Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / arch / x86 / platform / efi / efi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common EFI (Extensible Firmware Interface) support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 1999 VA Linux Systems
7  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8  * Copyright (C) 1999-2002 Hewlett-Packard Co.
9  *      David Mosberger-Tang <davidm@hpl.hp.com>
10  *      Stephane Eranian <eranian@hpl.hp.com>
11  * Copyright (C) 2005-2008 Intel Co.
12  *      Fenghua Yu <fenghua.yu@intel.com>
13  *      Bibo Mao <bibo.mao@intel.com>
14  *      Chandramouli Narayanan <mouli@linux.intel.com>
15  *      Huang Ying <ying.huang@intel.com>
16  * Copyright (C) 2013 SuSE Labs
17  *      Borislav Petkov <bp@suse.de> - runtime services VA mapping
18  *
19  * Copied from efi_32.c to eliminate the duplicated code between EFI
20  * 32/64 support code. --ying 2007-10-26
21  *
22  * All EFI Runtime Services are not implemented yet as EFI only
23  * supports physical mode addressing on SoftSDV. This is to be fixed
24  * in a future version.  --drummond 1999-07-20
25  *
26  * Implemented EFI runtime services and virtual mode calls.  --davidm
27  *
28  * Goutham Rao: <goutham.rao@intel.com>
29  *      Skip non-WB memory and ignore empty memory ranges.
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/efi.h>
37 #include <linux/efi-bgrt.h>
38 #include <linux/export.h>
39 #include <linux/memblock.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/e820/api.h>
51 #include <asm/time.h>
52 #include <asm/set_memory.h>
53 #include <asm/tlbflush.h>
54 #include <asm/x86_init.h>
55 #include <asm/uv/uv.h>
56
57 static struct efi efi_phys __initdata;
58 static efi_system_table_t efi_systab __initdata;
59
60 static efi_config_table_type_t arch_tables[] __initdata = {
61 #ifdef CONFIG_X86_UV
62         {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
63 #endif
64         {NULL_GUID, NULL, NULL},
65 };
66
67 u64 efi_setup;          /* efi setup_data physical address */
68
69 static int add_efi_memmap __initdata;
70 static int __init setup_add_efi_memmap(char *arg)
71 {
72         add_efi_memmap = 1;
73         return 0;
74 }
75 early_param("add_efi_memmap", setup_add_efi_memmap);
76
77 static efi_status_t __init phys_efi_set_virtual_address_map(
78         unsigned long memory_map_size,
79         unsigned long descriptor_size,
80         u32 descriptor_version,
81         efi_memory_desc_t *virtual_map)
82 {
83         efi_status_t status;
84         unsigned long flags;
85         pgd_t *save_pgd;
86
87         save_pgd = efi_call_phys_prolog();
88         if (!save_pgd)
89                 return EFI_ABORTED;
90
91         /* Disable interrupts around EFI calls: */
92         local_irq_save(flags);
93         status = efi_call_phys(efi_phys.set_virtual_address_map,
94                                memory_map_size, descriptor_size,
95                                descriptor_version, virtual_map);
96         local_irq_restore(flags);
97
98         efi_call_phys_epilog(save_pgd);
99
100         return status;
101 }
102
103 void __init efi_find_mirror(void)
104 {
105         efi_memory_desc_t *md;
106         u64 mirror_size = 0, total_size = 0;
107
108         for_each_efi_memory_desc(md) {
109                 unsigned long long start = md->phys_addr;
110                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
111
112                 total_size += size;
113                 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
114                         memblock_mark_mirror(start, size);
115                         mirror_size += size;
116                 }
117         }
118         if (mirror_size)
119                 pr_info("Memory: %lldM/%lldM mirrored memory\n",
120                         mirror_size>>20, total_size>>20);
121 }
122
123 /*
124  * Tell the kernel about the EFI memory map.  This might include
125  * more than the max 128 entries that can fit in the e820 legacy
126  * (zeropage) memory map.
