Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / arch / powerpc / xmon / ppc.h
1 /* ppc.h -- Header file for PowerPC opcode table
2    Copyright (C) 1994-2016 Free Software Foundation, Inc.
3    Written by Ian Lance Taylor, Cygnus Support
4
5 This file is part of GDB, GAS, and the GNU binutils.
6
7 GDB, GAS, and the GNU binutils are free software; you can redistribute
8 them and/or modify them under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either version
10 1, or (at your option) any later version.
11
12 GDB, GAS, and the GNU binutils are distributed in the hope that they
13 will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
15 the GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this file; see the file COPYING.  If not, write to the Free
19 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
20
21 #ifndef PPC_H
22 #define PPC_H
23
24 #ifdef __cplusplus
25 extern "C" {
26 #endif
27
28 typedef uint64_t ppc_cpu_t;
29
30 /* The opcode table is an array of struct powerpc_opcode.  */
31
32 struct powerpc_opcode
33 {
34   /* The opcode name.  */
35   const char *name;
36
37   /* The opcode itself.  Those bits which will be filled in with
38      operands are zeroes.  */
39   unsigned long opcode;
40
41   /* The opcode mask.  This is used by the disassembler.  This is a
42      mask containing ones indicating those bits which must match the
43      opcode field, and zeroes indicating those bits which need not
44      match (and are presumably filled in by operands).  */
45   unsigned long mask;
46
47   /* One bit flags for the opcode.  These are used to indicate which
48      specific processors support the instructions.  The defined values
49      are listed below.  */
50   ppc_cpu_t flags;
51
52   /* One bit flags for the opcode.  These are used to indicate which
53      specific processors no longer support the instructions.  The defined
54      values are listed below.  */
55   ppc_cpu_t deprecated;
56
57   /* An array of operand codes.  Each code is an index into the
58      operand table.  They appear in the order which the operands must
59      appear in assembly code, and are terminated by a zero.  */
60   unsigned char operands[8];
61 };
62
63 /* The table itself is sorted by major opcode number, and is otherwise
64    in the order in which the disassembler should consider
65    instructions.  */
66 extern const struct powerpc_opcode powerpc_opcodes[];
67 extern const int powerpc_num_opcodes;
68 extern const struct powerpc_opcode vle_opcodes[];
69 extern const int vle_num_opcodes;
70
71 /* Values defined for the flags field of a struct powerpc_opcode.  */
72
73 /* Opcode is defined for the PowerPC architecture.  */
74 #define PPC_OPCODE_PPC                   1
75
76 /* Opcode is defined for the POWER (RS/6000) architecture.  */
77 #define PPC_OPCODE_POWER                 2
78
79 /* Opcode is defined for the POWER2 (Rios 2) architecture.  */
80 #define PPC_OPCODE_POWER2                4
81
82 /* Opcode is supported by the Motorola PowerPC 601 processor.  The 601
83    is assumed to support all PowerPC (PPC_OPCODE_PPC) instructions,
84    but it also supports many additional POWER instructions.  */
85 #define PPC_OPCODE_601                   8
86
87 /* Opcode is supported in both the Power and PowerPC architectures
88    (ie, compiler's -mcpu=common or assembler's -mcom).  More than just
89    the intersection of PPC_OPCODE_PPC with the union of PPC_OPCODE_POWER
90    and PPC_OPCODE_POWER2 because many instructions changed mnemonics
91    between POWER and POWERPC.  */
92 #define PPC_OPCODE_COMMON             0x10
93
94 /* Opcode is supported for any Power or PowerPC platform (this is
95    for the assembler's -many option, and it eliminates duplicates).  */
96 #define PPC_OPCODE_ANY                0x20
97
98 /* Opcode is only defined on 64 bit architectures.  */
99 #define PPC_OPCODE_64                 0x40
100
101 /* Opcode is supported as part of the 64-bit bridge.  */
102 #define PPC_OPCODE_64_BRIDGE          0x80
103
104 /* Opcode is supported by Altivec Vector Unit */
105 #define PPC_OPCODE_ALTIVEC           0x100
106
107 /* Opcode is supported by PowerPC 403 processor.  */
108 #define PPC_OPCODE_403               0x200
109
110 /* Opcode is supported by PowerPC BookE processor.  */
111 #define PPC_OPCODE_BOOKE             0x400
112
113 /* Opcode is supported by PowerPC 440 processor.  */
114 #define PPC_OPCODE_440               0x800
115
116 /* Opcode is only supported by Power4 architecture.  */
117 #define PPC_OPCODE_POWER4           0x1000
118
119 /* Opcode is only supported by Power7 architecture.  */
120 #define PPC_OPCODE_POWER7           0x2000
121
122 /* Opcode is only supported by e500x2 Core.  */
