Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / arch / sparc / kernel / traps_64.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* arch/sparc64/kernel/traps.c
3  *
4  * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
5  * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
6  */
7
8 /*
9  * I like traps on v9, :))))
10  */
11
12 #include <linux/extable.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/debug.h>
15 #include <linux/linkage.h>
16 #include <linux/kernel.h>
17 #include <linux/signal.h>
18 #include <linux/smp.h>
19 #include <linux/mm.h>
20 #include <linux/init.h>
21 #include <linux/kdebug.h>
22 #include <linux/ftrace.h>
23 #include <linux/reboot.h>
24 #include <linux/gfp.h>
25 #include <linux/context_tracking.h>
26
27 #include <asm/smp.h>
28 #include <asm/delay.h>
29 #include <asm/ptrace.h>
30 #include <asm/oplib.h>
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/unistd.h>
34 #include <linux/uaccess.h>
35 #include <asm/fpumacro.h>
36 #include <asm/lsu.h>
37 #include <asm/dcu.h>
38 #include <asm/estate.h>
39 #include <asm/chafsr.h>
40 #include <asm/sfafsr.h>
41 #include <asm/psrcompat.h>
42 #include <asm/processor.h>
43 #include <asm/timer.h>
44 #include <asm/head.h>
45 #include <asm/prom.h>
46 #include <asm/memctrl.h>
47 #include <asm/cacheflush.h>
48 #include <asm/setup.h>
49
50 #include "entry.h"
51 #include "kernel.h"
52 #include "kstack.h"
53
54 /* When an irrecoverable trap occurs at tl > 0, the trap entry
55  * code logs the trap state registers at every level in the trap
56  * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
57  * is as follows:
58  */
59 struct tl1_traplog {
60         struct {
61                 unsigned long tstate;
62                 unsigned long tpc;
63                 unsigned long tnpc;
64                 unsigned long tt;
65         } trapstack[4];
66         unsigned long tl;
67 };
68
69 static void dump_tl1_traplog(struct tl1_traplog *p)
70 {
71         int i, limit;
72
73         printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
74                "dumping track stack.\n", p->tl);
75
76         limit = (tlb_type == hypervisor) ? 2 : 4;
77         for (i = 0; i < limit; i++) {
78                 printk(KERN_EMERG
79                        "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
80                        "TNPC[%016lx] TT[%lx]\n",
81                        i + 1,
82                        p->trapstack[i].tstate, p->trapstack[i].tpc,
83                        p->trapstack[i].tnpc, p->trapstack[i].tt);
84                 printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
85         }
86 }
87
88 void bad_trap(struct pt_regs *regs, long lvl)
89 {
90         char buffer[36];
91
92         if (notify_die(DIE_TRAP, "bad trap", regs,
93                        0, lvl, SIGTRAP) == NOTIFY_STOP)
94                 return;
95
96         if (lvl < 0x100) {
97                 sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
98                 die_if_kernel(buffer, regs);
99         }
100
101         lvl -= 0x100;
102         if (regs->tstate & TSTATE_PRIV) {
103                 sprintf(buffer, "Kernel bad sw trap %lx", lvl);
104                 die_if_kernel(buffer, regs);
105         }
106         if (test_thread_flag(TIF_32BIT)) {
107                 regs->tpc &= 0xffffffff;
108                 regs->tnpc &= 0xffffffff;
109         }
110         force_sig_fault(SIGILL, ILL_ILLTRP,
111                         (void __user *)regs->tpc, lvl);
112 }
113
114 void bad_trap_tl1(struct pt_regs *regs, long lvl)
115 {
116         char buffer[36];
117         
118         if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
119                        0, lvl, SIGTRAP) == NOTIFY_STOP)
120                 return;
121
122         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
123
124         sprintf (buffer, "Bad trap %lx at tl>0", lvl);
125         die_if_kernel (buffer, regs);
126 }
127
128 #ifdef CONFIG_DEBUG_BUGVERBOSE
129 void do_BUG(const char *file, int line)
130 {
131         bust_spinlocks(1);
132         printk("kernel BUG at %s:%d!\n", file, line);
133 }
134 EXPORT_SYMBOL(do_BUG);
135 #endif
136
137 static DEFINE_SPINLOCK(dimm_handler_lock);
138 static dimm_printer_t dimm_handler;
139
140 static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
141 {
142         unsigned long flags;
143         int ret = -ENODEV;
144
145         spin_lock_irqsave(&dimm_handler_lock, flags);
146         if (dimm_handler) {
147                 ret = dimm_handler(synd_code, paddr, buf, buflen);
148         } else if (tlb_type == spitfire) {
149                 if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
150                         ret = -EINVAL;
151                 else
152                         ret = 0;
153         } else
154                 ret = -ENODEV;
155         spin_unlock_irqrestore(&dimm_handler_lock, flags);
156
157         return ret;
158 }
159
160 int register_dimm_printer(dimm_printer_t func)
161 {
162         unsigned long flags;
163         int ret = 0;
164
165         spin_lock_irqsave(&dimm_handler_lock, flags);
166         if (!dimm_handler)
167                 dimm_handler = func;
168         else
169                 ret = -EEXIST;
170         spin_unlock_irqrestore(&dimm_handler_lock, flags);
171
172         return ret;
173 }
174 EXPORT_SYMBOL_GPL(register_dimm_printer);
175
176 void unregister_dimm_printer(dimm_printer_t func)
177 {
178         unsigned long flags;
179
180         spin_lock_irqsave(&dimm_handler_lock, flags);
181         if (dimm_handler == func)
182                 dimm_handler = NULL;
183         spin_unlock_irqrestore(&dimm_handler_lock, flags);
184 }
185 EXPORT_SYMBOL_GPL(unregister_dimm_printer);
186
187 void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
188 {
189         enum ctx_state prev_state = exception_enter();
190
191         if (notify_die(DIE_TRAP, "instruction access exception", regs,
192                        0, 0x8, SIGTRAP) == NOTIFY_STOP)
193                 goto out;
194
195         if (regs->tstate & TSTATE_PRIV) {
196                 printk("spitfire_insn_access_exception: SFSR[%016lx] "
197                        "SFAR[%016lx], going.\n", sfsr, sfar);
198                 die_if_kernel("Iax", regs);
199         }
200         if (test_thread_flag(TIF_32BIT)) {
201                 regs->tpc &= 0xffffffff;
202                 regs->tnpc &= 0xffffffff;
203         }
204         force_sig_fault(SIGSEGV, SEGV_MAPERR,
205                         (void __user *)regs->tpc, 0);
206 out:
207         exception_exit(prev_state);
208 }
209
210 void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
211 {
212         if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
213                        0, 0x8, SIGTRAP) == NOTIFY_STOP)
214                 return;
215
216         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
217         spitfire_insn_access_exception(regs, sfsr, sfar);
218 }
219
220 void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
221 {
222         unsigned short type = (type_ctx >> 16);
223         unsigned short ctx  = (type_ctx & 0xffff);
224
225         if (notify_die(DIE_TRAP, "instruction access exception", regs,
226                        0, 0x8, SIGTRAP) == NOTIFY_STOP)
227                 return;
228
229         if (regs->tstate & TSTATE_PRIV) {
230                 printk("sun4v_insn_access_exception: ADDR[%016lx] "
231                        "CTX[%04x] TYPE[%04x], going.\n",
232                        addr, ctx, type);
233                 die_if_kernel("Iax", regs);
234         }
235
236         if (test_thread_flag(TIF_32BIT)) {
237                 regs->tpc &= 0xffffffff;
238                 regs->tnpc &= 0xffffffff;
239         }
240         force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr, 0);
241 }
242
243 void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
244 {
245         if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
246                        0, 0x8, SIGTRAP) == NOTIFY_STOP)
247                 return;
248
249         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
250         sun4v_insn_access_exception(regs, addr, type_ctx);
251 }
252
253 bool is_no_fault_exception(struct pt_regs *regs)
254 {
255         unsigned char asi;
256         u32 insn;
257
258         if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
259                 return false;
260
261         /*
262          * Must do a little instruction decoding here in order to
263          * decide on a course of action. The bits of interest are:
264          *  insn[31:30] = op, where 3 indicates the load/store group
265          *  insn[24:19] = op3, which identifies individual opcodes
266          *  insn[13] indicates an immediate offset
267          *  op3[4]=1 identifies alternate space instructions
268          *  op3[5:4]=3 identifies floating point instructions
269          *  op3[2]=1 identifies stores
270          * See "Opcode Maps" in the appendix of any Sparc V9
271          * architecture spec for full details.
272          */
273         if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
274                 if (insn & 0x2000)                  /* immediate offset */
275                         asi = (regs->tstate >> 24); /* saved %asi       */
276                 else
277                         asi = (insn >> 5);          /* immediate asi    */
278                 if ((asi & 0xf2) == ASI_PNF) {
279                         if (insn & 0x1000000) {     /* op3[5:4]=3       */
280                                 handle_ldf_stq(insn, regs);
281                                 return true;
282                         } else if (insn & 0x200000) { /* op3[2], stores */
283                                 return false;
284                         }
285                         handle_ld_nf(insn, regs);
286                         return true;
287                 }
288         }
289         return false;
290 }
291
292 void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
293 {
294         enum ctx_state prev_state = exception_enter();
295
296         if (notify_die(DIE_TRAP, "data access exception", regs,
297                        0, 0x30, SIGTRAP) == NOTIFY_STOP)
298                 goto out;
299
300         if (regs->tstate & TSTATE_PRIV) {
301                 /* Test if this comes from uaccess places. */
302                 const struct exception_table_entry *entry;
303
304                 entry = search_exception_tables(regs->tpc);
305                 if (entry) {
306                         /* Ouch, somebody is trying VM hole tricks on us... */
307 #ifdef DEBUG_EXCEPTIONS
308                         printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
309                         printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
310                                regs->tpc, entry->fixup);
311 #endif
312                         regs->tpc = entry->fixup;
313                         regs->tnpc = regs->tpc + 4;
314                         goto out;
315                 }
316                 /* Shit... */
317                 printk("spitfire_data_access_exception: SFSR[%016lx] "
318                        "SFAR[%016lx], going.\n", sfsr, sfar);
319                 die_if_kernel("Dax", regs);
320         }
321
322         if (is_no_fault_exception(regs))
323                 return;
324
325         force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar, 0);
326 out:
327         exception_exit(prev_state);
328 }
329
330 void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
331 {
332         if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
333                        0, 0x30, SIGTRAP) == NOTIFY_STOP)
334                 return;
335
336         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
337         spitfire_data_access_exception(regs, sfsr, sfar);
338 }
339
340 void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
341 {
342         unsigned short type = (type_ctx >> 16);
343         unsigned short ctx  = (type_ctx & 0xffff);
344
345         if (notify_die(DIE_TRAP, "data access exception", regs,
346                        0, 0x8, SIGTRAP) == NOTIFY_STOP)
347                 return;
348
349         if (regs->tstate & TSTATE_PRIV) {
350                 /* Test if this comes from uaccess places. */
351                 const struct exception_table_entry *entry;
352
353                 entry = search_exception_tables(regs->tpc);
354                 if (entry) {
355                         /* Ouch, somebody is trying VM hole tricks on us... */
356 #ifdef DEBUG_EXCEPTIONS
357                         printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
358                         printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
359                                regs->tpc, entry->fixup);
360 #endif
361                         regs->tpc = entry->fixup;
362                         regs->tnpc = regs->tpc + 4;
363                         return;
364                 }
365                 printk("sun4v_data_access_exception: ADDR[%016lx] "
366                        "CTX[%04x] TYPE[%04x], going.\n",
367                        addr, ctx, type);
368                 die_if_kernel("Dax", regs);
369         }
370
371         if (test_thread_flag(TIF_32BIT)) {
372                 regs->tpc &= 0xffffffff;
373                 regs->tnpc &= 0xffffffff;
374         }
375         if (is_no_fault_exception(regs))
376                 return;
377
378         /* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
379          * is vectored thorugh data access exception trap with fault type
380          * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
381          * Accessing an address with invalid ASI for the address, for
382          * example setting an ADI tag on an address with ASI_MCD_PRIMARY
383          * when TTE.mcd is not set for the VA, is also vectored into
384          * kerbel by HV as data access exception with fault type set to
385          * HV_FAULT_TYPE_INV_ASI.
