Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / arch / parisc / mm / init.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/arch/parisc/mm/init.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Copyright 1999 SuSE GmbH
7  *    changed by Philipp Rumpf
8  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
9  *  Copyright 2004 Randolph Chung (tausq@debian.org)
10  *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
11  *
12  */
13
14
15 #include <linux/module.h>
16 #include <linux/mm.h>
17 #include <linux/memblock.h>
18 #include <linux/gfp.h>
19 #include <linux/delay.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h>     /* for node_online_map */
25 #include <linux/pagemap.h>      /* for release_pages */
26 #include <linux/compat.h>
27
28 #include <asm/pgalloc.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31 #include <asm/pdc_chassis.h>
32 #include <asm/mmzone.h>
33 #include <asm/sections.h>
34 #include <asm/msgbuf.h>
35 #include <asm/sparsemem.h>
36
37 extern int  data_start;
38 extern void parisc_kernel_start(void);  /* Kernel entry point in head.S */
39
40 #if CONFIG_PGTABLE_LEVELS == 3
41 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
42  * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
43  * guarantee that global objects will be laid out in memory in the same order
44  * as the order of declaration, so put these in different sections and use
45  * the linker script to order them. */
46 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
47 #endif
48
49 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
50 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
51
52 static struct resource data_resource = {
53         .name   = "Kernel data",
54         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
55 };
56
57 static struct resource code_resource = {
58         .name   = "Kernel code",
59         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
60 };
61
62 static struct resource pdcdata_resource = {
63         .name   = "PDC data (Page Zero)",
64         .start  = 0,
65         .end    = 0x9ff,
66         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
67 };
68
69 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
70
71 /* The following array is initialized from the firmware specific
72  * information retrieved in kernel/inventory.c.
73  */
74
75 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
76 int npmem_ranges __initdata;
77
78 #ifdef CONFIG_64BIT
79 #define MAX_MEM         (1UL << MAX_PHYSMEM_BITS)
80 #else /* !CONFIG_64BIT */
81 #define MAX_MEM         (3584U*1024U*1024U)
82 #endif /* !CONFIG_64BIT */
83
84 static unsigned long mem_limit __read_mostly = MAX_MEM;
85
86 static void __init mem_limit_func(void)
87 {
88         char *cp, *end;
89         unsigned long limit;
90
91         /* We need this before __setup() functions are called */
92
93         limit = MAX_MEM;
94         for (cp = boot_command_line; *cp; ) {
95                 if (memcmp(cp, "mem=", 4) == 0) {
96                         cp += 4;
97                         limit = memparse(cp, &end);
98                         if (end != cp)
99                                 break;
100                         cp = end;
101                 } else {
102                         while (*cp != ' ' && *cp)
103                                 ++cp;
104                         while (*cp == ' ')
105                                 ++cp;
106                 }
107         }
108
109         if (limit < mem_limit)
110                 mem_limit = limit;
111 }
112
113 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
114
115 static void __init setup_bootmem(void)
116 {
117         unsigned long mem_max;
118 #ifndef CONFIG_SPARSEMEM
119         physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
120         int npmem_holes;
121 #endif
122         int i, sysram_resource_count;
123
124         disable_sr_hashing(); /* Turn off space register hashing */
125
126         /*
127          * Sort the ranges. Since the number of ranges is typically
128          * small, and performance is not an issue here, just do
129          * a simple insertion sort.
130          */
131
132         for (i = 1; i < npmem_ranges; i++) {
133                 int j;
134
135                 for (j = i; j > 0; j--) {
136                         physmem_range_t tmp;
137
138                         if (pmem_ranges[j-1].start_pfn <
139                             pmem_ranges[j].start_pfn) {
140
141                                 break;
142                         }
143                         tmp = pmem_ranges[j-1];
144                         pmem_ranges[j-1] = pmem_ranges[j];
145                         pmem_ranges[j] = tmp;
146                 }
147         }
148
149 #ifndef CONFIG_SPARSEMEM
150         /*
151          * Throw out ranges that are too far apart (controlled by
152          * MAX_GAP).