123 #define PPC_OPCODE_SPE              0x4000
124
125 /* Opcode is supported by e500x2 Integer select APU.  */
126 #define PPC_OPCODE_ISEL             0x8000
127
128 /* Opcode is an e500 SPE floating point instruction.  */
129 #define PPC_OPCODE_EFS             0x10000
130
131 /* Opcode is supported by branch locking APU.  */
132 #define PPC_OPCODE_BRLOCK          0x20000
133
134 /* Opcode is supported by performance monitor APU.  */
135 #define PPC_OPCODE_PMR             0x40000
136
137 /* Opcode is supported by cache locking APU.  */
138 #define PPC_OPCODE_CACHELCK        0x80000
139
140 /* Opcode is supported by machine check APU.  */
141 #define PPC_OPCODE_RFMCI          0x100000
142
143 /* Opcode is only supported by Power5 architecture.  */
144 #define PPC_OPCODE_POWER5         0x200000
145
146 /* Opcode is supported by PowerPC e300 family.  */
147 #define PPC_OPCODE_E300           0x400000
148
149 /* Opcode is only supported by Power6 architecture.  */
150 #define PPC_OPCODE_POWER6         0x800000
151
152 /* Opcode is only supported by PowerPC Cell family.  */
153 #define PPC_OPCODE_CELL          0x1000000
154
155 /* Opcode is supported by CPUs with paired singles support.  */
156 #define PPC_OPCODE_PPCPS         0x2000000
157
158 /* Opcode is supported by Power E500MC */
159 #define PPC_OPCODE_E500MC        0x4000000
160
161 /* Opcode is supported by PowerPC 405 processor.  */
162 #define PPC_OPCODE_405           0x8000000
163
164 /* Opcode is supported by Vector-Scalar (VSX) Unit */
165 #define PPC_OPCODE_VSX          0x10000000
166
167 /* Opcode is supported by A2.  */
168 #define PPC_OPCODE_A2           0x20000000
169
170 /* Opcode is supported by PowerPC 476 processor.  */
171 #define PPC_OPCODE_476          0x40000000
172
173 /* Opcode is supported by AppliedMicro Titan core */
174 #define PPC_OPCODE_TITAN        0x80000000
175
176 /* Opcode which is supported by the e500 family */
177 #define PPC_OPCODE_E500        0x100000000ull
178
179 /* Opcode is supported by Extended Altivec Vector Unit */
180 #define PPC_OPCODE_ALTIVEC2    0x200000000ull
181
182 /* Opcode is supported by Power E6500 */
183 #define PPC_OPCODE_E6500       0x400000000ull
184
185 /* Opcode is supported by Thread management APU */
186 #define PPC_OPCODE_TMR         0x800000000ull
187
188 /* Opcode which is supported by the VLE extension.  */
189 #define PPC_OPCODE_VLE        0x1000000000ull
190
191 /* Opcode is only supported by Power8 architecture.  */
192 #define PPC_OPCODE_POWER8     0x2000000000ull
193
194 /* Opcode which is supported by the Hardware Transactional Memory extension.  */
195 /* Currently, this is the same as the POWER8 mask.  If another cpu comes out
196    that isn't a superset of POWER8, we can define this to its own mask.  */
197 #define PPC_OPCODE_HTM        PPC_OPCODE_POWER8
198
199 /* Opcode is supported by ppc750cl.  */
200 #define PPC_OPCODE_750        0x4000000000ull
201
202 /* Opcode is supported by ppc7450.  */
203 #define PPC_OPCODE_7450       0x8000000000ull
204
205 /* Opcode is supported by ppc821/850/860.  */
206 #define PPC_OPCODE_860        0x10000000000ull
207
208 /* Opcode is only supported by Power9 architecture.  */
209 #define PPC_OPCODE_POWER9     0x20000000000ull
210
211 /* Opcode is supported by Vector-Scalar (VSX) Unit from ISA 2.08.  */
212 #define PPC_OPCODE_VSX3       0x40000000000ull
213
214   /* Opcode is supported by e200z4.  */
215 #define PPC_OPCODE_E200Z4     0x80000000000ull
216
217 /* A macro to extract the major opcode from an instruction.  */
218 #define PPC_OP(i) (((i) >> 26) & 0x3f)
219
220 /* A macro to determine if the instruction is a 2-byte VLE insn.  */
221 #define PPC_OP_SE_VLE(m) ((m) <= 0xffff)
222
223 /* A macro to extract the major opcode from a VLE instruction.  */
224 #define VLE_OP(i,m) (((i) >> ((m) <= 0xffff ? 10 : 26)) & 0x3f)
225
226 /* A macro to convert a VLE opcode to a VLE opcode segment.  */
227 #define VLE_OP_TO_SEG(i) ((i) >> 1)
228 \f
229 /* The operands table is an array of struct powerpc_operand.  */
230
231 struct powerpc_operand
232 {
233   /* A bitmask of bits in the operand.  */
234   unsigned int bitm;
235
236   /* The shift operation to be applied to the operand.  No shift
237      is made if this is zero.  For positive values, the operand
238      is shifted left by SHIFT.  For negative values, the operand
239      is shifted right by -SHIFT.  Use PPC_OPSHIFT_INV to indicate
240      that BITM and SHIFT cannot be used to determine where the
241      operand goes in the insn.  */
242   int shift;
243
244   /* Insertion function.  This is used by the assembler.  To insert an
245      operand value into an instruction, check this field.
