the strings TEXT_FORWARD or TEXT_BACKWARD.

Returns a value which can be used in a conditional statement.

XmTextGetBaseline variable widgetHandle

XmTextGetEditable widgetHandle

Returns a value which can be used in a conditional statement.

XmTextGetInsertionPosition variable widgetHandle

XmTextGetLastPosition variable widgetHandle

XmTextGetMaxLength variable widgetHandle

XmTextGetSelection variable widgetHandle

XmTextGetSelectionPosition widgetHandle variable var2

Returns a value which can be used in a conditional statement.

XmTextGetString variable widgetHandle

XmTextGetTopCharacter variable widgetHandle

XmTextInsert widgetHandle position string

XmTextPaste widgetHandle

Returns a value which can be used in a conditional statement.

XmTextPosToXY widgetHandle position variable var2

Returns a value which can be used in a conditional statement.

XmTextRemove widgetHandle

Returns a value which can be used in a conditional statement.

XmTextReplace widgetHandle fromPosition toPosition string

XmTextScroll widgetHandle lines

68 Desktop KornShell User’s Guide

A

XmTextSetAddMode widgetHandle state

where state can be set to either true or false.

XmTextSetEditable widgetHandle editableFlag

where editableFlag can be set to either true or false.

XmTextSetHighlight widgetHandle leftPosition rightPosition mode

where mode is one of the strings HIGHLIGHT_NORMAL,
HIGHLIGHT_SELECTED or HIGHLIGHT_SECONDARY_SELECTED.

XmTextSetInsertionPosition widgetHandle position

XmTextSetMaxLength widgetHandle maxLength

XmTextSetSelection widgetHandle firstPosition lastPosition time

where time is typically either obtained from within an X Event or is queried
by a call to the XtLastTimestampProcessed command.

XmTextSetString widgetHandle string

XmTextSetTopCharacter widgetHandle topCharacterPosition

XmTextShowPosition widgetHandle position

XmTextXYToPos variable widgetHandle x y

XmTextFieldClearSelection widgetHandle time

where time is typically either obtained from within an X Event or is queried
by a call to the XtLastTimestampProcessed command.

XmTextFieldGetBaseline variable widgetHandle

XmTextFieldGetEditable widgetHandle

Returns a value which can be used in a conditional statement.

XmTextFieldGetInsertionPosition variable widgetHandle

XmTextFieldGetLastPosition variable widgetHandle

XmTextFieldGetMaxLength variable widgetHandle

XmTextFieldGetSelection variable widgetHandle

dtksh Commands 69

A

XmTextFieldGetSelectionPosition widgetHandle variable var2

Returns a value which can be used in a conditional statement.

XmTextFieldGetString variable widgetHandle

XmTextFieldInsert widgetHandle position string

XmTextFieldPosToXY widgetHandle position variable var2

Returns a value which can be used in a conditional statement.

XmTextFieldRemove widgetHandle

Returns a value which can be used in a conditional statement.

XmTextFieldReplace widgetHandle fromPosition toPosition string

XmTextFieldSetEditable widgetHandle editableFlag

where editableFlag can be set to either true or false.

XmTextFieldSetHighlight widgetHandle leftPosition rightPosition mode

where mode is one of the strings HIGHLIGHT_NORMAL,
HIGHLIGHT_SELECTED, or HIGHLIGHT_SECONDARY_SELECTED.

XmTextFieldSetInsertionPosition widgetHandle position

XmTextFieldSetMaxLength widgetHandle maxLength

XmTextFieldSetSelection widgetHandle firstPosition lastPosition time

where time is typically either obtained from within an X Event or is queried
by a call to the XtLastTimestampProcessed command.

XmTextFieldSetString widgetHandle string

XmTextFieldShowPosition widgetHandle position

XmTextFieldXYToPos variable widgetHandle x y

XmTextFieldCopy widgetHandle time

where time is typically either obtained from within an X Event or is queried
by a call to the XtLastTimestampProcessed command.

Returns a value which can be used in a conditional statement.

70 Desktop KornShell User’s Guide

A

XmTextFieldCut widgetHandle time

where time is typically either obtained from within an X Event or is queried
by a call to the XtLastTimestampProcessed command.

Returns a value which can be used in a conditional statement.

XmTextFieldPaste widgetHandle

Returns a value which can be used in a conditional statement.

XmTextFieldSetAddMode widgetHandle state

where state can be set to either true or false.

XmToggleButtonGadgetGetState widgetHandle

Returns a value which can be used in a conditional statement.

XmToggleButtonGadgetSetState widgetHandle state notifyFlag

where state can be set to either true or false, and where notifyFlag can be set
to either true or false.

XmToggleButtonGetState widgetHandle

Returns a value which can be used in a conditional statement.

XmToggleButtonSetState widgetHandle state notifyFlag

where state can be set to either true or false, and where notifyFlag can be set
to either true or false.

XmUpdateDisplay widgetHandle

Built-in Common Desktop Environment Application Help Commands

DtCreateQuickHelpDialog variable parentWidgetHandle name
[resource:value ...]

DtCreateHelpDialog variable parentWidgetHandle name [resource:value ...]

dtksh Commands 71

A

DtHelpQuickDialogGetChild variable widgetHandle childType

where childType is one of the strings HELP_QUICK_OK_BUTTON,
HELP_QUICK_PRINT_BUTTON, HELP_QUICK_HELP_BUTTON,
HELP_QUICK_SEPARATOR, HELP_QUICK_MORE_BUTTON, or
HELP_QUICK_BACK_BUTTON.

DtHelpReturnSelectedWidgetId variable widgetHandle var2

variable is set to one of the strings HELP_SELECT_VALID,
HELP_SELECT_INVALID, HELP_SELECT_ABORT, or
HELP_SELECT_ERROR. var2 is set to the widgetHandle for the selected
widget.

DtHelpSetCatalogName catalogName

Built-in Localization Commands

catopen variable catalogName

Opens the indicated message catalog and returns the catalog ID in the
environment variable specified by variable. If a shell script needs to close the
file descriptor associated with a message catalog, then the catalog ID must
be closed using the catclose command.

catgets variable catalogId setNumber messageNumber defaultMessageString

Attempts to extract the requested message string from the message catalog
associated with the catalogId parameter. If the message string cannot be
located, then the default message string is returned. In either case, the
returned message string is placed into the environment variable indicated
by variable.

catclose catalogId

Closes the message catalog associated with the indicated catalogId.

72 Desktop KornShell User’s Guide

A

Built-in libDt Session Management Commands

DtSessionRestorePath widgetHandle variable sessionFile

Given the file name for the session file (excluding any path information),
this command returns the full path for the session file in the environment
variable variable.

Returns 0 if successful, 1 if unsuccessful.

DtSessionSavePath widgetHandle variable var2

The full path name for the session file is returned in the environment
variable variable. The file name portion of the session file (excluding any
path information) is returned in the environment variable indicated by var2.

Returns 0 if successful, 1 if unsuccessful.

