Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / arch / x86 / platform / efi / efi_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *      Fenghua Yu <fenghua.yu@intel.com>
8  *      Bibo Mao <bibo.mao@intel.com>
9  *      Chandramouli Narayanan <mouli@linux.intel.com>
10  *      Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18
19 #define pr_fmt(fmt) "efi: " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/sched/task.h>
38
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <asm/proto.h>
45 #include <asm/efi.h>
46 #include <asm/cacheflush.h>
47 #include <asm/fixmap.h>
48 #include <asm/realmode.h>
49 #include <asm/time.h>
50 #include <asm/pgalloc.h>
51
52 /*
53  * We allocate runtime services regions top-down, starting from -4G, i.e.
54  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
55  */
56 static u64 efi_va = EFI_VA_START;
57
58 struct efi_scratch efi_scratch;
59
60 static void __init early_code_mapping_set_exec(int executable)
61 {
62         efi_memory_desc_t *md;
63
64         if (!(__supported_pte_mask & _PAGE_NX))
65                 return;
66
67         /* Make EFI service code area executable */
68         for_each_efi_memory_desc(md) {
69                 if (md->type == EFI_RUNTIME_SERVICES_CODE ||
70                     md->type == EFI_BOOT_SERVICES_CODE)
71                         efi_set_executable(md, executable);
72         }
73 }
74
75 pgd_t * __init efi_call_phys_prolog(void)
76 {
77         unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
78         pgd_t *save_pgd, *pgd_k, *pgd_efi;
79         p4d_t *p4d, *p4d_k, *p4d_efi;
80         pud_t *pud;
81
82         int pgd;
83         int n_pgds, i, j;
84
85         if (!efi_enabled(EFI_OLD_MEMMAP)) {
86                 efi_switch_mm(&efi_mm);
87                 return efi_mm.pgd;
88         }
89
90         early_code_mapping_set_exec(1);
91
92         n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
93         save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
94         if (!save_pgd)
95                 return NULL;
96
97         /*
98          * Build 1:1 identity mapping for efi=old_map usage. Note that
99          * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
100          * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
101          * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
102          * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
103          * This means here we can only reuse the PMD tables of the direct mapping.
104          */
105         for (pgd = 0; pgd < n_pgds; pgd++) {
106                 addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
107                 vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
108                 pgd_efi = pgd_offset_k(addr_pgd);
109                 save_pgd[pgd] = *pgd_efi;
110
111                 p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
112                 if (!p4d) {
113                         pr_err("Failed to allocate p4d table!\n");
114                         goto out;
115                 }
116
117                 for (i = 0; i < PTRS_PER_P4D; i++) {
118                         addr_p4d = addr_pgd + i * P4D_SIZE;
119                         p4d_efi = p4d + p4d_index(addr_p4d);
120
121                         pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
122                         if (!pud) {
123                                 pr_err("Failed to allocate pud table!\n");
124                                 goto out;
125                         }
126
127                         for (j = 0; j < PTRS_PER_PUD; j++) {
128                                 addr_pud = addr_p4d + j * PUD_SIZE;
129
130                                 if (addr_pud > (max_pfn << PAGE_SHIFT))
131                                         break;
132
133                                 vaddr = (unsigned long)__va(addr_pud);
134
135                                 pgd_k = pgd_offset_k(vaddr);
136                                 p4d_k = p4d_offset(pgd_k, vaddr);
137                                 pud[j] = *pud_offset(p4d_k, vaddr);
138                         }
139                 }
140                 pgd_offset_k(pgd * PGDIR_SIZE)->pgd &= ~_PAGE_NX;
141         }
142
143         __flush_tlb_all();
144         return save_pgd;
145 out:
146         efi_call_phys_epilog(save_pgd);
147         return NULL;
148 }
149
150 void __init efi_call_phys_epilog(pgd_t *save_pgd)
151 {
152         /*
153          * After the lock is released, the original page table is restored.