386          */
387         switch (type) {
388         case HV_FAULT_TYPE_INV_ASI:
389                 force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr, 0);
390                 break;
391         case HV_FAULT_TYPE_MCD_DIS:
392                 force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr, 0);
393                 break;
394         default:
395                 force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr, 0);
396                 break;
397         }
398 }
399
400 void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
401 {
402         if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
403                        0, 0x8, SIGTRAP) == NOTIFY_STOP)
404                 return;
405
406         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
407         sun4v_data_access_exception(regs, addr, type_ctx);
408 }
409
410 #ifdef CONFIG_PCI
411 #include "pci_impl.h"
412 #endif
413
414 /* When access exceptions happen, we must do this. */
415 static void spitfire_clean_and_reenable_l1_caches(void)
416 {
417         unsigned long va;
418
419         if (tlb_type != spitfire)
420                 BUG();
421
422         /* Clean 'em. */
423         for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
424                 spitfire_put_icache_tag(va, 0x0);
425                 spitfire_put_dcache_tag(va, 0x0);
426         }
427
428         /* Re-enable in LSU. */
429         __asm__ __volatile__("flush %%g6\n\t"
430                              "membar #Sync\n\t"
431                              "stxa %0, [%%g0] %1\n\t"
432                              "membar #Sync"
433                              : /* no outputs */
434                              : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
435                                     LSU_CONTROL_IM | LSU_CONTROL_DM),
436                              "i" (ASI_LSU_CONTROL)
437                              : "memory");
438 }
439
440 static void spitfire_enable_estate_errors(void)
441 {
442         __asm__ __volatile__("stxa      %0, [%%g0] %1\n\t"
443                              "membar    #Sync"
444                              : /* no outputs */
445                              : "r" (ESTATE_ERR_ALL),
446                                "i" (ASI_ESTATE_ERROR_EN));
447 }
448
449 static char ecc_syndrome_table[] = {
450         0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
451         0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
452         0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
453         0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
454         0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
455         0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
456         0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
457         0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
458         0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
459         0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
460         0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
461         0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
462         0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
463         0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
464         0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
465         0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
466         0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
467         0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
468         0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
469         0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
470         0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
471         0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
472         0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
473         0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
474         0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
475         0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
476         0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
477         0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
478         0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
479         0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
480         0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
481         0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
482 };
483
484 static char *syndrome_unknown = "<Unknown>";
485
486 static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
487 {
488         unsigned short scode;
489         char memmod_str[64], *p;
490
491         if (udbl & bit) {
492                 scode = ecc_syndrome_table[udbl & 0xff];
493                 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
494                         p = syndrome_unknown;
495                 else
496                         p = memmod_str;
497                 printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
498                        "Memory Module \"%s\"\n",
499                        smp_processor_id(), scode, p);
500         }
501
502         if (udbh & bit) {
503                 scode = ecc_syndrome_table[udbh & 0xff];
504                 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
505                         p = syndrome_unknown;
506                 else
507                         p = memmod_str;
508                 printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
509                        "Memory Module \"%s\"\n",
510                        smp_processor_id(), scode, p);
511         }
512
513 }
514
515 static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
516 {
517
518         printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
519                "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
520                smp_processor_id(), afsr, afar, udbl, udbh, tl1);
521
522         spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
523
524         /* We always log it, even if someone is listening for this
525          * trap.
526          */
527         notify_die(DIE_TRAP, "Correctable ECC Error", regs,
528                    0, TRAP_TYPE_CEE, SIGTRAP);
529
530         /* The Correctable ECC Error trap does not disable I/D caches.  So
531          * we only have to restore the ESTATE Error Enable register.
532          */
533         spitfire_enable_estate_errors();
534 }
535
536 static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
537 {
538         printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
539                "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
540                smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
541
542         /* XXX add more human friendly logging of the error status
543          * XXX as is implemented for cheetah
544          */
545
546         spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
547
548         /* We always log it, even if someone is listening for this
549          * trap.
550          */
551         notify_die(DIE_TRAP, "Uncorrectable Error", regs,
552                    0, tt, SIGTRAP);
553
554         if (regs->tstate & TSTATE_PRIV) {
555                 if (tl1)
556                         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
557                 die_if_kernel("UE", regs);
558         }
559
560         /* XXX need more intelligent processing here, such as is implemented
561          * XXX for cheetah errors, in fact if the E-cache still holds the
562          * XXX line with bad parity this will loop
563          */
564
565         spitfire_clean_and_reenable_l1_caches();
566         spitfire_enable_estate_errors();
567
568         if (test_thread_flag(TIF_32BIT)) {
569                 regs->tpc &= 0xffffffff;
570                 regs->tnpc &= 0xffffffff;
571         }
572         force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0, 0);
573 }
574
575 void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
576 {
577         unsigned long afsr, tt, udbh, udbl;
578         int tl1;
579
580         afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
581         tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
582         tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
583         udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
584         udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
585
586 #ifdef CONFIG_PCI
587         if (tt == TRAP_TYPE_DAE &&
588             pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
589                 spitfire_clean_and_reenable_l1_caches();
590                 spitfire_enable_estate_errors();
591
592                 pci_poke_faulted = 1;
593                 regs->tnpc = regs->tpc + 4;
594                 return;
595         }
596 #endif
597
598         if (afsr & SFAFSR_UE)
599                 spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
600
601         if (tt == TRAP_TYPE_CEE) {
602                 /* Handle the case where we took a CEE trap, but ACK'd
603                  * only the UE state in the UDB error registers.
604                  */
605                 if (afsr & SFAFSR_UE) {
606                         if (udbh & UDBE_CE) {
607                                 __asm__ __volatile__(
608                                         "stxa   %0, [%1] %2\n\t"
609                                         "membar #Sync"
610                                         : /* no outputs */
611                                         : "r" (udbh & UDBE_CE),
612                                           "r" (0x0), "i" (ASI_UDB_ERROR_W));
613                         }
614                         if (udbl & UDBE_CE) {
615                                 __asm__ __volatile__(
616                                         "stxa   %0, [%1] %2\n\t"
617                                         "membar #Sync"
618                                         : /* no outputs */
619                                         : "r" (udbl & UDBE_CE),
620                                           "r" (0x18), "i" (ASI_UDB_ERROR_W));
621                         }
622                 }
623
624                 spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
625         }
626 }
627
628 int cheetah_pcache_forced_on;
629
630 void cheetah_enable_pcache(void)
631 {
632         unsigned long dcr;
633
634         printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
635                smp_processor_id());
636
637         __asm__ __volatile__("ldxa [%%g0] %1, %0"
638                              : "=r" (dcr)
639                              : "i" (ASI_DCU_CONTROL_REG));
640         dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
641         __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
642                              "membar #Sync"
643                              : /* no outputs */
644                              : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
645 }
646
647 /* Cheetah error trap handling. */
648 static unsigned long ecache_flush_physbase;
649 static unsigned long ecache_flush_linesize;
650 static unsigned long ecache_flush_size;
651
652 /* This table is ordered in priority of errors and matches the
653  * AFAR overwrite policy as well.
654  */
655
656 struct afsr_error_table {
657         unsigned long mask;
658         const char *name;
659 };
660
661 static const char CHAFSR_PERR_msg[] =
662         "System interface protocol error";
663 static const char CHAFSR_IERR_msg[] =
664         "Internal processor error";
665 static const char CHAFSR_ISAP_msg[] =
666         "System request parity error on incoming address";
667 static const char CHAFSR_UCU_msg[] =
668         "Uncorrectable E-cache ECC error for ifetch/data";
669 static const char CHAFSR_UCC_msg[] =
670         "SW Correctable E-cache ECC error for ifetch/data";
671 static const char CHAFSR_UE_msg[] =
672         "Uncorrectable system bus data ECC error for read";
673 static const char CHAFSR_EDU_msg[] =
674         "Uncorrectable E-cache ECC error for stmerge/blkld";
675 static const char CHAFSR_EMU_msg[] =
676         "Uncorrectable system bus MTAG error";
677 static const char CHAFSR_WDU_msg[] =
678         "Uncorrectable E-cache ECC error for writeback";
679 static const char CHAFSR_CPU_msg[] =
680         "Uncorrectable ECC error for copyout";
681 static const char CHAFSR_CE_msg[] =
682         "HW corrected system bus data ECC error for read";
683 static const char CHAFSR_EDC_msg[] =
684         "HW corrected E-cache ECC error for stmerge/blkld";
685 static const char CHAFSR_EMC_msg[] =
686         "HW corrected system bus MTAG ECC error";
687 static const char CHAFSR_WDC_msg[] =
688         "HW corrected E-cache ECC error for writeback";
689 static const char CHAFSR_CPC_msg[] =
690         "HW corrected ECC error for copyout";
691 static const char CHAFSR_TO_msg[] =
692         "Unmapped error from system bus";
693 static const char CHAFSR_BERR_msg[] =
694         "Bus error response from system bus";
695 static const char CHAFSR_IVC_msg[] =
696         "HW corrected system bus data ECC error for ivec read";
697 static const char CHAFSR_IVU_msg[] =
698         "Uncorrectable system bus data ECC error for ivec read";
699 static struct afsr_error_table __cheetah_error_table[] = {
700         {       CHAFSR_PERR,    CHAFSR_PERR_msg         },
701         {       CHAFSR_IERR,    CHAFSR_IERR_msg         },
702         {       CHAFSR_ISAP,    CHAFSR_ISAP_msg         },
703         {       CHAFSR_UCU,     CHAFSR_UCU_msg          },
704         {       CHAFSR_UCC,     CHAFSR_UCC_msg          },
705         {       CHAFSR_UE,      CHAFSR_UE_msg           },
706         {       CHAFSR_EDU,     CHAFSR_EDU_msg          },
707         {       CHAFSR_EMU,     CHAFSR_EMU_msg          },
708         {       CHAFSR_WDU,     CHAFSR_WDU_msg          },
709         {       CHAFSR_CPU,     CHAFSR_CPU_msg          },
710         {       CHAFSR_CE,      CHAFSR_CE_msg           },
711         {       CHAFSR_EDC,     CHAFSR_EDC_msg          },
712         {       CHAFSR_EMC,     CHAFSR_EMC_msg          },
713         {       CHAFSR_WDC,     CHAFSR_WDC_msg          },
714         {       CHAFSR_CPC,     CHAFSR_CPC_msg          },
715         {       CHAFSR_TO,      CHAFSR_TO_msg           },
716         {       CHAFSR_BERR,    CHAFSR_BERR_msg         },
717         /* These two do not update the AFAR. */
718         {       CHAFSR_IVC,     CHAFSR_IVC_msg          },
719         {       CHAFSR_IVU,     CHAFSR_IVU_msg          },
720         {       0,              NULL                    },
721 };
722 static const char CHPAFSR_DTO_msg[] =
723         "System bus unmapped error for prefetch/storequeue-read";
724 static const char CHPAFSR_DBERR_msg[] =
725         "System bus error for prefetch/storequeue-read";
726 static const char CHPAFSR_THCE_msg[] =