127  */
128
129 static void __init do_add_efi_memmap(void)
130 {
131         efi_memory_desc_t *md;
132
133         for_each_efi_memory_desc(md) {
134                 unsigned long long start = md->phys_addr;
135                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
136                 int e820_type;
137
138                 switch (md->type) {
139                 case EFI_LOADER_CODE:
140                 case EFI_LOADER_DATA:
141                 case EFI_BOOT_SERVICES_CODE:
142                 case EFI_BOOT_SERVICES_DATA:
143                 case EFI_CONVENTIONAL_MEMORY:
144                         if (md->attribute & EFI_MEMORY_WB)
145                                 e820_type = E820_TYPE_RAM;
146                         else
147                                 e820_type = E820_TYPE_RESERVED;
148                         break;
149                 case EFI_ACPI_RECLAIM_MEMORY:
150                         e820_type = E820_TYPE_ACPI;
151                         break;
152                 case EFI_ACPI_MEMORY_NVS:
153                         e820_type = E820_TYPE_NVS;
154                         break;
155                 case EFI_UNUSABLE_MEMORY:
156                         e820_type = E820_TYPE_UNUSABLE;
157                         break;
158                 case EFI_PERSISTENT_MEMORY:
159                         e820_type = E820_TYPE_PMEM;
160                         break;
161                 default:
162                         /*
163                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
164                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
165                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
166                          */
167                         e820_type = E820_TYPE_RESERVED;
168                         break;
169                 }
170                 e820__range_add(start, size, e820_type);
171         }
172         e820__update_table(e820_table);
173 }
174
175 int __init efi_memblock_x86_reserve_range(void)
176 {
177         struct efi_info *e = &boot_params.efi_info;
178         struct efi_memory_map_data data;
179         phys_addr_t pmap;
180         int rv;
181
182         if (efi_enabled(EFI_PARAVIRT))
183                 return 0;
184
185 #ifdef CONFIG_X86_32
186         /* Can't handle data above 4GB at this time */
187         if (e->efi_memmap_hi) {
188                 pr_err("Memory map is above 4GB, disabling EFI.\n");
189                 return -EINVAL;
190         }
191         pmap =  e->efi_memmap;
192 #else
193         pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
194 #endif
195         data.phys_map           = pmap;
196         data.size               = e->efi_memmap_size;
197         data.desc_size          = e->efi_memdesc_size;
198         data.desc_version       = e->efi_memdesc_version;
199
200         rv = efi_memmap_init_early(&data);
201         if (rv)
202                 return rv;
203
204         if (add_efi_memmap)
205                 do_add_efi_memmap();
206
207         WARN(efi.memmap.desc_version != 1,
208              "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
209              efi.memmap.desc_version);
210
211         memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
212
213         return 0;
214 }
215
216 #define OVERFLOW_ADDR_SHIFT     (64 - EFI_PAGE_SHIFT)
217 #define OVERFLOW_ADDR_MASK      (U64_MAX << OVERFLOW_ADDR_SHIFT)
218 #define U64_HIGH_BIT            (~(U64_MAX >> 1))
219
220 static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
221 {
222         u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
223         u64 end_hi = 0;
224         char buf[64];
225
226         if (md->num_pages == 0) {
227                 end = 0;
228         } else if (md->num_pages > EFI_PAGES_MAX ||
229                    EFI_PAGES_MAX - md->num_pages <
230                    (md->phys_addr >> EFI_PAGE_SHIFT)) {
231                 end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
232                         >> OVERFLOW_ADDR_SHIFT;
233
234                 if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
235                         end_hi += 1;
236         } else {
237                 return true;
238         }
239
240         pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
241
242         if (end_hi) {
243                 pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
244                         i, efi_md_typeattr_format(buf, sizeof(buf), md),
245                         md->phys_addr, end_hi, end);
246         } else {
247                 pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
248                         i, efi_md_typeattr_format(buf, sizeof(buf), md),
249                         md->phys_addr, end);
250         }
251         return false;
252 }
253
254 static void __init efi_clean_memmap(void)
255 {
256         efi_memory_desc_t *out = efi.memmap.map;
257         const efi_memory_desc_t *in = out;
258         const efi_memory_desc_t *end = efi.memmap.map_end;
259         int i, n_removal;
260
261         for (i = n_removal = 0; in < end; i++) {
262                 if (efi_memmap_entry_valid(in, i)) {
263                         if (out != in)
264                                 memcpy(out, in, efi.memmap.desc_size);
265                         out = (void *)out + efi.memmap.desc_size;
266                 } else {
267                         n_removal++;