154          */
155         int pgd_idx, i;
156         int nr_pgds;
157         pgd_t *pgd;
158         p4d_t *p4d;
159         pud_t *pud;
160
161         if (!efi_enabled(EFI_OLD_MEMMAP)) {
162                 efi_switch_mm(efi_scratch.prev_mm);
163                 return;
164         }
165
166         nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
167
168         for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
169                 pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
170                 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
171
172                 if (!pgd_present(*pgd))
173                         continue;
174
175                 for (i = 0; i < PTRS_PER_P4D; i++) {
176                         p4d = p4d_offset(pgd,
177                                          pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
178
179                         if (!p4d_present(*p4d))
180                                 continue;
181
182                         pud = (pud_t *)p4d_page_vaddr(*p4d);
183                         pud_free(&init_mm, pud);
184                 }
185
186                 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
187                 p4d_free(&init_mm, p4d);
188         }
189
190         kfree(save_pgd);
191
192         __flush_tlb_all();
193         early_code_mapping_set_exec(0);
194 }
195
196 EXPORT_SYMBOL_GPL(efi_mm);
197
198 /*
199  * We need our own copy of the higher levels of the page tables
200  * because we want to avoid inserting EFI region mappings (EFI_VA_END
201  * to EFI_VA_START) into the standard kernel page tables. Everything
202  * else can be shared, see efi_sync_low_kernel_mappings().
203  *
204  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
205  * allocation.
206  */
207 int __init efi_alloc_page_tables(void)
208 {
209         pgd_t *pgd, *efi_pgd;
210         p4d_t *p4d;
211         pud_t *pud;
212         gfp_t gfp_mask;
213
214         if (efi_enabled(EFI_OLD_MEMMAP))
215                 return 0;
216
217         gfp_mask = GFP_KERNEL | __GFP_ZERO;
218         efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
219         if (!efi_pgd)
220                 return -ENOMEM;
221
222         pgd = efi_pgd + pgd_index(EFI_VA_END);
223         p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
224         if (!p4d) {
225                 free_page((unsigned long)efi_pgd);
226                 return -ENOMEM;
227         }
228
229         pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
230         if (!pud) {
231                 if (pgtable_l5_enabled())
232                         free_page((unsigned long) pgd_page_vaddr(*pgd));
233                 free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
234                 return -ENOMEM;
235         }
236
237         efi_mm.pgd = efi_pgd;
238         mm_init_cpumask(&efi_mm);
239         init_new_context(NULL, &efi_mm);
240
241         return 0;
242 }
243
244 /*
245  * Add low kernel mappings for passing arguments to EFI functions.
246  */
247 void efi_sync_low_kernel_mappings(void)
248 {
249         unsigned num_entries;
250         pgd_t *pgd_k, *pgd_efi;
251         p4d_t *p4d_k, *p4d_efi;
252         pud_t *pud_k, *pud_efi;
253         pgd_t *efi_pgd = efi_mm.pgd;
254
255         if (efi_enabled(EFI_OLD_MEMMAP))
256                 return;
257
258         /*
259          * We can share all PGD entries apart from the one entry that
260          * covers the EFI runtime mapping space.
261          *
262          * Make sure the EFI runtime region mappings are guaranteed to
263          * only span a single PGD entry and that the entry also maps
264          * other important kernel regions.
265          */
266         MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
267         MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
268                         (EFI_VA_END & PGDIR_MASK));
269
270         pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
271         pgd_k = pgd_offset_k(PAGE_OFFSET);
272
273         num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
274         memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
275
276         /*
277          * As with PGDs, we share all P4D entries apart from the one entry
278          * that covers the EFI runtime mapping space.
279          */
280         BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
281         BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
282
283         pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
284         pgd_k = pgd_offset_k(EFI_VA_END);
285         p4d_efi = p4d_offset(pgd_efi, 0);
286         p4d_k = p4d_offset(pgd_k, 0);
287
288         num_entries = p4d_index(EFI_VA_END);
289         memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
290
291         /*
292          * We share all the PUD entries apart from those that map the
293          * EFI regions. Copy around them.
294          */
295         BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
296         BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
297
298         p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
299         p4d_k = p4d_offset(pgd_k, EFI_VA_END);
300         pud_efi = pud_offset(p4d_efi, 0);
301         pud_k = pud_offset(p4d_k, 0);
302
303         num_entries = pud_index(EFI_VA_END);
304         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
305
306         pud_efi = pud_offset(p4d_efi, EFI_VA_START);
307         pud_k = pud_offset(p4d_k, EFI_VA_START);
308
309         num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
310         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
311 }
312
313 /*
314  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
315  */
316 static inline phys_addr_t
317 virt_to_phys_or_null_size(void *va, unsigned long size)
318 {
319         bool bad_size;
320
321         if (!va)
322                 return 0;
323
324         if (virt_addr_valid(va))
325                 return virt_to_phys(va);
326
327         /*
328          * A fully aligned variable on the stack is guaranteed not to
329          * cross a page bounary. Try to catch strings on the stack by
330          * checking that 'size' is a power of two.