DtShellIsIconified widgetHandle

Allows a shell script to query the iconified state of a shell window. Returns
0 if successful, 1 if unsuccessful.

DtSetStartupCommand widgetHandle commandString

Part of the session management process is telling the Session Manager how
to restart your application the next time the user reopens the session. This
command passes the specified command string to the Session Manager. The
widget handle should refer to an application shell.

DtSetIconifyHint widgetHandle iconifyHint

where iconifyHint can be set to either true or false.

Allows the initial iconified state for a shell window to be set. This command
only works if the window associated with the widget has been realized but
not yet displayed.

dtksh Commands 73

A

Built-in libDt Workspace Management Commands

DtWsmAddCurrentWorkspaceCallback variable widgetHandle ksh-command

Evaluates the specified kshell command whenever the user changes
workspaces. The handle associated with this callback is returned in the
environment variable indicated by variable. The widget indicated by
widgetHandle should be a shell widget.

DtWsmRemoveWorkspaceCallback callbackHandle

Removes a workspace notification callback. When removing a workspace
callback, you must pass in the callback handle that was returned when you
registered the callback with DtWsmAddCurrentWorkspaceCallback.

DtWsmGetCurrentWorkspace display rootWindow variable

Returns the X atom that represents the user’s current workspace in the
environment variable indicated by variable. Use the XmGetAtomName
command to map the X atom into its string representation.

DtWsmSetCurrentWorkspace widgetHandle workspaceNameAtom

Changes the user’s current workspace to the workspace indicated by
workspaceNameAtom.

Returns 0 if successful, 1 if unsuccessful.

DtWsmGetWorkspaceList display rootWindow variable

Returns a string of comma-separated X atoms, representing the current set
of workspaces defined for the user, in the environment variable indicated by
variable.

Returns 0 if successful, 1 if unsuccessful.

DtWsmGetWorkspacesOccupied display window variable

Returns a string of comma-separated X atoms, representing the current set
of workspaces occupied by the indicated shell window in the environment
variable indicated by variable.

Returns 0 if successful, 1 if unsuccessful.

74 Desktop KornShell User’s Guide

A

DtWsmSetWorkspacesOccupied display window workspaceList

Moves the indicated shell window to the set of workspaces indicated by the
string workspaceList, which must be a comma-separated list of X atoms.

DtWsmAddWorkspaceFunctions display window

Forces the Window Manager menu to include the functions used to move
the window to other workspaces. This command only works if the window
is in the withdrawn state.

DtWsmRemoveWorkspaceFunctions display window

Forces the Window Manager menu to not display the functions used to
move the window to other workspaces; this prevents the window from
being moved to any other workspaces. This command only works if the
window is in the withdrawn state.

DtWsmOccupyAllWorkspaces display window

Requests that a window occupy all workspaces, including new workspaces,
as they are created.

DtWsmGetCurrentBackdropWindows display rootWindow variable

Returns a string of comma-separated window IDs, representing the set of
root backdrop windows.

Built-in libDt Action Commands

The set of commands in this section provide you with the tools for loading the
action databases, querying information about actions defined in the databases,
and requesting that an action be initiated.

DtDbLoad

Reads in the action and data-types databases. If called multiple times, then
the old databases are freed before the new ones are read. This command
must be called before any of the other libDt action commands, or any of
the libDt data typing commands. The shell script should also use the
DtDbReloadNotify command, so that the shell script can be notified if new
databases must be loaded.

dtksh Commands 75

A

DtDbReloadNotify ksh-command

Requests notification whenever the action or data-types databases need to
be reloaded. The specified kshell command is executed when the
notification is received. Typically, the kshell command includes a call to the
DtDbLoad command.

DtActionExists actionName

Tests to see if an action exists in the database with the name specified by the
actionName parameter. Returns a value which can be used in a conditional
statement.

DtActionLabel variable actionName

Returns the localizable LABEL attribute associated with the indicated
action. If the action does not exist, then an empty string is returned.

DtActionDescription variable actionName

Returns the value of the DESCRIPTION attribute associated with the
indicated action. An empty string is returned if the action is not defined, or
if the DESCRIPTION attribute was not specified.

Built-in libDt Data-Typing Commands

DtLoadDataTypes

Loads the data-typing databases and should be invoked before any of the
other data-typing commands.

DtDtsFileToDataType variable filePath

Returns the name of the data type associated with the file indicated by the
filePath argument in the variable argument. The variable argument is set to an
empty string if the file cannot be typed.

DtDtsFileToAttributeValue variable filePath attrName

Returns the string representing the value of the specified attribute for the
data type associated with the indicated file. If the attribute is not defined, or
if the file could not be typed, then the variable argument is set to an empty
string.

76 Desktop KornShell User’s Guide

A

DtDtsFileToAttributeList variable filePath

Returns the space-separated list of attribute names defined for the data type
associated with the indicated file. A shell script can then query the
individual values for the attributes, using the
DtDtsFileToAttributeValue command. The variable argument is set to
an empty string if the file cannot be typed. This command differs from its
corresponding C programming counterpart, in that it only returns the
names of the defined attributes and not their values.

DtDtsDataTypeToAttributeValue variable dataType attrName optName

Returns the string representing the value of the specified attribute for the
indicated data type. If the attribute is not defined, or if the indicated data
type does not exist, then the variable argument is set to an empty string.

DtDtsDataTypeToAttributeList variable dataType optName

Returns the space-separated list of attribute names defined for the indicated
data type. A shell script can then query the individual values for the
attributes, using the DtDtsDataTypeToAttributeValue command. The
variable argument is set to an empty string if the data type is not defined.
This command differs from its corresponding C programming counterpart,
in that it only returns the names of the defined attributes and not their
values.

DtDtsFindAttribute variable name value

Returns a space-separated list of datatype names whose attribute indicated
by the name argument has the value indicated by the value argument. If an
error occurs, the variable argument is set to an empty string.

DtDtsDataTypeNames variable

Returns a space-separated list representing all the data types currently
defined in the data-types database. If an error occurs, then the variable
argument is set to an empty string.

DtDtsSetDataType variable filePath dataType override

Sets a data type for the specified directory. The variable argument is set to
the resultant saved data type for the directory.

dtksh Commands 77

A

DtDtsDataTypeIsAction dataType

Determines whether a particular data type represents an action entry.
Returns a value which can be used in a conditional statement.

Miscellaneous Built-in libDt Commands

DtGetHourGlassCursor variable display

Returns the X cursor ID associated with the standard Dt hourglass cursor.

DtTurnOnHourGlass widgetHandle

Turns on the standard Dt hourglass cursor for the indicated widget.

DtTurnOffHourGlass widgetHandle

Turns off the standard Dt hourglass cursor for the indicated widget.