153          */
154
155         for (i = 1; i < npmem_ranges; i++) {
156                 if (pmem_ranges[i].start_pfn -
157                         (pmem_ranges[i-1].start_pfn +
158                          pmem_ranges[i-1].pages) > MAX_GAP) {
159                         npmem_ranges = i;
160                         printk("Large gap in memory detected (%ld pages). "
161                                "Consider turning on CONFIG_SPARSEMEM\n",
162                                pmem_ranges[i].start_pfn -
163                                (pmem_ranges[i-1].start_pfn +
164                                 pmem_ranges[i-1].pages));
165                         break;
166                 }
167         }
168 #endif
169
170         /* Print the memory ranges */
171         pr_info("Memory Ranges:\n");
172
173         for (i = 0; i < npmem_ranges; i++) {
174                 struct resource *res = &sysram_resources[i];
175                 unsigned long start;
176                 unsigned long size;
177
178                 size = (pmem_ranges[i].pages << PAGE_SHIFT);
179                 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
180                 pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
181                         i, start, start + (size - 1), size >> 20);
182
183                 /* request memory resource */
184                 res->name = "System RAM";
185                 res->start = start;
186                 res->end = start + size - 1;
187                 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
188                 request_resource(&iomem_resource, res);
189         }
190
191         sysram_resource_count = npmem_ranges;
192
193         /*
194          * For 32 bit kernels we limit the amount of memory we can
195          * support, in order to preserve enough kernel address space
196          * for other purposes. For 64 bit kernels we don't normally
197          * limit the memory, but this mechanism can be used to
198          * artificially limit the amount of memory (and it is written
199          * to work with multiple memory ranges).
200          */
201
202         mem_limit_func();       /* check for "mem=" argument */
203
204         mem_max = 0;
205         for (i = 0; i < npmem_ranges; i++) {
206                 unsigned long rsize;
207
208                 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
209                 if ((mem_max + rsize) > mem_limit) {
210                         printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
211                         if (mem_max == mem_limit)
212                                 npmem_ranges = i;
213                         else {
214                                 pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
215                                                        - (mem_max >> PAGE_SHIFT);
216                                 npmem_ranges = i + 1;
217                                 mem_max = mem_limit;
218                         }
219                         break;
220                 }
221                 mem_max += rsize;
222         }
223
224         printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
225
226 #ifndef CONFIG_SPARSEMEM
227         /* Merge the ranges, keeping track of the holes */
228         {
229                 unsigned long end_pfn;
230                 unsigned long hole_pages;
231
232                 npmem_holes = 0;
233                 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
234                 for (i = 1; i < npmem_ranges; i++) {
235
236                         hole_pages = pmem_ranges[i].start_pfn - end_pfn;
237                         if (hole_pages) {
238                                 pmem_holes[npmem_holes].start_pfn = end_pfn;
239                                 pmem_holes[npmem_holes++].pages = hole_pages;
240                                 end_pfn += hole_pages;
241                         }
242                         end_pfn += pmem_ranges[i].pages;
243                 }
244
245                 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
246                 npmem_ranges = 1;
247         }
248 #endif
249
250         /*
251          * Initialize and free the full range of memory in each range.
252          */
253
254         max_pfn = 0;
255         for (i = 0; i < npmem_ranges; i++) {
256                 unsigned long start_pfn;
257                 unsigned long npages;
258                 unsigned long start;
259                 unsigned long size;
260
261                 start_pfn = pmem_ranges[i].start_pfn;
262                 npages = pmem_ranges[i].pages;
263
264                 start = start_pfn << PAGE_SHIFT;
265                 size = npages << PAGE_SHIFT;
266
267                 /* add system RAM memblock */
268                 memblock_add(start, size);
269
270                 if ((start_pfn + npages) > max_pfn)
271                         max_pfn = start_pfn + npages;
272         }
273
274         /*
275          * We can't use memblock top-down allocations because we only
276          * created the initial mapping up to KERNEL_INITIAL_SIZE in
277          * the assembly bootup code.