246
247      If it is NULL, execute
248          if (o->shift >= 0)
249            i |= (op & o->bitm) << o->shift;
250          else
251            i |= (op & o->bitm) >> -o->shift;
252      (i is the instruction which we are filling in, o is a pointer to
253      this structure, and op is the operand value).
254
255      If this field is not NULL, then simply call it with the
256      instruction and the operand value.  It will return the new value
257      of the instruction.  If the ERRMSG argument is not NULL, then if
258      the operand value is illegal, *ERRMSG will be set to a warning
259      string (the operand will be inserted in any case).  If the
260      operand value is legal, *ERRMSG will be unchanged (most operands
261      can accept any value).  */
262   unsigned long (*insert)
263     (unsigned long instruction, long op, ppc_cpu_t dialect, const char **errmsg);
264
265   /* Extraction function.  This is used by the disassembler.  To
266      extract this operand type from an instruction, check this field.
267
268      If it is NULL, compute
269          if (o->shift >= 0)
270            op = (i >> o->shift) & o->bitm;
271          else
272            op = (i << -o->shift) & o->bitm;
273          if ((o->flags & PPC_OPERAND_SIGNED) != 0)
274            sign_extend (op);
275      (i is the instruction, o is a pointer to this structure, and op
276      is the result).
277
278      If this field is not NULL, then simply call it with the
279      instruction value.  It will return the value of the operand.  If
280      the INVALID argument is not NULL, *INVALID will be set to
281      non-zero if this operand type can not actually be extracted from
282      this operand (i.e., the instruction does not match).  If the
283      operand is valid, *INVALID will not be changed.  */
284   long (*extract) (unsigned long instruction, ppc_cpu_t dialect, int *invalid);
285
286   /* One bit syntax flags.  */
287   unsigned long flags;
288 };
289
290 /* Elements in the table are retrieved by indexing with values from
291    the operands field of the powerpc_opcodes table.  */
292
293 extern const struct powerpc_operand powerpc_operands[];
294 extern const unsigned int num_powerpc_operands;
295
296 /* Use with the shift field of a struct powerpc_operand to indicate
297      that BITM and SHIFT cannot be used to determine where the operand
298      goes in the insn.  */
299 #define PPC_OPSHIFT_INV (-1U << 31)
300
301 /* Values defined for the flags field of a struct powerpc_operand.  */
302
303 /* This operand takes signed values.  */
304 #define PPC_OPERAND_SIGNED (0x1)
305
306 /* This operand takes signed values, but also accepts a full positive
307    range of values when running in 32 bit mode.  That is, if bits is
308    16, it takes any value from -0x8000 to 0xffff.  In 64 bit mode,
309    this flag is ignored.  */
310 #define PPC_OPERAND_SIGNOPT (0x2)
311
312 /* This operand does not actually exist in the assembler input.  This
313    is used to support extended mnemonics such as mr, for which two
314    operands fields are identical.  The assembler should call the
315    insert function with any op value.  The disassembler should call
316    the extract function, ignore the return value, and check the value
317    placed in the valid argument.  */
318 #define PPC_OPERAND_FAKE (0x4)
319
320 /* The next operand should be wrapped in parentheses rather than
321    separated from this one by a comma.  This is used for the load and
322    store instructions which want their operands to look like
323        reg,displacement(reg)
324    */
325 #define PPC_OPERAND_PARENS (0x8)
326
327 /* This operand may use the symbolic names for the CR fields, which
328    are
329        lt  0    gt  1   eq  2   so  3   un  3
330        cr0 0    cr1 1   cr2 2   cr3 3
331        cr4 4    cr5 5   cr6 6   cr7 7
332    These may be combined arithmetically, as in cr2*4+gt.  These are
333    only supported on the PowerPC, not the POWER.  */
334 #define PPC_OPERAND_CR_BIT (0x10)
335
336 /* This operand names a register.  The disassembler uses this to print
337    register names with a leading 'r'.  */
338 #define PPC_OPERAND_GPR (0x20)
339
340 /* Like PPC_OPERAND_GPR, but don't print a leading 'r' for r0.  */
341 #define PPC_OPERAND_GPR_0 (0x40)
342
343 /* This operand names a floating point register.  The disassembler