Built-in Desktop Services Message Set Commands

The following set of commands implements the minimum subset of the
Desktop Services Message Set required to allow a shell script to participate in
the Desktop Services protocol. Many of the ToolTalk commands differ slightly
from their associated C programming call. For ToolTalk commands that
typically return a pointer, a C application validates that pointer by calling the
tt_ptr_error () function; this function call returns a Tt_status value,
which indicates whether the pointer was valid, and if not, why it was not
valid. Because of the kshell code’s design, the string pointer that the shell
script sees is not typically the same as the string pointer returned by the
underlying C code. Typically, during shell programming, this is not a problem
because the important information is the string value, not the string pointer.

To allow shell scripts to get the status of a pointer, any of the commands that
normally return a pointer also return the associated Tt_status value for the
pointer automatically. This saves the shell script from needing to make an
additional call to check the validity of the original pointer. In the case of a
pointer error occurring, dtksh returns an empty string for the pointer value
and sets the Tt_status code accordingly.

The Tt_status value is returned in the status argument. The Tt_status
value is a string representing the error and can assume any of the following
values:

78 Desktop KornShell User’s Guide

A

TT_OK
TT_WRN_NOTFOUND
TT_WRN_STALE_OBJID
TT_WRN_STOPPED
TT_WRN_SAME_OBJID
TT_WRN_START_MESSAGE
TT_ERR_CLASS
TT_ERR_DBAVAIL
TT_ERR_DBEXIST
TT_ERR_FILE
TT_ERR_INVALID
TT_ERR_MODE
TT_ERR_ACCESS
TT_ERR_NOMP
TT_ERR_NOTHANDLER
TT_ERR_NUM
TT_ERR_OBJID
TT_ERR_OP
TT_ERR_OTYPE
TT_ERR_ADDRESS
TT_ERR_PATH
TT_ERR_POINTER
TT_ERR_PROCID
TT_ERR_PROPLEN
TT_ERR_PROPNAME
TT_ERR_PTYPE
TT_ERR_DISPOSITION
TT_ERR_SCOPE
TT_ERR_SESSION
TT_ERR_VTYPE
TT_ERR_NO_VALUE
TT_ERR_INTERNAL
TT_ERR_READONLY
TT_ERR_NO_MATCH
TT_ERR_UNIMP
TT_ERR_OVERFLOW
TT_ERR_PTPE_START
TT_ERR_CATEGORY
TT_ERR_DBUPDATE
TT_ERR_DBFULL

dtksh Commands 79

A

TT_ERR_DBCONSIST
TT_ERR_STATE
TT_ERR_NOMEM
TT_ERR_SLOTNAME
TT_ERR_XDR
TT_DESKTOP_EPERM
TT_DESKTOP_ENOENT
TT_DESKTOP_EINTR
TT_DESKTOP_EIO
TT_DESKTOP_EAGAIN
TT_DESKTOP_ENOMEM
TT_DESKTOP_EACCES
TT_DESKTOP_EFAULT
TT_DESKTOP_EEXIST
TT_DESKTOP_ENODEV
TT_DESKTOP_ENOTDIR
TT_DESKTOP_EISDIR
TT_DESKTOP_EINVAL
TT_DESKTOP_ENFILE
TT_DESKTOP_EMFILE
TT_DESKTOP_ETXBSY
TT_DESKTOP_EFBIG
TT_DESKTOP_ENOSPC
TT_DESKTOP_EROFS
TT_DESKTOP_EMLINK
TT_DESKTOP_EPIPE
TT_DESKTOP_ENOMSG
TT_DESKTOP_EDEADLK
TT_DESKTOP_ECANCELED
TT_DESKTOP_ENOTSUP
TT_DESKTOP_ENODATA
TT_DESKTOP_EPROTO
TT_DESKTOP_ENOTEMPTY
TT_DESKTOP_ETIMEDOUT
TT_DESKTOP_EALREADY
TT_DESKTOP_UNMODIFIED
TT_MEDIA_ERR_SIZE
TT_MEDIA_ERR_FORMAT

80 Desktop KornShell User’s Guide

A

Some of the commands take a message scope as a parameter. The scope
indicates which clients have the potential of receiving the outgoing message.
For these commands, the scope parameter can be set to any of the following
values:

TT_SCOPE_NONE
TT_SESSION
TT_FILE
TT_BOTH
TT_FILE_IN_SESSION

tt_file_netfile variable status filename

Converts the indicated filename, assumed to be a valid file name on the local
host, to its corresponding netfilename format. A netfilename can be passed to
other hosts on a network and then converted back to a path relative to the
other host, using the tt_netfile_file command.

tt_netfile_file variable status netfilename

Converts the indicated netfilename to a path name that is valid on the local
host.

tt_host_file_netfile variable status host filename

Converts the indicated file, assumed to be resident on the specified host,
into its corresponding netfilename format.

tt_host_netfile_file variable status host netfilename

Converts the indicated netfilename into a valid path on the indicated host.

ttdt_open variable status var2 toolname vendor version sendStarted

Opens a ToolTalk communications endpoint. It returns in the variable
argument the procID associated with this connection. It returns the file
descriptor associated with this connection in var2; this file descriptor can be
used to register an alternate Xt input handler. The sendStarted argument is a
value and if set to true, causes a Started message to be automatically sent.

Any procIDs returned by ttdt_open contain embedded spaces. To prevent
kshell from interpreting the procID as a multiple parameter (versus a single
parameter with embedded spaces), you should always enclose any
references to the environment variable containing the procID within double

dtksh Commands 81

A

quotes, as shown:

ttdt_close STATUS “$PROC_ID” ““ True

tttk_Xt_input_handler procID source id

For the ToolTalk messages to be received and processed, the shell script
must register an Xt input handler for the file descriptor returned by the call
to ttdt_open . The Xt input handler is registered using the XtAddInput
command, and the handler must be registered as a raw input handler. The
input handler that the shell script registers should invoke
tttk_Xt_input_handler to get the message received and processed. The
following code block demonstrates how this is done:

 ttdt_open PROC_ID STATUS FID “Tool” “HP” “1.0” True XtAddInput
 INPUT_ID -r $FID “ProcessTTInput \”$PROC_ID\””

 ProcessTTInput()

 {

 tttk_Xt_input_handler $1 $INPUT_SOURCE $INPUT_ID

 }

Refer to the description of the XtAddInput command for more details
about alternate Xt input handlers.

Note that the \” (backslash and double quotation mark) characters before
and after the reference to the procID environment variable are necessary,
because the value contained in the procID environment variable contains
embedded spaces and could be misinterpreted unless escaped as shown.

ttdt_close status procID newProcId sendStopped

Closes the indicated communications connection and optionally sends a
Stopped notice, if the sendStopped argument is set to true.

