Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / arch / mips / kvm / entry.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Generation of main entry point for the guest, exception handling.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  *
11  * Copyright (C) 2016 Imagination Technologies Ltd.
12  */
13
14 #include <linux/kvm_host.h>
15 #include <linux/log2.h>
16 #include <asm/mmu_context.h>
17 #include <asm/msa.h>
18 #include <asm/setup.h>
19 #include <asm/tlbex.h>
20 #include <asm/uasm.h>
21
22 /* Register names */
23 #define ZERO            0
24 #define AT              1
25 #define V0              2
26 #define V1              3
27 #define A0              4
28 #define A1              5
29
30 #if _MIPS_SIM == _MIPS_SIM_ABI32
31 #define T0              8
32 #define T1              9
33 #define T2              10
34 #define T3              11
35 #endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
36
37 #if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
38 #define T0              12
39 #define T1              13
40 #define T2              14
41 #define T3              15
42 #endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
43
44 #define S0              16
45 #define S1              17
46 #define T9              25
47 #define K0              26
48 #define K1              27
49 #define GP              28
50 #define SP              29
51 #define RA              31
52
53 /* Some CP0 registers */
54 #define C0_PWBASE       5, 5
55 #define C0_HWRENA       7, 0
56 #define C0_BADVADDR     8, 0
57 #define C0_BADINSTR     8, 1
58 #define C0_BADINSTRP    8, 2
59 #define C0_ENTRYHI      10, 0
60 #define C0_GUESTCTL1    10, 4
61 #define C0_STATUS       12, 0
62 #define C0_GUESTCTL0    12, 6
63 #define C0_CAUSE        13, 0
64 #define C0_EPC          14, 0
65 #define C0_EBASE        15, 1
66 #define C0_CONFIG5      16, 5
67 #define C0_DDATA_LO     28, 3
68 #define C0_ERROREPC     30, 0
69
70 #define CALLFRAME_SIZ   32
71
72 #ifdef CONFIG_64BIT
73 #define ST0_KX_IF_64    ST0_KX
74 #else
75 #define ST0_KX_IF_64    0
76 #endif
77
78 static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
79 static unsigned int scratch_tmp[2] = { C0_ERROREPC };
80
81 enum label_id {
82         label_fpu_1 = 1,
83         label_msa_1,
84         label_return_to_host,
85         label_kernel_asid,
86         label_exit_common,
87 };
88
89 UASM_L_LA(_fpu_1)
90 UASM_L_LA(_msa_1)
91 UASM_L_LA(_return_to_host)
92 UASM_L_LA(_kernel_asid)
93 UASM_L_LA(_exit_common)
94
95 static void *kvm_mips_build_enter_guest(void *addr);
96 static void *kvm_mips_build_ret_from_exit(void *addr);
97 static void *kvm_mips_build_ret_to_guest(void *addr);
98 static void *kvm_mips_build_ret_to_host(void *addr);
99
100 /*
101  * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
102  * we assume symmetry.
103  */
104 static int c0_kscratch(void)
105 {
106         switch (boot_cpu_type()) {
107         case CPU_XLP:
108         case CPU_XLR:
109                 return 22;
110         default:
111                 return 31;
112         }
113 }
114
115 /**
116  * kvm_mips_entry_setup() - Perform global setup for entry code.
117  *
118  * Perform global setup for entry code, such as choosing a scratch register.
119  *
120  * Returns:     0 on success.
121  *              -errno on failure.
122  */
123 int kvm_mips_entry_setup(void)
124 {
125         /*
126          * We prefer to use KScratchN registers if they are available over the
127          * defaults above, which may not work on all cores.
