Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / arch / sparc / include / asm / tsb.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _SPARC64_TSB_H
3 #define _SPARC64_TSB_H
4
5 /* The sparc64 TSB is similar to the powerpc hashtables.  It's a
6  * power-of-2 sized table of TAG/PTE pairs.  The cpu precomputes
7  * pointers into this table for 8K and 64K page sizes, and also a
8  * comparison TAG based upon the virtual address and context which
9  * faults.
10  *
11  * TLB miss trap handler software does the actual lookup via something
12  * of the form:
13  *
14  *      ldxa            [%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
15  *      ldxa            [%g0] ASI_{D,I}MMU, %g6
16  *      sllx            %g6, 22, %g6
17  *      srlx            %g6, 22, %g6
18  *      ldda            [%g1] ASI_NUCLEUS_QUAD_LDD, %g4
19  *      cmp             %g4, %g6
20  *      bne,pn  %xcc, tsb_miss_{d,i}tlb
21  *       mov            FAULT_CODE_{D,I}TLB, %g3
22  *      stxa            %g5, [%g0] ASI_{D,I}TLB_DATA_IN
23  *      retry
24  *
25  *
26  * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
27  * PTE.  The TAG is of the same layout as the TLB TAG TARGET mmu
28  * register which is:
29  *
30  * -------------------------------------------------
31  * |  -  |  CONTEXT |  -  |    VADDR bits 63:22    |
32  * -------------------------------------------------
33  *  63 61 60      48 47 42 41                     0
34  *
35  * But actually, since we use per-mm TSB's, we zero out the CONTEXT
36  * field.
37  *
38  * Like the powerpc hashtables we need to use locking in order to
39  * synchronize while we update the entries.  PTE updates need locking
40  * as well.
41  *
42  * We need to carefully choose a lock bits for the TSB entry.  We
43  * choose to use bit 47 in the tag.  Also, since we never map anything
44  * at page zero in context zero, we use zero as an invalid tag entry.
45  * When the lock bit is set, this forces a tag comparison failure.
46  */
47
48 #define TSB_TAG_LOCK_BIT        47
49 #define TSB_TAG_LOCK_HIGH       (1 << (TSB_TAG_LOCK_BIT - 32))
50
51 #define TSB_TAG_INVALID_BIT     46
52 #define TSB_TAG_INVALID_HIGH    (1 << (TSB_TAG_INVALID_BIT - 32))
53
54 /* Some cpus support physical address quad loads.  We want to use
55  * those if possible so we don't need to hard-lock the TSB mapping
56  * into the TLB.  We encode some instruction patching in order to
57  * support this.
58  *
59  * The kernel TSB is locked into the TLB by virtue of being in the
60  * kernel image, so we don't play these games for swapper_tsb access.
61  */
62 #ifndef __ASSEMBLY__
63 struct tsb_ldquad_phys_patch_entry {
64         unsigned int    addr;
65         unsigned int    sun4u_insn;
66         unsigned int    sun4v_insn;
67 };
68 extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
69         __tsb_ldquad_phys_patch_end;
70
71 struct tsb_phys_patch_entry {
72         unsigned int    addr;
73         unsigned int    insn;
74 };
75 extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
76 #endif
77 #define TSB_LOAD_QUAD(TSB, REG) \
78 661:    ldda            [TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
79         .section        .tsb_ldquad_phys_patch, "ax"; \
80         .word           661b; \
81         ldda            [TSB] ASI_QUAD_LDD_PHYS, REG; \
82         ldda            [TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
83         .previous
84
85 #define TSB_LOAD_TAG_HIGH(TSB, REG) \
86 661:    lduwa           [TSB] ASI_N, REG; \
87         .section        .tsb_phys_patch, "ax"; \
88         .word           661b; \
89         lduwa           [TSB] ASI_PHYS_USE_EC, REG; \
90         .previous
91
92 #define TSB_LOAD_TAG(TSB, REG) \
93 661:    ldxa            [TSB] ASI_N, REG; \
94         .section        .tsb_phys_patch, "ax"; \
95         .word           661b; \
96         ldxa            [TSB] ASI_PHYS_USE_EC, REG; \
97         .previous
98
99 #define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
100 661:    casa            [TSB] ASI_N, REG1, REG2; \
101         .section        .tsb_phys_patch, "ax"; \
102         .word           661b; \
103         casa            [TSB] ASI_PHYS_USE_EC, REG1, REG2; \
104         .previous
105
106 #define TSB_CAS_TAG(TSB, REG1, REG2) \
107 661:    casxa           [TSB] ASI_N, REG1, REG2; \
108         .section        .tsb_phys_patch, "ax"; \
109         .word           661b; \
110         casxa           [TSB] ASI_PHYS_USE_EC, REG1, REG2; \
111         .previous
112
113 #define TSB_STORE(ADDR, VAL) \
