Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / arch / riscv / include / asm / bitops.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  */
5
6 #ifndef _ASM_RISCV_BITOPS_H
7 #define _ASM_RISCV_BITOPS_H
8
9 #ifndef _LINUX_BITOPS_H
10 #error "Only <linux/bitops.h> can be included directly"
11 #endif /* _LINUX_BITOPS_H */
12
13 #include <linux/compiler.h>
14 #include <linux/irqflags.h>
15 #include <asm/barrier.h>
16 #include <asm/bitsperlong.h>
17
18 #include <asm-generic/bitops/__ffs.h>
19 #include <asm-generic/bitops/ffz.h>
20 #include <asm-generic/bitops/fls.h>
21 #include <asm-generic/bitops/__fls.h>
22 #include <asm-generic/bitops/fls64.h>
23 #include <asm-generic/bitops/find.h>
24 #include <asm-generic/bitops/sched.h>
25 #include <asm-generic/bitops/ffs.h>
26
27 #include <asm-generic/bitops/hweight.h>
28
29 #if (BITS_PER_LONG == 64)
30 #define __AMO(op)       "amo" #op ".d"
31 #elif (BITS_PER_LONG == 32)
32 #define __AMO(op)       "amo" #op ".w"
33 #else
34 #error "Unexpected BITS_PER_LONG"
35 #endif
36
37 #define __test_and_op_bit_ord(op, mod, nr, addr, ord)           \
38 ({                                                              \
39         unsigned long __res, __mask;                            \
40         __mask = BIT_MASK(nr);                                  \
41         __asm__ __volatile__ (                                  \
42                 __AMO(op) #ord " %0, %2, %1"                    \
43                 : "=r" (__res), "+A" (addr[BIT_WORD(nr)])       \
44                 : "r" (mod(__mask))                             \
45                 : "memory");                                    \
46         ((__res & __mask) != 0);                                \
47 })
48
49 #define __op_bit_ord(op, mod, nr, addr, ord)                    \
50         __asm__ __volatile__ (                                  \
51                 __AMO(op) #ord " zero, %1, %0"                  \
52                 : "+A" (addr[BIT_WORD(nr)])                     \
53                 : "r" (mod(BIT_MASK(nr)))                       \
54                 : "memory");
55
56 #define __test_and_op_bit(op, mod, nr, addr)                    \
57         __test_and_op_bit_ord(op, mod, nr, addr, .aqrl)
58 #define __op_bit(op, mod, nr, addr)                             \
59         __op_bit_ord(op, mod, nr, addr, )
60
61 /* Bitmask modifiers */
62 #define __NOP(x)        (x)
63 #define __NOT(x)        (~(x))
64
65 /**
66  * test_and_set_bit - Set a bit and return its old value
67  * @nr: Bit to set
68  * @addr: Address to count from
69  *
70  * This operation may be reordered on other architectures than x86.
71  */
72 static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
73 {
74         return __test_and_op_bit(or, __NOP, nr, addr);
75 }
76
77 /**
78  * test_and_clear_bit - Clear a bit and return its old value
79  * @nr: Bit to clear
80  * @addr: Address to count from
81  *
82  * This operation can be reordered on other architectures other than x86.
83  */
84 static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
85 {
86         return __test_and_op_bit(and, __NOT, nr, addr);
87 }
88
89 /**
90  * test_and_change_bit - Change a bit and return its old value
91  * @nr: Bit to change
92  * @addr: Address to count from
93  *
94  * This operation is atomic and cannot be reordered.
95  * It also implies a memory barrier.
96  */
97 static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
98 {
99         return __test_and_op_bit(xor, __NOP, nr, addr);
100 }
101
102 /**
103  * set_bit - Atomically set a bit in memory
104  * @nr: the bit to set
105  * @addr: the address to start counting from
106  *
107  * Note: there are no guarantees that this function will not be reordered
108  * on non x86 architectures, so if you are writing portable code,
109  * make sure not to rely on its reordering guarantees.
110  *
111  * Note that @nr may be almost arbitrarily large; this function is not
112  * restricted to acting on a single-word quantity.
113  */
114 static inline void set_bit(int nr, volatile unsigned long *addr)
115 {
116         __op_bit(or, __NOP, nr, addr);
117 }
118
119 /**
120  * clear_bit - Clears a bit in memory
121  * @nr: Bit to clear
122  * @addr: Address to start counting from
123  *
124  * Note: there are no guarantees that this function will not be reordered
125  * on non x86 architectures, so if you are writing portable code,
126  * make sure not to rely on its reordering guarantees.
127  */
128 static inline void clear_bit(int nr, volatile unsigned long *addr)
129 {
130         __op_bit(and, __NOT, nr, addr);
131 }
132
133 /**
134  * change_bit - Toggle a bit in memory
135  * @nr: Bit to change
136  * @addr: Address to start counting from
137  *
138  * change_bit()  may be reordered on other architectures than x86.
139  * Note that @nr may be almost arbitrarily large; this function is not
140  * restricted to acting on a single-word quantity.
141  */
142 static inline void change_bit(int nr, volatile unsigned long *addr)
143 {
144         __op_bit(xor, __NOP, nr, addr);
145 }
146
147 /**
148  * test_and_set_bit_lock - Set a bit and return its old value, for lock
149  * @nr: Bit to set
150  * @addr: Address to count from
151  *
152  * This operation is atomic and provides acquire barrier semantics.
153  * It can be used to implement bit locks.
154  */
155 static inline int test_and_set_bit_lock(
156         unsigned long nr, volatile unsigned long *addr)
157 {
158         return __test_and_op_bit_ord(or, __NOP, nr, addr, .aq);
159 }
160
161 /**
162  * clear_bit_unlock - Clear a bit in memory, for unlock
163  * @nr: the bit to set
164  * @addr: the address to start counting from
165  *
166  * This operation is atomic and provides release barrier semantics.
167  */
168 static inline void clear_bit_unlock(
169         unsigned long nr, volatile unsigned long *addr)
170 {
171         __op_bit_ord(and, __NOT, nr, addr, .rl);
172 }
173
174 /**
175  * __clear_bit_unlock - Clear a bit in memory, for unlock
176  * @nr: the bit to set
177  * @addr: the address to start counting from
178  *
179  * This operation is like clear_bit_unlock, however it is not atomic.
180  * It does provide release barrier semantics so it can be used to unlock
181  * a bit lock, however it would only be used if no other CPU can modify
182  * any bits in the memory until the lock is released (a good example is
183  * if the bit lock itself protects access to the other bits in the word).
184  *
185  * On RISC-V systems there seems to be no benefit to taking advantage of the
186  * non-atomic property here: it's a lot more instructions and we still have to
187  * provide release semantics anyway.
188  */
189 static inline void __clear_bit_unlock(
190         unsigned long nr, volatile unsigned long *addr)
191 {
192         clear_bit_unlock(nr, addr);
193 }
194
195 #undef __test_and_op_bit
196 #undef __op_bit
197 #undef __NOP
198 #undef __NOT
199 #undef __AMO
200
201 #include <asm-generic/bitops/non-atomic.h>
202 #include <asm-generic/bitops/le.h>
203 #include <asm-generic/bitops/ext2-atomic.h>
204
205 #endif /* _ASM_RISCV_BITOPS_H */