Because the procID returned by the call to ttdt_open contains embedded
spaces, it is necessary to enclose any references to the procID environment
variable within double quotation marks:

 ttdt_close STATUS “$PROC_ID” “$NEW_PROC_ID” False

ttdt_session_join variable status sessId shellWidgetHandle join

Joins the session indicated by the sessId argument as a good desktop citizen,
by registering patterns and default callbacks for many standard desktop
message interfaces. If the sessId argument does not specify a value (that is, it

82 Desktop KornShell User’s Guide

A

is an empty string), then the default session is joined. If the
shellWidgetHandle argument specifies a widget handle (that is, it is not an
empty string), then it should refer to a mappedWhenManaged
applicationShellWidget . The join argument is a Boolean and should be
set to true or false. This command returns an opaque pattern handle in the
variable argument; when no longer needed, this handle can be destroyed
using the ttdt_session_quit command.

ttdt_session_quit status sessId sessPatterns quit

Destroys the message patterns specified by the sessPatterns argument and, if
the quit argument is set to true, quits the session indicated by the sessId
argument or quits the default session if sessId is empty.

ttdt_file_join variable status pathName scope join ksh-command

Registers interest in the deleted, modified, reverted, moved, and saved
messages for the indicated file in the indicated scope. An opaque pattern
handle is returned in the variable argument. When no longer interested in
monitoring messages for the indicated file, this should be destroyed by
calling ttdt_file_quit .

The requested ksh-command is evaluated anytime one of the messages is
received for the indicated file. When this kshell command is evaluated, the
following environment variables are defined and provide additional
information about the received message:

DT_TT_MSG Contains the opaque handle for the incoming message

DT_TT_OP Contains the string representing the operation to be
performed; that is, TTDT_DELETED,
TTDT_MODIFIED, TTDT_REVERTED, TTDT_MOVED
or TTDT_SAVED.

DT_TT_PATHNAME Contains the pathname for the file to which this
message pertains.

DT_TT_SAME_EUID_EGID Set to True if the message was sent by an
application operating with the same effective
user ID (euid) and effective group ID (egid) as
this process.

dtksh Commands 83

A

DT_TT_SAME_PROCID Set to True if the message was sent by an
application with the same procID (as returned
by ttdt_open).

When the callback completes, it must indicate whether the passed-in
message was “consumed” (replied-to, failed, or rejected). If the callback
returns the message (as passed-in in the DT_TT_MSG environment variable),
then it is assumed that the message was not consumed. If the message was
consumed, then the callback should return 0, or one of the values returned
by the tt_error_pointer command. The callback can return its value in
the following fashion:

return $DT_TT_MSG (or) return 0

ttdt_file_quit status patterns quit

Destroys the message patterns specified by the patterns argument and
unregisters interest in the path name that was passed to the ttdt_file_join
command, if quit is set to true. The patterns argument should be the value
that was returned by the call to the ttdt_file_join command.

ttdt_file_event status op patterns send

Creates, and optionally sends, a ToolTalk notice announcing an event
pertaining to a file. The file is indicated by the path name that was passed to
the ttdt_file_join command when patterns was created. The op
argument indicates what should be announced for the indicated file, and it
can be set to TTDT_MODIFIED, TTDT_SAVED, or TTDT_REVERTED. If op is
set to TTDT_MODIFIED, then this command registers to handle Get_Modified,
Save and Revert messages in the scope specified when the patterns were
created. If op is set to TTDT_SAVED or TTDT_REVERTED, this command
unregisters from handling Get_Modified, Save, and Revert messages for this
file. If the send argument is set to true, then the indicated message is sent.

ttdt_Get_Modified pathName scope timeout

Sends a Get_Modified request in the indicated scope and waits for a reply or
for the specified timeout (in milliseconds) to elapse. A Get_Modified request
asks other ToolTalk clients if they have any changes pending on pathname
that they intend to make persistent. Returns a value which can be used in a
conditional statement. A value of true is returned if an affirmative reply is
received within the specified timeout; otherwise, false is returned.

84 Desktop KornShell User’s Guide

A

ttdt_Save status pathName scope timeout

Sends a Save request in the indicated scope and waits for a reply or for the
indicated timeout (in milliseconds) to elapse. A Save request asks the
handling ToolTalk client to save any changes pending for the file specified in
the pathName argument. A status of TT_OK is returned if an affirmative reply
is received before the timeout elapses. Otherwise, one of the standard
Tt_status error values is returned.

ttdt_Revert status pathName scope timeout

Sends a Revert request in the indicated scope and waits for a reply or for the
indicated timeout (in milliseconds) to elapse. A Revert request asks the
handling ToolTalk client to discard any changes pending for the file
specified in the pathName argument. A status of TT_OK is returned if an
affirmative reply is received before the timeout elapses. Otherwise, one of
the standard Tt_status error values is returned.

The following commands are typically used by the callback registered with the
ttdt_file_join command. They serve as the mechanism for consuming
and destroying a message. A message is consumed by either rejecting, failing,
or replying to it. tt_error_pointer can be used by the callback to obtain a return
pointer for indicating an error condition.

tt_error_pointer variable ttStatus

Returns a “magic value,” which is used by ToolTalk to represent an invalid
pointer. The magic value returned depends upon the ttStatus value passed-
in. Any of the valid Tt_status values may be specified.

tttk_message_destroy status msg

Destroys any patterns that may have been stored on the message indicated
by the msg argument, and then destroys the message.

tttk_message_reject status msg msgStatus msgStatusString destroy

Sets the status and the status string for the indicated request message, and
then rejects the message. It then destroys the passed-in message, if the
destroy argument is set to True . This command is one way in which the
callback specified with the ttdt_file_join command can consume a
message. It is typically safe to destroy the message, using
tttk_message_destroy , after rejecting the message.

dtksh Commands 85

A

tttk_message_fail status msg msgStatus msgStatusString destroy

Sets the status and the status string for the indicated request message, and
then fails the message. It then destroys the passed-in message, if the destroy
argument is set to True . This command is one way in which the callback
specified with the ttdt_file_join command can consume a message. It
is typically safe to destroy the message, using tttk_message_destroy ,
after failing the message.

tt_message_reply status msg

Informs the ToolTalk service that the shell script has handled the message
and filled in all return values. The ToolTalk service then sends the reply
back to the sending process, filling in the state as TT_HANDLED. After
replying to a message, it is typically safe to destroy the message, using the
tttk_message_destroy command.

86 Desktop KornShell User’s Guide

A

87

dtksh Convenience Functions B

The dtksh utility includes a file of convenience functions. This file is itself a
shell script containing shell functions that may be useful to a shell
programmer. The shell functions perform operations that dtksh programmers
frequently have to do for themselves. These include functions for quickly
creating certain kinds of dialogs (help, error, warning, and so on), a function
for easily creating a collection of buttons, and functions that make it easier to
configure the constraint resources for a child of a form widget. It is not a
requirement that shell script writers use these convenience functions; they are
supplied to make it easier for developers to write shorter and more readable
shell scripts.

Before a shell script can access these functions, it must first include the file
containing the convenience functions. The convenience functions are located
in the file /usr/dt/scripts/DtFuncs.sh. Use the following notation to
include them in a shell script:

. /usr/dt/lib/dtksh/DtFuncs.dtsh

88 Desktop KornShell User’s Guide

B

DtkshAddButtons

DtkshAddButtons adds one or more buttons of the same kind into a
composite widget. It is most often used to add a collection of buttons into a
menupane or menubar.