114 661:    stxa            VAL, [ADDR] ASI_N; \
115         .section        .tsb_phys_patch, "ax"; \
116         .word           661b; \
117         stxa            VAL, [ADDR] ASI_PHYS_USE_EC; \
118         .previous
119
120 #define TSB_LOCK_TAG(TSB, REG1, REG2)   \
121 99:     TSB_LOAD_TAG_HIGH(TSB, REG1);   \
122         sethi   %hi(TSB_TAG_LOCK_HIGH), REG2;\
123         andcc   REG1, REG2, %g0;        \
124         bne,pn  %icc, 99b;              \
125          nop;                           \
126         TSB_CAS_TAG_HIGH(TSB, REG1, REG2);      \
127         cmp     REG1, REG2;             \
128         bne,pn  %icc, 99b;              \
129          nop;                           \
130
131 #define TSB_WRITE(TSB, TTE, TAG) \
132         add     TSB, 0x8, TSB;   \
133         TSB_STORE(TSB, TTE);     \
134         sub     TSB, 0x8, TSB;   \
135         TSB_STORE(TSB, TAG);
136
137         /* Do a kernel page table walk.  Leaves valid PTE value in
138          * REG1.  Jumps to FAIL_LABEL on early page table walk
139          * termination.  VADDR will not be clobbered, but REG2 will.
140          *
141          * There are two masks we must apply to propagate bits from
142          * the virtual address into the PTE physical address field
143          * when dealing with huge pages.  This is because the page
144          * table boundaries do not match the huge page size(s) the
145          * hardware supports.
146          *
147          * In these cases we propagate the bits that are below the
148          * page table level where we saw the huge page mapping, but
149          * are still within the relevant physical bits for the huge
150          * page size in question.  So for PMD mappings (which fall on
151          * bit 23, for 8MB per PMD) we must propagate bit 22 for a
152          * 4MB huge page.  For huge PUDs (which fall on bit 33, for
153          * 8GB per PUD), we have to accommodate 256MB and 2GB huge
154          * pages.  So for those we propagate bits 32 to 28.
155          */
156 #define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL)        \
157         sethi           %hi(swapper_pg_dir), REG1; \
158         or              REG1, %lo(swapper_pg_dir), REG1; \
159         sllx            VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
160         srlx            REG2, 64 - PAGE_SHIFT, REG2; \
161         andn            REG2, 0x7, REG2; \
162         ldx             [REG1 + REG2], REG1; \
163         brz,pn          REG1, FAIL_LABEL; \
164          sllx           VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
165         srlx            REG2, 64 - PAGE_SHIFT, REG2; \
166         andn            REG2, 0x7, REG2; \
167         ldxa            [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
168         brz,pn          REG1, FAIL_LABEL; \
169         sethi           %uhi(_PAGE_PUD_HUGE), REG2; \
170         brz,pn          REG1, FAIL_LABEL; \
171          sllx           REG2, 32, REG2; \
172         andcc           REG1, REG2, %g0; \
173         sethi           %hi(0xf8000000), REG2; \
174         bne,pt          %xcc, 697f; \
175          sllx           REG2, 1, REG2; \
176         sllx            VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
177         srlx            REG2, 64 - PAGE_SHIFT, REG2; \
178         andn            REG2, 0x7, REG2; \
179         ldxa            [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
180         sethi           %uhi(_PAGE_PMD_HUGE), REG2; \
181         brz,pn          REG1, FAIL_LABEL; \
182          sllx           REG2, 32, REG2; \
183         andcc           REG1, REG2, %g0; \
184         be,pn           %xcc, 698f; \
185          sethi          %hi(0x400000), REG2; \
186 697:    brgez,pn        REG1, FAIL_LABEL; \
187          andn           REG1, REG2, REG1; \
188         and             VADDR, REG2, REG2; \
189         ba,pt           %xcc, 699f; \
190          or             REG1, REG2, REG1; \
191 698:    sllx            VADDR, 64 - PMD_SHIFT, REG2; \
192         srlx            REG2, 64 - PAGE_SHIFT, REG2; \
193         andn            REG2, 0x7, REG2; \
194         ldxa            [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
195         brgez,pn        REG1, FAIL_LABEL; \
196          nop; \
197 699:
198
199         /* PUD has been loaded into REG1, interpret the value, seeing
200          * if it is a HUGE PUD or a normal one.  If it is not valid
201          * then jump to FAIL_LABEL.  If it is a HUGE PUD, and it
202          * translates to a valid PTE, branch to PTE_LABEL.