268                 }
269                 in = (void *)in + efi.memmap.desc_size;
270         }
271
272         if (n_removal > 0) {
273                 u64 size = efi.memmap.nr_map - n_removal;
274
275                 pr_warn("Removing %d invalid memory map entries.\n", n_removal);
276                 efi_memmap_install(efi.memmap.phys_map, size);
277         }
278 }
279
280 void __init efi_print_memmap(void)
281 {
282         efi_memory_desc_t *md;
283         int i = 0;
284
285         for_each_efi_memory_desc(md) {
286                 char buf[64];
287
288                 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
289                         i++, efi_md_typeattr_format(buf, sizeof(buf), md),
290                         md->phys_addr,
291                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
292                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
293         }
294 }
295
296 static int __init efi_systab_init(void *phys)
297 {
298         if (efi_enabled(EFI_64BIT)) {
299                 efi_system_table_64_t *systab64;
300                 struct efi_setup_data *data = NULL;
301                 u64 tmp = 0;
302
303                 if (efi_setup) {
304                         data = early_memremap(efi_setup, sizeof(*data));
305                         if (!data)
306                                 return -ENOMEM;
307                 }
308                 systab64 = early_memremap((unsigned long)phys,
309                                          sizeof(*systab64));
310                 if (systab64 == NULL) {
311                         pr_err("Couldn't map the system table!\n");
312                         if (data)
313                                 early_memunmap(data, sizeof(*data));
314                         return -ENOMEM;
315                 }
316
317                 efi_systab.hdr = systab64->hdr;
318                 efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
319                                               systab64->fw_vendor;
320                 tmp |= data ? data->fw_vendor : systab64->fw_vendor;
321                 efi_systab.fw_revision = systab64->fw_revision;
322                 efi_systab.con_in_handle = systab64->con_in_handle;
323                 tmp |= systab64->con_in_handle;
324                 efi_systab.con_in = systab64->con_in;
325                 tmp |= systab64->con_in;
326                 efi_systab.con_out_handle = systab64->con_out_handle;
327                 tmp |= systab64->con_out_handle;
328                 efi_systab.con_out = systab64->con_out;
329                 tmp |= systab64->con_out;
330                 efi_systab.stderr_handle = systab64->stderr_handle;
331                 tmp |= systab64->stderr_handle;
332                 efi_systab.stderr = systab64->stderr;
333                 tmp |= systab64->stderr;
334                 efi_systab.runtime = data ?
335                                      (void *)(unsigned long)data->runtime :
336                                      (void *)(unsigned long)systab64->runtime;
337                 tmp |= data ? data->runtime : systab64->runtime;
338                 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
339                 tmp |= systab64->boottime;
340                 efi_systab.nr_tables = systab64->nr_tables;
341                 efi_systab.tables = data ? (unsigned long)data->tables :
342                                            systab64->tables;
343                 tmp |= data ? data->tables : systab64->tables;
344
345                 early_memunmap(systab64, sizeof(*systab64));
346                 if (data)
347                         early_memunmap(data, sizeof(*data));
348 #ifdef CONFIG_X86_32
349                 if (tmp >> 32) {
350                         pr_err("EFI data located above 4GB, disabling EFI.\n");
351                         return -EINVAL;
352                 }
353 #endif
354         } else {
355                 efi_system_table_32_t *systab32;
356
357                 systab32 = early_memremap((unsigned long)phys,
358                                          sizeof(*systab32));
359                 if (systab32 == NULL) {
360                         pr_err("Couldn't map the system table!\n");
361                         return -ENOMEM;
362                 }
363
364                 efi_systab.hdr = systab32->hdr;
365                 efi_systab.fw_vendor = systab32->fw_vendor;
366                 efi_systab.fw_revision = systab32->fw_revision;
367                 efi_systab.con_in_handle = systab32->con_in_handle;
368                 efi_systab.con_in = systab32->con_in;
369                 efi_systab.con_out_handle = systab32->con_out_handle;
370                 efi_systab.con_out = systab32->con_out;
371                 efi_systab.stderr_handle = systab32->stderr_handle;
372                 efi_systab.stderr = systab32->stderr;
373                 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
374                 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
375                 efi_systab.nr_tables = systab32->nr_tables;
376                 efi_systab.tables = systab32->tables;
377
378                 early_memunmap(systab32, sizeof(*systab32));
379         }
380
381         efi.systab = &efi_systab;
382
383         /*
384          * Verify the EFI Table
385          */
386         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
