Linux-libre 3.16.85-gnu
[librecmc/linux-libre.git] / arch / s390 / kernel / smp.c
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/switch_to.h>
36 #include <asm/facility.h>
37 #include <asm/ipl.h>
38 #include <asm/setup.h>
39 #include <asm/irq.h>
40 #include <asm/tlbflush.h>
41 #include <asm/vtimer.h>
42 #include <asm/lowcore.h>
43 #include <asm/sclp.h>
44 #include <asm/vdso.h>
45 #include <asm/debug.h>
46 #include <asm/os_info.h>
47 #include <asm/sigp.h>
48 #include "entry.h"
49
50 enum {
51         ec_schedule = 0,
52         ec_call_function_single,
53         ec_stop_cpu,
54 };
55
56 enum {
57         CPU_STATE_STANDBY,
58         CPU_STATE_CONFIGURED,
59 };
60
61 struct pcpu {
62         struct cpu *cpu;
63         struct _lowcore *lowcore;       /* lowcore page(s) for the cpu */
64         unsigned long async_stack;      /* async stack for the cpu */
65         unsigned long panic_stack;      /* panic stack for the cpu */
66         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
67         int state;                      /* physical cpu state */
68         int polarization;               /* physical polarization */
69         u16 address;                    /* physical cpu address */
70 };
71
72 static u8 boot_cpu_type;
73 static u16 boot_cpu_address;
74 static struct pcpu pcpu_devices[NR_CPUS];
75
76 /*
77  * The smp_cpu_state_mutex must be held when changing the state or polarization
78  * member of a pcpu data structure within the pcpu_devices arreay.
79  */
80 DEFINE_MUTEX(smp_cpu_state_mutex);
81
82 /*
83  * Signal processor helper functions.
84  */
85 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
86 {
87         int cc;
88
89         while (1) {
90                 cc = __pcpu_sigp(addr, order, parm, NULL);
91                 if (cc != SIGP_CC_BUSY)
92                         return cc;
93                 cpu_relax();
94         }
95 }
96
97 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
98 {
99         int cc, retry;
100
101         for (retry = 0; ; retry++) {
102                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
103                 if (cc != SIGP_CC_BUSY)
104                         break;
105                 if (retry >= 3)
106                         udelay(10);
107         }
108         return cc;
109 }
110
111 static inline int pcpu_stopped(struct pcpu *pcpu)
112 {
113         u32 uninitialized_var(status);
114
115         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
116                         0, &status) != SIGP_CC_STATUS_STORED)
117                 return 0;
118         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
119 }
120
121 static inline int pcpu_running(struct pcpu *pcpu)
122 {
123         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
124                         0, NULL) != SIGP_CC_STATUS_STORED)
125                 return 1;
126         /* Status stored condition code is equivalent to cpu not running. */
127         return 0;
128 }
129
130 /*
131  * Find struct pcpu by cpu address.