203          *
204          * We have to propagate bits [32:22] from the virtual address
205          * to resolve at 4M granularity.
206          */
207 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
208 #define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
209 700:    ba 700f;                                        \
210          nop;                                           \
211         .section        .pud_huge_patch, "ax";          \
212         .word           700b;                           \
213         nop;                                            \
214         .previous;                                      \
215         brz,pn          REG1, FAIL_LABEL;               \
216          sethi          %uhi(_PAGE_PUD_HUGE), REG2;     \
217         sllx            REG2, 32, REG2;                 \
218         andcc           REG1, REG2, %g0;                \
219         be,pt           %xcc, 700f;                     \
220          sethi          %hi(0xffe00000), REG2;          \
221         sllx            REG2, 1, REG2;                  \
222         brgez,pn        REG1, FAIL_LABEL;               \
223          andn           REG1, REG2, REG1;               \
224         and             VADDR, REG2, REG2;              \
225         brlz,pt         REG1, PTE_LABEL;                \
226          or             REG1, REG2, REG1;               \
227 700:
228 #else
229 #define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
230         brz,pn          REG1, FAIL_LABEL; \
231          nop;
232 #endif
233
234         /* PMD has been loaded into REG1, interpret the value, seeing
235          * if it is a HUGE PMD or a normal one.  If it is not valid
236          * then jump to FAIL_LABEL.  If it is a HUGE PMD, and it
237          * translates to a valid PTE, branch to PTE_LABEL.
238          *
239          * We have to propagate the 4MB bit of the virtual address
240          * because we are fabricating 8MB pages using 4MB hw pages.
241          */
242 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
243 #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
244         brz,pn          REG1, FAIL_LABEL;               \
245          sethi          %uhi(_PAGE_PMD_HUGE), REG2;     \
246         sllx            REG2, 32, REG2;                 \
247         andcc           REG1, REG2, %g0;                \
248         be,pt           %xcc, 700f;                     \
249          sethi          %hi(4 * 1024 * 1024), REG2;     \
250         brgez,pn        REG1, FAIL_LABEL;               \
251          andn           REG1, REG2, REG1;               \
252         and             VADDR, REG2, REG2;              \
253         brlz,pt         REG1, PTE_LABEL;                \
254          or             REG1, REG2, REG1;               \
255 700:
256 #else
257 #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
258         brz,pn          REG1, FAIL_LABEL; \
259          nop;
260 #endif
261
262         /* Do a user page table walk in MMU globals.  Leaves final,
263          * valid, PTE value in REG1.  Jumps to FAIL_LABEL on early
264          * page table walk termination or if the PTE is not valid.
265          *
266          * Physical base of page tables is in PHYS_PGD which will not
267          * be modified.
268          *
269          * VADDR will not be clobbered, but REG1 and REG2 will.
270          */
271 #define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL)  \
272         sllx            VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
273         srlx            REG2, 64 - PAGE_SHIFT, REG2; \
274         andn            REG2, 0x7, REG2; \
275         ldxa            [PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
276         brz,pn          REG1, FAIL_LABEL; \
277          sllx           VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
278         srlx            REG2, 64 - PAGE_SHIFT, REG2; \
279         andn            REG2, 0x7, REG2; \
280         ldxa            [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
281         USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
282         brz,pn          REG1, FAIL_LABEL; \
283          sllx           VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
284         srlx            REG2, 64 - PAGE_SHIFT, REG2; \
285         andn            REG2, 0x7, REG2; \
286         ldxa            [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
287         USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
288         sllx            VADDR, 64 - PMD_SHIFT, REG2; \
289         srlx            REG2, 64 - PAGE_SHIFT, REG2; \
290         andn            REG2, 0x7, REG2; \
291         add             REG1, REG2, REG1; \
292         ldxa            [REG1] ASI_PHYS_USE_EC, REG1; \
293         brgez,pn        REG1, FAIL_LABEL; \
294          nop; \
295 800:
296
297 /* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
298  * If no entry is found, FAIL_LABEL will be branched to.  On success
299  * the resulting PTE value will be left in REG1.  VADDR is preserved
300  * by this routine.