387                 pr_err("System table signature incorrect!\n");
388                 return -EINVAL;
389         }
390         if ((efi.systab->hdr.revision >> 16) == 0)
391                 pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
392                        efi.systab->hdr.revision >> 16,
393                        efi.systab->hdr.revision & 0xffff);
394
395         return 0;
396 }
397
398 static int __init efi_runtime_init32(void)
399 {
400         efi_runtime_services_32_t *runtime;
401
402         runtime = early_memremap((unsigned long)efi.systab->runtime,
403                         sizeof(efi_runtime_services_32_t));
404         if (!runtime) {
405                 pr_err("Could not map the runtime service table!\n");
406                 return -ENOMEM;
407         }
408
409         /*
410          * We will only need *early* access to the SetVirtualAddressMap
411          * EFI runtime service. All other runtime services will be called
412          * via the virtual mapping.
413          */
414         efi_phys.set_virtual_address_map =
415                         (efi_set_virtual_address_map_t *)
416                         (unsigned long)runtime->set_virtual_address_map;
417         early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
418
419         return 0;
420 }
421
422 static int __init efi_runtime_init64(void)
423 {
424         efi_runtime_services_64_t *runtime;
425
426         runtime = early_memremap((unsigned long)efi.systab->runtime,
427                         sizeof(efi_runtime_services_64_t));
428         if (!runtime) {
429                 pr_err("Could not map the runtime service table!\n");
430                 return -ENOMEM;
431         }
432
433         /*
434          * We will only need *early* access to the SetVirtualAddressMap
435          * EFI runtime service. All other runtime services will be called
436          * via the virtual mapping.
437          */
438         efi_phys.set_virtual_address_map =
439                         (efi_set_virtual_address_map_t *)
440                         (unsigned long)runtime->set_virtual_address_map;
441         early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
442
443         return 0;
444 }
445
446 static int __init efi_runtime_init(void)
447 {
448         int rv;
449
450         /*
451          * Check out the runtime services table. We need to map
452          * the runtime services table so that we can grab the physical
453          * address of several of the EFI runtime functions, needed to
454          * set the firmware into virtual mode.
455          *
456          * When EFI_PARAVIRT is in force then we could not map runtime
457          * service memory region because we do not have direct access to it.
458          * However, runtime services are available through proxy functions
459          * (e.g. in case of Xen dom0 EFI implementation they call special
460          * hypercall which executes relevant EFI functions) and that is why
461          * they are always enabled.
462          */
463
464         if (!efi_enabled(EFI_PARAVIRT)) {
465                 if (efi_enabled(EFI_64BIT))
466                         rv = efi_runtime_init64();
467                 else
468                         rv = efi_runtime_init32();
469
470                 if (rv)
471                         return rv;
472         }
473
474         set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
475
476         return 0;
477 }
478
479 void __init efi_init(void)
480 {
481         efi_char16_t *c16;
482         char vendor[100] = "unknown";
483         int i = 0;
484         void *tmp;
485
486 #ifdef CONFIG_X86_32
487         if (boot_params.efi_info.efi_systab_hi ||
488             boot_params.efi_info.efi_memmap_hi) {
489                 pr_info("Table located above 4GB, disabling EFI.\n");
490                 return;
491         }
492         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
493 #else
494         efi_phys.systab = (efi_system_table_t *)
495                           (boot_params.efi_info.efi_systab |
496                           ((__u64)boot_params.efi_info.efi_systab_hi<<32));
497 #endif
498
499         if (efi_systab_init(efi_phys.systab))
500                 return;
501
502         efi.config_table = (unsigned long)efi.systab->tables;
503         efi.fw_vendor    = (unsigned long)efi.systab->fw_vendor;
504         efi.runtime      = (unsigned long)efi.systab->runtime;
505
506         /*
507          * Show what we know for posterity
508          */
509         c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
510         if (c16) {
511                 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
512                         vendor[i] = *c16++;
513                 vendor[i] = '\0';
514         } else
515                 pr_err("Could not map the firmware vendor!\n");
516         early_memunmap(tmp, 2);
517
518         pr_info("EFI v%u.%.02u by %s\n",
519                 efi.systab->hdr.revision >> 16,
520                 efi.systab->hdr.revision & 0xffff, vendor);
521
522         if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
523                 return;
524
525         if (efi_config_init(arch_tables))
526                 return;
527
528         /*
529          * Note: We currently don't support runtime services on an EFI
530          * that doesn't match the kernel 32/64-bit mode.