727         "Hardware corrected E-cache Tag ECC error";
728 static const char CHPAFSR_TSCE_msg[] =
729         "SW handled correctable E-cache Tag ECC error";
730 static const char CHPAFSR_TUE_msg[] =
731         "Uncorrectable E-cache Tag ECC error";
732 static const char CHPAFSR_DUE_msg[] =
733         "System bus uncorrectable data ECC error due to prefetch/store-fill";
734 static struct afsr_error_table __cheetah_plus_error_table[] = {
735         {       CHAFSR_PERR,    CHAFSR_PERR_msg         },
736         {       CHAFSR_IERR,    CHAFSR_IERR_msg         },
737         {       CHAFSR_ISAP,    CHAFSR_ISAP_msg         },
738         {       CHAFSR_UCU,     CHAFSR_UCU_msg          },
739         {       CHAFSR_UCC,     CHAFSR_UCC_msg          },
740         {       CHAFSR_UE,      CHAFSR_UE_msg           },
741         {       CHAFSR_EDU,     CHAFSR_EDU_msg          },
742         {       CHAFSR_EMU,     CHAFSR_EMU_msg          },
743         {       CHAFSR_WDU,     CHAFSR_WDU_msg          },
744         {       CHAFSR_CPU,     CHAFSR_CPU_msg          },
745         {       CHAFSR_CE,      CHAFSR_CE_msg           },
746         {       CHAFSR_EDC,     CHAFSR_EDC_msg          },
747         {       CHAFSR_EMC,     CHAFSR_EMC_msg          },
748         {       CHAFSR_WDC,     CHAFSR_WDC_msg          },
749         {       CHAFSR_CPC,     CHAFSR_CPC_msg          },
750         {       CHAFSR_TO,      CHAFSR_TO_msg           },
751         {       CHAFSR_BERR,    CHAFSR_BERR_msg         },
752         {       CHPAFSR_DTO,    CHPAFSR_DTO_msg         },
753         {       CHPAFSR_DBERR,  CHPAFSR_DBERR_msg       },
754         {       CHPAFSR_THCE,   CHPAFSR_THCE_msg        },
755         {       CHPAFSR_TSCE,   CHPAFSR_TSCE_msg        },
756         {       CHPAFSR_TUE,    CHPAFSR_TUE_msg         },
757         {       CHPAFSR_DUE,    CHPAFSR_DUE_msg         },
758         /* These two do not update the AFAR. */
759         {       CHAFSR_IVC,     CHAFSR_IVC_msg          },
760         {       CHAFSR_IVU,     CHAFSR_IVU_msg          },
761         {       0,              NULL                    },
762 };
763 static const char JPAFSR_JETO_msg[] =
764         "System interface protocol error, hw timeout caused";
765 static const char JPAFSR_SCE_msg[] =
766         "Parity error on system snoop results";
767 static const char JPAFSR_JEIC_msg[] =
768         "System interface protocol error, illegal command detected";
769 static const char JPAFSR_JEIT_msg[] =
770         "System interface protocol error, illegal ADTYPE detected";
771 static const char JPAFSR_OM_msg[] =
772         "Out of range memory error has occurred";
773 static const char JPAFSR_ETP_msg[] =
774         "Parity error on L2 cache tag SRAM";
775 static const char JPAFSR_UMS_msg[] =
776         "Error due to unsupported store";
777 static const char JPAFSR_RUE_msg[] =
778         "Uncorrectable ECC error from remote cache/memory";
779 static const char JPAFSR_RCE_msg[] =
780         "Correctable ECC error from remote cache/memory";
781 static const char JPAFSR_BP_msg[] =
782         "JBUS parity error on returned read data";
783 static const char JPAFSR_WBP_msg[] =
784         "JBUS parity error on data for writeback or block store";
785 static const char JPAFSR_FRC_msg[] =
786         "Foreign read to DRAM incurring correctable ECC error";
787 static const char JPAFSR_FRU_msg[] =
788         "Foreign read to DRAM incurring uncorrectable ECC error";
789 static struct afsr_error_table __jalapeno_error_table[] = {
790         {       JPAFSR_JETO,    JPAFSR_JETO_msg         },
791         {       JPAFSR_SCE,     JPAFSR_SCE_msg          },
792         {       JPAFSR_JEIC,    JPAFSR_JEIC_msg         },
793         {       JPAFSR_JEIT,    JPAFSR_JEIT_msg         },
794         {       CHAFSR_PERR,    CHAFSR_PERR_msg         },
795         {       CHAFSR_IERR,    CHAFSR_IERR_msg         },
796         {       CHAFSR_ISAP,    CHAFSR_ISAP_msg         },
797         {       CHAFSR_UCU,     CHAFSR_UCU_msg          },
798         {       CHAFSR_UCC,     CHAFSR_UCC_msg          },
799         {       CHAFSR_UE,      CHAFSR_UE_msg           },
800         {       CHAFSR_EDU,     CHAFSR_EDU_msg          },
801         {       JPAFSR_OM,      JPAFSR_OM_msg           },
802         {       CHAFSR_WDU,     CHAFSR_WDU_msg          },
803         {       CHAFSR_CPU,     CHAFSR_CPU_msg          },
804         {       CHAFSR_CE,      CHAFSR_CE_msg           },
805         {       CHAFSR_EDC,     CHAFSR_EDC_msg          },
806         {       JPAFSR_ETP,     JPAFSR_ETP_msg          },
807         {       CHAFSR_WDC,     CHAFSR_WDC_msg          },
808         {       CHAFSR_CPC,     CHAFSR_CPC_msg          },
809         {       CHAFSR_TO,      CHAFSR_TO_msg           },
810         {       CHAFSR_BERR,    CHAFSR_BERR_msg         },
811         {       JPAFSR_UMS,     JPAFSR_UMS_msg          },
812         {       JPAFSR_RUE,     JPAFSR_RUE_msg          },
813         {       JPAFSR_RCE,     JPAFSR_RCE_msg          },
814         {       JPAFSR_BP,      JPAFSR_BP_msg           },
815         {       JPAFSR_WBP,     JPAFSR_WBP_msg          },
816         {       JPAFSR_FRC,     JPAFSR_FRC_msg          },
817         {       JPAFSR_FRU,     JPAFSR_FRU_msg          },
818         /* These two do not update the AFAR. */
819         {       CHAFSR_IVU,     CHAFSR_IVU_msg          },
820         {       0,              NULL                    },
821 };
822 static struct afsr_error_table *cheetah_error_table;
823 static unsigned long cheetah_afsr_errors;
824
825 struct cheetah_err_info *cheetah_error_log;
826
827 static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
828 {
829         struct cheetah_err_info *p;
830         int cpu = smp_processor_id();
831
832         if (!cheetah_error_log)
833                 return NULL;
834
835         p = cheetah_error_log + (cpu * 2);
836         if ((afsr & CHAFSR_TL1) != 0UL)
837                 p++;
838
839         return p;
840 }
841
842 extern unsigned int tl0_icpe[], tl1_icpe[];
843 extern unsigned int tl0_dcpe[], tl1_dcpe[];
844 extern unsigned int tl0_fecc[], tl1_fecc[];
845 extern unsigned int tl0_cee[], tl1_cee[];
846 extern unsigned int tl0_iae[], tl1_iae[];
847 extern unsigned int tl0_dae[], tl1_dae[];
848 extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
849 extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
850 extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
851 extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
852 extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
853
854 void __init cheetah_ecache_flush_init(void)
855 {
856         unsigned long largest_size, smallest_linesize, order, ver;
857         int i, sz;
858
859         /* Scan all cpu device tree nodes, note two values:
860          * 1) largest E-cache size
861          * 2) smallest E-cache line size
862          */
863         largest_size = 0UL;
864         smallest_linesize = ~0UL;
865
866         for (i = 0; i < NR_CPUS; i++) {
867                 unsigned long val;
868
869                 val = cpu_data(i).ecache_size;
870                 if (!val)
871                         continue;
872
873                 if (val > largest_size)
874                         largest_size = val;
875
876                 val = cpu_data(i).ecache_line_size;
877                 if (val < smallest_linesize)
878                         smallest_linesize = val;
879
880         }
881
882         if (largest_size == 0UL || smallest_linesize == ~0UL) {
883                 prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
884                             "parameters.\n");
885                 prom_halt();
886         }
887
888         ecache_flush_size = (2 * largest_size);
889         ecache_flush_linesize = smallest_linesize;
890
891         ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
892
893         if (ecache_flush_physbase == ~0UL) {
894                 prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
895                             "contiguous physical memory.\n",
896                             ecache_flush_size);
897                 prom_halt();
898         }
899
900         /* Now allocate error trap reporting scoreboard. */
901         sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
902         for (order = 0; order < MAX_ORDER; order++) {
903                 if ((PAGE_SIZE << order) >= sz)
904                         break;
905         }
906         cheetah_error_log = (struct cheetah_err_info *)
907                 __get_free_pages(GFP_KERNEL, order);
908         if (!cheetah_error_log) {
909                 prom_printf("cheetah_ecache_flush_init: Failed to allocate "
910                             "error logging scoreboard (%d bytes).\n", sz);
911                 prom_halt();
912         }
913         memset(cheetah_error_log, 0, PAGE_SIZE << order);
914
915         /* Mark all AFSRs as invalid so that the trap handler will
916          * log new new information there.
917          */
918         for (i = 0; i < 2 * NR_CPUS; i++)
919                 cheetah_error_log[i].afsr = CHAFSR_INVALID;
920
921         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
922         if ((ver >> 32) == __JALAPENO_ID ||
923             (ver >> 32) == __SERRANO_ID) {
924                 cheetah_error_table = &__jalapeno_error_table[0];
925                 cheetah_afsr_errors = JPAFSR_ERRORS;
926         } else if ((ver >> 32) == 0x003e0015) {
927                 cheetah_error_table = &__cheetah_plus_error_table[0];
928                 cheetah_afsr_errors = CHPAFSR_ERRORS;
929         } else {
930                 cheetah_error_table = &__cheetah_error_table[0];
931                 cheetah_afsr_errors = CHAFSR_ERRORS;
932         }
933
934         /* Now patch trap tables. */
935         memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
936         memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
937         memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
938         memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
939         memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
940         memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
941         memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
942         memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
943         if (tlb_type == cheetah_plus) {
944                 memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
945                 memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
946                 memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
947                 memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
948         }
949         flushi(PAGE_OFFSET);
950 }
951
952 static void cheetah_flush_ecache(void)
953 {
954         unsigned long flush_base = ecache_flush_physbase;
955         unsigned long flush_linesize = ecache_flush_linesize;
956         unsigned long flush_size = ecache_flush_size;
957
958         __asm__ __volatile__("1: subcc  %0, %4, %0\n\t"
959                              "   bne,pt %%xcc, 1b\n\t"
960                              "    ldxa  [%2 + %0] %3, %%g0\n\t"
961                              : "=&r" (flush_size)
962                              : "0" (flush_size), "r" (flush_base),
963                                "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
964 }
965
966 static void cheetah_flush_ecache_line(unsigned long physaddr)
967 {
968         unsigned long alias;
969
970         physaddr &= ~(8UL - 1UL);
971         physaddr = (ecache_flush_physbase +
972                     (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
973         alias = physaddr + (ecache_flush_size >> 1UL);
974         __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
975                              "ldxa [%1] %2, %%g0\n\t"
976                              "membar #Sync"
977                              : /* no outputs */
978                              : "r" (physaddr), "r" (alias),
979                                "i" (ASI_PHYS_USE_EC));
980 }
981
982 /* Unfortunately, the diagnostic access to the I-cache tags we need to
983  * use to clear the thing interferes with I-cache coherency transactions.
984  *
985  * So we must only flush the I-cache when it is disabled.
986  */
987 static void __cheetah_flush_icache(void)
988 {
989         unsigned int icache_size, icache_line_size;
990         unsigned long addr;
991
992         icache_size = local_cpu_data().icache_size;
993         icache_line_size = local_cpu_data().icache_line_size;
994
995         /* Clear the valid bits in all the tags. */
996         for (addr = 0; addr < icache_size; addr += icache_line_size) {
997                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
998                                      "membar #Sync"
999                                      : /* no outputs */
1000                                      : "r" (addr | (2 << 3)),
1001                                        "i" (ASI_IC_TAG));
1002         }
1003 }
1004
1005 static void cheetah_flush_icache(void)
1006 {
1007         unsigned long dcu_save;
1008
1009         /* Save current DCU, disable I-cache. */
1010         __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1011                              "or %0, %2, %%g1\n\t"
1012                              "stxa %%g1, [%%g0] %1\n\t"
1013                              "membar #Sync"
1014                              : "=r" (dcu_save)
1015                              : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1016                              : "g1");
1017
1018         __cheetah_flush_icache();
1019
1020         /* Restore DCU register */
1021         __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1022                              "membar #Sync"
1023                              : /* no outputs */
1024                              : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1025 }
1026
1027 static void cheetah_flush_dcache(void)
1028 {
1029         unsigned int dcache_size, dcache_line_size;
1030         unsigned long addr;
1031
1032         dcache_size = local_cpu_data().dcache_size;
1033         dcache_line_size = local_cpu_data().dcache_line_size;
1034
1035         for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1036                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1037                                      "membar #Sync"
1038                                      : /* no outputs */
1039                                      : "r" (addr), "i" (ASI_DCACHE_TAG));
1040         }
1041 }
1042
1043 /* In order to make the even parity correct we must do two things.
1044  * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1045  * Next, we clear out all 32-bytes of data for that line.  Data of
1046  * all-zero + tag parity value of zero == correct parity.