132  */
133 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
134 {
135         int cpu;
136
137         for_each_cpu(cpu, mask)
138                 if (pcpu_devices[cpu].address == address)
139                         return pcpu_devices + cpu;
140         return NULL;
141 }
142
143 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
144 {
145         int order;
146
147         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
148                 return;
149         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
150         pcpu_sigp_retry(pcpu, order, 0);
151 }
152
153 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
154 {
155         struct _lowcore *lc;
156
157         if (pcpu != &pcpu_devices[0]) {
158                 pcpu->lowcore = (struct _lowcore *)
159                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
160                 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
161                 pcpu->panic_stack = __get_free_page(GFP_KERNEL);
162                 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
163                         goto out;
164         }
165         lc = pcpu->lowcore;
166         memcpy(lc, &S390_lowcore, 512);
167         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
168         lc->async_stack = pcpu->async_stack + ASYNC_SIZE
169                 - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
170         lc->panic_stack = pcpu->panic_stack + PAGE_SIZE
171                 - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
172         lc->cpu_nr = cpu;
173         lc->spinlock_lockval = arch_spin_lockval(cpu);
174 #ifndef CONFIG_64BIT
175         if (MACHINE_HAS_IEEE) {
176                 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
177                 if (!lc->extended_save_area_addr)
178                         goto out;
179         }
180 #else
181         if (vdso_alloc_per_cpu(lc))
182                 goto out;
183 #endif
184         lowcore_ptr[cpu] = lc;
185         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
186         return 0;
187 out:
188         if (pcpu != &pcpu_devices[0]) {
189                 free_page(pcpu->panic_stack);
190                 free_pages(pcpu->async_stack, ASYNC_ORDER);
191                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
192         }
193         return -ENOMEM;
194 }
195
196 #ifdef CONFIG_HOTPLUG_CPU
197
198 static void pcpu_free_lowcore(struct pcpu *pcpu)
199 {
200         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
201         lowcore_ptr[pcpu - pcpu_devices] = NULL;
202 #ifndef CONFIG_64BIT
203         if (MACHINE_HAS_IEEE) {
204                 struct _lowcore *lc = pcpu->lowcore;
205
206                 free_page((unsigned long) lc->extended_save_area_addr);
207                 lc->extended_save_area_addr = 0;
208         }
209 #else
210         vdso_free_per_cpu(pcpu->lowcore);
211 #endif
212         if (pcpu != &pcpu_devices[0]) {
213                 free_page(pcpu->panic_stack);
214                 free_pages(pcpu->async_stack, ASYNC_ORDER);
215                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
216         }
217 }
218
219 #endif /* CONFIG_HOTPLUG_CPU */
220
221 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
222 {
223         struct _lowcore *lc = pcpu->lowcore;
224
225         if (MACHINE_HAS_TLB_LC)
226                 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
227         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
228         atomic_inc(&init_mm.context.attach_count);
229         lc->cpu_nr = cpu;
230         lc->spinlock_lockval = arch_spin_lockval(cpu);
231         lc->percpu_offset = __per_cpu_offset[cpu];
232         lc->kernel_asce = S390_lowcore.kernel_asce;
233         lc->machine_flags = S390_lowcore.machine_flags;
234         lc->ftrace_func = S390_lowcore.ftrace_func;
235         lc->user_timer = lc->system_timer = lc->steal_timer = 0;
236         __ctl_store(lc->cregs_save_area, 0, 15);
237         save_access_regs((unsigned int *) lc->access_regs_save_area);
238         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
239                MAX_FACILITY_BIT/8);
240 }
241
242 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
243 {
244         struct _lowcore *lc = pcpu->lowcore;
245         struct thread_info *ti = task_thread_info(tsk);
246
247         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
248                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
249         lc->thread_info = (unsigned long) task_thread_info(tsk);
250         lc->current_task = (unsigned long) tsk;
251         lc->user_timer = ti->user_timer;
252         lc->system_timer = ti->system_timer;
253         lc->steal_timer = 0;
254 }
255
256 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
257 {
258         struct _lowcore *lc = pcpu->lowcore;
259
260         lc->restart_stack = lc->kernel_stack;
261         lc->restart_fn = (unsigned long) func;
262         lc->restart_data = (unsigned long) data;
263         lc->restart_source = -1UL;
264         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
265 }
266
267 /*
268  * Call function via PSW restart on pcpu and stop the current cpu.
269  */
270 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
271                           void *data, unsigned long stack)
272 {
273         struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
274         unsigned long source_cpu = stap();
275
276         __load_psw_mask(PSW_KERNEL_BITS);
277         if (pcpu->address == source_cpu)
278                 func(data);     /* should not return */
279         /* Stop target cpu (if func returns this stops the current cpu). */
280         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
281         /* Restart func on the target cpu and stop the current cpu. */
282         mem_assign_absolute(lc->restart_stack, stack);
283         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
284         mem_assign_absolute(lc->restart_data, (unsigned long) data);
285         mem_assign_absolute(lc->restart_source, source_cpu);
286         asm volatile(
287                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
288                 "       brc     2,0b    # busy, try again\n"
289                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
290                 "       brc     2,1b    # busy, try again\n"
291                 : : "d" (pcpu->address), "d" (source_cpu),
292                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
293                 : "0", "1", "cc");
294         for (;;) ;
295 }
296
297 /*
298  * Call function on an online CPU.