331          */
332         bad_size = size > PAGE_SIZE || !is_power_of_2(size);
333
334         WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
335
336         return slow_virt_to_phys(va);
337 }
338
339 #define virt_to_phys_or_null(addr)                              \
340         virt_to_phys_or_null_size((addr), sizeof(*(addr)))
341
342 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
343 {
344         unsigned long pfn, text, pf;
345         struct page *page;
346         unsigned npages;
347         pgd_t *pgd = efi_mm.pgd;
348
349         if (efi_enabled(EFI_OLD_MEMMAP))
350                 return 0;
351
352         /*
353          * It can happen that the physical address of new_memmap lands in memory
354          * which is not mapped in the EFI page table. Therefore we need to go
355          * and ident-map those pages containing the map before calling
356          * phys_efi_set_virtual_address_map().
357          */
358         pfn = pa_memmap >> PAGE_SHIFT;
359         pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
360         if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
361                 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
362                 return 1;
363         }
364
365         /*
366          * Certain firmware versions are way too sentimential and still believe
367          * they are exclusive and unquestionable owners of the first physical page,
368          * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
369          * (but then write-access it later during SetVirtualAddressMap()).
370          *
371          * Create a 1:1 mapping for this page, to avoid triple faults during early
372          * boot with such firmware. We are free to hand this page to the BIOS,
373          * as trim_bios_range() will reserve the first page and isolate it away
374          * from memory allocators anyway.
375          */
376         pf = _PAGE_RW;
377         if (sev_active())
378                 pf |= _PAGE_ENC;
379
380         if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
381                 pr_err("Failed to create 1:1 mapping for the first page!\n");
382                 return 1;
383         }
384
385         /*
386          * When making calls to the firmware everything needs to be 1:1
387          * mapped and addressable with 32-bit pointers. Map the kernel
388          * text and allocate a new stack because we can't rely on the
389          * stack pointer being < 4GB.
390          */
391         if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
392                 return 0;
393
394         page = alloc_page(GFP_KERNEL|__GFP_DMA32);
395         if (!page)
396                 panic("Unable to allocate EFI runtime stack < 4GB\n");
397
398         efi_scratch.phys_stack = virt_to_phys(page_address(page));
399         efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
400
401         npages = (_etext - _text) >> PAGE_SHIFT;
402         text = __pa(_text);
403         pfn = text >> PAGE_SHIFT;
404
405         pf = _PAGE_RW | _PAGE_ENC;
406         if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
407                 pr_err("Failed to map kernel text 1:1\n");
408                 return 1;
409         }
410
411         return 0;
412 }
413
414 static void __init __map_region(efi_memory_desc_t *md, u64 va)
415 {
416         unsigned long flags = _PAGE_RW;
417         unsigned long pfn;
418         pgd_t *pgd = efi_mm.pgd;
419
420         if (!(md->attribute & EFI_MEMORY_WB))
421                 flags |= _PAGE_PCD;
422
423         if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
424                 flags |= _PAGE_ENC;
425
426         pfn = md->phys_addr >> PAGE_SHIFT;
427         if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
428                 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
429                            md->phys_addr, va);
430 }
431
432 void __init efi_map_region(efi_memory_desc_t *md)
433 {
434         unsigned long size = md->num_pages << PAGE_SHIFT;
435         u64 pa = md->phys_addr;
436
437         if (efi_enabled(EFI_OLD_MEMMAP))
438                 return old_map_region(md);
439
440         /*
441          * Make sure the 1:1 mappings are present as a catch-all for b0rked
442          * firmware which doesn't update all internal pointers after switching
443          * to virtual mode and would otherwise crap on us.
444          */
445         __map_region(md, md->phys_addr);
446
447         /*
448          * Enforce the 1:1 mapping as the default virtual address when
449          * booting in EFI mixed mode, because even though we may be
450          * running a 64-bit kernel, the firmware may only be 32-bit.