1047  */
1048 static void cheetah_plus_zap_dcache_parity(void)
1049 {
1050         unsigned int dcache_size, dcache_line_size;
1051         unsigned long addr;
1052
1053         dcache_size = local_cpu_data().dcache_size;
1054         dcache_line_size = local_cpu_data().dcache_line_size;
1055
1056         for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1057                 unsigned long tag = (addr >> 14);
1058                 unsigned long line;
1059
1060                 __asm__ __volatile__("membar    #Sync\n\t"
1061                                      "stxa      %0, [%1] %2\n\t"
1062                                      "membar    #Sync"
1063                                      : /* no outputs */
1064                                      : "r" (tag), "r" (addr),
1065                                        "i" (ASI_DCACHE_UTAG));
1066                 for (line = addr; line < addr + dcache_line_size; line += 8)
1067                         __asm__ __volatile__("membar    #Sync\n\t"
1068                                              "stxa      %%g0, [%0] %1\n\t"
1069                                              "membar    #Sync"
1070                                              : /* no outputs */
1071                                              : "r" (line),
1072                                                "i" (ASI_DCACHE_DATA));
1073         }
1074 }
1075
1076 /* Conversion tables used to frob Cheetah AFSR syndrome values into
1077  * something palatable to the memory controller driver get_unumber
1078  * routine.
1079  */
1080 #define MT0     137
1081 #define MT1     138
1082 #define MT2     139
1083 #define NONE    254
1084 #define MTC0    140
1085 #define MTC1    141
1086 #define MTC2    142
1087 #define MTC3    143
1088 #define C0      128
1089 #define C1      129
1090 #define C2      130
1091 #define C3      131
1092 #define C4      132
1093 #define C5      133
1094 #define C6      134
1095 #define C7      135
1096 #define C8      136
1097 #define M2      144
1098 #define M3      145
1099 #define M4      146
1100 #define M       147
1101 static unsigned char cheetah_ecc_syntab[] = {
1102 /*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1103 /*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1104 /*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1105 /*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1106 /*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1107 /*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1108 /*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1109 /*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1110 /*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1111 /*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1112 /*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1113 /*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1114 /*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1115 /*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1116 /*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1117 /*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1118 /*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1119 /*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1120 /*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1121 /*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1122 /*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1123 /*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1124 /*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1125 /*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1126 /*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1127 /*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1128 /*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1129 /*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1130 /*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1131 /*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1132 /*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1133 /*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1134 };
1135 static unsigned char cheetah_mtag_syntab[] = {
1136        NONE, MTC0,
1137        MTC1, NONE,
1138        MTC2, NONE,
1139        NONE, MT0,
1140        MTC3, NONE,
1141        NONE, MT1,
1142        NONE, MT2,
1143        NONE, NONE
1144 };
1145
1146 /* Return the highest priority error conditon mentioned. */
1147 static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1148 {
1149         unsigned long tmp = 0;
1150         int i;
1151
1152         for (i = 0; cheetah_error_table[i].mask; i++) {
1153                 if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1154                         return tmp;
1155         }
1156         return tmp;
1157 }
1158
1159 static const char *cheetah_get_string(unsigned long bit)
1160 {
1161         int i;
1162
1163         for (i = 0; cheetah_error_table[i].mask; i++) {
1164                 if ((bit & cheetah_error_table[i].mask) != 0UL)
1165                         return cheetah_error_table[i].name;
1166         }
1167         return "???";
1168 }
1169
1170 static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1171                                unsigned long afsr, unsigned long afar, int recoverable)
1172 {
1173         unsigned long hipri;
1174         char unum[256];
1175
1176         printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1177                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1178                afsr, afar,
1179                (afsr & CHAFSR_TL1) ? 1 : 0);
1180         printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1181                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1182                regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1183         printk("%s" "ERROR(%d): ",
1184                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1185         printk("TPC<%pS>\n", (void *) regs->tpc);
1186         printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1187                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1188                (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1189                (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1190                (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1191                (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1192         hipri = cheetah_get_hipri(afsr);
1193         printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1194                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1195                hipri, cheetah_get_string(hipri));
1196
1197         /* Try to get unumber if relevant. */
1198 #define ESYND_ERRORS    (CHAFSR_IVC | CHAFSR_IVU | \
1199                          CHAFSR_CPC | CHAFSR_CPU | \
1200                          CHAFSR_UE  | CHAFSR_CE  | \
1201                          CHAFSR_EDC | CHAFSR_EDU  | \
1202                          CHAFSR_UCC | CHAFSR_UCU  | \
1203                          CHAFSR_WDU | CHAFSR_WDC)
1204 #define MSYND_ERRORS    (CHAFSR_EMC | CHAFSR_EMU)
1205         if (afsr & ESYND_ERRORS) {
1206                 int syndrome;
1207                 int ret;
1208
1209                 syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1210                 syndrome = cheetah_ecc_syntab[syndrome];
1211                 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1212                 if (ret != -1)
1213                         printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1214                                (recoverable ? KERN_WARNING : KERN_CRIT),
1215                                smp_processor_id(), unum);
1216         } else if (afsr & MSYND_ERRORS) {
1217                 int syndrome;
1218                 int ret;
1219
1220                 syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1221                 syndrome = cheetah_mtag_syntab[syndrome];
1222                 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1223                 if (ret != -1)
1224                         printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1225                                (recoverable ? KERN_WARNING : KERN_CRIT),
1226                                smp_processor_id(), unum);
1227         }
1228
1229         /* Now dump the cache snapshots. */
1230         printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1231                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1232                (int) info->dcache_index,
1233                info->dcache_tag,
1234                info->dcache_utag,
1235                info->dcache_stag);
1236         printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1237                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1238                info->dcache_data[0],
1239                info->dcache_data[1],
1240                info->dcache_data[2],
1241                info->dcache_data[3]);
1242         printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1243                "u[%016llx] l[%016llx]\n",
1244                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1245                (int) info->icache_index,
1246                info->icache_tag,
1247                info->icache_utag,
1248                info->icache_stag,
1249                info->icache_upper,
1250                info->icache_lower);
1251         printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1252                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1253                info->icache_data[0],
1254                info->icache_data[1],
1255                info->icache_data[2],
1256                info->icache_data[3]);
1257         printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1258                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1259                info->icache_data[4],
1260                info->icache_data[5],
1261                info->icache_data[6],
1262                info->icache_data[7]);
1263         printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1264                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1265                (int) info->ecache_index, info->ecache_tag);
1266         printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1267                (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1268                info->ecache_data[0],
1269                info->ecache_data[1],
1270                info->ecache_data[2],
1271                info->ecache_data[3]);
1272
1273         afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1274         while (afsr != 0UL) {
1275                 unsigned long bit = cheetah_get_hipri(afsr);
1276
1277                 printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1278                        (recoverable ? KERN_WARNING : KERN_CRIT),
1279                        bit, cheetah_get_string(bit));
1280
1281                 afsr &= ~bit;
1282         }
1283
1284         if (!recoverable)
1285                 printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1286 }
1287
1288 static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1289 {
1290         unsigned long afsr, afar;
1291         int ret = 0;
1292
1293         __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1294                              : "=r" (afsr)
1295                              : "i" (ASI_AFSR));
1296         if ((afsr & cheetah_afsr_errors) != 0) {
1297                 if (logp != NULL) {
1298                         __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1299                                              : "=r" (afar)
1300                                              : "i" (ASI_AFAR));
1301                         logp->afsr = afsr;
1302                         logp->afar = afar;
1303                 }
1304                 ret = 1;
1305         }
1306         __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1307                              "membar #Sync\n\t"
1308                              : : "r" (afsr), "i" (ASI_AFSR));
1309
1310         return ret;
1311 }
1312
1313 void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1314 {
1315         struct cheetah_err_info local_snapshot, *p;
1316         int recoverable;
1317
1318         /* Flush E-cache */
1319         cheetah_flush_ecache();
1320
1321         p = cheetah_get_error_log(afsr);
1322         if (!p) {
1323                 prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1324                             afsr, afar);
1325                 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1326                             smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1327                 prom_halt();
1328         }
1329
1330         /* Grab snapshot of logged error. */
1331         memcpy(&local_snapshot, p, sizeof(local_snapshot));
1332
1333         /* If the current trap snapshot does not match what the
1334          * trap handler passed along into our args, big trouble.
1335          * In such a case, mark the local copy as invalid.
1336          *
1337          * Else, it matches and we mark the afsr in the non-local
1338          * copy as invalid so we may log new error traps there.
1339          */
1340         if (p->afsr != afsr || p->afar != afar)
1341                 local_snapshot.afsr = CHAFSR_INVALID;
1342         else
1343                 p->afsr = CHAFSR_INVALID;
1344
1345         cheetah_flush_icache();
1346         cheetah_flush_dcache();
1347
1348         /* Re-enable I-cache/D-cache */
1349         __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1350                              "or %%g1, %1, %%g1\n\t"
1351                              "stxa %%g1, [%%g0] %0\n\t"
1352                              "membar #Sync"
1353                              : /* no outputs */
1354                              : "i" (ASI_DCU_CONTROL_REG),
1355                                "i" (DCU_DC | DCU_IC)
1356                              : "g1");
1357
1358         /* Re-enable error reporting */
1359         __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1360                              "or %%g1, %1, %%g1\n\t"
1361                              "stxa %%g1, [%%g0] %0\n\t"
1362                              "membar #Sync"
1363                              : /* no outputs */
1364                              : "i" (ASI_ESTATE_ERROR_EN),
1365                                "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1366                              : "g1");
1367
1368         /* Decide if we can continue after handling this trap and
1369          * logging the error.
1370          */
1371         recoverable = 1;
1372         if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1373                 recoverable = 0;
1374
1375         /* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1376          * error was logged while we had error reporting traps disabled.
1377          */
1378         if (cheetah_recheck_errors(&local_snapshot)) {
1379                 unsigned long new_afsr = local_snapshot.afsr;
1380
1381                 /* If we got a new asynchronous error, die... */
1382                 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1383                                 CHAFSR_WDU | CHAFSR_CPU |
1384                                 CHAFSR_IVU | CHAFSR_UE |
1385                                 CHAFSR_BERR | CHAFSR_TO))
1386                         recoverable = 0;
1387         }
1388
1389         /* Log errors. */
1390         cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1391
1392         if (!recoverable)
1393                 panic("Irrecoverable Fast-ECC error trap.\n");
1394
1395         /* Flush E-cache to kick the error trap handlers out. */
1396         cheetah_flush_ecache();
1397 }
1398
1399 /* Try to fix a correctable error by pushing the line out from
1400  * the E-cache.  Recheck error reporting registers to see if the
1401  * problem is intermittent.
1402  */
1403 static int cheetah_fix_ce(unsigned long physaddr)
1404 {
1405         unsigned long orig_estate;
1406         unsigned long alias1, alias2;
1407         int ret;
1408
1409         /* Make sure correctable error traps are disabled. */
1410         __asm__ __volatile__("ldxa      [%%g0] %2, %0\n\t"
1411                              "andn      %0, %1, %%g1\n\t"
1412                              "stxa      %%g1, [%%g0] %2\n\t"
1413                              "membar    #Sync"
1414                              : "=&r" (orig_estate)
1415                              : "i" (ESTATE_ERROR_CEEN),
1416                                "i" (ASI_ESTATE_ERROR_EN)
1417                              : "g1");
1418
1419         /* We calculate alias addresses that will force the
1420          * cache line in question out of the E-cache.  Then
1421          * we bring it back in with an atomic instruction so
1422          * that we get it in some modified/exclusive state,
1423          * then we displace it again to try and get proper ECC
1424          * pushed back into the system.