128          */
129         unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
130
131         if (pgd_reg != -1)
132                 kscratch_mask &= ~BIT(pgd_reg);
133
134         /* Pick a scratch register for storing VCPU */
135         if (kscratch_mask) {
136                 scratch_vcpu[0] = c0_kscratch();
137                 scratch_vcpu[1] = ffs(kscratch_mask) - 1;
138                 kscratch_mask &= ~BIT(scratch_vcpu[1]);
139         }
140
141         /* Pick a scratch register to use as a temp for saving state */
142         if (kscratch_mask) {
143                 scratch_tmp[0] = c0_kscratch();
144                 scratch_tmp[1] = ffs(kscratch_mask) - 1;
145                 kscratch_mask &= ~BIT(scratch_tmp[1]);
146         }
147
148         return 0;
149 }
150
151 static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
152                                         unsigned int frame)
153 {
154         /* Save the VCPU scratch register value in cp0_epc of the stack frame */
155         UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
156         UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
157
158         /* Save the temp scratch register value in cp0_cause of stack frame */
159         if (scratch_tmp[0] == c0_kscratch()) {
160                 UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
161                 UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
162         }
163 }
164
165 static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
166                                            unsigned int frame)
167 {
168         /*
169          * Restore host scratch register values saved by
170          * kvm_mips_build_save_scratch().
171          */
172         UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
173         UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
174
175         if (scratch_tmp[0] == c0_kscratch()) {
176                 UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
177                 UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
178         }
179 }
180
181 /**
182  * build_set_exc_base() - Assemble code to write exception base address.
183  * @p:          Code buffer pointer.
184  * @reg:        Source register (generated code may set WG bit in @reg).
185  *
186  * Assemble code to modify the exception base address in the EBase register,
187  * using the appropriately sized access and setting the WG bit if necessary.
188  */
189 static inline void build_set_exc_base(u32 **p, unsigned int reg)
190 {
191         if (cpu_has_ebase_wg) {
192                 /* Set WG so that all the bits get written */
193                 uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
194                 UASM_i_MTC0(p, reg, C0_EBASE);
195         } else {
196                 uasm_i_mtc0(p, reg, C0_EBASE);
197         }
198 }
199
200 /**
201  * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
202  * @addr:       Address to start writing code.
203  *
204  * Assemble the start of the vcpu_run function to run a guest VCPU. The function
205  * conforms to the following prototype:
206  *
207  * int vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu);
208  *
209  * The exit from the guest and return to the caller is handled by the code
210  * generated by kvm_mips_build_ret_to_host().
211  *
212  * Returns:     Next address after end of written function.
213  */
214 void *kvm_mips_build_vcpu_run(void *addr)
215 {
216         u32 *p = addr;
217         unsigned int i;
218
219         /*
220          * A0: run
221          * A1: vcpu
222          */
223
224         /* k0/k1 not being used in host kernel context */
225         UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
226         for (i = 16; i < 32; ++i) {
227                 if (i == 24)
228                         i = 28;
229                 UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
230         }
231
232         /* Save host status */
233         uasm_i_mfc0(&p, V0, C0_STATUS);
234         UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
235
236         /* Save scratch registers, will be used to store pointer to vcpu etc */
237         kvm_mips_build_save_scratch(&p, V1, K1);
238
239         /* VCPU scratch register has pointer to vcpu */
240         UASM_i_MTC0(&p, A1, scratch_vcpu[0], scratch_vcpu[1]);
241
242         /* Offset into vcpu->arch */
243         UASM_i_ADDIU(&p, K1, A1, offsetof(struct kvm_vcpu, arch));
244
245         /*
246          * Save the host stack to VCPU, used for exception processing
247          * when we exit from the Guest
248          */
249         UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
250
251         /* Save the kernel gp as well */
252         UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
253
254         /*
255          * Setup status register for running the guest in UM, interrupts
256          * are disabled
257          */
258         UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
259         uasm_i_mtc0(&p, K0, C0_STATUS);
260         uasm_i_ehb(&p);
261
262         /* load up the new EBASE */
263         UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
264         build_set_exc_base(&p, K0);
265
266         /*
267          * Now that the new EBASE has been loaded, unset BEV, set
268          * interrupt mask as it was but make sure that timer interrupts
269          * are enabled
270          */
271         uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
272         uasm_i_andi(&p, V0, V0, ST0_IM);
273         uasm_i_or(&p, K0, K0, V0);
274         uasm_i_mtc0(&p, K0, C0_STATUS);
275         uasm_i_ehb(&p);
276
277         p = kvm_mips_build_enter_guest(p);
278
279         return p;
280 }
281
282 /**
283  * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
284  * @addr:       Address to start writing code.