531          */
532
533         if (!efi_runtime_supported())
534                 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
535         else {
536                 if (efi_runtime_disabled() || efi_runtime_init()) {
537                         efi_memmap_unmap();
538                         return;
539                 }
540         }
541
542         efi_clean_memmap();
543
544         if (efi_enabled(EFI_DBG))
545                 efi_print_memmap();
546 }
547
548 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
549 {
550         u64 addr, npages;
551
552         addr = md->virt_addr;
553         npages = md->num_pages;
554
555         memrange_efi_to_native(&addr, &npages);
556
557         if (executable)
558                 set_memory_x(addr, npages);
559         else
560                 set_memory_nx(addr, npages);
561 }
562
563 void __init runtime_code_page_mkexec(void)
564 {
565         efi_memory_desc_t *md;
566
567         /* Make EFI runtime service code area executable */
568         for_each_efi_memory_desc(md) {
569                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
570                         continue;
571
572                 efi_set_executable(md, true);
573         }
574 }
575
576 void __init efi_memory_uc(u64 addr, unsigned long size)
577 {
578         unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
579         u64 npages;
580
581         npages = round_up(size, page_shift) / page_shift;
582         memrange_efi_to_native(&addr, &npages);
583         set_memory_uc(addr, npages);
584 }
585
586 void __init old_map_region(efi_memory_desc_t *md)
587 {
588         u64 start_pfn, end_pfn, end;
589         unsigned long size;
590         void *va;
591
592         start_pfn = PFN_DOWN(md->phys_addr);
593         size      = md->num_pages << PAGE_SHIFT;
594         end       = md->phys_addr + size;
595         end_pfn   = PFN_UP(end);
596
597         if (pfn_range_is_mapped(start_pfn, end_pfn)) {
598                 va = __va(md->phys_addr);
599
600                 if (!(md->attribute & EFI_MEMORY_WB))
601                         efi_memory_uc((u64)(unsigned long)va, size);
602         } else
603                 va = efi_ioremap(md->phys_addr, size,
604                                  md->type, md->attribute);
605
606         md->virt_addr = (u64) (unsigned long) va;
607         if (!va)
608                 pr_err("ioremap of 0x%llX failed!\n",
609                        (unsigned long long)md->phys_addr);
610 }
611
612 /* Merge contiguous regions of the same type and attribute */
613 static void __init efi_merge_regions(void)
614 {
615         efi_memory_desc_t *md, *prev_md = NULL;
616
617         for_each_efi_memory_desc(md) {
618                 u64 prev_size;
619
620                 if (!prev_md) {
621                         prev_md = md;
622                         continue;
623                 }
624
625                 if (prev_md->type != md->type ||
626                     prev_md->attribute != md->attribute) {
627                         prev_md = md;
628                         continue;
629                 }
630
631                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
632
633                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
634                         prev_md->num_pages += md->num_pages;
635                         md->type = EFI_RESERVED_TYPE;
636                         md->attribute = 0;
637                         continue;
638                 }
639                 prev_md = md;
640         }
641 }
642
643 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
644 {
645         unsigned long size;
646         u64 end, systab;
647
648         size = md->num_pages << EFI_PAGE_SHIFT;
649         end = md->phys_addr + size;
650         systab = (u64)(unsigned long)efi_phys.systab;
651         if (md->phys_addr <= systab && systab < end) {
652                 systab += md->virt_addr - md->phys_addr;
653                 efi.systab = (efi_system_table_t *)(unsigned long)systab;
654         }
655 }
656
657 static void *realloc_pages(void *old_memmap, int old_shift)
658 {
659         void *ret;
660
661         ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
662         if (!ret)
663                 goto out;
664
665         /*
666          * A first-time allocation doesn't have anything to copy.