278          */
279         memblock_set_bottom_up(true);
280
281         /* IOMMU is always used to access "high mem" on those boxes
282          * that can support enough mem that a PCI device couldn't
283          * directly DMA to any physical addresses.
284          * ISA DMA support will need to revisit this.
285          */
286         max_low_pfn = max_pfn;
287
288         /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
289
290 #define PDC_CONSOLE_IO_IODC_SIZE 32768
291
292         memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
293                                 PDC_CONSOLE_IO_IODC_SIZE));
294         memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
295                         (unsigned long)(_end - KERNEL_BINARY_TEXT_START));
296
297 #ifndef CONFIG_SPARSEMEM
298
299         /* reserve the holes */
300
301         for (i = 0; i < npmem_holes; i++) {
302                 memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
303                                 (pmem_holes[i].pages << PAGE_SHIFT));
304         }
305 #endif
306
307 #ifdef CONFIG_BLK_DEV_INITRD
308         if (initrd_start) {
309                 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
310                 if (__pa(initrd_start) < mem_max) {
311                         unsigned long initrd_reserve;
312
313                         if (__pa(initrd_end) > mem_max) {
314                                 initrd_reserve = mem_max - __pa(initrd_start);
315                         } else {
316                                 initrd_reserve = initrd_end - initrd_start;
317                         }
318                         initrd_below_start_ok = 1;
319                         printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
320
321                         memblock_reserve(__pa(initrd_start), initrd_reserve);
322                 }
323         }
324 #endif
325
326         data_resource.start =  virt_to_phys(&data_start);
327         data_resource.end = virt_to_phys(_end) - 1;
328         code_resource.start = virt_to_phys(_text);
329         code_resource.end = virt_to_phys(&data_start)-1;
330
331         /* We don't know which region the kernel will be in, so try
332          * all of them.
333          */
334         for (i = 0; i < sysram_resource_count; i++) {
335                 struct resource *res = &sysram_resources[i];
336                 request_resource(res, &code_resource);
337                 request_resource(res, &data_resource);
338         }
339         request_resource(&sysram_resources[0], &pdcdata_resource);
340
341         /* Initialize Page Deallocation Table (PDT) and check for bad memory. */
342         pdc_pdt_init();
343
344         memblock_allow_resize();
345         memblock_dump_all();
346 }
347
348 static bool kernel_set_to_readonly;
349
350 static void __init map_pages(unsigned long start_vaddr,
351                              unsigned long start_paddr, unsigned long size,
352                              pgprot_t pgprot, int force)
353 {
354         pgd_t *pg_dir;
355         pmd_t *pmd;
356         pte_t *pg_table;
357         unsigned long end_paddr;
358         unsigned long start_pmd;
359         unsigned long start_pte;
360         unsigned long tmp1;
361         unsigned long tmp2;
362         unsigned long address;
363         unsigned long vaddr;
364         unsigned long ro_start;
365         unsigned long ro_end;
366         unsigned long kernel_start, kernel_end;
367
368         ro_start = __pa((unsigned long)_text);
369         ro_end   = __pa((unsigned long)&data_start);
370         kernel_start = __pa((unsigned long)&__init_begin);
371         kernel_end  = __pa((unsigned long)&_end);
372
373         end_paddr = start_paddr + size;
374
375         pg_dir = pgd_offset_k(start_vaddr);
376
377 #if PTRS_PER_PMD == 1
378         start_pmd = 0;
379 #else
380         start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
381 #endif
382         start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
383
384         address = start_paddr;
385         vaddr = start_vaddr;
386         while (address < end_paddr) {
387 #if PTRS_PER_PMD == 1
388                 pmd = (pmd_t *)__pa(pg_dir);
389 #else
390                 pmd = (pmd_t *)pgd_address(*pg_dir);
391
392                 /*
393                  * pmd is physical at this point
394                  */
395
396                 if (!pmd) {
397                         pmd = memblock_alloc(PAGE_SIZE << PMD_ORDER,
398                                              PAGE_SIZE << PMD_ORDER);
399                         if (!pmd)