1425          */
1426         physaddr &= ~(8UL - 1UL);
1427         alias1 = (ecache_flush_physbase +
1428                   (physaddr & ((ecache_flush_size >> 1) - 1)));
1429         alias2 = alias1 + (ecache_flush_size >> 1);
1430         __asm__ __volatile__("ldxa      [%0] %3, %%g0\n\t"
1431                              "ldxa      [%1] %3, %%g0\n\t"
1432                              "casxa     [%2] %3, %%g0, %%g0\n\t"
1433                              "ldxa      [%0] %3, %%g0\n\t"
1434                              "ldxa      [%1] %3, %%g0\n\t"
1435                              "membar    #Sync"
1436                              : /* no outputs */
1437                              : "r" (alias1), "r" (alias2),
1438                                "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1439
1440         /* Did that trigger another error? */
1441         if (cheetah_recheck_errors(NULL)) {
1442                 /* Try one more time. */
1443                 __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1444                                      "membar #Sync"
1445                                      : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1446                 if (cheetah_recheck_errors(NULL))
1447                         ret = 2;
1448                 else
1449                         ret = 1;
1450         } else {
1451                 /* No new error, intermittent problem. */
1452                 ret = 0;
1453         }
1454
1455         /* Restore error enables. */
1456         __asm__ __volatile__("stxa      %0, [%%g0] %1\n\t"
1457                              "membar    #Sync"
1458                              : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1459
1460         return ret;
1461 }
1462
1463 /* Return non-zero if PADDR is a valid physical memory address. */
1464 static int cheetah_check_main_memory(unsigned long paddr)
1465 {
1466         unsigned long vaddr = PAGE_OFFSET + paddr;
1467
1468         if (vaddr > (unsigned long) high_memory)
1469                 return 0;
1470
1471         return kern_addr_valid(vaddr);
1472 }
1473
1474 void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1475 {
1476         struct cheetah_err_info local_snapshot, *p;
1477         int recoverable, is_memory;
1478
1479         p = cheetah_get_error_log(afsr);
1480         if (!p) {
1481                 prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1482                             afsr, afar);
1483                 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1484                             smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1485                 prom_halt();
1486         }
1487
1488         /* Grab snapshot of logged error. */
1489         memcpy(&local_snapshot, p, sizeof(local_snapshot));
1490
1491         /* If the current trap snapshot does not match what the
1492          * trap handler passed along into our args, big trouble.
1493          * In such a case, mark the local copy as invalid.
1494          *
1495          * Else, it matches and we mark the afsr in the non-local
1496          * copy as invalid so we may log new error traps there.
1497          */
1498         if (p->afsr != afsr || p->afar != afar)
1499                 local_snapshot.afsr = CHAFSR_INVALID;
1500         else
1501                 p->afsr = CHAFSR_INVALID;
1502
1503         is_memory = cheetah_check_main_memory(afar);
1504
1505         if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1506                 /* XXX Might want to log the results of this operation
1507                  * XXX somewhere... -DaveM
1508                  */
1509                 cheetah_fix_ce(afar);
1510         }
1511
1512         {
1513                 int flush_all, flush_line;
1514
1515                 flush_all = flush_line = 0;
1516                 if ((afsr & CHAFSR_EDC) != 0UL) {
1517                         if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1518                                 flush_line = 1;
1519                         else
1520                                 flush_all = 1;
1521                 } else if ((afsr & CHAFSR_CPC) != 0UL) {
1522                         if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1523                                 flush_line = 1;
1524                         else
1525                                 flush_all = 1;
1526                 }
1527
1528                 /* Trap handler only disabled I-cache, flush it. */
1529                 cheetah_flush_icache();
1530
1531                 /* Re-enable I-cache */
1532                 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1533                                      "or %%g1, %1, %%g1\n\t"
1534                                      "stxa %%g1, [%%g0] %0\n\t"
1535                                      "membar #Sync"
1536                                      : /* no outputs */
1537                                      : "i" (ASI_DCU_CONTROL_REG),
1538                                      "i" (DCU_IC)
1539                                      : "g1");
1540
1541                 if (flush_all)
1542                         cheetah_flush_ecache();
1543                 else if (flush_line)
1544                         cheetah_flush_ecache_line(afar);
1545         }
1546
1547         /* Re-enable error reporting */
1548         __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1549                              "or %%g1, %1, %%g1\n\t"
1550                              "stxa %%g1, [%%g0] %0\n\t"
1551                              "membar #Sync"
1552                              : /* no outputs */
1553                              : "i" (ASI_ESTATE_ERROR_EN),
1554                                "i" (ESTATE_ERROR_CEEN)
1555                              : "g1");
1556
1557         /* Decide if we can continue after handling this trap and
1558          * logging the error.
1559          */
1560         recoverable = 1;
1561         if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1562                 recoverable = 0;
1563
1564         /* Re-check AFSR/AFAR */
1565         (void) cheetah_recheck_errors(&local_snapshot);
1566
1567         /* Log errors. */
1568         cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1569
1570         if (!recoverable)
1571                 panic("Irrecoverable Correctable-ECC error trap.\n");
1572 }
1573
1574 void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1575 {
1576         struct cheetah_err_info local_snapshot, *p;
1577         int recoverable, is_memory;
1578
1579 #ifdef CONFIG_PCI
1580         /* Check for the special PCI poke sequence. */
1581         if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1582                 cheetah_flush_icache();
1583                 cheetah_flush_dcache();
1584
1585                 /* Re-enable I-cache/D-cache */
1586                 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1587                                      "or %%g1, %1, %%g1\n\t"
1588                                      "stxa %%g1, [%%g0] %0\n\t"
1589                                      "membar #Sync"
1590                                      : /* no outputs */
1591                                      : "i" (ASI_DCU_CONTROL_REG),
1592                                        "i" (DCU_DC | DCU_IC)
1593                                      : "g1");
1594
1595                 /* Re-enable error reporting */
1596                 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1597                                      "or %%g1, %1, %%g1\n\t"
1598                                      "stxa %%g1, [%%g0] %0\n\t"
1599                                      "membar #Sync"
1600                                      : /* no outputs */
1601                                      : "i" (ASI_ESTATE_ERROR_EN),
1602                                        "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1603                                      : "g1");
1604
1605                 (void) cheetah_recheck_errors(NULL);
1606
1607                 pci_poke_faulted = 1;
1608                 regs->tpc += 4;
1609                 regs->tnpc = regs->tpc + 4;
1610                 return;
1611         }
1612 #endif
1613
1614         p = cheetah_get_error_log(afsr);
1615         if (!p) {
1616                 prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1617                             afsr, afar);
1618                 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1619                             smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1620                 prom_halt();
1621         }
1622
1623         /* Grab snapshot of logged error. */
1624         memcpy(&local_snapshot, p, sizeof(local_snapshot));
1625
1626         /* If the current trap snapshot does not match what the
1627          * trap handler passed along into our args, big trouble.
1628          * In such a case, mark the local copy as invalid.
1629          *
1630          * Else, it matches and we mark the afsr in the non-local
1631          * copy as invalid so we may log new error traps there.
1632          */
1633         if (p->afsr != afsr || p->afar != afar)
1634                 local_snapshot.afsr = CHAFSR_INVALID;
1635         else
1636                 p->afsr = CHAFSR_INVALID;
1637
1638         is_memory = cheetah_check_main_memory(afar);
1639
1640         {
1641                 int flush_all, flush_line;
1642
1643                 flush_all = flush_line = 0;
1644                 if ((afsr & CHAFSR_EDU) != 0UL) {
1645                         if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1646                                 flush_line = 1;
1647                         else
1648                                 flush_all = 1;
1649                 } else if ((afsr & CHAFSR_BERR) != 0UL) {
1650                         if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1651                                 flush_line = 1;
1652                         else
1653                                 flush_all = 1;
1654                 }
1655
1656                 cheetah_flush_icache();
1657                 cheetah_flush_dcache();
1658
1659                 /* Re-enable I/D caches */
1660                 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1661                                      "or %%g1, %1, %%g1\n\t"
1662                                      "stxa %%g1, [%%g0] %0\n\t"
1663                                      "membar #Sync"
1664                                      : /* no outputs */
1665                                      : "i" (ASI_DCU_CONTROL_REG),
1666                                      "i" (DCU_IC | DCU_DC)
1667                                      : "g1");
1668
1669                 if (flush_all)
1670                         cheetah_flush_ecache();
1671                 else if (flush_line)
1672                         cheetah_flush_ecache_line(afar);
1673         }
1674
1675         /* Re-enable error reporting */
1676         __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1677                              "or %%g1, %1, %%g1\n\t"
1678                              "stxa %%g1, [%%g0] %0\n\t"
1679                              "membar #Sync"
1680                              : /* no outputs */
1681                              : "i" (ASI_ESTATE_ERROR_EN),
1682                              "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1683                              : "g1");
1684
1685         /* Decide if we can continue after handling this trap and
1686          * logging the error.
1687          */
1688         recoverable = 1;
1689         if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1690                 recoverable = 0;
1691
1692         /* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1693          * error was logged while we had error reporting traps disabled.
1694          */
1695         if (cheetah_recheck_errors(&local_snapshot)) {
1696                 unsigned long new_afsr = local_snapshot.afsr;
1697
1698                 /* If we got a new asynchronous error, die... */
1699                 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1700                                 CHAFSR_WDU | CHAFSR_CPU |
1701                                 CHAFSR_IVU | CHAFSR_UE |
1702                                 CHAFSR_BERR | CHAFSR_TO))
1703                         recoverable = 0;
1704         }
1705
1706         /* Log errors. */
1707         cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1708
1709         /* "Recoverable" here means we try to yank the page from ever
1710          * being newly used again.  This depends upon a few things:
1711          * 1) Must be main memory, and AFAR must be valid.
1712          * 2) If we trapped from user, OK.
1713          * 3) Else, if we trapped from kernel we must find exception
1714          *    table entry (ie. we have to have been accessing user
1715          *    space).
1716          *
1717          * If AFAR is not in main memory, or we trapped from kernel
1718          * and cannot find an exception table entry, it is unacceptable
1719          * to try and continue.
1720          */
1721         if (recoverable && is_memory) {
1722                 if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1723                         /* OK, usermode access. */
1724                         recoverable = 1;
1725                 } else {
1726                         const struct exception_table_entry *entry;
1727
1728                         entry = search_exception_tables(regs->tpc);
1729                         if (entry) {
1730                                 /* OK, kernel access to userspace. */
1731                                 recoverable = 1;
1732
1733                         } else {
1734                                 /* BAD, privileged state is corrupted. */
1735                                 recoverable = 0;
1736                         }
1737
1738                         if (recoverable) {
1739                                 if (pfn_valid(afar >> PAGE_SHIFT))
1740                                         get_page(pfn_to_page(afar >> PAGE_SHIFT));
1741                                 else
1742                                         recoverable = 0;
1743
1744                                 /* Only perform fixup if we still have a
1745                                  * recoverable condition.
1746                                  */
1747                                 if (recoverable) {
1748                                         regs->tpc = entry->fixup;
1749                                         regs->tnpc = regs->tpc + 4;
1750                                 }
1751                         }
1752                 }
1753         } else {
1754                 recoverable = 0;
1755         }
1756
1757         if (!recoverable)
1758                 panic("Irrecoverable deferred error trap.\n");
1759 }
1760
1761 /* Handle a D/I cache parity error trap.  TYPE is encoded as:
1762  *
1763  * Bit0:        0=dcache,1=icache
1764  * Bit1:        0=recoverable,1=unrecoverable
1765  *
1766  * The hardware has disabled both the I-cache and D-cache in
1767  * the %dcr register.  