667          */
668         if (!old_memmap)
669                 return ret;
670
671         memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
672
673 out:
674         free_pages((unsigned long)old_memmap, old_shift);
675         return ret;
676 }
677
678 /*
679  * Iterate the EFI memory map in reverse order because the regions
680  * will be mapped top-down. The end result is the same as if we had
681  * mapped things forward, but doesn't require us to change the
682  * existing implementation of efi_map_region().
683  */
684 static inline void *efi_map_next_entry_reverse(void *entry)
685 {
686         /* Initial call */
687         if (!entry)
688                 return efi.memmap.map_end - efi.memmap.desc_size;
689
690         entry -= efi.memmap.desc_size;
691         if (entry < efi.memmap.map)
692                 return NULL;
693
694         return entry;
695 }
696
697 /*
698  * efi_map_next_entry - Return the next EFI memory map descriptor
699  * @entry: Previous EFI memory map descriptor
700  *
701  * This is a helper function to iterate over the EFI memory map, which
702  * we do in different orders depending on the current configuration.
703  *
704  * To begin traversing the memory map @entry must be %NULL.
705  *
706  * Returns %NULL when we reach the end of the memory map.
707  */
708 static void *efi_map_next_entry(void *entry)
709 {
710         if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
711                 /*
712                  * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
713                  * config table feature requires us to map all entries
714                  * in the same order as they appear in the EFI memory
715                  * map. That is to say, entry N must have a lower
716                  * virtual address than entry N+1. This is because the
717                  * firmware toolchain leaves relative references in
718                  * the code/data sections, which are split and become
719                  * separate EFI memory regions. Mapping things
720                  * out-of-order leads to the firmware accessing
721                  * unmapped addresses.
722                  *
723                  * Since we need to map things this way whether or not
724                  * the kernel actually makes use of
725                  * EFI_PROPERTIES_TABLE, let's just switch to this
726                  * scheme by default for 64-bit.
727                  */
728                 return efi_map_next_entry_reverse(entry);
729         }
730
731         /* Initial call */
732         if (!entry)
733                 return efi.memmap.map;
734
735         entry += efi.memmap.desc_size;
736         if (entry >= efi.memmap.map_end)
737                 return NULL;
738
739         return entry;
740 }
741
742 static bool should_map_region(efi_memory_desc_t *md)
743 {
744         /*
745          * Runtime regions always require runtime mappings (obviously).
746          */
747         if (md->attribute & EFI_MEMORY_RUNTIME)
748                 return true;
749
750         /*
751          * 32-bit EFI doesn't suffer from the bug that requires us to
752          * reserve boot services regions, and mixed mode support
753          * doesn't exist for 32-bit kernels.
754          */
755         if (IS_ENABLED(CONFIG_X86_32))
756                 return false;
757
758         /*
759          * Map all of RAM so that we can access arguments in the 1:1
760          * mapping when making EFI runtime calls.
761          */
762         if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_is_native()) {
763                 if (md->type == EFI_CONVENTIONAL_MEMORY ||
764                     md->type == EFI_LOADER_DATA ||
765                     md->type == EFI_LOADER_CODE)
766                         return true;
767         }
768
769         /*
770          * Map boot services regions as a workaround for buggy
771          * firmware that accesses them even when they shouldn't.
772          *
773          * See efi_{reserve,free}_boot_services().
774          */
775         if (md->type == EFI_BOOT_SERVICES_CODE ||
776             md->type == EFI_BOOT_SERVICES_DATA)
777                 return true;
778
779         return false;
780 }
781
782 /*
783  * Map the efi memory ranges of the runtime services and update new_mmap with
784  * virtual addresses.