451          */
452         if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
453                 md->virt_addr = md->phys_addr;
454                 return;
455         }
456
457         efi_va -= size;
458
459         /* Is PA 2M-aligned? */
460         if (!(pa & (PMD_SIZE - 1))) {
461                 efi_va &= PMD_MASK;
462         } else {
463                 u64 pa_offset = pa & (PMD_SIZE - 1);
464                 u64 prev_va = efi_va;
465
466                 /* get us the same offset within this 2M page */
467                 efi_va = (efi_va & PMD_MASK) + pa_offset;
468
469                 if (efi_va > prev_va)
470                         efi_va -= PMD_SIZE;
471         }
472
473         if (efi_va < EFI_VA_END) {
474                 pr_warn(FW_WARN "VA address range overflow!\n");
475                 return;
476         }
477
478         /* Do the VA map */
479         __map_region(md, efi_va);
480         md->virt_addr = efi_va;
481 }
482
483 /*
484  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
485  * md->virt_addr is the original virtual address which had been mapped in kexec
486  * 1st kernel.
487  */
488 void __init efi_map_region_fixed(efi_memory_desc_t *md)
489 {
490         __map_region(md, md->phys_addr);
491         __map_region(md, md->virt_addr);
492 }
493
494 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
495                                  u32 type, u64 attribute)
496 {
497         unsigned long last_map_pfn;
498
499         if (type == EFI_MEMORY_MAPPED_IO)
500                 return ioremap(phys_addr, size);
501
502         last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
503         if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
504                 unsigned long top = last_map_pfn << PAGE_SHIFT;
505                 efi_ioremap(top, size - (top - phys_addr), type, attribute);
506         }
507
508         if (!(attribute & EFI_MEMORY_WB))
509                 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
510
511         return (void __iomem *)__va(phys_addr);
512 }
513
514 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
515 {
516         efi_setup = phys_addr + sizeof(struct setup_data);
517 }
518
519 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
520 {
521         unsigned long pfn;
522         pgd_t *pgd = efi_mm.pgd;
523         int err1, err2;
524
525         /* Update the 1:1 mapping */
526         pfn = md->phys_addr >> PAGE_SHIFT;
527         err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
528         if (err1) {
529                 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
530                            md->phys_addr, md->virt_addr);
531         }
532
533         err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
534         if (err2) {
535                 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
536                            md->phys_addr, md->virt_addr);
537         }
538
539         return err1 || err2;
540 }
541
542 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
543 {
544         unsigned long pf = 0;
545
546         if (md->attribute & EFI_MEMORY_XP)
547                 pf |= _PAGE_NX;
548
549         if (!(md->attribute & EFI_MEMORY_RO))
550                 pf |= _PAGE_RW;
551
552         if (sev_active())
553                 pf |= _PAGE_ENC;
554
555         return efi_update_mappings(md, pf);
556 }
557
558 void __init efi_runtime_update_mappings(void)
559 {
560         efi_memory_desc_t *md;
561
562         if (efi_enabled(EFI_OLD_MEMMAP)) {
563                 if (__supported_pte_mask & _PAGE_NX)
564                         runtime_code_page_mkexec();
565                 return;
566         }
567
568         /*
569          * Use the EFI Memory Attribute Table for mapping permissions if it
570          * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
571          */
572         if (efi_enabled(EFI_MEM_ATTR)) {
573                 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
574                 return;
575         }
576
577         /*
578          * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
579          * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
580          * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
581          * published by the firmware. Even if we find a buggy implementation of
582          * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
583          * EFI_PROPERTIES_TABLE, because of the same reason.
584          */
585
586         if (!efi_enabled(EFI_NX_PE_DATA))
587                 return;
588
589         for_each_efi_memory_desc(md) {
590                 unsigned long pf = 0;
591
592                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
593                         continue;
594
595                 if (!(md->attribute & EFI_MEMORY_WB))
596                         pf |= _PAGE_PCD;
597
598                 if ((md->attribute & EFI_MEMORY_XP) ||
599                         (md->type == EFI_RUNTIME_SERVICES_DATA))
600                         pf |= _PAGE_NX;
601
602                 if (!(md->attribute & EFI_MEMORY_RO) &&
603                         (md->type != EFI_RUNTIME_SERVICES_CODE))
604                         pf |= _PAGE_RW;
605
606                 if (sev_active())
607                         pf |= _PAGE_ENC;
608
609                 efi_update_mappings(md, pf);
610         }
611 }
612
613 void __init efi_dump_pagetable(void)
614 {
615 #ifdef CONFIG_EFI_PGT_DUMP
616         if (efi_enabled(EFI_OLD_MEMMAP))
617                 ptdump_walk_pgd_level(NULL, swapper_pg_dir);
618         else
619                 ptdump_walk_pgd_level(NULL, efi_mm.pgd);
620 #endif
621 }
622
623 /*
624  * Makes the calling thread switch to/from efi_mm context. Can be used
625  * in a kernel thread and user context. Preemption needs to remain disabled
626  * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
627  * can not change under us.