1768  */
1769 void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1770 {
1771         if (type & 0x1)
1772                 __cheetah_flush_icache();
1773         else
1774                 cheetah_plus_zap_dcache_parity();
1775         cheetah_flush_dcache();
1776
1777         /* Re-enable I-cache/D-cache */
1778         __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1779                              "or %%g1, %1, %%g1\n\t"
1780                              "stxa %%g1, [%%g0] %0\n\t"
1781                              "membar #Sync"
1782                              : /* no outputs */
1783                              : "i" (ASI_DCU_CONTROL_REG),
1784                                "i" (DCU_DC | DCU_IC)
1785                              : "g1");
1786
1787         if (type & 0x2) {
1788                 printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1789                        smp_processor_id(),
1790                        (type & 0x1) ? 'I' : 'D',
1791                        regs->tpc);
1792                 printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1793                 panic("Irrecoverable Cheetah+ parity error.");
1794         }
1795
1796         printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1797                smp_processor_id(),
1798                (type & 0x1) ? 'I' : 'D',
1799                regs->tpc);
1800         printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1801 }
1802
1803 struct sun4v_error_entry {
1804         /* Unique error handle */
1805 /*0x00*/u64             err_handle;
1806
1807         /* %stick value at the time of the error */
1808 /*0x08*/u64             err_stick;
1809
1810 /*0x10*/u8              reserved_1[3];
1811
1812         /* Error type */
1813 /*0x13*/u8              err_type;
1814 #define SUN4V_ERR_TYPE_UNDEFINED        0
1815 #define SUN4V_ERR_TYPE_UNCORRECTED_RES  1
1816 #define SUN4V_ERR_TYPE_PRECISE_NONRES   2
1817 #define SUN4V_ERR_TYPE_DEFERRED_NONRES  3
1818 #define SUN4V_ERR_TYPE_SHUTDOWN_RQST    4
1819 #define SUN4V_ERR_TYPE_DUMP_CORE        5
1820 #define SUN4V_ERR_TYPE_SP_STATE_CHANGE  6
1821 #define SUN4V_ERR_TYPE_NUM              7
1822
1823         /* Error attributes */
1824 /*0x14*/u32             err_attrs;
1825 #define SUN4V_ERR_ATTRS_PROCESSOR       0x00000001
1826 #define SUN4V_ERR_ATTRS_MEMORY          0x00000002
1827 #define SUN4V_ERR_ATTRS_PIO             0x00000004
1828 #define SUN4V_ERR_ATTRS_INT_REGISTERS   0x00000008
1829 #define SUN4V_ERR_ATTRS_FPU_REGISTERS   0x00000010
1830 #define SUN4V_ERR_ATTRS_SHUTDOWN_RQST   0x00000020
1831 #define SUN4V_ERR_ATTRS_ASR             0x00000040
1832 #define SUN4V_ERR_ATTRS_ASI             0x00000080
1833 #define SUN4V_ERR_ATTRS_PRIV_REG        0x00000100
1834 #define SUN4V_ERR_ATTRS_SPSTATE_MSK     0x00000600
1835 #define SUN4V_ERR_ATTRS_MCD             0x00000800
1836 #define SUN4V_ERR_ATTRS_SPSTATE_SHFT    9
1837 #define SUN4V_ERR_ATTRS_MODE_MSK        0x03000000
1838 #define SUN4V_ERR_ATTRS_MODE_SHFT       24
1839 #define SUN4V_ERR_ATTRS_RES_QUEUE_FULL  0x80000000
1840
1841 #define SUN4V_ERR_SPSTATE_FAULTED       0
1842 #define SUN4V_ERR_SPSTATE_AVAILABLE     1
1843 #define SUN4V_ERR_SPSTATE_NOT_PRESENT   2
1844
1845 #define SUN4V_ERR_MODE_USER             1
1846 #define SUN4V_ERR_MODE_PRIV             2
1847
1848         /* Real address of the memory region or PIO transaction */
1849 /*0x18*/u64             err_raddr;
1850
1851         /* Size of the operation triggering the error, in bytes */
1852 /*0x20*/u32             err_size;
1853
1854         /* ID of the CPU */
1855 /*0x24*/u16             err_cpu;
1856
1857         /* Grace periof for shutdown, in seconds */
1858 /*0x26*/u16             err_secs;
1859
1860         /* Value of the %asi register */
1861 /*0x28*/u8              err_asi;
1862
1863 /*0x29*/u8              reserved_2;
1864
1865         /* Value of the ASR register number */
1866 /*0x2a*/u16             err_asr;
1867 #define SUN4V_ERR_ASR_VALID             0x8000
1868
1869 /*0x2c*/u32             reserved_3;
1870 /*0x30*/u64             reserved_4;
1871 /*0x38*/u64             reserved_5;
1872 };
1873
1874 static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1875 static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1876
1877 static const char *sun4v_err_type_to_str(u8 type)
1878 {
1879         static const char *types[SUN4V_ERR_TYPE_NUM] = {
1880                 "undefined",
1881                 "uncorrected resumable",
1882                 "precise nonresumable",
1883                 "deferred nonresumable",
1884                 "shutdown request",
1885                 "dump core",
1886                 "SP state change",
1887         };
1888
1889         if (type < SUN4V_ERR_TYPE_NUM)
1890                 return types[type];
1891
1892         return "unknown";
1893 }
1894
1895 static void sun4v_emit_err_attr_strings(u32 attrs)
1896 {
1897         static const char *attr_names[] = {
1898                 "processor",
1899                 "memory",
1900                 "PIO",
1901                 "int-registers",
1902                 "fpu-registers",
1903                 "shutdown-request",
1904                 "ASR",
1905                 "ASI",
1906                 "priv-reg",
1907         };
1908         static const char *sp_states[] = {
1909                 "sp-faulted",
1910                 "sp-available",
1911                 "sp-not-present",
1912                 "sp-state-reserved",
1913         };
1914         static const char *modes[] = {
1915                 "mode-reserved0",
1916                 "user",
1917                 "priv",
1918                 "mode-reserved1",
1919         };
1920         u32 sp_state, mode;
1921         int i;
1922
1923         for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1924                 if (attrs & (1U << i)) {
1925                         const char *s = attr_names[i];
1926
1927                         pr_cont("%s ", s);
1928                 }
1929         }
1930
1931         sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1932                     SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1933         pr_cont("%s ", sp_states[sp_state]);
1934
1935         mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1936                 SUN4V_ERR_ATTRS_MODE_SHFT);
1937         pr_cont("%s ", modes[mode]);
1938
1939         if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1940                 pr_cont("res-queue-full ");
1941 }
1942
1943 /* When the report contains a real-address of "-1" it means that the
1944  * hardware did not provide the address.  So we compute the effective
1945  * address of the load or store instruction at regs->tpc and report
1946  * that.  Usually when this happens it's a PIO and in such a case we
1947  * are using physical addresses with bypass ASIs anyways, so what we
1948  * report here is exactly what we want.
1949  */
1950 static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1951 {
1952         unsigned int insn;
1953         u64 addr;
1954
1955         if (!(regs->tstate & TSTATE_PRIV))
1956                 return;
1957
1958         insn = *(unsigned int *) regs->tpc;
1959
1960         addr = compute_effective_address(regs, insn, 0);
1961
1962         printk("%s: insn effective address [0x%016llx]\n",
1963                pfx, addr);
1964 }
1965
1966 static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1967                             int cpu, const char *pfx, atomic_t *ocnt)
1968 {
1969         u64 *raw_ptr = (u64 *) ent;
1970         u32 attrs;
1971         int cnt;
1972
1973         printk("%s: Reporting on cpu %d\n", pfx, cpu);
1974         printk("%s: TPC [0x%016lx] <%pS>\n",
1975                pfx, regs->tpc, (void *) regs->tpc);
1976
1977         printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1978                pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1979         printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1980                pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1981
1982         printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1983                pfx, ent->err_handle, ent->err_stick);
1984
1985         printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1986
1987         attrs = ent->err_attrs;
1988         printk("%s: attrs [0x%08x] < ", pfx, attrs);
1989         sun4v_emit_err_attr_strings(attrs);
1990         pr_cont(">\n");
1991
1992         /* Various fields in the error report are only valid if
1993          * certain attribute bits are set.
1994          */
1995         if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1996                      SUN4V_ERR_ATTRS_PIO |
1997                      SUN4V_ERR_ATTRS_ASI)) {
1998                 printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1999
2000                 if (ent->err_raddr == ~(u64)0)
2001                         sun4v_report_real_raddr(pfx, regs);
2002         }
2003
2004         if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2005                 printk("%s: size [0x%x]\n", pfx, ent->err_size);
2006
2007         if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2008                      SUN4V_ERR_ATTRS_INT_REGISTERS |
2009                      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2010                      SUN4V_ERR_ATTRS_PRIV_REG))
2011                 printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2012
2013         if (attrs & SUN4V_ERR_ATTRS_ASI)
2014                 printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2015
2016         if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2017                       SUN4V_ERR_ATTRS_FPU_REGISTERS |
2018                       SUN4V_ERR_ATTRS_PRIV_REG)) &&
2019             (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2020                 printk("%s: reg [0x%04x]\n",
2021                        pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2022
2023         show_regs(regs);
2024
2025         if ((cnt = atomic_read(ocnt)) != 0) {
2026                 atomic_set(ocnt, 0);
2027                 wmb();
2028                 printk("%s: Queue overflowed %d times.\n",
2029                        pfx, cnt);
2030         }
2031 }
2032
2033 /* Handle memory corruption detected error which is vectored in
2034  * through resumable error trap.
2035  */
2036 void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2037 {
2038         if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2039                        SIGSEGV) == NOTIFY_STOP)
2040                 return;
2041
2042         if (regs->tstate & TSTATE_PRIV) {
2043                 /* MCD exception could happen because the task was
2044                  * running a system call with MCD enabled and passed a
2045                  * non-versioned pointer or pointer with bad version
2046                  * tag to the system call. In such cases, hypervisor
2047                  * places the address of offending instruction in the
2048                  * resumable error report. This is a deferred error,
2049                  * so the read/write that caused the trap was potentially
2050                  * retired long time back and we may have no choice
2051                  * but to send SIGSEGV to the process.
2052                  */
2053                 const struct exception_table_entry *entry;
2054
2055                 entry = search_exception_tables(regs->tpc);
2056                 if (entry) {
2057                         /* Looks like a bad syscall parameter */
2058 #ifdef DEBUG_EXCEPTIONS
2059                         pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2060                                  regs->tpc);
2061                         pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2062                                  ent.err_raddr, entry->fixup);
2063 #endif
2064                         regs->tpc = entry->fixup;
2065                         regs->tnpc = regs->tpc + 4;
2066                         return;
2067                 }
2068         }
2069
2070         /* Send SIGSEGV to the userspace process with the right signal
2071          * code
2072          */
2073         force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr,
2074                         0);
2075 }
2076
2077 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2078  * Log the event and clear the first word of the entry.
2079  */
2080 void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2081 {
2082         enum ctx_state prev_state = exception_enter();
2083         struct sun4v_error_entry *ent, local_copy;
2084         struct trap_per_cpu *tb;
2085         unsigned long paddr;
2086         int cpu;
2087
2088         cpu = get_cpu();
2089
2090         tb = &trap_block[cpu];
2091         paddr = tb->resum_kernel_buf_pa + offset;
2092         ent = __va(paddr);
2093
2094         memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2095
2096         /* We have a local copy now, so release the entry.  */
2097         ent->err_handle = 0;
2098         wmb();
2099
2100         put_cpu();
2101
2102         if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2103                 /* We should really take the seconds field of
2104                  * the error report and use it for the shutdown
2105                  * invocation, but for now do the same thing we
2106                  * do for a DS shutdown request.
2107                  */
2108                 pr_info("Shutdown request, %u seconds...\n",
2109                         local_copy.err_secs);
2110                 orderly_poweroff(true);
2111                 goto out;
2112         }
2113
2114         /* If this is a memory corruption detected error vectored in
2115          * by HV through resumable error trap, call the handler
2116          */
2117         if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2118                 do_mcd_err(regs, local_copy);
2119                 return;
2120         }
2121
2122         sun4v_log_error(regs, &local_copy, cpu,
2123                         KERN_ERR "RESUMABLE ERROR",
2124                         &sun4v_resum_oflow_cnt);
2125 out:
2126         exception_exit(prev_state);
2127 }
2128
2129 /* If we try to printk() we'll probably make matters worse, by trying
2130  * to retake locks this cpu already holds or causing more errors. So
2131  * just bump a counter, and we'll report these counter bumps above.
2132  */
2133 void sun4v_resum_overflow(struct pt_regs *regs)
2134 {
2135         atomic_inc(&sun4v_resum_oflow_cnt);
2136 }
2137
2138 /* Given a set of registers, get the virtual addressi that was being accessed
2139  * by the faulting instructions at tpc.
2140  */
2141 static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2142 {
2143         unsigned int insn;
2144
2145         if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2146                 return compute_effective_address(regs, insn,
2147                                                  (insn >> 25) & 0x1f);
2148         }
2149         return 0;
2150 }
2151
2152 /* Attempt to handle non-resumable errors generated from userspace.
2153  * Returns true if the signal was handled, false otherwise.
2154  */
2155 bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2156                                   struct sun4v_error_entry *ent) {
2157
2158         unsigned int attrs = ent->err_attrs;
2159
2160         if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2161                 unsigned long addr = ent->err_raddr;
2162
2163                 if (addr == ~(u64)0) {
2164                         /* This seems highly unlikely to ever occur */
2165                         pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2166                 } else {
2167                         unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2168                                                               PAGE_SIZE);
2169
2170                         /* Break the unfortunate news. */
2171                         pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2172                                  addr);
2173                         pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2174                                  page_cnt);
2175
2176                         while (page_cnt-- > 0) {
2177                                 if (pfn_valid(addr >> PAGE_SHIFT))
2178                                         get_page(pfn_to_page(addr >> PAGE_SHIFT));
2179                                 addr += PAGE_SIZE;
2180                         }
2181                 }
2182                 force_sig(SIGKILL);
2183
2184                 return true;
2185         }
2186         if (attrs & SUN4V_ERR_ATTRS_PIO) {
2187                 force_sig_fault(SIGBUS, BUS_ADRERR,
2188                                 (void __user *)sun4v_get_vaddr(regs), 0);
2189                 return true;
2190         }
2191
2192         /* Default to doing nothing */
2193         return false;
2194 }
2195
2196 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2197  * Log the event, clear the first word of the entry, and die.