344    prints these with a leading 'f'.  */
345 #define PPC_OPERAND_FPR (0x80)
346
347 /* This operand is a relative branch displacement.  The disassembler
348    prints these symbolically if possible.  */
349 #define PPC_OPERAND_RELATIVE (0x100)
350
351 /* This operand is an absolute branch address.  The disassembler
352    prints these symbolically if possible.  */
353 #define PPC_OPERAND_ABSOLUTE (0x200)
354
355 /* This operand is optional, and is zero if omitted.  This is used for
356    example, in the optional BF field in the comparison instructions.  The
357    assembler must count the number of operands remaining on the line,
358    and the number of operands remaining for the opcode, and decide
359    whether this operand is present or not.  The disassembler should
360    print this operand out only if it is not zero.  */
361 #define PPC_OPERAND_OPTIONAL (0x400)
362
363 /* This flag is only used with PPC_OPERAND_OPTIONAL.  If this operand
364    is omitted, then for the next operand use this operand value plus
365    1, ignoring the next operand field for the opcode.  This wretched
366    hack is needed because the Power rotate instructions can take
367    either 4 or 5 operands.  The disassembler should print this operand
368    out regardless of the PPC_OPERAND_OPTIONAL field.  */
369 #define PPC_OPERAND_NEXT (0x800)
370
371 /* This operand should be regarded as a negative number for the
372    purposes of overflow checking (i.e., the normal most negative
373    number is disallowed and one more than the normal most positive
374    number is allowed).  This flag will only be set for a signed
375    operand.  */
376 #define PPC_OPERAND_NEGATIVE (0x1000)
377
378 /* This operand names a vector unit register.  The disassembler
379    prints these with a leading 'v'.  */
380 #define PPC_OPERAND_VR (0x2000)
381
382 /* This operand is for the DS field in a DS form instruction.  */
383 #define PPC_OPERAND_DS (0x4000)
384
385 /* This operand is for the DQ field in a DQ form instruction.  */
386 #define PPC_OPERAND_DQ (0x8000)
387
388 /* Valid range of operand is 0..n rather than 0..n-1.  */
389 #define PPC_OPERAND_PLUS1 (0x10000)
390
391 /* Xilinx APU and FSL related operands */
392 #define PPC_OPERAND_FSL (0x20000)
393 #define PPC_OPERAND_FCR (0x40000)
394 #define PPC_OPERAND_UDI (0x80000)
395
396 /* This operand names a vector-scalar unit register.  The disassembler
397    prints these with a leading 'vs'.  */
398 #define PPC_OPERAND_VSR (0x100000)
399
400 /* This is a CR FIELD that does not use symbolic names.  */
401 #define PPC_OPERAND_CR_REG (0x200000)
402
403 /* This flag is only used with PPC_OPERAND_OPTIONAL.  If this operand
404    is omitted, then the value it should use for the operand is stored
405    in the SHIFT field of the immediatly following operand field.  */
406 #define PPC_OPERAND_OPTIONAL_VALUE (0x400000)
407
408 /* This flag is only used with PPC_OPERAND_OPTIONAL.  The operand is
409    only optional when generating 32-bit code.  */
410 #define PPC_OPERAND_OPTIONAL32 (0x800000)
411 \f
412 /* The POWER and PowerPC assemblers use a few macros.  We keep them
413    with the operands table for simplicity.  The macro table is an
414    array of struct powerpc_macro.  */
415
416 struct powerpc_macro
417 {
418   /* The macro name.  */
419   const char *name;
420
421   /* The number of operands the macro takes.  */
422   unsigned int operands;
423
424   /* One bit flags for the opcode.  These are used to indicate which
425      specific processors support the instructions.  The values are the
426      same as those for the struct powerpc_opcode flags field.  */
427   ppc_cpu_t flags;
428
429   /* A format string to turn the macro into a normal instruction.
430      Each %N in the string is replaced with operand number N (zero
431      based).  */
432   const char *format;
433 };
434
435 extern const struct powerpc_macro powerpc_macros[];
436 extern const int powerpc_num_macros;
437
438 extern ppc_cpu_t ppc_parse_cpu (ppc_cpu_t, ppc_cpu_t *, const char *);
439
440 static inline long
441 ppc_optional_operand_value (const struct powerpc_operand *operand)
442 {
443   if ((operand->flags & PPC_OPERAND_OPTIONAL_VALUE) != 0)
444     return (operand+1)->shift;
445   return 0;
446 }
447
448 #ifdef __cplusplus
449 }
450 #endif
451
452 #endif /* PPC_H */