285  *
286  * Assemble the code to resume guest execution. This code is common between the
287  * initial entry into the guest from the host, and returning from the exit
288  * handler back to the guest.
289  *
290  * Returns:     Next address after end of written function.
291  */
292 static void *kvm_mips_build_enter_guest(void *addr)
293 {
294         u32 *p = addr;
295         unsigned int i;
296         struct uasm_label labels[2];
297         struct uasm_reloc relocs[2];
298         struct uasm_label __maybe_unused *l = labels;
299         struct uasm_reloc __maybe_unused *r = relocs;
300
301         memset(labels, 0, sizeof(labels));
302         memset(relocs, 0, sizeof(relocs));
303
304         /* Set Guest EPC */
305         UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
306         UASM_i_MTC0(&p, T0, C0_EPC);
307
308 #ifdef CONFIG_KVM_MIPS_VZ
309         /* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
310         UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg);
311         UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1);
312
313         /*
314          * Set up KVM GPA pgd.
315          * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
316          * - call tlbmiss_handler_setup_pgd(mm->pgd)
317          * - write mm->pgd into CP0_PWBase
318          *
319          * We keep S0 pointing at struct kvm so we can load the ASID below.
320          */
321         UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) -
322                           (int)offsetof(struct kvm_vcpu, arch), K1);
323         UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0);
324         UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
325         uasm_i_jalr(&p, RA, T9);
326         /* delay slot */
327         if (cpu_has_htw)
328                 UASM_i_MTC0(&p, A0, C0_PWBASE);
329         else
330                 uasm_i_nop(&p);
331
332         /* Set GM bit to setup eret to VZ guest context */
333         uasm_i_addiu(&p, V1, ZERO, 1);
334         uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
335         uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1);
336         uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
337
338         if (cpu_has_guestid) {
339                 /*
340                  * Set root mode GuestID, so that root TLB refill handler can
341                  * use the correct GuestID in the root TLB.
342                  */
343
344                 /* Get current GuestID */
345                 uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
346                 /* Set GuestCtl1.RID = GuestCtl1.ID */
347                 uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT,
348                            MIPS_GCTL1_ID_WIDTH);
349                 uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT,
350                            MIPS_GCTL1_RID_WIDTH);
351                 uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
352
353                 /* GuestID handles dealiasing so we don't need to touch ASID */
354                 goto skip_asid_restore;
355         }
356
357         /* Root ASID Dealias (RAD) */
358
359         /* Save host ASID */
360         UASM_i_MFC0(&p, K0, C0_ENTRYHI);
361         UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
362                   K1);
363
364         /* Set the root ASID for the Guest */
365         UASM_i_ADDIU(&p, T1, S0,
366                      offsetof(struct kvm, arch.gpa_mm.context.asid));
367 #else
368         /* Set the ASID for the Guest Kernel or User */
369         UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, cop0), K1);
370         UASM_i_LW(&p, T0, offsetof(struct mips_coproc, reg[MIPS_CP0_STATUS][0]),
371                   T0);
372         uasm_i_andi(&p, T0, T0, KSU_USER | ST0_ERL | ST0_EXL);
373         uasm_i_xori(&p, T0, T0, KSU_USER);
374         uasm_il_bnez(&p, &r, T0, label_kernel_asid);
375          UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
376                                            guest_kernel_mm.context.asid));
377         /* else user */
378         UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
379                                           guest_user_mm.context.asid));
380         uasm_l_kernel_asid(&l, p);
381 #endif
382
383         /* t1: contains the base of the ASID array, need to get the cpu id  */
384         /* smp_processor_id */
385         uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
386         /* index the ASID array */
387         uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
388         UASM_i_ADDU(&p, T3, T1, T2);
389         UASM_i_LW(&p, K0, 0, T3);
390 #ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
391         /*
392          * reuse ASID array offset
393          * cpuinfo_mips is a multiple of sizeof(long)
394          */
395         uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
396         uasm_i_mul(&p, T2, T2, T3);
397
398         UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
399         UASM_i_ADDU(&p, AT, AT, T2);
400         UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
401         uasm_i_and(&p, K0, K0, T2);
402 #else
403         uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
404 #endif
405
406 #ifndef CONFIG_KVM_MIPS_VZ
407         /*
408          * Set up KVM T&E GVA pgd.