2198  */
2199 void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2200 {
2201         struct sun4v_error_entry *ent, local_copy;
2202         struct trap_per_cpu *tb;
2203         unsigned long paddr;
2204         int cpu;
2205
2206         cpu = get_cpu();
2207
2208         tb = &trap_block[cpu];
2209         paddr = tb->nonresum_kernel_buf_pa + offset;
2210         ent = __va(paddr);
2211
2212         memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2213
2214         /* We have a local copy now, so release the entry.  */
2215         ent->err_handle = 0;
2216         wmb();
2217
2218         put_cpu();
2219
2220         if (!(regs->tstate & TSTATE_PRIV) &&
2221             sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2222                 /* DON'T PANIC: This userspace error was handled. */
2223                 return;
2224         }
2225
2226 #ifdef CONFIG_PCI
2227         /* Check for the special PCI poke sequence. */
2228         if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2229                 pci_poke_faulted = 1;
2230                 regs->tpc += 4;
2231                 regs->tnpc = regs->tpc + 4;
2232                 return;
2233         }
2234 #endif
2235
2236         sun4v_log_error(regs, &local_copy, cpu,
2237                         KERN_EMERG "NON-RESUMABLE ERROR",
2238                         &sun4v_nonresum_oflow_cnt);
2239
2240         panic("Non-resumable error.");
2241 }
2242
2243 /* If we try to printk() we'll probably make matters worse, by trying
2244  * to retake locks this cpu already holds or causing more errors. So
2245  * just bump a counter, and we'll report these counter bumps above.
2246  */
2247 void sun4v_nonresum_overflow(struct pt_regs *regs)
2248 {
2249         /* XXX Actually even this can make not that much sense.  Perhaps
2250          * XXX we should just pull the plug and panic directly from here?
2251          */
2252         atomic_inc(&sun4v_nonresum_oflow_cnt);
2253 }
2254
2255 static void sun4v_tlb_error(struct pt_regs *regs)
2256 {
2257         die_if_kernel("TLB/TSB error", regs);
2258 }
2259
2260 unsigned long sun4v_err_itlb_vaddr;
2261 unsigned long sun4v_err_itlb_ctx;
2262 unsigned long sun4v_err_itlb_pte;
2263 unsigned long sun4v_err_itlb_error;
2264
2265 void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2266 {
2267         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2268
2269         printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2270                regs->tpc, tl);
2271         printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2272         printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2273         printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2274                (void *) regs->u_regs[UREG_I7]);
2275         printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2276                "pte[%lx] error[%lx]\n",
2277                sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2278                sun4v_err_itlb_pte, sun4v_err_itlb_error);
2279
2280         sun4v_tlb_error(regs);
2281 }
2282
2283 unsigned long sun4v_err_dtlb_vaddr;
2284 unsigned long sun4v_err_dtlb_ctx;
2285 unsigned long sun4v_err_dtlb_pte;
2286 unsigned long sun4v_err_dtlb_error;
2287
2288 void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2289 {
2290         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2291
2292         printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2293                regs->tpc, tl);
2294         printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2295         printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2296         printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2297                (void *) regs->u_regs[UREG_I7]);
2298         printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2299                "pte[%lx] error[%lx]\n",
2300                sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2301                sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2302
2303         sun4v_tlb_error(regs);
2304 }
2305
2306 void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2307 {
2308         printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2309                err, op);
2310 }
2311
2312 void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2313 {
2314         printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2315                err, op);
2316 }
2317
2318 static void do_fpe_common(struct pt_regs *regs)
2319 {
2320         if (regs->tstate & TSTATE_PRIV) {
2321                 regs->tpc = regs->tnpc;
2322                 regs->tnpc += 4;
2323         } else {
2324                 unsigned long fsr = current_thread_info()->xfsr[0];
2325                 int code;
2326
2327                 if (test_thread_flag(TIF_32BIT)) {
2328                         regs->tpc &= 0xffffffff;
2329                         regs->tnpc &= 0xffffffff;
2330                 }
2331                 code = FPE_FLTUNK;
2332                 if ((fsr & 0x1c000) == (1 << 14)) {
2333                         if (fsr & 0x10)
2334                                 code = FPE_FLTINV;
2335                         else if (fsr & 0x08)
2336                                 code = FPE_FLTOVF;
2337                         else if (fsr & 0x04)
2338                                 code = FPE_FLTUND;
2339                         else if (fsr & 0x02)
2340                                 code = FPE_FLTDIV;
2341                         else if (fsr & 0x01)
2342                                 code = FPE_FLTRES;
2343                 }
2344                 force_sig_fault(SIGFPE, code,
2345                                 (void __user *)regs->tpc, 0);
2346         }
2347 }
2348
2349 void do_fpieee(struct pt_regs *regs)
2350 {
2351         enum ctx_state prev_state = exception_enter();
2352
2353         if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2354                        0, 0x24, SIGFPE) == NOTIFY_STOP)
2355                 goto out;
2356
2357         do_fpe_common(regs);
2358 out:
2359         exception_exit(prev_state);
2360 }
2361
2362 void do_fpother(struct pt_regs *regs)
2363 {
2364         enum ctx_state prev_state = exception_enter();
2365         struct fpustate *f = FPUSTATE;
2366         int ret = 0;
2367
2368         if (notify_die(DIE_TRAP, "fpu exception other", regs,
2369                        0, 0x25, SIGFPE) == NOTIFY_STOP)
2370                 goto out;
2371
2372         switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2373         case (2 << 14): /* unfinished_FPop */
2374         case (3 << 14): /* unimplemented_FPop */
2375                 ret = do_mathemu(regs, f, false);
2376                 break;
2377         }
2378         if (ret)
2379                 goto out;
2380         do_fpe_common(regs);
2381 out:
2382         exception_exit(prev_state);
2383 }
2384
2385 void do_tof(struct pt_regs *regs)
2386 {
2387         enum ctx_state prev_state = exception_enter();
2388
2389         if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2390                        0, 0x26, SIGEMT) == NOTIFY_STOP)
2391                 goto out;
2392
2393         if (regs->tstate & TSTATE_PRIV)
2394                 die_if_kernel("Penguin overflow trap from kernel mode", regs);
2395         if (test_thread_flag(TIF_32BIT)) {
2396                 regs->tpc &= 0xffffffff;
2397                 regs->tnpc &= 0xffffffff;
2398         }
2399         force_sig_fault(SIGEMT, EMT_TAGOVF,
2400                         (void __user *)regs->tpc, 0);
2401 out:
2402         exception_exit(prev_state);
2403 }
2404
2405 void do_div0(struct pt_regs *regs)
2406 {
2407         enum ctx_state prev_state = exception_enter();
2408
2409         if (notify_die(DIE_TRAP, "integer division by zero", regs,
2410                        0, 0x28, SIGFPE) == NOTIFY_STOP)
2411                 goto out;
2412
2413         if (regs->tstate & TSTATE_PRIV)
2414                 die_if_kernel("TL0: Kernel divide by zero.", regs);
2415         if (test_thread_flag(TIF_32BIT)) {
2416                 regs->tpc &= 0xffffffff;
2417                 regs->tnpc &= 0xffffffff;
2418         }
2419         force_sig_fault(SIGFPE, FPE_INTDIV,
2420                         (void __user *)regs->tpc, 0);
2421 out:
2422         exception_exit(prev_state);
2423 }
2424
2425 static void instruction_dump(unsigned int *pc)
2426 {
2427         int i;
2428
2429         if ((((unsigned long) pc) & 3))
2430                 return;
2431
2432         printk("Instruction DUMP:");
2433         for (i = -3; i < 6; i++)
2434                 printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2435         printk("\n");
2436 }
2437
2438 static void user_instruction_dump(unsigned int __user *pc)
2439 {
2440         int i;
2441         unsigned int buf[9];
2442         
2443         if ((((unsigned long) pc) & 3))
2444                 return;
2445                 
2446         if (copy_from_user(buf, pc - 3, sizeof(buf)))
2447                 return;
2448
2449         printk("Instruction DUMP:");
2450         for (i = 0; i < 9; i++)
2451                 printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2452         printk("\n");
2453 }
2454
2455 void show_stack(struct task_struct *tsk, unsigned long *_ksp)
2456 {
2457         unsigned long fp, ksp;
2458         struct thread_info *tp;
2459         int count = 0;
2460 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2461         int graph = 0;
2462 #endif
2463
2464         ksp = (unsigned long) _ksp;
2465         if (!tsk)
2466                 tsk = current;
2467         tp = task_thread_info(tsk);
2468         if (ksp == 0UL) {
2469                 if (tsk == current)
2470                         asm("mov %%fp, %0" : "=r" (ksp));
2471                 else
2472                         ksp = tp->ksp;
2473         }
2474         if (tp == current_thread_info())
2475                 flushw_all();
2476
2477         fp = ksp + STACK_BIAS;
2478
2479         printk("Call Trace:\n");
2480         do {
2481                 struct sparc_stackf *sf;
2482                 struct pt_regs *regs;
2483                 unsigned long pc;
2484
2485                 if (!kstack_valid(tp, fp))
2486                         break;
2487                 sf = (struct sparc_stackf *) fp;
2488                 regs = (struct pt_regs *) (sf + 1);
2489
2490                 if (kstack_is_trap_frame(tp, regs)) {
2491                         if (!(regs->tstate & TSTATE_PRIV))
2492                                 break;
2493                         pc = regs->tpc;
2494                         fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2495                 } else {
2496                         pc = sf->callers_pc;
2497                         fp = (unsigned long)sf->fp + STACK_BIAS;
2498                 }
2499
2500                 printk(" [%016lx] %pS\n", pc, (void *) pc);
2501 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2502                 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2503                         struct ftrace_ret_stack *ret_stack;
2504                         ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
2505                         if (ret_stack) {
2506                                 pc = ret_stack->ret;
2507                                 printk(" [%016lx] %pS\n", pc, (void *) pc);
2508                                 graph++;
2509                         }
2510                 }
2511 #endif
2512         } while (++count < 16);
2513 }
2514
2515 static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2516 {
2517         unsigned long fp = rw->ins[6];
2518
2519         if (!fp)
2520                 return NULL;
2521
2522         return (struct reg_window *) (fp + STACK_BIAS);
2523 }
2524
2525 void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2526 {
2527         static int die_counter;
2528         int count = 0;
2529         
2530         /* Amuse the user. */
2531         printk(
2532 "              \\|/ ____ \\|/\n"
2533 "              \"@'/ .. \\`@\"\n"
2534 "              /_| \\__/ |_\\\n"
2535 "                 \\__U_/\n");
2536
2537         printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2538         notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2539         __asm__ __volatile__("flushw");
2540         show_regs(regs);
2541         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2542         if (regs->tstate & TSTATE_PRIV) {
2543                 struct thread_info *tp = current_thread_info();
2544                 struct reg_window *rw = (struct reg_window *)
2545                         (regs->u_regs[UREG_FP] + STACK_BIAS);
2546
2547                 /* Stop the back trace when we hit userland or we
2548                  * find some badly aligned kernel stack.