299  */
300 void smp_call_online_cpu(void (*func)(void *), void *data)
301 {
302         struct pcpu *pcpu;
303
304         /* Use the current cpu if it is online. */
305         pcpu = pcpu_find_address(cpu_online_mask, stap());
306         if (!pcpu)
307                 /* Use the first online cpu. */
308                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
309         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
310 }
311
312 /*
313  * Call function on the ipl CPU.
314  */
315 void smp_call_ipl_cpu(void (*func)(void *), void *data)
316 {
317         pcpu_delegate(&pcpu_devices[0], func, data,
318                       pcpu_devices->panic_stack + PAGE_SIZE);
319 }
320
321 int smp_find_processor_id(u16 address)
322 {
323         int cpu;
324
325         for_each_present_cpu(cpu)
326                 if (pcpu_devices[cpu].address == address)
327                         return cpu;
328         return -1;
329 }
330
331 int smp_vcpu_scheduled(int cpu)
332 {
333         return pcpu_running(pcpu_devices + cpu);
334 }
335
336 void smp_yield(void)
337 {
338         if (MACHINE_HAS_DIAG44)
339                 asm volatile("diag 0,0,0x44");
340 }
341
342 void smp_yield_cpu(int cpu)
343 {
344         if (MACHINE_HAS_DIAG9C)
345                 asm volatile("diag %0,0,0x9c"
346                              : : "d" (pcpu_devices[cpu].address));
347         else if (MACHINE_HAS_DIAG44)
348                 asm volatile("diag 0,0,0x44");
349 }
350
351 /*
352  * Send cpus emergency shutdown signal. This gives the cpus the
353  * opportunity to complete outstanding interrupts.
354  */
355 static void smp_emergency_stop(cpumask_t *cpumask)
356 {
357         u64 end;
358         int cpu;
359
360         end = get_tod_clock() + (1000000UL << 12);
361         for_each_cpu(cpu, cpumask) {
362                 struct pcpu *pcpu = pcpu_devices + cpu;
363                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
364                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
365                                    0, NULL) == SIGP_CC_BUSY &&
366                        get_tod_clock() < end)
367                         cpu_relax();
368         }
369         while (get_tod_clock() < end) {
370                 for_each_cpu(cpu, cpumask)
371                         if (pcpu_stopped(pcpu_devices + cpu))
372                                 cpumask_clear_cpu(cpu, cpumask);
373                 if (cpumask_empty(cpumask))
374                         break;
375                 cpu_relax();
376         }
377 }
378
379 /*
380  * Stop all cpus but the current one.
381  */
382 void smp_send_stop(void)
383 {
384         cpumask_t cpumask;
385         int cpu;
386
387         /* Disable all interrupts/machine checks */
388         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
389         trace_hardirqs_off();
390
391         debug_set_critical();
392         cpumask_copy(&cpumask, cpu_online_mask);
393         cpumask_clear_cpu(smp_processor_id(), &cpumask);
394
395         if (oops_in_progress)
396                 smp_emergency_stop(&cpumask);
397
398         /* stop all processors */
399         for_each_cpu(cpu, &cpumask) {
400                 struct pcpu *pcpu = pcpu_devices + cpu;
401                 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
402                 while (!pcpu_stopped(pcpu))
403                         cpu_relax();
404         }
405 }
406
407 /*
408  * This is the main routine where commands issued by other
409  * cpus are handled.