Usage:

DtkshAddButtons parent widgetClass label1 callback1
 [label2 callback2 ...]
DtkshAddButtons [-w] parent widgetClass variable1 label1 callback1 \

 [variable2 label2 callback2 ...]

The -w option indicates that the convenience function should return the widget
handle for each of the buttons it creates. The widget handle is returned in the
specified environment variable. The widgetClass parameter can be set to
any of the following, but it defaults to XmPushButtonGadget if nothing is
specified.

• XmPushButton
• XmPushButtonGadget
• XmToggleButton
• XmToggleButtonGadget
• XmCascadeButton
• XmCascadeButtonGadget

Examples:

DtkshAddButtons $MENU XmPushButtonGadget Open do_Open Save do_Save
 Quit exit
DtkshAddButtons -w $MENU XmPushButtonGadget B1 Open do_Open B2 Save
 do_Save

dtksh Convenience Functions 89

B

DtkshSetReturnKeyControls

DtkshSetReturnKeyControls configures a text widget within a form
widget so that the Return key does not activate the default button within the
form, but instead moves the focus to the next text widget within the form. This
is useful if you have a window that contains a series of text widgets, and the
default button should not be activated until the user presses the Return key
while the focus is in the last text widget.

Usage:

DtkshSetReturnKeyControls textWidget nextTextWidget formWidget
 defaultButton

The textWidget parameter specifies the widget to be configured to catch the
Return key and force the focus to move to the next text widget (as indicated by
the nextTextWidget parameter). The formWidget parameter specifies the form
containing the default button and should be the parent of the two text widgets.
The defaultButton parameter indicates which component is to be treated as the
default button within the form widget.

Examples:

DtkshSetReturnKeyControls $TEXT1 $TEXT2 $FORM $OK
DtkshSetReturnKeyControls $TEXT2 $TEXT3 $FORM $OK

90 Desktop KornShell User’s Guide

B

DtkshUnder, DtkshOver, DtkshRightOf, and DtkshLeftOf

These convenience functions simplify the specification of certain classes of
form constraints. They provide a way of attaching a component to one edge of
another component. They are used when constructing the resource list for a
widget. This behavior is accomplished using the ATTACH_WIDGET constraint.

Usage:

DtkshUnder widgetId [offset]

DtkshOver widgetId [offset]

DtkshRightOf widgetId [offset]

DtkshLeftOf widgetId [offset]

The widgetId parameter specifies the widget to which the current component is
to be attached. The offset value is optional and defaults to 0 if not specified.

Example:

XtCreateManagedWidget BUTTON4 button4 XmPushButton $FORM \
 labelString:"Exit" \
 $(DtkshUnder $BUTTON2) \
 $(DtkshRightOf $BUTTON3)

dtksh Convenience Functions 91

B

DtkshFloatRight, DtkshFloatLeft, DtkshFloatTop, and DtkshFloatBottom

These convenience functions simplify the specification of certain classes of
form constraints. They provide a way of positioning a component,
independent of the other components within the form. As the form grows or
shrinks, the component maintains its relative position within the form. The
component may still grow or shrink, depending upon the other form
constraints specified for the component. This behavior is accomplished using
the ATTACH_POSITION constraint.

Usage:

DtkshFloatRight [position]

DtkshFloatLeft [position]

DtkshFloatTop [position]

DtkshFloatBottom [position]

The optional position parameter specifies the relative position to which the
indicated edge of the component is positioned. The position value is optional
and defaults to 0 if one is not specified.

Example:

XtCreateManagedWidget BUTTON1 button1 XmPushButton $FORM \
 labelString:"Ok" \
 $(DtkshUnder $SEPARATOR) \
 $(DtkshFloatLeft 10) \
 $(DtkshFloatRight 40)

92 Desktop KornShell User’s Guide

B

DtkshAnchorRight, DtkshAnchorLeft, DtkshAnchorTop, and DtkshAnchorBottom

These convenience functions simplify the specification of certain classes of
form constraints. They provide a way of attaching a component to one of the
edges of a form widget in such a way that, as the form grows or shrinks, the
component's position does not change. However, depending upon the other
form constraints set on this component, it may still grow or shrink in size. This
behavior is accomplished using the ATTACH_FORM constraint.

Usage:

DtkshAnchorRight [offset]

DtkshAnchorLeft [offset]

DtkshAnchorTop [offset]

DtkshAnchorBottom [offset]

The optional offset parameter specifies how far from the edge of the form
widget the component should be positioned. If an offset is not specified, then
0 is used.

Example:

XtCreateManagedWidget BUTTON1 button1 XmPushButton $FORM \
 labelString:"Ok" \
 $(DtkshUnder $SEPARATOR) \
 $(DtkshAnchorLeft 10) \
 $(DtkshAnchorBottom 10)

dtksh Convenience Functions 93

B

DtkshSpanWidth and DtkshSpanHeight

These convenience functions simplify the specification of certain classes of
form constraints. They provide a way of configuring a component so that it
spans either the full height or width of the form widget. This behavior is
accomplished by attaching two edges of the component (top and bottom for
DtSpanHeight , and left and right for DtSpanWidth) to the form widget. The
component typically resizes whenever the form widget is resized. The
ATTACH_FORM constraint is used for all attachments.

Usage:

DtkshSpanWidth [leftOffset rightOffset]

DtkshSpanHeight [topOffset bottomOffset]

The optional offset parameters specify how far from the edges of the form
widget the component should be positioned. If an offset is not specified, then
0 is used.

Example:

XtCreateManagedWidget SEP sep XmSeparator $FORM \
 $(DtkshSpanWidth 1 1)

94 Desktop KornShell User’s Guide

B

DtkshDisplayInformationDialog, DtkshDisplayQuestionDialog,
DtDisplayWarningDialog, DtkshDisplayWorkingDialog, and
DtkshDisplayErrorDialog

These convenience functions create a single instance of each of the Motif
feedback dialogs. If an instance of the requested type of dialog already exists,
then it is reused. The parent of the dialog is obtained from the environment
variable $TOPLEVEL, which should be set by the calling shell script, and then
should not be changed. The handle for the requested dialog is returned in one
of the following environment variables:

• _DTKSH_ERROR_DIALOG_HANDLE
• _DTKSH_QUESTION_DIALOG_HANDLE
• _DTKSH_WORKING_DIALOG_HANDLE
• _DTKSH_WARNING_DIALOG_HANDLE
• _DTKSH_INFORMATION_DIALOG_HANDLE

Note – If you are attaching your own callbacks to the dialog buttons, do not
destroy the dialog when you are done with it. Unmanage the dialog, so that it
can be used again at a later time. If it is necessary to destroy the dialog, then
be sure to clear the associated environment variable so the convenience
function does not attempt to reuse the dialog.

