Linux-libre 3.11-gnu
[librecmc/linux-libre.git] / arch / tile / kernel / time.c
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * Support the cycle counter clocksource and tile timer clock event device.
15  */
16
17 #include <linux/time.h>
18 #include <linux/timex.h>
19 #include <linux/clocksource.h>
20 #include <linux/clockchips.h>
21 #include <linux/hardirq.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <asm/irq_regs.h>
27 #include <asm/traps.h>
28 #include <hv/hypervisor.h>
29 #include <arch/interrupts.h>
30 #include <arch/spr_def.h>
31
32
33 /*
34  * Define the cycle counter clock source.
35  */
36
37 /* How many cycles per second we are running at. */
38 static cycles_t cycles_per_sec __write_once;
39
40 cycles_t get_clock_rate(void)
41 {
42         return cycles_per_sec;
43 }
44
45 #if CHIP_HAS_SPLIT_CYCLE()
46 cycles_t get_cycles(void)
47 {
48         unsigned int high = __insn_mfspr(SPR_CYCLE_HIGH);
49         unsigned int low = __insn_mfspr(SPR_CYCLE_LOW);
50         unsigned int high2 = __insn_mfspr(SPR_CYCLE_HIGH);
51
52         while (unlikely(high != high2)) {
53                 low = __insn_mfspr(SPR_CYCLE_LOW);
54                 high = high2;
55                 high2 = __insn_mfspr(SPR_CYCLE_HIGH);
56         }
57
58         return (((cycles_t)high) << 32) | low;
59 }
60 EXPORT_SYMBOL(get_cycles);
61 #endif
62
63 /*
64  * We use a relatively small shift value so that sched_clock()
65  * won't wrap around very often.
66  */
67 #define SCHED_CLOCK_SHIFT 10
68
69 static unsigned long sched_clock_mult __write_once;
70
71 static cycles_t clocksource_get_cycles(struct clocksource *cs)
72 {
73         return get_cycles();
74 }
75
76 static struct clocksource cycle_counter_cs = {
77         .name = "cycle counter",
78         .rating = 300,
79         .read = clocksource_get_cycles,
80         .mask = CLOCKSOURCE_MASK(64),
81         .flags = CLOCK_SOURCE_IS_CONTINUOUS,
82 };
83
84 /*
85  * Called very early from setup_arch() to set cycles_per_sec.
86  * We initialize it early so we can use it to set up loops_per_jiffy.
87  */
88 void __init setup_clock(void)
89 {
90         cycles_per_sec = hv_sysconf(HV_SYSCONF_CPU_SPEED);
91         sched_clock_mult =
92                 clocksource_hz2mult(cycles_per_sec, SCHED_CLOCK_SHIFT);
93 }
94
95 void __init calibrate_delay(void)
96 {
97         loops_per_jiffy = get_clock_rate() / HZ;
98         pr_info("Clock rate yields %lu.%02lu BogoMIPS (lpj=%lu)\n",
99                 loops_per_jiffy/(500000/HZ),
100                 (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy);
101 }
102
103 /* Called fairly late in init/main.c, but before we go smp. */
104 void __init time_init(void)
105 {
106         /* Initialize and register the clock source. */
107         clocksource_register_hz(&cycle_counter_cs, cycles_per_sec);
108
109         /* Start up the tile-timer interrupt source on the boot cpu. */
110         setup_tile_timer();
111 }
112
113
114 /*
115  * Define the tile timer clock event device.  The timer is driven by
116  * the TILE_TIMER_CONTROL register, which consists of a 31-bit down
117  * counter, plus bit 31, which signifies that the counter has wrapped
118  * from zero to (2**31) - 1.  The INT_TILE_TIMER interrupt will be
119  * raised as long as bit 31 is set.
120  *
121  * The TILE_MINSEC value represents the largest range of real-time
122  * we can possibly cover with the timer, based on MAX_TICK combined
123  * with the slowest reasonable clock rate we might run at.