410  */
411 static void smp_handle_ext_call(void)
412 {
413         unsigned long bits;
414
415         /* handle bit signal external calls */
416         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
417         if (test_bit(ec_stop_cpu, &bits))
418                 smp_stop_cpu();
419         if (test_bit(ec_schedule, &bits))
420                 scheduler_ipi();
421         if (test_bit(ec_call_function_single, &bits))
422                 generic_smp_call_function_single_interrupt();
423 }
424
425 static void do_ext_call_interrupt(struct ext_code ext_code,
426                                   unsigned int param32, unsigned long param64)
427 {
428         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
429         smp_handle_ext_call();
430 }
431
432 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
433 {
434         int cpu;
435
436         for_each_cpu(cpu, mask)
437                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
438 }
439
440 void arch_send_call_function_single_ipi(int cpu)
441 {
442         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
443 }
444
445 #ifndef CONFIG_64BIT
446 /*
447  * this function sends a 'purge tlb' signal to another CPU.
448  */
449 static void smp_ptlb_callback(void *info)
450 {
451         __tlb_flush_local();
452 }
453
454 void smp_ptlb_all(void)
455 {
456         on_each_cpu(smp_ptlb_callback, NULL, 1);
457 }
458 EXPORT_SYMBOL(smp_ptlb_all);
459 #endif /* ! CONFIG_64BIT */
460
461 /*
462  * this function sends a 'reschedule' IPI to another CPU.
463  * it goes straight through and wastes no time serializing
464  * anything. Worst case is that we lose a reschedule ...
465  */
466 void smp_send_reschedule(int cpu)
467 {
468         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
469 }
470
471 /*
472  * parameter area for the set/clear control bit callbacks
473  */
474 struct ec_creg_mask_parms {
475         unsigned long orval;
476         unsigned long andval;
477         int cr;
478 };
479
480 /*
481  * callback for setting/clearing control bits
482  */
483 static void smp_ctl_bit_callback(void *info)
484 {
485         struct ec_creg_mask_parms *pp = info;
486         unsigned long cregs[16];
487
488         __ctl_store(cregs, 0, 15);
489         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
490         __ctl_load(cregs, 0, 15);
491 }
492
493 /*
494  * Set a bit in a control register of all cpus
495  */
496 void smp_ctl_set_bit(int cr, int bit)
497 {
498         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
499
500         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
501 }
502 EXPORT_SYMBOL(smp_ctl_set_bit);
503
504 /*
505  * Clear a bit in a control register of all cpus
506  */
507 void smp_ctl_clear_bit(int cr, int bit)
508 {
509         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
510
511         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
512 }
513 EXPORT_SYMBOL(smp_ctl_clear_bit);
514
515 #ifdef CONFIG_CRASH_DUMP
516
517 static void __init smp_get_save_area(int cpu, u16 address)
518 {
519         void *lc = pcpu_devices[0].lowcore;
520         struct save_area *save_area;
521
522         if (is_kdump_kernel())
523                 return;
524         if (!OLDMEM_BASE && (address == boot_cpu_address ||
525                              ipl_info.type != IPL_TYPE_FCP_DUMP))
526                 return;
527         save_area = dump_save_area_create(cpu);
528         if (!save_area)
529                 panic("could not allocate memory for save area\n");
530         if (address == boot_cpu_address) {
531                 /* Copy the registers of the boot cpu. */
532                 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
533                                  SAVE_AREA_BASE - PAGE_SIZE, 0);
534                 return;
535         }
536         /* Get the registers of a non-boot cpu. */
537         __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
538         memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
539 }
540
541 int smp_store_status(int cpu)
542 {
543         struct pcpu *pcpu;
544
545         pcpu = pcpu_devices + cpu;