628  * It should be ensured that there are no concurent calls to this function.
629  */
630 void efi_switch_mm(struct mm_struct *mm)
631 {
632         efi_scratch.prev_mm = current->active_mm;
633         current->active_mm = mm;
634         switch_mm(efi_scratch.prev_mm, mm, NULL);
635 }
636
637 #ifdef CONFIG_EFI_MIXED
638 extern efi_status_t efi64_thunk(u32, ...);
639
640 static DEFINE_SPINLOCK(efi_runtime_lock);
641
642 #define runtime_service32(func)                                          \
643 ({                                                                       \
644         u32 table = (u32)(unsigned long)efi.systab;                      \
645         u32 *rt, *___f;                                                  \
646                                                                          \
647         rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));  \
648         ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
649         *___f;                                                           \
650 })
651
652 /*
653  * Switch to the EFI page tables early so that we can access the 1:1
654  * runtime services mappings which are not mapped in any other page
655  * tables. This function must be called before runtime_service32().
656  *
657  * Also, disable interrupts because the IDT points to 64-bit handlers,
658  * which aren't going to function correctly when we switch to 32-bit.
659  */
660 #define efi_thunk(f, ...)                                               \
661 ({                                                                      \
662         efi_status_t __s;                                               \
663         u32 __func;                                                     \
664                                                                         \
665         arch_efi_call_virt_setup();                                     \
666                                                                         \
667         __func = runtime_service32(f);                                  \
668         __s = efi64_thunk(__func, __VA_ARGS__);                         \
669                                                                         \
670         arch_efi_call_virt_teardown();                                  \
671                                                                         \
672         __s;                                                            \
673 })
674
675 efi_status_t efi_thunk_set_virtual_address_map(
676         void *phys_set_virtual_address_map,
677         unsigned long memory_map_size,
678         unsigned long descriptor_size,
679         u32 descriptor_version,
680         efi_memory_desc_t *virtual_map)
681 {
682         efi_status_t status;
683         unsigned long flags;
684         u32 func;
685
686         efi_sync_low_kernel_mappings();
687         local_irq_save(flags);
688
689         efi_switch_mm(&efi_mm);
690
691         func = (u32)(unsigned long)phys_set_virtual_address_map;
692         status = efi64_thunk(func, memory_map_size, descriptor_size,
693                              descriptor_version, virtual_map);
694
695         efi_switch_mm(efi_scratch.prev_mm);
696         local_irq_restore(flags);
697
698         return status;
699 }
700
701 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
702 {
703         efi_status_t status;
704         u32 phys_tm, phys_tc;
705         unsigned long flags;
706
707         spin_lock(&rtc_lock);
708         spin_lock_irqsave(&efi_runtime_lock, flags);
709
710         phys_tm = virt_to_phys_or_null(tm);
711         phys_tc = virt_to_phys_or_null(tc);
712
713         status = efi_thunk(get_time, phys_tm, phys_tc);
714
715         spin_unlock_irqrestore(&efi_runtime_lock, flags);
716         spin_unlock(&rtc_lock);
717
718         return status;
719 }
720
721 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
722 {
723         efi_status_t status;
724         u32 phys_tm;
725         unsigned long flags;
726
727         spin_lock(&rtc_lock);
728         spin_lock_irqsave(&efi_runtime_lock, flags);
729
730         phys_tm = virt_to_phys_or_null(tm);
731
732         status = efi_thunk(set_time, phys_tm);
733
734         spin_unlock_irqrestore(&efi_runtime_lock, flags);
735         spin_unlock(&rtc_lock);
736
737         return status;
738 }
739
740 static efi_status_t
741 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
742                           efi_time_t *tm)
743 {
744         efi_status_t status;
745         u32 phys_enabled, phys_pending, phys_tm;
746         unsigned long flags;
747
748         spin_lock(&rtc_lock);
749         spin_lock_irqsave(&efi_runtime_lock, flags);