Usage:

DtkshDisplay< name>Dialog title message [okCallback closeCallback
 helpCallback dialogStyle]

The Ok button is always managed, and by default unmanages the dialog. The
Cancel and Help buttons are only managed when a callback is supplied for
them. The dialogStyle parameter accepts any of the standard resource settings
supported by the associated bulletin board resource.

Example:
DtkshDisplayErrorDialog "Read Error" "Unable to read the file"
 "OkCallback" \
 "CancelCallback" "" DIALOG_PRIMARY_APPLICATION_MODAL

dtksh Convenience Functions 95

B

DtkshDisplayQuickHelpDialog and DtkshDisplayHelpDialog

These convenience functions create a single instance of each of the help
dialogs. If an instance of the requested type of help dialog already exists, then
it is reused. The parent of the dialog is obtained from the environment
variable $TOPLEVEL, which should be set by the calling shell script, and then
should not be changed. The handle for the requested dialog is returned in one
of the following environment variables:

• _DTKSH_HELP_DIALOG_HANDLE
• _DTKSH_QUICK_HELP_DIALOG_HANDLE

Note – If it is necessary to destroy a help dialog, then be sure to clear the
associated environment variable so that the convenience function does not
attempt to reuse the dialog.

Usage:

DtkshDisplay*HelpDialog title helpType helpInformation [locationId]

The meaning of the parameters is dependent upon the value specified for the
helpType parameter. Their meanings are:

• helpType = HELP_TYPE_TOPIC

• helpInformation = help volume name

• locationId = help topic location ID

• helpType = HELP_TYPE_STRING

• helpInformation = help string

• locationId = <not used>

• helpType = HELP_TYPE_DYNAMIC_STRING

• helpInformation = help string

• locationId = <not used>

• helpType = HELP_TYPE_MAN_PAGE

• helpInformation = manual page name

• locationId = <not used>

• helpType = HELP_TYPE_FILE

• helpInformation = help file name

• locationId = <not used>

96 Desktop KornShell User’s Guide

B

Example:

DtkshDisplayHelpDialog "Help On Dtksh" HELP_TYPE_FILE
 "helpFileName"

97

The script_find Script C

This appendix contains the complete listing of script_find described in
Chapter 4, “A Complex Script.” The script executes a second script called
Find.sticky , which is listed after script_find . There is also a file called
Find.help , which is a text file accessed when the user clicks the Help button
on the main script window. See Chapter 4 for more information on this script.

Listing for script_find

#! /usr/dt/bin/dtksh
set -u

. /usr/dt/lib/dtksh/DtFuncs.dtsh

#
This sample shell script provides a graphical interface to the
‘find’ command. Each time it is executed, it will attempt to
restore the dialog to the last set of values entered by the user.
When the ‘find’ command is initiated, the output will be displayed
in a dtterm window.
#

#
Post an# error dialog. The main application window is disabled
until the error dialog is unposted. The message to be displayed
in the # error dialog is passed in as $1
#
PostErrorDialog()
{

98 Desktop KornShell User’s Guide

C

 DtDisplayErrorDialog “Find Error” “$1” \
 DIALOG_PRIMARY_APPLICATION_MODAL
}

#
This is both the ‘Ok’ and the ‘Apply’ callback; in the case of the
‘Ok’ callback, it unposts the main application window, and then
exits, if the dialog contains valid information. For both ‘Ok’ and
‘Apply’, the set of search directories is first validated; if any
of the paths are not valid, then an error dialog is posted.
Otherwise, the ‘find’ process is started in a terminal window.
#
OkCallback()
{
 RetrieveAndSaveCurrentValues
 if [“$SD_VAL” = ““] ; then
 PostErrorDialog “You must specify a directory to search”
 else
 for i in $SD_VAL ; do
 if [! -d $i] ; then
 MSG=”The following search directory does not exist:

 $i”
 PostErrorDialog “$MSG”
 return 1
 fi
 done

 if [$CB_WIDGET = $OK] ; then
 XtPopdown $TOPLEVEL
 fi

 CMD=”/bin/find $SD_VAL”
 if [! “$FNP_VAL” = ““] ; then
 CMD=$CMD” -name $FNP_VAL”
 fi

 if ! $(XmToggleButtonGetState $T1); then
 CMD=$CMD” -xdev”
 fi

 if $(XmToggleButtonGetState $T3); then
 CMD=$CMD” -hidden”
 fi

 if $(XmToggleButtonGetState $T4); then

The script_find Script 99

C

 CMD=$CMD” -follow”
 fi

 if $(XmToggleButtonGetState $T5); then
 CMD=$CMD” -depth”
 fi

 case $FSTYPE_VAL in
 $NFS) CMD=$CMD” -fsonly nfs” ;;
 $CDFS) CMD=$CMD” -fsonly cdfs” ;;
 $HFS) CMD=$CMD” -fsonly hfs” ;;
 *) ;;
 esac

 case $FILETYPE_VAL in
 $REGULAR) CMD=$CMD” -type f” ;;
 $DIRECTORY) CMD=$CMD” -type d” ;;
 $BLOCK) CMD=$CMD” -type b” ;;
 $CHAR) CMD=$CMD” -type c” ;;
 $FIFO) CMD=$CMD” -type p” ;;
 $SYMLINK) CMD=$CMD” -type l” ;;
 $SOCKET) CMD=$CMD” -type s” ;;
 $NET) CMD=$CMD” -type n” ;;
 $MOUNT) CMD=$CMD” -type M” ;;
 $HIDDEN) CMD=$CMD” -type H” ;;
 *) ;;
 esac

 if $(XmToggleButtonGetState $T2); then
 CMD=$CMD” -print”
 fi

 /usr/dt/bin/dtterm -title “Find A File” -e /usr/dt/bin/dtexec
 -open -1 $CMD &

 if [$CB_WIDGET = $OK] ; then
 exit 0
 fi
 fi
}

#
This function attempt to load in the previous dialog values.
Each line read from the file is then interpreted as a ksh command.
#

100 Desktop KornShell User’s Guide

C

LoadStickyValues()
{
 if [-r “./Find.sticky”] ; then
 exec 6< “./Find.sticky”
 XtAddInput FID 6 “EvalCmd”
 fi
}

#
This function is invoked for each line in the ‘sticky’ values file.
It will evalutate each line as a dtksh command.
#
EvalCmd()
{
 if [${#INPUT_LINE} -gt 0]; then
 eval “$INPUT_LINE”
 fi

 if [“$INPUT_EOF” = ‘true’]; then
 XtRemoveInput $INPUT_ID
 eval exec $INPUT_SOURCE’<&-’
 fi
}