546         if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
547                               0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
548                 return -EIO;
549         return 0;
550 }
551
552 #else /* CONFIG_CRASH_DUMP */
553
554 static inline void smp_get_save_area(int cpu, u16 address) { }
555
556 #endif /* CONFIG_CRASH_DUMP */
557
558 void smp_cpu_set_polarization(int cpu, int val)
559 {
560         pcpu_devices[cpu].polarization = val;
561 }
562
563 int smp_cpu_get_polarization(int cpu)
564 {
565         return pcpu_devices[cpu].polarization;
566 }
567
568 static struct sclp_cpu_info *smp_get_cpu_info(void)
569 {
570         static int use_sigp_detection;
571         struct sclp_cpu_info *info;
572         int address;
573
574         info = kzalloc(sizeof(*info), GFP_KERNEL);
575         if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
576                 use_sigp_detection = 1;
577                 for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
578                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
579                             SIGP_CC_NOT_OPERATIONAL)
580                                 continue;
581                         info->cpu[info->configured].address = address;
582                         info->configured++;
583                 }
584                 info->combined = info->configured;
585         }
586         return info;
587 }
588
589 static int smp_add_present_cpu(int cpu);
590
591 static int __smp_rescan_cpus(struct sclp_cpu_info *info, int sysfs_add)
592 {
593         struct pcpu *pcpu;
594         cpumask_t avail;
595         int cpu, nr, i;
596
597         nr = 0;
598         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
599         cpu = cpumask_first(&avail);
600         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
601                 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
602                         continue;
603                 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
604                         continue;
605                 pcpu = pcpu_devices + cpu;
606                 pcpu->address = info->cpu[i].address;
607                 pcpu->state = (i >= info->configured) ?
608                         CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
609                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
610                 set_cpu_present(cpu, true);
611                 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
612                         set_cpu_present(cpu, false);
613                 else
614                         nr++;
615                 cpu = cpumask_next(cpu, &avail);
616         }
617         return nr;
618 }
619
620 static void __init smp_detect_cpus(void)
621 {
622         unsigned int cpu, c_cpus, s_cpus;
623         struct sclp_cpu_info *info;
624
625         info = smp_get_cpu_info();
626         if (!info)
627                 panic("smp_detect_cpus failed to allocate memory\n");
628         if (info->has_cpu_type) {
629                 for (cpu = 0; cpu < info->combined; cpu++) {
630                         if (info->cpu[cpu].address != boot_cpu_address)
631                                 continue;
632                         /* The boot cpu dictates the cpu type. */
633                         boot_cpu_type = info->cpu[cpu].type;
634                         break;
635                 }
636         }
637         c_cpus = s_cpus = 0;
638         for (cpu = 0; cpu < info->combined; cpu++) {
639                 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
640                         continue;
641                 if (cpu < info->configured) {
642                         smp_get_save_area(c_cpus, info->cpu[cpu].address);
643                         c_cpus++;
644                 } else
645                         s_cpus++;
646         }
647         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
648         get_online_cpus();
649         __smp_rescan_cpus(info, 0);
650         put_online_cpus();
651         kfree(info);
652 }
653
654 /*
655  *      Activate a secondary processor.