750
751         phys_enabled = virt_to_phys_or_null(enabled);
752         phys_pending = virt_to_phys_or_null(pending);
753         phys_tm = virt_to_phys_or_null(tm);
754
755         status = efi_thunk(get_wakeup_time, phys_enabled,
756                              phys_pending, phys_tm);
757
758         spin_unlock_irqrestore(&efi_runtime_lock, flags);
759         spin_unlock(&rtc_lock);
760
761         return status;
762 }
763
764 static efi_status_t
765 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
766 {
767         efi_status_t status;
768         u32 phys_tm;
769         unsigned long flags;
770
771         spin_lock(&rtc_lock);
772         spin_lock_irqsave(&efi_runtime_lock, flags);
773
774         phys_tm = virt_to_phys_or_null(tm);
775
776         status = efi_thunk(set_wakeup_time, enabled, phys_tm);
777
778         spin_unlock_irqrestore(&efi_runtime_lock, flags);
779         spin_unlock(&rtc_lock);
780
781         return status;
782 }
783
784 static unsigned long efi_name_size(efi_char16_t *name)
785 {
786         return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
787 }
788
789 static efi_status_t
790 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
791                        u32 *attr, unsigned long *data_size, void *data)
792 {
793         efi_status_t status;
794         u32 phys_name, phys_vendor, phys_attr;
795         u32 phys_data_size, phys_data;
796         unsigned long flags;
797
798         spin_lock_irqsave(&efi_runtime_lock, flags);
799
800         phys_data_size = virt_to_phys_or_null(data_size);
801         phys_vendor = virt_to_phys_or_null(vendor);
802         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
803         phys_attr = virt_to_phys_or_null(attr);
804         phys_data = virt_to_phys_or_null_size(data, *data_size);
805
806         status = efi_thunk(get_variable, phys_name, phys_vendor,
807                            phys_attr, phys_data_size, phys_data);
808
809         spin_unlock_irqrestore(&efi_runtime_lock, flags);
810
811         return status;
812 }
813
814 static efi_status_t
815 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
816                        u32 attr, unsigned long data_size, void *data)
817 {
818         u32 phys_name, phys_vendor, phys_data;
819         efi_status_t status;
820         unsigned long flags;
821
822         spin_lock_irqsave(&efi_runtime_lock, flags);
823
824         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
825         phys_vendor = virt_to_phys_or_null(vendor);
826         phys_data = virt_to_phys_or_null_size(data, data_size);
827
828         /* If data_size is > sizeof(u32) we've got problems */
829         status = efi_thunk(set_variable, phys_name, phys_vendor,
830                            attr, data_size, phys_data);
831
832         spin_unlock_irqrestore(&efi_runtime_lock, flags);
833
834         return status;
835 }
836
837 static efi_status_t
838 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
839                                    u32 attr, unsigned long data_size,
840                                    void *data)
841 {
842         u32 phys_name, phys_vendor, phys_data;
843         efi_status_t status;
844         unsigned long flags;
845
846         if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
847                 return EFI_NOT_READY;
848
849         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
850         phys_vendor = virt_to_phys_or_null(vendor);
851         phys_data = virt_to_phys_or_null_size(data, data_size);
852
853         /* If data_size is > sizeof(u32) we've got problems */
854         status = efi_thunk(set_variable, phys_name, phys_vendor,
855                            attr, data_size, phys_data);
856
857         spin_unlock_irqrestore(&efi_runtime_lock, flags);
858
859         return status;
860 }
861
862 static efi_status_t
863 efi_thunk_get_next_variable(unsigned long *name_size,
864                             efi_char16_t *name,
865                             efi_guid_t *vendor)
866 {
867         efi_status_t status;
868         u32 phys_name_size, phys_name, phys_vendor;
869         unsigned long flags;
870
871         spin_lock_irqsave(&efi_runtime_lock, flags);
872
873         phys_name_size = virt_to_phys_or_null(name_size);
874         phys_vendor = virt_to_phys_or_null(vendor);
875         phys_name = virt_to_phys_or_null_size(name, *name_size);
876
877         status = efi_thunk(get_next_variable, phys_name_size,
878                            phys_name, phys_vendor);
879
880         spin_unlock_irqrestore(&efi_runtime_lock, flags);
881
882         return status;
883 }
884
885 static efi_status_t
886 efi_thunk_get_next_high_mono_count(u32 *count)