785  */
786 static void * __init efi_map_regions(int *count, int *pg_shift)
787 {
788         void *p, *new_memmap = NULL;
789         unsigned long left = 0;
790         unsigned long desc_size;
791         efi_memory_desc_t *md;
792
793         desc_size = efi.memmap.desc_size;
794
795         p = NULL;
796         while ((p = efi_map_next_entry(p))) {
797                 md = p;
798
799                 if (!should_map_region(md))
800                         continue;
801
802                 efi_map_region(md);
803                 get_systab_virt_addr(md);
804
805                 if (left < desc_size) {
806                         new_memmap = realloc_pages(new_memmap, *pg_shift);
807                         if (!new_memmap)
808                                 return NULL;
809
810                         left += PAGE_SIZE << *pg_shift;
811                         (*pg_shift)++;
812                 }
813
814                 memcpy(new_memmap + (*count * desc_size), md, desc_size);
815
816                 left -= desc_size;
817                 (*count)++;
818         }
819
820         return new_memmap;
821 }
822
823 static void __init kexec_enter_virtual_mode(void)
824 {
825 #ifdef CONFIG_KEXEC_CORE
826         efi_memory_desc_t *md;
827         unsigned int num_pages;
828
829         efi.systab = NULL;
830
831         /*
832          * We don't do virtual mode, since we don't do runtime services, on
833          * non-native EFI. With efi=old_map, we don't do runtime services in
834          * kexec kernel because in the initial boot something else might
835          * have been mapped at these virtual addresses.
836          */
837         if (!efi_is_native() || efi_enabled(EFI_OLD_MEMMAP)) {
838                 efi_memmap_unmap();
839                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
840                 return;
841         }
842
843         if (efi_alloc_page_tables()) {
844                 pr_err("Failed to allocate EFI page tables\n");
845                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
846                 return;
847         }
848
849         /*
850         * Map efi regions which were passed via setup_data. The virt_addr is a
851         * fixed addr which was used in first kernel of a kexec boot.
852         */
853         for_each_efi_memory_desc(md) {
854                 efi_map_region_fixed(md); /* FIXME: add error handling */
855                 get_systab_virt_addr(md);
856         }
857
858         /*
859          * Unregister the early EFI memmap from efi_init() and install
860          * the new EFI memory map.
861          */
862         efi_memmap_unmap();
863
864         if (efi_memmap_init_late(efi.memmap.phys_map,
865                                  efi.memmap.desc_size * efi.memmap.nr_map)) {
866                 pr_err("Failed to remap late EFI memory map\n");
867                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
868                 return;
869         }
870
871         BUG_ON(!efi.systab);
872
873         num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
874         num_pages >>= PAGE_SHIFT;
875
876         if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
877                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
878                 return;
879         }
880
881         efi_sync_low_kernel_mappings();
882
883         /*
884          * Now that EFI is in virtual mode, update the function
885          * pointers in the runtime service table to the new virtual addresses.
886          *
887          * Call EFI services through wrapper functions.
888          */
889         efi.runtime_version = efi_systab.hdr.revision;
890
891         efi_native_runtime_setup();
892
893         efi.set_virtual_address_map = NULL;
894
895         if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
896                 runtime_code_page_mkexec();
897 #endif
898 }
899
900 /*
901  * This function will switch the EFI runtime services to virtual mode.
902  * Essentially, we look through the EFI memmap and map every region that
903  * has the runtime attribute bit set in its memory descriptor into the
904  * efi_pgd page table.
905  *
906  * The old method which used to update that memory descriptor with the
907  * virtual address obtained from ioremap() is still supported when the
908  * kernel is booted with efi=old_map on its command line. Same old
909  * method enabled the runtime services to be called without having to
910  * thunk back into physical mode for every invocation.
911  *
912  * The new method does a pagetable switch in a preemption-safe manner
913  * so that we're in a different address space when calling a runtime
914  * function. For function arguments passing we do copy the PUDs of the
915  * kernel page table into efi_pgd prior to each call.