656  */
657 static void smp_start_secondary(void *cpuvoid)
658 {
659         S390_lowcore.last_update_clock = get_tod_clock();
660         S390_lowcore.restart_stack = (unsigned long) restart_stack;
661         S390_lowcore.restart_fn = (unsigned long) do_restart;
662         S390_lowcore.restart_data = 0;
663         S390_lowcore.restart_source = -1UL;
664         restore_access_regs(S390_lowcore.access_regs_save_area);
665         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
666         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
667         cpu_init();
668         preempt_disable();
669         init_cpu_timer();
670         init_cpu_vtimer();
671         pfault_init();
672         notify_cpu_starting(smp_processor_id());
673         set_cpu_online(smp_processor_id(), true);
674         inc_irq_stat(CPU_RST);
675         local_irq_enable();
676         cpu_startup_entry(CPUHP_ONLINE);
677 }
678
679 /* Upping and downing of CPUs */
680 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
681 {
682         struct pcpu *pcpu;
683         int rc;
684
685         pcpu = pcpu_devices + cpu;
686         if (pcpu->state != CPU_STATE_CONFIGURED)
687                 return -EIO;
688         if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
689             SIGP_CC_ORDER_CODE_ACCEPTED)
690                 return -EIO;
691
692         rc = pcpu_alloc_lowcore(pcpu, cpu);
693         if (rc)
694                 return rc;
695         pcpu_prepare_secondary(pcpu, cpu);
696         pcpu_attach_task(pcpu, tidle);
697         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
698         while (!cpu_online(cpu))
699                 cpu_relax();
700         return 0;
701 }
702
703 static unsigned int setup_possible_cpus __initdata;
704
705 static int __init _setup_possible_cpus(char *s)
706 {
707         get_option(&s, &setup_possible_cpus);
708         return 0;
709 }
710 early_param("possible_cpus", _setup_possible_cpus);
711
712 #ifdef CONFIG_HOTPLUG_CPU
713
714 int __cpu_disable(void)
715 {
716         unsigned long cregs[16];
717
718         /* Handle possible pending IPIs */
719         smp_handle_ext_call();
720         set_cpu_online(smp_processor_id(), false);
721         /* Disable pseudo page faults on this cpu. */
722         pfault_fini();
723         /* Disable interrupt sources via control register. */
724         __ctl_store(cregs, 0, 15);
725         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
726         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
727         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
728         __ctl_load(cregs, 0, 15);
729         return 0;
730 }
731
732 void __cpu_die(unsigned int cpu)
733 {
734         struct pcpu *pcpu;
735
736         /* Wait until target cpu is down */
737         pcpu = pcpu_devices + cpu;
738         while (!pcpu_stopped(pcpu))
739                 cpu_relax();
740         pcpu_free_lowcore(pcpu);
741         atomic_dec(&init_mm.context.attach_count);
742         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
743         if (MACHINE_HAS_TLB_LC)
744                 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
745 }
746
747 void __noreturn cpu_die(void)
748 {
749         idle_task_exit();
750         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
751         for (;;) ;
752 }
753
754 #endif /* CONFIG_HOTPLUG_CPU */
755
756 void __init smp_fill_possible_mask(void)
757 {
758         unsigned int possible, sclp, cpu;
759
760         sclp = sclp_get_max_cpu() ?: nr_cpu_ids;
761         possible = setup_possible_cpus ?: nr_cpu_ids;
762         possible = min(possible, sclp);
763         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
764                 set_cpu_possible(cpu, true);
765 }
766
767 void __init smp_prepare_cpus(unsigned int max_cpus)
768 {
769         /* request the 0x1201 emergency signal external interrupt */
770         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
771                 panic("Couldn't request external interrupt 0x1201");
772         /* request the 0x1202 external call external interrupt */
773         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
774                 panic("Couldn't request external interrupt 0x1202");
775         smp_detect_cpus();
776 }
777
778 void __init smp_prepare_boot_cpu(void)
779 {
780         struct pcpu *pcpu = pcpu_devices;
781
782         boot_cpu_address = stap();
783         pcpu->state = CPU_STATE_CONFIGURED;
784         pcpu->address = boot_cpu_address;
785         pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
786         pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE
787                 + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
788         pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE
789                 + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
790         S390_lowcore.percpu_offset = __per_cpu_offset[0];
791         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
792         set_cpu_present(0, true);
793         set_cpu_online(0, true);
794 }
795
796 void __init smp_cpus_done(unsigned int max_cpus)
797 {
798 }
799
800 void __init smp_setup_processor_id(void)
801 {
802         S390_lowcore.cpu_nr = 0;
803         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
804 }
805
806 /*
807  * the frequency of the profiling timer can be changed
808  * by writing a multiplier value into /proc/profile.