400                                 panic("pmd allocation failed.\n");
401                         pmd = (pmd_t *) __pa(pmd);
402                 }
403
404                 pgd_populate(NULL, pg_dir, __va(pmd));
405 #endif
406                 pg_dir++;
407
408                 /* now change pmd to kernel virtual addresses */
409
410                 pmd = (pmd_t *)__va(pmd) + start_pmd;
411                 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
412
413                         /*
414                          * pg_table is physical at this point
415                          */
416
417                         pg_table = (pte_t *)pmd_address(*pmd);
418                         if (!pg_table) {
419                                 pg_table = memblock_alloc(PAGE_SIZE,
420                                                           PAGE_SIZE);
421                                 if (!pg_table)
422                                         panic("page table allocation failed\n");
423                                 pg_table = (pte_t *) __pa(pg_table);
424                         }
425
426                         pmd_populate_kernel(NULL, pmd, __va(pg_table));
427
428                         /* now change pg_table to kernel virtual addresses */
429
430                         pg_table = (pte_t *) __va(pg_table) + start_pte;
431                         for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
432                                 pte_t pte;
433                                 pgprot_t prot;
434                                 bool huge = false;
435
436                                 if (force) {
437                                         prot = pgprot;
438                                 } else if (address < kernel_start || address >= kernel_end) {
439                                         /* outside kernel memory */
440                                         prot = PAGE_KERNEL;
441                                 } else if (!kernel_set_to_readonly) {
442                                         /* still initializing, allow writing to RO memory */
443                                         prot = PAGE_KERNEL_RWX;
444                                         huge = true;
445                                 } else if (address >= ro_start) {
446                                         /* Code (ro) and Data areas */
447                                         prot = (address < ro_end) ?
448                                                 PAGE_KERNEL_EXEC : PAGE_KERNEL;
449                                         huge = true;
450                                 } else {
451                                         prot = PAGE_KERNEL;
452                                 }
453
454                                 pte = __mk_pte(address, prot);
455                                 if (huge)
456                                         pte = pte_mkhuge(pte);
457
458                                 if (address >= end_paddr)
459                                         break;
460
461                                 set_pte(pg_table, pte);
462
463                                 address += PAGE_SIZE;
464                                 vaddr += PAGE_SIZE;
465                         }
466                         start_pte = 0;
467
468                         if (address >= end_paddr)
469                             break;
470                 }
471                 start_pmd = 0;
472         }
473 }
474
475 void __init set_kernel_text_rw(int enable_read_write)
476 {
477         unsigned long start = (unsigned long) __init_begin;
478         unsigned long end   = (unsigned long) &data_start;
479
480         map_pages(start, __pa(start), end-start,
481                 PAGE_KERNEL_RWX, enable_read_write ? 1:0);
482
483         /* force the kernel to see the new page table entries */
484         flush_cache_all();
485         flush_tlb_all();
486 }
487
488 void __ref free_initmem(void)
489 {
490         unsigned long init_begin = (unsigned long)__init_begin;
491         unsigned long init_end = (unsigned long)__init_end;
492         unsigned long kernel_end  = (unsigned long)&_end;
493
494         /* Remap kernel text and data, but do not touch init section yet. */
495         kernel_set_to_readonly = true;
496         map_pages(init_end, __pa(init_end), kernel_end - init_end,
497                   PAGE_KERNEL, 0);
498
499         /* The init text pages are marked R-X.  We have to
500          * flush the icache and mark them RW-
501          *
502          * This is tricky, because map_pages is in the init section.