916  *
917  * Specially for kexec boot, efi runtime maps in previous kernel should
918  * be passed in via setup_data. In that case runtime ranges will be mapped
919  * to the same virtual addresses as the first kernel, see
920  * kexec_enter_virtual_mode().
921  */
922 static void __init __efi_enter_virtual_mode(void)
923 {
924         int count = 0, pg_shift = 0;
925         void *new_memmap = NULL;
926         efi_status_t status;
927         unsigned long pa;
928
929         efi.systab = NULL;
930
931         if (efi_alloc_page_tables()) {
932                 pr_err("Failed to allocate EFI page tables\n");
933                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
934                 return;
935         }
936
937         efi_merge_regions();
938         new_memmap = efi_map_regions(&count, &pg_shift);
939         if (!new_memmap) {
940                 pr_err("Error reallocating memory, EFI runtime non-functional!\n");
941                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
942                 return;
943         }
944
945         pa = __pa(new_memmap);
946
947         /*
948          * Unregister the early EFI memmap from efi_init() and install
949          * the new EFI memory map that we are about to pass to the
950          * firmware via SetVirtualAddressMap().
951          */
952         efi_memmap_unmap();
953
954         if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
955                 pr_err("Failed to remap late EFI memory map\n");
956                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
957                 return;
958         }
959
960         if (efi_enabled(EFI_DBG)) {
961                 pr_info("EFI runtime memory map:\n");
962                 efi_print_memmap();
963         }
964
965         BUG_ON(!efi.systab);
966
967         if (efi_setup_page_tables(pa, 1 << pg_shift)) {
968                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
969                 return;
970         }
971
972         efi_sync_low_kernel_mappings();
973
974         if (efi_is_native()) {
975                 status = phys_efi_set_virtual_address_map(
976                                 efi.memmap.desc_size * count,
977                                 efi.memmap.desc_size,
978                                 efi.memmap.desc_version,
979                                 (efi_memory_desc_t *)pa);
980         } else {
981                 status = efi_thunk_set_virtual_address_map(
982                                 efi_phys.set_virtual_address_map,
983                                 efi.memmap.desc_size * count,
984                                 efi.memmap.desc_size,
985                                 efi.memmap.desc_version,
986                                 (efi_memory_desc_t *)pa);
987         }
988
989         if (status != EFI_SUCCESS) {
990                 pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
991                          status);
992                 panic("EFI call to SetVirtualAddressMap() failed!");
993         }
994
995         efi_free_boot_services();
996
997         /*
998          * Now that EFI is in virtual mode, update the function
999          * pointers in the runtime service table to the new virtual addresses.
1000          *
1001          * Call EFI services through wrapper functions.
1002          */
1003         efi.runtime_version = efi_systab.hdr.revision;
1004
1005         if (efi_is_native())
1006                 efi_native_runtime_setup();
1007         else
1008                 efi_thunk_runtime_setup();
1009
1010         efi.set_virtual_address_map = NULL;
1011
1012         /*
1013          * Apply more restrictive page table mapping attributes now that
1014          * SVAM() has been called and the firmware has performed all
1015          * necessary relocation fixups for the new virtual addresses.
1016          */
1017         efi_runtime_update_mappings();
1018
1019         /* clean DUMMY object */
1020         efi_delete_dummy_variable();
1021 }
1022
1023 void __init efi_enter_virtual_mode(void)
1024 {
1025         if (efi_enabled(EFI_PARAVIRT))
1026                 return;
1027
1028         if (efi_setup)
1029                 kexec_enter_virtual_mode();
1030         else
1031                 __efi_enter_virtual_mode();
1032
1033         efi_dump_pagetable();
1034 }
1035
1036 static int __init arch_parse_efi_cmdline(char *str)
1037 {
1038         if (!str) {
1039                 pr_warn("need at least one option\n");
1040                 return -EINVAL;
1041         }
1042
1043         if (parse_option_str(str, "old_map"))
1044                 set_bit(EFI_OLD_MEMMAP, &efi.flags);
1045
1046         return 0;
1047 }
1048 early_param("efi", arch_parse_efi_cmdline);