809  *
810  * usually you want to run this on all CPUs ;)
811  */
812 int setup_profiling_timer(unsigned int multiplier)
813 {
814         return 0;
815 }
816
817 #ifdef CONFIG_HOTPLUG_CPU
818 static ssize_t cpu_configure_show(struct device *dev,
819                                   struct device_attribute *attr, char *buf)
820 {
821         ssize_t count;
822
823         mutex_lock(&smp_cpu_state_mutex);
824         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
825         mutex_unlock(&smp_cpu_state_mutex);
826         return count;
827 }
828
829 static ssize_t cpu_configure_store(struct device *dev,
830                                    struct device_attribute *attr,
831                                    const char *buf, size_t count)
832 {
833         struct pcpu *pcpu;
834         int cpu, val, rc;
835         char delim;
836
837         if (sscanf(buf, "%d %c", &val, &delim) != 1)
838                 return -EINVAL;
839         if (val != 0 && val != 1)
840                 return -EINVAL;
841         get_online_cpus();
842         mutex_lock(&smp_cpu_state_mutex);
843         rc = -EBUSY;
844         /* disallow configuration changes of online cpus and cpu 0 */
845         cpu = dev->id;
846         if (cpu_online(cpu) || cpu == 0)
847                 goto out;
848         pcpu = pcpu_devices + cpu;
849         rc = 0;
850         switch (val) {
851         case 0:
852                 if (pcpu->state != CPU_STATE_CONFIGURED)
853                         break;
854                 rc = sclp_cpu_deconfigure(pcpu->address);
855                 if (rc)
856                         break;
857                 pcpu->state = CPU_STATE_STANDBY;
858                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
859                 topology_expect_change();
860                 break;
861         case 1:
862                 if (pcpu->state != CPU_STATE_STANDBY)
863                         break;
864                 rc = sclp_cpu_configure(pcpu->address);
865                 if (rc)
866                         break;
867                 pcpu->state = CPU_STATE_CONFIGURED;
868                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
869                 topology_expect_change();
870                 break;
871         default:
872                 break;
873         }
874 out:
875         mutex_unlock(&smp_cpu_state_mutex);
876         put_online_cpus();
877         return rc ? rc : count;
878 }
879 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
880 #endif /* CONFIG_HOTPLUG_CPU */
881
882 static ssize_t show_cpu_address(struct device *dev,
883                                 struct device_attribute *attr, char *buf)
884 {
885         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
886 }
887 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
888
889 static struct attribute *cpu_common_attrs[] = {
890 #ifdef CONFIG_HOTPLUG_CPU
891         &dev_attr_configure.attr,
892 #endif
893         &dev_attr_address.attr,
894         NULL,
895 };
896
897 static struct attribute_group cpu_common_attr_group = {
898         .attrs = cpu_common_attrs,
899 };
900
901 static ssize_t show_idle_count(struct device *dev,
902                                 struct device_attribute *attr, char *buf)
903 {
904         struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
905         unsigned long long idle_count;
906         unsigned int sequence;
907
908         do {
909                 sequence = ACCESS_ONCE(idle->sequence);
910                 idle_count = ACCESS_ONCE(idle->idle_count);
911                 if (ACCESS_ONCE(idle->clock_idle_enter))
912                         idle_count++;
913         } while ((sequence & 1) || (ACCESS_ONCE(idle->sequence) != sequence));
914         return sprintf(buf, "%llu\n", idle_count);
915 }
916 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
917
918 static ssize_t show_idle_time(struct device *dev,
919                                 struct device_attribute *attr, char *buf)
920 {
921         struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
922         unsigned long long now, idle_time, idle_enter, idle_exit;
923         unsigned int sequence;
924
925         do {
926                 now = get_tod_clock();
927                 sequence = ACCESS_ONCE(idle->sequence);
928                 idle_time = ACCESS_ONCE(idle->idle_time);