#
This function retrieves the current values, and then saves them
off into a file, so that they can be restored the next time the
dialog is displayed. It is called anytime the user selects either
the “Ok” or “Apply” buttons.
#
RetrieveAndSaveCurrentValues()
{
 XmTextGetString SD_VAL $SD
 XmTextGetString FNP_VAL $FNP
 XtGetValues $FSTYPE menuHistory:FSTYPE_VAL
 XtGetValues $FILETYPE menuHistory:FILETYPE_VAL

 exec 3> “./Find.sticky”
 if [! “$SD_VAL” = ““] ; then
 print -u 3 “XmTextSetString \$SD \”$SD_VAL\””
 print -u 3 “XmTextFieldSetInsertionPosition \$SD ${#SD_VAL}”
 fi
 if [! “$FNP_VAL” = ““] ; then
 print -u 3 “XmTextSetString \$FNP \”$FNP_VAL\””

The script_find Script 101

C

 print -u 3 “XmTextFieldSetInsertionPosition \$FNP ${#FNP_VAL}”
 fi

 case $FSTYPE_VAL in
 $NFS) FST=”\$NFS” ;;
 $CDFS) FST=”\$CDFS” ;;
 $HFS) FST=”\$HFS” ;;
 *) FST=”\$NODIR” ;;
 esac
 print -u 3 “XtSetValues \$FSTYPE menuHistory:$FST”

 case $FILETYPE_VAL in
 $REGULAR) FT=”\$REGULAR” ;;
 $DIRECTORY) FT=”\$DIRECTORY” ;;
 $BLOCK) FT=”\$BLOCK” ;;
 $CHAR) FT=”\$CHAR” ;;
 $FIFO) FT=”\$FIFO” ;;
 $SYMLINK) FT=”\$SYMLINK” ;;
 $SOCKET) FT=”\$SOCKET” ;;
 $NET) FT=”\$NET” ;;
 $MOUNT) FT=”\$MOUNT” ;;
 $HIDDEN) FT=”\$HIDDEN” ;;
 *) FT=”\$NOTYPE” ;;
 esac
 print -u 3 “XtSetValues \$FILETYPE menuHistory:$FT”

 if $(XmToggleButtonGetState $T1); then
 print -u 3 “XmToggleButtonSetState \$T1 true false”
 fi

 if $(XmToggleButtonGetState $T2); then
 print -u 3 “XmToggleButtonSetState \$T2 true false”
 fi

 if $(XmToggleButtonGetState $T3); then
 print -u 3 “XmToggleButtonSetState \$T3 true false”
 fi

 if $(XmToggleButtonGetState $T4); then
 print -u 3 “XmToggleButtonSetState \$T4 true false”
 fi

 if $(XmToggleButtonGetState $T5); then
 print -u 3 “XmToggleButtonSetState \$T5 true false”
 fi

102 Desktop KornShell User’s Guide

C

 exec 3<&-
}

################ Create the Main UI ####################

set -f
XtInitialize TOPLEVEL find Dtksh $0 “${@:-}”
XtSetValues $TOPLEVEL title:”Find Files”

XtCreateManagedWidget FORM form XmForm $TOPLEVEL

XtCreateManagedWidget SDLABEL sdlabel XmLabel $FORM \
 labelString:”Search Directory:” \
 $(DtkshAnchorTop 12) \
 $(DtkshAnchorLeft 10)

XtCreateManagedWidget SD sd XmText $FORM \
 columns:30 \
 value:”.” \
 $(DtkshAnchorTop 6) \
 $(DtkshRightOf $SDLABEL 10) \
 $(DtkshAnchorRight 10) \
 navigationType:EXCLUSIVE_TAB_GROUP
XmTextFieldSetInsertionPosition $SD 1

XtCreateManagedWidget FNPLABEL fnpabel XmLabel $FORM \
 labelString:”Filename Pattern:” \
 $(DtkshUnder $SDLABEL 24) \
 $(DtkshAnchorLeft 10)

XtCreateManagedWidget FNP fnp XmText $FORM \
 columns:30 \
 $(DtkshUnder $SD 8) \
 $(DtkshRightOf $FNPLABEL 10) \
 $(DtkshAnchorRight 10) \
 navigationType:EXCLUSIVE_TAB_GROUP

XtCreateManagedWidget SEP sep XmSeparator $FORM \
 separatorType:SINGLE_DASHED_LINE \
 $(DtkshUnder $FNP 10) \
 $(DtkshSpanWidth)

XtCreateManagedWidget RC rc XmRowColumn $FORM \
 orientation:HORIZONTAL \

The script_find Script 103

C

 numColumns:3 \
 packing:PACK_COLUMN \
 $(DtkshUnder $SEP 10) \
 $(DtkshSpanWidth 10 10) \
 navigationType:EXCLUSIVE_TAB_GROUP

DtkshAddButtons -w $RC XmToggleButtonGadget \
 T1 “Cross Mount Points” ““\
 T2 “Print Matching Filenames” ““\
 T3 “Search Hidden Subdirectories” ““\
 T4 “Follow Symbolic Links” ““\
 T5 “Descend Subdirectories First” ““

XtCreateManagedWidget SEP2 sep XmSeparator $FORM \
 separatorType:SINGLE_DASHED_LINE \
 $(DtkshUnder $RC 10) \
 $(DtkshSpanWidth)

XmCreatePulldownMenu PANE $FORM pane
DtkshAddButtons -w $PANE XmPushButtonGadget \
 NODIR “no restrictions” ““\
 NFS “nfs” ““\
 CDFS “cdfs” ““\
 HFS “hfs” ““

XmCreateOptionMenu FSTYPE $FORM fstype \
 labelString:”Restrict Search To File System Type:” \
 menuHistory:$NODIR \
 subMenuId:$PANE \
 $(DtkshUnder $SEP2 20) \
 $(DtkshSpanWidth 10 10) \
 navigationType:EXCLUSIVE_TAB_GROUP
XtManageChild $FSTYPE

XmCreatePulldownMenu PANE2 $FORM pane2
DtkshAddButtons -w $PANE2 XmPushButtonGadget \
 NOTYPE “no restrictions” ““\
 REGULAR “regular” ““\
 DIRECTORY “directory” ““\
 BLOCK “block special” ““\
 CHAR “character special” ““\
 FIFO “fifo” ““\
 SYMLINK “symbolic link” ““\
 SOCKET “socket” ““\
 NET “network special” ““\
 MOUNT “mount point” ““\

104 Desktop KornShell User’s Guide

C

 HIDDEN “hidden directory” ““

XmCreateOptionMenu FILETYPE $FORM filetype \
 labelString:”Match Only Files Of Type:” \
 menuHistory:$NOTYPE \
 subMenuId:$PANE2 \
 $(DtkshUnder $FSTYPE 10) \
 $(DtkshSpanWidth 10 10) \
 navigationType:EXCLUSIVE_TAB_GROUP
XtManageChild $FILETYPE
XtSetValues $FILETYPE spacing:90

XtCreateManagedWidget SEP3 sep3 XmSeparator $FORM \
 $(DtkshUnder $FILETYPE 10) \
 $(DtkshSpanWidth)