2549                  */
2550                 while (rw &&
2551                        count++ < 30 &&
2552                        kstack_valid(tp, (unsigned long) rw)) {
2553                         printk("Caller[%016lx]: %pS\n", rw->ins[7],
2554                                (void *) rw->ins[7]);
2555
2556                         rw = kernel_stack_up(rw);
2557                 }
2558                 instruction_dump ((unsigned int *) regs->tpc);
2559         } else {
2560                 if (test_thread_flag(TIF_32BIT)) {
2561                         regs->tpc &= 0xffffffff;
2562                         regs->tnpc &= 0xffffffff;
2563                 }
2564                 user_instruction_dump ((unsigned int __user *) regs->tpc);
2565         }
2566         if (panic_on_oops)
2567                 panic("Fatal exception");
2568         if (regs->tstate & TSTATE_PRIV)
2569                 do_exit(SIGKILL);
2570         do_exit(SIGSEGV);
2571 }
2572 EXPORT_SYMBOL(die_if_kernel);
2573
2574 #define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19))
2575 #define VIS_OPCODE_VAL  ((0x2 << 30) | (0x36 << 19))
2576
2577 void do_illegal_instruction(struct pt_regs *regs)
2578 {
2579         enum ctx_state prev_state = exception_enter();
2580         unsigned long pc = regs->tpc;
2581         unsigned long tstate = regs->tstate;
2582         u32 insn;
2583
2584         if (notify_die(DIE_TRAP, "illegal instruction", regs,
2585                        0, 0x10, SIGILL) == NOTIFY_STOP)
2586                 goto out;
2587
2588         if (tstate & TSTATE_PRIV)
2589                 die_if_kernel("Kernel illegal instruction", regs);
2590         if (test_thread_flag(TIF_32BIT))
2591                 pc = (u32)pc;
2592         if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2593                 if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2594                         if (handle_popc(insn, regs))
2595                                 goto out;
2596                 } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2597                         if (handle_ldf_stq(insn, regs))
2598                                 goto out;
2599                 } else if (tlb_type == hypervisor) {
2600                         if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2601                                 if (!vis_emul(regs, insn))
2602                                         goto out;
2603                         } else {
2604                                 struct fpustate *f = FPUSTATE;
2605
2606                                 /* On UltraSPARC T2 and later, FPU insns which
2607                                  * are not implemented in HW signal an illegal
2608                                  * instruction trap and do not set the FP Trap
2609                                  * Trap in the %fsr to unimplemented_FPop.
2610                                  */
2611                                 if (do_mathemu(regs, f, true))
2612                                         goto out;
2613                         }
2614                 }
2615         }
2616         force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc, 0);
2617 out:
2618         exception_exit(prev_state);
2619 }
2620
2621 void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2622 {
2623         enum ctx_state prev_state = exception_enter();
2624
2625         if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2626                        0, 0x34, SIGSEGV) == NOTIFY_STOP)
2627                 goto out;
2628
2629         if (regs->tstate & TSTATE_PRIV) {
2630                 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2631                 goto out;
2632         }
2633         if (is_no_fault_exception(regs))
2634                 return;
2635
2636         force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar, 0);
2637 out:
2638         exception_exit(prev_state);
2639 }
2640
2641 void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2642 {
2643         if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2644                        0, 0x34, SIGSEGV) == NOTIFY_STOP)
2645                 return;
2646
2647         if (regs->tstate & TSTATE_PRIV) {
2648                 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2649                 return;
2650         }
2651         if (is_no_fault_exception(regs))
2652                 return;
2653
2654         force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr, 0);
2655 }
2656
2657 /* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2658  * tag mismatch.
2659  *
2660  * ADI version tag mismatch on a load from memory always results in a
2661  * precise exception. Tag mismatch on a store to memory will result in
2662  * precise exception if MCDPER or PMCDPER is set to 1.
2663  */
2664 void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2665                                       unsigned long context)
2666 {
2667         if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2668                        0, 0x8, SIGSEGV) == NOTIFY_STOP)
2669                 return;
2670
2671         if (regs->tstate & TSTATE_PRIV) {
2672                 /* MCD exception could happen because the task was running
2673                  * a system call with MCD enabled and passed a non-versioned
2674                  * pointer or pointer with bad version tag to  the system
2675                  * call.
2676                  */
2677                 const struct exception_table_entry *entry;
2678
2679                 entry = search_exception_tables(regs->tpc);
2680                 if (entry) {
2681                         /* Looks like a bad syscall parameter */
2682 #ifdef DEBUG_EXCEPTIONS
2683                         pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2684                                  regs->tpc);
2685                         pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2686                                  regs->tpc, entry->fixup);
2687 #endif
2688                         regs->tpc = entry->fixup;
2689                         regs->tnpc = regs->tpc + 4;
2690                         return;
2691                 }
2692                 pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2693                          __func__, addr, context);
2694                 die_if_kernel("MCD precise", regs);
2695         }
2696
2697         if (test_thread_flag(TIF_32BIT)) {
2698                 regs->tpc &= 0xffffffff;
2699                 regs->tnpc &= 0xffffffff;
2700         }
2701         force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr, 0);
2702 }
2703
2704 void do_privop(struct pt_regs *regs)
2705 {
2706         enum ctx_state prev_state = exception_enter();
2707
2708         if (notify_die(DIE_TRAP, "privileged operation", regs,
2709                        0, 0x11, SIGILL) == NOTIFY_STOP)
2710                 goto out;
2711
2712         if (test_thread_flag(TIF_32BIT)) {
2713                 regs->tpc &= 0xffffffff;
2714                 regs->tnpc &= 0xffffffff;
2715         }
2716         force_sig_fault(SIGILL, ILL_PRVOPC,
2717                         (void __user *)regs->tpc, 0);
2718 out:
2719         exception_exit(prev_state);
2720 }
2721
2722 void do_privact(struct pt_regs *regs)
2723 {
2724         do_privop(regs);
2725 }
2726
2727 /* Trap level 1 stuff or other traps we should never see... */
2728 void do_cee(struct pt_regs *regs)
2729 {
2730         exception_enter();
2731         die_if_kernel("TL0: Cache Error Exception", regs);
2732 }
2733
2734 void do_div0_tl1(struct pt_regs *regs)
2735 {
2736         exception_enter();
2737         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2738         die_if_kernel("TL1: DIV0 Exception", regs);
2739 }
2740
2741 void do_fpieee_tl1(struct pt_regs *regs)
2742 {
2743         exception_enter();
2744         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2745         die_if_kernel("TL1: FPU IEEE Exception", regs);
2746 }
2747
2748 void do_fpother_tl1(struct pt_regs *regs)
2749 {
2750         exception_enter();
2751         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2752         die_if_kernel("TL1: FPU Other Exception", regs);
2753 }
2754
2755 void do_ill_tl1(struct pt_regs *regs)
2756 {
2757         exception_enter();
2758         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2759         die_if_kernel("TL1: Illegal Instruction Exception", regs);
2760 }
2761
2762 void do_irq_tl1(struct pt_regs *regs)
2763 {
2764         exception_enter();
2765         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2766         die_if_kernel("TL1: IRQ Exception", regs);
2767 }
2768
2769 void do_lddfmna_tl1(struct pt_regs *regs)
2770 {
2771         exception_enter();
2772         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2773         die_if_kernel("TL1: LDDF Exception", regs);
2774 }
2775
2776 void do_stdfmna_tl1(struct pt_regs *regs)
2777 {
2778         exception_enter();
2779         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2780         die_if_kernel("TL1: STDF Exception", regs);
2781 }
2782
2783 void do_paw(struct pt_regs *regs)
2784 {
2785         exception_enter();
2786         die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2787 }
2788
2789 void do_paw_tl1(struct pt_regs *regs)
2790 {
2791         exception_enter();
2792         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2793         die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2794 }
2795
2796 void do_vaw(struct pt_regs *regs)
2797 {
2798         exception_enter();
2799         die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2800 }
2801
2802 void do_vaw_tl1(struct pt_regs *regs)
2803 {
2804         exception_enter();
2805         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2806         die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2807 }
2808
2809 void do_tof_tl1(struct pt_regs *regs)
2810 {
2811         exception_enter();
2812         dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2813         die_if_kernel("TL1: Tag Overflow Exception", regs);
2814 }
2815
2816 void do_getpsr(struct pt_regs *regs)
2817 {
2818         regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2819         regs->tpc   = regs->tnpc;
2820         regs->tnpc += 4;
2821         if (test_thread_flag(TIF_32BIT)) {
2822                 regs->tpc &= 0xffffffff;
2823                 regs->tnpc &= 0xffffffff;
2824         }
2825 }
2826
2827 u64 cpu_mondo_counter[NR_CPUS] = {0};
2828 struct trap_per_cpu trap_block[NR_CPUS];
2829 EXPORT_SYMBOL(trap_block);
2830
2831 /* This can get invoked before sched_init() so play it super safe
2832  * and use hard_smp_processor_id().
2833  */
2834 void notrace init_cur_cpu_trap(struct thread_info *t)
2835 {
2836         int cpu = hard_smp_processor_id();
2837         struct trap_per_cpu *p = &trap_block[cpu];
2838
2839         p->thread = t;
2840         p->pgd_paddr = 0;
2841 }
2842
2843 extern void thread_info_offsets_are_bolixed_dave(void);
2844 extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2845 extern void tsb_config_offsets_are_bolixed_dave(void);
2846
2847 /* Only invoked on boot processor. */
2848 void __init trap_init(void)
2849 {
2850         /* Compile time sanity check. */
2851         BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2852                      TI_FLAGS != offsetof(struct thread_info, flags) ||
2853                      TI_CPU != offsetof(struct thread_info, cpu) ||
2854                      TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2855                      TI_KSP != offsetof(struct thread_info, ksp) ||
2856                      TI_FAULT_ADDR != offsetof(struct thread_info,
2857                                                fault_address) ||
2858                      TI_KREGS != offsetof(struct thread_info, kregs) ||
2859                      TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2860                      TI_REG_WINDOW != offsetof(struct thread_info,
2861                                                reg_window) ||
2862                      TI_RWIN_SPTRS != offsetof(struct thread_info,
2863                                                rwbuf_stkptrs) ||
2864                      TI_GSR != offsetof(struct thread_info, gsr) ||
2865                      TI_XFSR != offsetof(struct thread_info, xfsr) ||
2866                      TI_PRE_COUNT != offsetof(struct thread_info,
2867                                               preempt_count) ||
2868                      TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2869                      TI_CURRENT_DS != offsetof(struct thread_info,
2870                                                 current_ds) ||
2871                      TI_KUNA_REGS != offsetof(struct thread_info,
2872                                               kern_una_regs) ||
2873                      TI_KUNA_INSN != offsetof(struct thread_info,
2874                                               kern_una_insn) ||
2875                      TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2876                      (TI_FPREGS & (64 - 1)));
2877
2878         BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2879                                                      thread) ||
2880                      (TRAP_PER_CPU_PGD_PADDR !=
2881                       offsetof(struct trap_per_cpu, pgd_paddr)) ||
2882                      (TRAP_PER_CPU_CPU_MONDO_PA !=
2883                       offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2884                      (TRAP_PER_CPU_DEV_MONDO_PA !=
2885                       offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2886                      (TRAP_PER_CPU_RESUM_MONDO_PA !=
2887                       offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2888                      (TRAP_PER_CPU_RESUM_KBUF_PA !=
2889                       offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2890                      (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2891                       offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2892                      (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2893                       offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2894                      (TRAP_PER_CPU_FAULT_INFO !=
2895                       offsetof(struct trap_per_cpu, fault_info)) ||
2896                      (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2897                       offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2898                      (TRAP_PER_CPU_CPU_LIST_PA !=
2899                       offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2900                      (TRAP_PER_CPU_TSB_HUGE !=
2901                       offsetof(struct trap_per_cpu, tsb_huge)) ||
2902                      (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2903                       offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2904                      (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2905                       offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2906                      (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2907                       offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2908                      (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2909                       offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2910                      (TRAP_PER_CPU_RESUM_QMASK !=
2911                       offsetof(struct trap_per_cpu, resum_qmask)) ||
2912                      (TRAP_PER_CPU_NONRESUM_QMASK !=
2913                       offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2914                      (TRAP_PER_CPU_PER_CPU_BASE !=
2915                       offsetof(struct trap_per_cpu, __per_cpu_base)));
2916
2917         BUILD_BUG_ON((TSB_CONFIG_TSB !=
2918                       offsetof(struct tsb_config, tsb)) ||
2919                      (TSB_CONFIG_RSS_LIMIT !=
2920                       offsetof(struct tsb_config, tsb_rss_limit)) ||
2921                      (TSB_CONFIG_NENTRIES !=
2922                       offsetof(struct tsb_config, tsb_nentries)) ||
2923                      (TSB_CONFIG_REG_VAL !=
2924                       offsetof(struct tsb_config, tsb_reg_val)) ||
2925                      (TSB_CONFIG_MAP_VADDR !=
2926                       offsetof(struct tsb_config, tsb_map_vaddr)) ||
2927                      (TSB_CONFIG_MAP_PTE !=
2928                       offsetof(struct tsb_config, tsb_map_pte)));
2929
2930         /* Attach to the address space of init_task.  On SMP we
2931          * do this in smp.c:smp_callin for other cpus.
2932          */
2933         mmgrab(&init_mm);
2934         current->active_mm = &init_mm;
2935 }