301  */
302 #define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
303         sethi           %hi(prom_trans), REG1; \
304         or              REG1, %lo(prom_trans), REG1; \
305 97:     ldx             [REG1 + 0x00], REG2; \
306         brz,pn          REG2, FAIL_LABEL; \
307          nop; \
308         ldx             [REG1 + 0x08], REG3; \
309         add             REG2, REG3, REG3; \
310         cmp             REG2, VADDR; \
311         bgu,pt          %xcc, 98f; \
312          cmp            VADDR, REG3; \
313         bgeu,pt         %xcc, 98f; \
314          ldx            [REG1 + 0x10], REG3; \
315         sub             VADDR, REG2, REG2; \
316         ba,pt           %xcc, 99f; \
317          add            REG3, REG2, REG1; \
318 98:     ba,pt           %xcc, 97b; \
319          add            REG1, (3 * 8), REG1; \
320 99:
321
322         /* We use a 32K TSB for the whole kernel, this allows to
323          * handle about 16MB of modules and vmalloc mappings without
324          * incurring many hash conflicts.
325          */
326 #define KERNEL_TSB_SIZE_BYTES   (32 * 1024)
327 #define KERNEL_TSB_NENTRIES     \
328         (KERNEL_TSB_SIZE_BYTES / 16)
329 #define KERNEL_TSB4M_NENTRIES   4096
330
331         /* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
332          * on TSB hit.  REG1, REG2, REG3, and REG4 are used as temporaries
333          * and the found TTE will be left in REG1.  REG3 and REG4 must
334          * be an even/odd pair of registers.
335          *
336          * VADDR and TAG will be preserved and not clobbered by this macro.
337          */
338 #define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
339 661:    sethi           %uhi(swapper_tsb), REG1; \
340         sethi           %hi(swapper_tsb), REG2; \
341         or              REG1, %ulo(swapper_tsb), REG1; \
342         or              REG2, %lo(swapper_tsb), REG2; \
343         .section        .swapper_tsb_phys_patch, "ax"; \
344         .word           661b; \
345         .previous; \
346         sllx            REG1, 32, REG1; \
347         or              REG1, REG2, REG1; \
348         srlx            VADDR, PAGE_SHIFT, REG2; \
349         and             REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
350         sllx            REG2, 4, REG2; \
351         add             REG1, REG2, REG2; \
352         TSB_LOAD_QUAD(REG2, REG3); \
353         cmp             REG3, TAG; \
354         be,a,pt         %xcc, OK_LABEL; \
355          mov            REG4, REG1;
356
357 #ifndef CONFIG_DEBUG_PAGEALLOC
358         /* This version uses a trick, the TAG is already (VADDR >> 22) so
359          * we can make use of that for the index computation.
360          */
361 #define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
362 661:    sethi           %uhi(swapper_4m_tsb), REG1; \
363         sethi           %hi(swapper_4m_tsb), REG2; \
364         or              REG1, %ulo(swapper_4m_tsb), REG1; \
365         or              REG2, %lo(swapper_4m_tsb), REG2; \
366         .section        .swapper_4m_tsb_phys_patch, "ax"; \
367         .word           661b; \
368         .previous; \
369         sllx            REG1, 32, REG1; \
370         or              REG1, REG2, REG1; \
371         and             TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
372         sllx            REG2, 4, REG2; \
373         add             REG1, REG2, REG2; \
374         TSB_LOAD_QUAD(REG2, REG3); \
375         cmp             REG3, TAG; \
376         be,a,pt         %xcc, OK_LABEL; \
377          mov            REG4, REG1;
378 #endif
379
380 #endif /* !(_SPARC64_TSB_H) */