503          * Do a dummy remap of the data section first (the data
504          * section is already PAGE_KERNEL) to pull in the TLB entries
505          * for map_kernel */
506         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
507                   PAGE_KERNEL_RWX, 1);
508         /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
509          * map_pages */
510         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
511                   PAGE_KERNEL, 1);
512
513         /* force the kernel to see the new TLB entries */
514         __flush_tlb_range(0, init_begin, kernel_end);
515
516         /* finally dump all the instructions which were cached, since the
517          * pages are no-longer executable */
518         flush_icache_range(init_begin, init_end);
519         
520         free_initmem_default(POISON_FREE_INITMEM);
521
522         /* set up a new led state on systems shipped LED State panel */
523         pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
524 }
525
526
527 #ifdef CONFIG_STRICT_KERNEL_RWX
528 void mark_rodata_ro(void)
529 {
530         /* rodata memory was already mapped with KERNEL_RO access rights by
531            pagetable_init() and map_pages(). No need to do additional stuff here */
532         unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;
533
534         pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
535 }
536 #endif
537
538
539 /*
540  * Just an arbitrary offset to serve as a "hole" between mapping areas
541  * (between top of physical memory and a potential pcxl dma mapping
542  * area, and below the vmalloc mapping area).
543  *
544  * The current 32K value just means that there will be a 32K "hole"
545  * between mapping areas. That means that  any out-of-bounds memory
546  * accesses will hopefully be caught. The vmalloc() routines leaves
547  * a hole of 4kB between each vmalloced area for the same reason.
548  */
549
550  /* Leave room for gateway page expansion */
551 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
552 #error KERNEL_MAP_START is in gateway reserved region
553 #endif
554 #define MAP_START (KERNEL_MAP_START)
555
556 #define VM_MAP_OFFSET  (32*1024)
557 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
558                                      & ~(VM_MAP_OFFSET-1)))
559
560 void *parisc_vmalloc_start __ro_after_init;
561 EXPORT_SYMBOL(parisc_vmalloc_start);
562
563 #ifdef CONFIG_PA11
564 unsigned long pcxl_dma_start __ro_after_init;
565 #endif
566
567 void __init mem_init(void)
568 {
569         /* Do sanity checks on IPC (compat) structures */
570         BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
571 #ifndef CONFIG_64BIT
572         BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
573         BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
574         BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
575 #endif
576 #ifdef CONFIG_COMPAT
577         BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
578         BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
579         BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
580         BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
581 #endif
582
583         /* Do sanity checks on page table constants */
584         BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
585         BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
586         BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
587         BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
588                         > BITS_PER_LONG);
589
590         high_memory = __va((max_pfn << PAGE_SHIFT));
591         set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
592         memblock_free_all();
593
594 #ifdef CONFIG_PA11
595         if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
596                 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
597                 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
598                                                 + PCXL_DMA_MAP_SIZE);
599         } else
600 #endif
601                 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
602
603         mem_init_print_info(NULL);
604
605 #if 0
606         /*
607          * Do not expose the virtual kernel memory layout to userspace.
608          * But keep code for debugging purposes.
609          */
610         printk("virtual kernel memory layout:\n"
611                "     vmalloc : 0x%px - 0x%px   (%4ld MB)\n"
612                "     fixmap  : 0x%px - 0x%px   (%4ld kB)\n"
613                "     memory  : 0x%px - 0x%px   (%4ld MB)\n"
614                "       .init : 0x%px - 0x%px   (%4ld kB)\n"
615                "       .data : 0x%px - 0x%px   (%4ld kB)\n"
616                "       .text : 0x%px - 0x%px   (%4ld kB)\n",
617
618                (void*)VMALLOC_START, (void*)VMALLOC_END,
619                (VMALLOC_END - VMALLOC_START) >> 20,
620
621                (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
622                (unsigned long)(FIXMAP_SIZE / 1024),
623
624                __va(0), high_memory,
625                ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
626
627                __init_begin, __init_end,
628                ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
629
630                _etext, _edata,
631                ((unsigned long)_edata - (unsigned long)_etext) >> 10,
632
633                _text, _etext,
634                ((unsigned long)_etext - (unsigned long)_text) >> 10);
635 #endif
636 }
637
638 unsigned long *empty_zero_page __ro_after_init;
639 EXPORT_SYMBOL(empty_zero_page);
640
641 /*
642  * pagetable_init() sets up the page tables
643  *
644  * Note that gateway_init() places the Linux gateway page at page 0.
