Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / arch / powerpc / perf / e500-pmu.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance counter support for e500 family processors.
4  *
5  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6  * Copyright 2010 Freescale Semiconductor, Inc.
7  */
8 #include <linux/string.h>
9 #include <linux/perf_event.h>
10 #include <asm/reg.h>
11 #include <asm/cputable.h>
12
13 /*
14  * Map of generic hardware event types to hardware events
15  * Zero if unsupported
16  */
17 static int e500_generic_events[] = {
18         [PERF_COUNT_HW_CPU_CYCLES] = 1,
19         [PERF_COUNT_HW_INSTRUCTIONS] = 2,
20         [PERF_COUNT_HW_CACHE_MISSES] = 41, /* Data L1 cache reloads */
21         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 12,
22         [PERF_COUNT_HW_BRANCH_MISSES] = 15,
23         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 18,
24         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 19,
25 };
26
27 #define C(x)    PERF_COUNT_HW_CACHE_##x
28
29 /*
30  * Table of generalized cache-related events.
31  * 0 means not supported, -1 means nonsensical, other values
32  * are event codes.
33  */
34 static int e500_cache_events[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
35         /*
36          * D-cache misses are not split into read/write/prefetch;
37          * use raw event 41.
38          */
39         [C(L1D)] = {            /*      RESULT_ACCESS   RESULT_MISS */
40                 [C(OP_READ)] = {        27,             0       },
41                 [C(OP_WRITE)] = {       28,             0       },
42                 [C(OP_PREFETCH)] = {    29,             0       },
43         },
44         [C(L1I)] = {            /*      RESULT_ACCESS   RESULT_MISS */
45                 [C(OP_READ)] = {        2,              60      },
46                 [C(OP_WRITE)] = {       -1,             -1      },
47                 [C(OP_PREFETCH)] = {    0,              0       },
48         },
49         /*
50          * Assuming LL means L2, it's not a good match for this model.
51          * It allocates only on L1 castout or explicit prefetch, and
52          * does not have separate read/write events (but it does have
53          * separate instruction/data events).
54          */
55         [C(LL)] = {             /*      RESULT_ACCESS   RESULT_MISS */
56                 [C(OP_READ)] = {        0,              0       },
57                 [C(OP_WRITE)] = {       0,              0       },
58                 [C(OP_PREFETCH)] = {    0,              0       },
59         },
60         /*
61          * There are data/instruction MMU misses, but that's a miss on
62          * the chip's internal level-one TLB which is probably not
63          * what the user wants.  Instead, unified level-two TLB misses
64          * are reported here.
65          */
66         [C(DTLB)] = {           /*      RESULT_ACCESS   RESULT_MISS */
67                 [C(OP_READ)] = {        26,             66      },
68                 [C(OP_WRITE)] = {       -1,             -1      },
69                 [C(OP_PREFETCH)] = {    -1,             -1      },
70         },
71         [C(BPU)] = {            /*      RESULT_ACCESS   RESULT_MISS */
72                 [C(OP_READ)] = {        12,             15      },
73                 [C(OP_WRITE)] = {       -1,             -1      },
74                 [C(OP_PREFETCH)] = {    -1,             -1      },
75         },
76         [C(NODE)] = {           /*      RESULT_ACCESS   RESULT_MISS */
77                 [C(OP_READ)] = {        -1,             -1      },
78                 [C(OP_WRITE)] = {       -1,             -1      },
79                 [C(OP_PREFETCH)] = {    -1,             -1      },
80         },
81 };
82
83 static int num_events = 128;
84
85 /* Upper half of event id is PMLCb, for threshold events */
86 static u64 e500_xlate_event(u64 event_id)
87 {
88         u32 event_low = (u32)event_id;
89         u64 ret;
90
91         if (event_low >= num_events)
92                 return 0;
93
94         ret = FSL_EMB_EVENT_VALID;
95
96         if (event_low >= 76 && event_low <= 81) {
97                 ret |= FSL_EMB_EVENT_RESTRICTED;
98                 ret |= event_id &
99                        (FSL_EMB_EVENT_THRESHMUL | FSL_EMB_EVENT_THRESH);
100         } else if (event_id &
101                    (FSL_EMB_EVENT_THRESHMUL | FSL_EMB_EVENT_THRESH)) {
102                 /* Threshold requested on non-threshold event */
103                 return 0;
104         }
105
106         return ret;
107 }
108
109 static struct fsl_emb_pmu e500_pmu = {
110         .name                   = "e500 family",
111         .n_counter              = 4,
112         .n_restricted           = 2,
113         .xlate_event            = e500_xlate_event,
114         .n_generic              = ARRAY_SIZE(e500_generic_events),
115         .generic_events         = e500_generic_events,
116         .cache_events           = &e500_cache_events,
117 };
118
119 static int init_e500_pmu(void)
120 {
121         if (!cur_cpu_spec->oprofile_cpu_type)
122                 return -ENODEV;
123
124         if (!strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc/e500mc"))
125                 num_events = 256;
126         else if (strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc/e500"))
127                 return -ENODEV;
128
129         return register_fsl_emb_pmu(&e500_pmu);
130 }
131
132 early_initcall(init_e500_pmu);