124  */
125
126 #define MAX_TICK 0x7fffffff   /* we have 31 bits of countdown timer */
127 #define TILE_MINSEC 5         /* timer covers no more than 5 seconds */
128
129 static int tile_timer_set_next_event(unsigned long ticks,
130                                      struct clock_event_device *evt)
131 {
132         BUG_ON(ticks > MAX_TICK);
133         __insn_mtspr(SPR_TILE_TIMER_CONTROL, ticks);
134         arch_local_irq_unmask_now(INT_TILE_TIMER);
135         return 0;
136 }
137
138 /*
139  * Whenever anyone tries to change modes, we just mask interrupts
140  * and wait for the next event to get set.
141  */
142 static void tile_timer_set_mode(enum clock_event_mode mode,
143                                 struct clock_event_device *evt)
144 {
145         arch_local_irq_mask_now(INT_TILE_TIMER);
146 }
147
148 /*
149  * Set min_delta_ns to 1 microsecond, since it takes about
150  * that long to fire the interrupt.
151  */
152 static DEFINE_PER_CPU(struct clock_event_device, tile_timer) = {
153         .name = "tile timer",
154         .features = CLOCK_EVT_FEAT_ONESHOT,
155         .min_delta_ns = 1000,
156         .rating = 100,
157         .irq = -1,
158         .set_next_event = tile_timer_set_next_event,
159         .set_mode = tile_timer_set_mode,
160 };
161
162 void setup_tile_timer(void)
163 {
164         struct clock_event_device *evt = &__get_cpu_var(tile_timer);
165
166         /* Fill in fields that are speed-specific. */
167         clockevents_calc_mult_shift(evt, cycles_per_sec, TILE_MINSEC);
168         evt->max_delta_ns = clockevent_delta2ns(MAX_TICK, evt);
169
170         /* Mark as being for this cpu only. */
171         evt->cpumask = cpumask_of(smp_processor_id());
172
173         /* Start out with timer not firing. */
174         arch_local_irq_mask_now(INT_TILE_TIMER);
175
176         /* Register tile timer. */
177         clockevents_register_device(evt);
178 }
179
180 /* Called from the interrupt vector. */
181 void do_timer_interrupt(struct pt_regs *regs, int fault_num)
182 {
183         struct pt_regs *old_regs = set_irq_regs(regs);
184         struct clock_event_device *evt = &__get_cpu_var(tile_timer);
185
186         /*
187          * Mask the timer interrupt here, since we are a oneshot timer
188          * and there are now by definition no events pending.
189          */
190         arch_local_irq_mask(INT_TILE_TIMER);
191
192         /* Track time spent here in an interrupt context */
193         irq_enter();
194
195         /* Track interrupt count. */
196         __get_cpu_var(irq_stat).irq_timer_count++;
197
198         /* Call the generic timer handler */
199         evt->event_handler(evt);
200
201         /*
202          * Track time spent against the current process again and
203          * process any softirqs if they are waiting.
204          */
205         irq_exit();
206
207         set_irq_regs(old_regs);
208 }
209
210 /*
211  * Scheduler clock - returns current time in nanosec units.
212  * Note that with LOCKDEP, this is called during lockdep_init(), and
213  * we will claim that sched_clock() is zero for a little while, until
214  * we run setup_clock(), above.
215  */
216 unsigned long long sched_clock(void)
217 {
218         return clocksource_cyc2ns(get_cycles(),
219                                   sched_clock_mult, SCHED_CLOCK_SHIFT);
220 }
221
222 int setup_profiling_timer(unsigned int multiplier)
223 {
224         return -EINVAL;
225 }
226
227 /*
228  * Use the tile timer to convert nsecs to core clock cycles, relying
229  * on it having the same frequency as SPR_CYCLE.
230  */
231 cycles_t ns2cycles(unsigned long nsecs)
232 {
233         /*
234          * We do not have to disable preemption here as each core has the same
235          * clock frequency.
236          */
237         struct clock_event_device *dev = &__raw_get_cpu_var(tile_timer);
238         return ((u64)nsecs * dev->mult) >> dev->shift;
239 }