645  * Since gateway pages cannot be dereferenced this has the desirable
646  * side effect of trapping those pesky NULL-reference errors in the
647  * kernel.
648  */
649 static void __init pagetable_init(void)
650 {
651         int range;
652
653         /* Map each physical memory range to its kernel vaddr */
654
655         for (range = 0; range < npmem_ranges; range++) {
656                 unsigned long start_paddr;
657                 unsigned long end_paddr;
658                 unsigned long size;
659
660                 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
661                 size = pmem_ranges[range].pages << PAGE_SHIFT;
662                 end_paddr = start_paddr + size;
663
664                 map_pages((unsigned long)__va(start_paddr), start_paddr,
665                           size, PAGE_KERNEL, 0);
666         }
667
668 #ifdef CONFIG_BLK_DEV_INITRD
669         if (initrd_end && initrd_end > mem_limit) {
670                 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
671                 map_pages(initrd_start, __pa(initrd_start),
672                           initrd_end - initrd_start, PAGE_KERNEL, 0);
673         }
674 #endif
675
676         empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
677         if (!empty_zero_page)
678                 panic("zero page allocation failed.\n");
679
680 }
681
682 static void __init gateway_init(void)
683 {
684         unsigned long linux_gateway_page_addr;
685         /* FIXME: This is 'const' in order to trick the compiler
686            into not treating it as DP-relative data. */
687         extern void * const linux_gateway_page;
688
689         linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
690
691         /*
692          * Setup Linux Gateway page.
693          *
694          * The Linux gateway page will reside in kernel space (on virtual
695          * page 0), so it doesn't need to be aliased into user space.
696          */
697
698         map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
699                   PAGE_SIZE, PAGE_GATEWAY, 1);
700 }
701
702 static void __init parisc_bootmem_free(void)
703 {
704         unsigned long zones_size[MAX_NR_ZONES] = { 0, };
705         unsigned long holes_size[MAX_NR_ZONES] = { 0, };
706         unsigned long mem_start_pfn = ~0UL, mem_end_pfn = 0, mem_size_pfn = 0;
707         int i;
708
709         for (i = 0; i < npmem_ranges; i++) {
710                 unsigned long start = pmem_ranges[i].start_pfn;
711                 unsigned long size = pmem_ranges[i].pages;
712                 unsigned long end = start + size;
713
714                 if (mem_start_pfn > start)
715                         mem_start_pfn = start;
716                 if (mem_end_pfn < end)
717                         mem_end_pfn = end;
718                 mem_size_pfn += size;
719         }
720
721         zones_size[0] = mem_end_pfn - mem_start_pfn;
722         holes_size[0] = zones_size[0] - mem_size_pfn;
723
724         free_area_init_node(0, zones_size, mem_start_pfn, holes_size);
725 }
726
727 void __init paging_init(void)
728 {
729         setup_bootmem();
730         pagetable_init();
731         gateway_init();
732         flush_cache_all_local(); /* start with known state */
733         flush_tlb_all_local(NULL);
734
735         /*
736          * Mark all memblocks as present for sparsemem using
737          * memory_present() and then initialize sparsemem.
738          */
739         memblocks_present();
740         sparse_init();
741         parisc_bootmem_free();
742 }
743
744 #ifdef CONFIG_PA20
745
746 /*
747  * Currently, all PA20 chips have 18 bit protection IDs, which is the
748  * limiting factor (space ids are 32 bits).
749  */
750
751 #define NR_SPACE_IDS 262144
752
753 #else
754
755 /*
756  * Currently we have a one-to-one relationship between space IDs and
757  * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
758  * support 15 bit protection IDs, so that is the limiting factor.
759  * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
760  * probably not worth the effort for a special case here.