XtCreateManagedWidget OK ok XmPushButton $FORM \
 labelString:”Ok” \
 $(DtkshUnder $SEP3 10) \
 $(DtkshFloatLeft 4) \
 $(DtkshFloatRight 24) \
 $(DtkshAnchorBottom 10)
XtAddCallback $OK activateCallback “OkCallback”

XtCreateManagedWidget APPLY apply XmPushButton $FORM \
 labelString:”Apply” \
 $(DtkshUnder $SEP3 10) \
 $(DtkshFloatLeft 28) \
 $(DtkshFloatRight 48) \
 $(DtkshAnchorBottom 10)
XtAddCallback $APPLY activateCallback “OkCallback”

XtCreateManagedWidget CLOSE close XmPushButton $FORM \
 labelString:”Close” \
 $(DtkshUnder $SEP3 10) \
 $(DtkshFloatLeft 52) \
 $(DtkshFloatRight 72) \
 $(DtkshAnchorBottom 10)
XtAddCallback $CLOSE activateCallback “exit 1”

XtCreateManagedWidget HELP help XmPushButton $FORM \
 labelString:”Help” \
 $(DtkshUnder $SEP3 10) \
 $(DtFloatLeft 76) \
 $(DtkshFloatRight 96) \
 $(DtkshAnchorBottom 10)

The script_find Script 105

C

XtAddCallback $HELP activateCallback \
 “DtkshDisplayQuickHelpDialog ‘Using The Find Command’
HELP_TYPE_FILE \
 ‘./Find.help’ “

XtSetValues $FORM \
 initialFocus:$SD \
 defaultButton:$OK \
 cancelButton:$CLOSE \
 navigationType:EXCLUSIVE_TAB_GROUP

DtkshSetReturnKeyControls $SD $FNP $FORM $OK
LoadStickyValues

XtRealizeWidget $TOPLEVEL
XtMainLoop

Find.sticky

The following script, Find.sticky is executed by script_find .
Find.sticky remembers the file and directory names used in the most recent
execution of script_find .

XmTextSetString $SD “/users/dlm”
XmTextFieldSetInsertionPosition $SD 10
XmTextSetString $FNP “elmbug”
XmTextFieldSetInsertionPosition $FNP 6
XtSetValues $FSTYPE menuHistory:$NODIR
XtSetValues $FILETYPE menuHistory:$DIRECTORY
XmToggleButtonSetState $T1 true false
XmToggleButtonSetState $T2 true false

Find.help

Find.help is a text file that is displayed on screen when the user clicks the
Help button in the main script_find window.

This dialog presents a graphical interface to the
UNIX ‘find’ command. The only required field is
the name of the directory to be searched;
all other fields are optional. Once the fields have
been set to the desired values, you can use the
‘Ok’ or ‘Apply’ button to initiate the find operation.
The results of the find operation are displayed
in a dtterm terminal window.

106 Desktop KornShell User’s Guide

C

107

Index

A
action commands, 74

app-defaults file, 14

application help commands, 70

applications, Motif, 11

B
Boolean Values, 16

bulletin board, 24

C
callback, 20, 25

pass data to, 20
register, 20
script_find, 42
workspace, 28

category 1, 16

category 2, 16

category 3, 17

category 4, 17

CB_CALL_DATA, 21

command
CDE application help, 70

commands, 51
action, 74

data-typing, 75
libDt, 77
libdt, 75
libDt session management, 72
localization, 71
message set, 77
Motif, 58
workspace management, 73
Xt Intrinsics, 54

context variable
event handler, 27
input, 28
translation, 28
workspace callback, 28

convenience functions, 87

create form widget, 45

create menu, 47

create separator widget, 46

create widget, 18

D
data-typing commands, 75

Defined Values, 15

drawing functions, 36

DtDisplayWarningDialog, 94

dtksh
definition, 11

108 Title of Book

relationshipt to ksh-93, 11

Dtksh, app-defaults file, 14

DtkshAddButtons, 47, 88

DtkshAnchorBottom, 92

DtkshAnchorLeft, 92

DtkshAnchorRight, 92

DtkshAnchorTop, 92

DtkshDisplayErrorDialog, 42, 94

DtkshDisplayHelpDialog, 95

DtkshDisplayInformationDialog, 94

DtkshDisplayQuestionDialog, 94

DtkshDisplayQuickHelpDialog, 95

DtkshDisplayWorkingDialog, 94

DtkshFloatBottom, 91

DtkshFloatLeft, 91

DtkshFloatRight, 91

DtkshFloatTop, 91

DtkshLeftOf, 90

DtkshOver, 90

DtkshRightOf, 90

DtkshSetReturnKeyControls, 89

DtkshSpanHeight, 93

DtkshSpanWidth, 93

DtkshUnder, 90

E
event handler, 27

event subfield, 30

F
Find.sticky, 105

functions
supported, 11

H
handle, 19

I
immediate return value, 17

initialize, 24

initialize Xt Intrinsics, 18

input context variable, 28

input mode, 29

K
ksh-93, 11

L
libDt commands, 75, 77

libDt session management commands, 72

libraries, required, 11

localization commands, 71

localized script, 35

M
menu, create, 47

message set commands, 77

Motif applications, 11

Motif commands, 58

mwmFunctions, 13

P
parameters, variable number, 12

pushbutton, 25

R
register callback, 20

required linbraries, 11

resource
unsupported, 13

resources, 12

return value
category 1, 16
category 2, 16
category 3, 17
category 4, 17
immediate, 17

Return Values, 16

Index 109

S
sample script, 23

script
localized, 35
sample, 23
writing, 23

script, complex, 39

script_find, 39, 97

session manager save state notice, 31

supported functions, 11

T
toplevel widget, 24

topShadowColor, 12

translation, 28, 37

U
unsupported resources, 13

V
variable values, 15

VendorShell, 13

W
widget

bulletin board, 24
create, 18
form, 45
handle, 19
pushbutton, 25
separator, 46
toplevel, 24
translations, 37

window manager close notice, 31

workspace callback, 28

workspace management, 35

workspace management commands, 73

X
XmCreateForm, 19

XmCreateLabel, 20

XmCreateOptionMenu, 48

XmCreatePulldownMenu, 47

XmCreatePushButton, 19

XmNtopShadowColor, 12

XmTextFieldSetInsertionPosition, 43, 46

XmTextSetString, 43

XmToggleButtonSetState, 43

Xt Intrinsics
initialize, 18

Xt Intrinsics commands, 54

XtAddCallback, 20, 49, 54

XtAddEventHandler, 54

XtAddInput, 28, 29, 54

XtCreateApplicationShell, 19

XtCreateManagedWidget, 19, 23, 45, 46,
47, 48, 55

XtCreatePopupShell, 19

XtCreateWidget, 19

XtDisplay, 55

XtGetValues, 12, 13

XtInitialize, 18, 23, 44

XtMainLoop, 23, 25, 49

XtManageChild, 48

XtRealizeWidget, 23, 49

XtrealizeWidget, 25

XtRemoveInput, 29

XtSetValues, 13, 23, 43, 49

110 Title of Book