887 {
888         efi_status_t status;
889         u32 phys_count;
890         unsigned long flags;
891
892         spin_lock_irqsave(&efi_runtime_lock, flags);
893
894         phys_count = virt_to_phys_or_null(count);
895         status = efi_thunk(get_next_high_mono_count, phys_count);
896
897         spin_unlock_irqrestore(&efi_runtime_lock, flags);
898
899         return status;
900 }
901
902 static void
903 efi_thunk_reset_system(int reset_type, efi_status_t status,
904                        unsigned long data_size, efi_char16_t *data)
905 {
906         u32 phys_data;
907         unsigned long flags;
908
909         spin_lock_irqsave(&efi_runtime_lock, flags);
910
911         phys_data = virt_to_phys_or_null_size(data, data_size);
912
913         efi_thunk(reset_system, reset_type, status, data_size, phys_data);
914
915         spin_unlock_irqrestore(&efi_runtime_lock, flags);
916 }
917
918 static efi_status_t
919 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
920                          unsigned long count, unsigned long sg_list)
921 {
922         /*
923          * To properly support this function we would need to repackage
924          * 'capsules' because the firmware doesn't understand 64-bit
925          * pointers.
926          */
927         return EFI_UNSUPPORTED;
928 }
929
930 static efi_status_t
931 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
932                               u64 *remaining_space,
933                               u64 *max_variable_size)
934 {
935         efi_status_t status;
936         u32 phys_storage, phys_remaining, phys_max;
937         unsigned long flags;
938
939         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
940                 return EFI_UNSUPPORTED;
941
942         spin_lock_irqsave(&efi_runtime_lock, flags);
943
944         phys_storage = virt_to_phys_or_null(storage_space);
945         phys_remaining = virt_to_phys_or_null(remaining_space);
946         phys_max = virt_to_phys_or_null(max_variable_size);
947
948         status = efi_thunk(query_variable_info, attr, phys_storage,
949                            phys_remaining, phys_max);
950
951         spin_unlock_irqrestore(&efi_runtime_lock, flags);
952
953         return status;
954 }
955
956 static efi_status_t
957 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
958                                           u64 *remaining_space,
959                                           u64 *max_variable_size)
960 {
961         efi_status_t status;
962         u32 phys_storage, phys_remaining, phys_max;
963         unsigned long flags;
964
965         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
966                 return EFI_UNSUPPORTED;
967
968         if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
969                 return EFI_NOT_READY;
970
971         phys_storage = virt_to_phys_or_null(storage_space);
972         phys_remaining = virt_to_phys_or_null(remaining_space);
973         phys_max = virt_to_phys_or_null(max_variable_size);
974
975         status = efi_thunk(query_variable_info, attr, phys_storage,
976                            phys_remaining, phys_max);
977
978         spin_unlock_irqrestore(&efi_runtime_lock, flags);
979
980         return status;
981 }
982
983 static efi_status_t
984 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
985                              unsigned long count, u64 *max_size,
986                              int *reset_type)
987 {
988         /*
989          * To properly support this function we would need to repackage
990          * 'capsules' because the firmware doesn't understand 64-bit
991          * pointers.
992          */
993         return EFI_UNSUPPORTED;
994 }
995
996 void efi_thunk_runtime_setup(void)
997 {
998         efi.get_time = efi_thunk_get_time;
999         efi.set_time = efi_thunk_set_time;
1000         efi.get_wakeup_time = efi_thunk_get_wakeup_time;
1001         efi.set_wakeup_time = efi_thunk_set_wakeup_time;
1002         efi.get_variable = efi_thunk_get_variable;
1003         efi.get_next_variable = efi_thunk_get_next_variable;
1004         efi.set_variable = efi_thunk_set_variable;
1005         efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
1006         efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
1007         efi.reset_system = efi_thunk_reset_system;
1008         efi.query_variable_info = efi_thunk_query_variable_info;
1009         efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
1010         efi.update_capsule = efi_thunk_update_capsule;
1011         efi.query_capsule_caps = efi_thunk_query_capsule_caps;
1012 }
1013 #endif /* CONFIG_EFI_MIXED */