761  */
762
763 #define NR_SPACE_IDS 32768
764
765 #endif  /* !CONFIG_PA20 */
766
767 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
768 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
769
770 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
771 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
772 static unsigned long space_id_index;
773 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
774 static unsigned long dirty_space_ids = 0;
775
776 static DEFINE_SPINLOCK(sid_lock);
777
778 unsigned long alloc_sid(void)
779 {
780         unsigned long index;
781
782         spin_lock(&sid_lock);
783
784         if (free_space_ids == 0) {
785                 if (dirty_space_ids != 0) {
786                         spin_unlock(&sid_lock);
787                         flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
788                         spin_lock(&sid_lock);
789                 }
790                 BUG_ON(free_space_ids == 0);
791         }
792
793         free_space_ids--;
794
795         index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
796         space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
797         space_id_index = index;
798
799         spin_unlock(&sid_lock);
800
801         return index << SPACEID_SHIFT;
802 }
803
804 void free_sid(unsigned long spaceid)
805 {
806         unsigned long index = spaceid >> SPACEID_SHIFT;
807         unsigned long *dirty_space_offset;
808
809         dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
810         index &= (BITS_PER_LONG - 1);
811
812         spin_lock(&sid_lock);
813
814         BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
815
816         *dirty_space_offset |= (1L << index);
817         dirty_space_ids++;
818
819         spin_unlock(&sid_lock);
820 }
821
822
823 #ifdef CONFIG_SMP
824 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
825 {
826         int i;
827
828         /* NOTE: sid_lock must be held upon entry */
829
830         *ndirtyptr = dirty_space_ids;
831         if (dirty_space_ids != 0) {
832             for (i = 0; i < SID_ARRAY_SIZE; i++) {
833                 dirty_array[i] = dirty_space_id[i];
834                 dirty_space_id[i] = 0;
835             }
836             dirty_space_ids = 0;
837         }
838
839         return;
840 }
841
842 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
843 {
844         int i;
845
846         /* NOTE: sid_lock must be held upon entry */
847
848         if (ndirty != 0) {
849                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
850                         space_id[i] ^= dirty_array[i];
851                 }
852
853                 free_space_ids += ndirty;
854                 space_id_index = 0;
855         }
856 }
857
858 #else /* CONFIG_SMP */
859
860 static void recycle_sids(void)
861 {
862         int i;
863
864         /* NOTE: sid_lock must be held upon entry */
865
866         if (dirty_space_ids != 0) {
867                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
868                         space_id[i] ^= dirty_space_id[i];
869                         dirty_space_id[i] = 0;
870                 }
871
872                 free_space_ids += dirty_space_ids;
873                 dirty_space_ids = 0;
874                 space_id_index = 0;
875         }
876 }
877 #endif
878
879 /*
880  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
881  * purged, we can safely reuse the space ids that were released but
882  * not flushed from the tlb.
883  */
884
885 #ifdef CONFIG_SMP
886
887 static unsigned long recycle_ndirty;
888 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
889 static unsigned int recycle_inuse;
890
891 void flush_tlb_all(void)
892 {
893         int do_recycle;
894
895         __inc_irq_stat(irq_tlb_count);
896         do_recycle = 0;
897         spin_lock(&sid_lock);
898         if (dirty_space_ids > RECYCLE_THRESHOLD) {
899             BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
900             get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
901             recycle_inuse++;
902             do_recycle++;
903         }
904         spin_unlock(&sid_lock);
905         on_each_cpu(flush_tlb_all_local, NULL, 1);
906         if (do_recycle) {
907             spin_lock(&sid_lock);
908             recycle_sids(recycle_ndirty,recycle_dirty_array);
909             recycle_inuse = 0;
910             spin_unlock(&sid_lock);
911         }
912 }
913 #else
914 void flush_tlb_all(void)
915 {
916         __inc_irq_stat(irq_tlb_count);
917         spin_lock(&sid_lock);
918         flush_tlb_all_local(NULL);
919         recycle_sids();
920         spin_unlock(&sid_lock);
921 }
922 #endif