929                 idle_enter = ACCESS_ONCE(idle->clock_idle_enter);
930                 idle_exit = ACCESS_ONCE(idle->clock_idle_exit);
931         } while ((sequence & 1) || (ACCESS_ONCE(idle->sequence) != sequence));
932         idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
933         return sprintf(buf, "%llu\n", idle_time >> 12);
934 }
935 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
936
937 static struct attribute *cpu_online_attrs[] = {
938         &dev_attr_idle_count.attr,
939         &dev_attr_idle_time_us.attr,
940         NULL,
941 };
942
943 static struct attribute_group cpu_online_attr_group = {
944         .attrs = cpu_online_attrs,
945 };
946
947 static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
948                           void *hcpu)
949 {
950         unsigned int cpu = (unsigned int)(long)hcpu;
951         struct cpu *c = pcpu_devices[cpu].cpu;
952         struct device *s = &c->dev;
953         int err = 0;
954
955         switch (action & ~CPU_TASKS_FROZEN) {
956         case CPU_ONLINE:
957                 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
958                 break;
959         case CPU_DEAD:
960                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
961                 break;
962         }
963         return notifier_from_errno(err);
964 }
965
966 static int smp_add_present_cpu(int cpu)
967 {
968         struct device *s;
969         struct cpu *c;
970         int rc;
971
972         c = kzalloc(sizeof(*c), GFP_KERNEL);
973         if (!c)
974                 return -ENOMEM;
975         pcpu_devices[cpu].cpu = c;
976         s = &c->dev;
977         c->hotpluggable = 1;
978         rc = register_cpu(c, cpu);
979         if (rc)
980                 goto out;
981         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
982         if (rc)
983                 goto out_cpu;
984         if (cpu_online(cpu)) {
985                 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
986                 if (rc)
987                         goto out_online;
988         }
989         rc = topology_cpu_init(c);
990         if (rc)
991                 goto out_topology;
992         return 0;
993
994 out_topology:
995         if (cpu_online(cpu))
996                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
997 out_online:
998         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
999 out_cpu:
1000 #ifdef CONFIG_HOTPLUG_CPU
1001         unregister_cpu(c);
1002 #endif
1003 out:
1004         return rc;
1005 }
1006
1007 #ifdef CONFIG_HOTPLUG_CPU
1008
1009 int __ref smp_rescan_cpus(void)
1010 {
1011         struct sclp_cpu_info *info;
1012         int nr;
1013
1014         info = smp_get_cpu_info();
1015         if (!info)
1016                 return -ENOMEM;
1017         get_online_cpus();
1018         mutex_lock(&smp_cpu_state_mutex);
1019         nr = __smp_rescan_cpus(info, 1);
1020         mutex_unlock(&smp_cpu_state_mutex);
1021         put_online_cpus();
1022         kfree(info);
1023         if (nr)
1024                 topology_schedule_update();
1025         return 0;
1026 }
1027
1028 static ssize_t __ref rescan_store(struct device *dev,
1029                                   struct device_attribute *attr,
1030                                   const char *buf,
1031                                   size_t count)
1032 {
1033         int rc;
1034
1035         rc = lock_device_hotplug_sysfs();
1036         if (rc)
1037                 return rc;
1038         rc = smp_rescan_cpus();
1039         unlock_device_hotplug();
1040         return rc ? rc : count;
1041 }
1042 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1043 #endif /* CONFIG_HOTPLUG_CPU */
1044
1045 static int __init s390_smp_init(void)
1046 {
1047         int cpu, rc = 0;
1048
1049 #ifdef CONFIG_HOTPLUG_CPU
1050         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1051         if (rc)
1052                 return rc;
1053 #endif
1054         cpu_notifier_register_begin();
1055         for_each_present_cpu(cpu) {
1056                 rc = smp_add_present_cpu(cpu);
1057                 if (rc)
1058                         goto out;
1059         }
1060
1061         __hotcpu_notifier(smp_cpu_notify, 0);
1062
1063 out:
1064         cpu_notifier_register_done();
1065         return rc;
1066 }
1067 subsys_initcall(s390_smp_init);