409          * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
410          * - call tlbmiss_handler_setup_pgd(mm->pgd)
411          * - but skips write into CP0_PWBase for now
412          */
413         UASM_i_LW(&p, A0, (int)offsetof(struct mm_struct, pgd) -
414                           (int)offsetof(struct mm_struct, context.asid), T1);
415
416         UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
417         uasm_i_jalr(&p, RA, T9);
418          uasm_i_mtc0(&p, K0, C0_ENTRYHI);
419 #else
420         /* Set up KVM VZ root ASID (!guestid) */
421         uasm_i_mtc0(&p, K0, C0_ENTRYHI);
422 skip_asid_restore:
423 #endif
424         uasm_i_ehb(&p);
425
426         /* Disable RDHWR access */
427         uasm_i_mtc0(&p, ZERO, C0_HWRENA);
428
429         /* load the guest context from VCPU and return */
430         for (i = 1; i < 32; ++i) {
431                 /* Guest k0/k1 loaded later */
432                 if (i == K0 || i == K1)
433                         continue;
434                 UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
435         }
436
437 #ifndef CONFIG_CPU_MIPSR6
438         /* Restore hi/lo */
439         UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
440         uasm_i_mthi(&p, K0);
441
442         UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
443         uasm_i_mtlo(&p, K0);
444 #endif
445
446         /* Restore the guest's k0/k1 registers */
447         UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
448         UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
449
450         /* Jump to guest */
451         uasm_i_eret(&p);
452
453         uasm_resolve_relocs(relocs, labels);
454
455         return p;
456 }
457
458 /**
459  * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
460  * @addr:       Address to start writing code.
461  * @handler:    Address of common handler (within range of @addr).
462  *
463  * Assemble TLB refill exception fast path handler for guest execution.
464  *
465  * Returns:     Next address after end of written function.
466  */
467 void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
468 {
469         u32 *p = addr;
470         struct uasm_label labels[2];
471         struct uasm_reloc relocs[2];
472         struct uasm_label *l = labels;
473         struct uasm_reloc *r = relocs;
474
475         memset(labels, 0, sizeof(labels));
476         memset(relocs, 0, sizeof(relocs));
477
478         /* Save guest k1 into scratch register */
479         UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
480
481         /* Get the VCPU pointer from the VCPU scratch register */
482         UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
483
484         /* Save guest k0 into VCPU structure */
485         UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
486
487         /*
488          * Some of the common tlbex code uses current_cpu_type(). For KVM we
489          * assume symmetry and just disable preemption to silence the warning.
490          */
491         preempt_disable();
492
493         /*
494          * Now for the actual refill bit. A lot of this can be common with the
495          * Linux TLB refill handler, however we don't need to handle so many
496          * cases. We only need to handle user mode refills, and user mode runs
497          * with 32-bit addressing.
498          *
499          * Therefore the branch to label_vmalloc generated by build_get_pmde64()
500          * that isn't resolved should never actually get taken and is harmless
501          * to leave in place for now.
502          */
503
504 #ifdef CONFIG_64BIT
505         build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
506 #else
507         build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
508 #endif
509
510         /* we don't support huge pages yet */
511
512         build_get_ptep(&p, K0, K1);
513         build_update_entries(&p, K0, K1);
514         build_tlb_write_entry(&p, &l, &r, tlb_random);
515
516         preempt_enable();
517
518         /* Get the VCPU pointer from the VCPU scratch register again */
519         UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
520
521         /* Restore the guest's k0/k1 registers */
522         UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
523         uasm_i_ehb(&p);
524         UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
525
526         /* Jump to guest */
527         uasm_i_eret(&p);
528
529         return p;
530 }
531
532 /**
533  * kvm_mips_build_exception() - Assemble first level guest exception handler.
534  * @addr:       Address to start writing code.
535  * @handler:    Address of common handler (within range of @addr).
536  *
537  * Assemble exception vector code for guest execution. The generated vector will
538  * branch to the common exception handler generated by kvm_mips_build_exit().
539  *
540  * Returns:     Next address after end of written function.
541  */
542 void *kvm_mips_build_exception(void *addr, void *handler)
543 {
544         u32 *p = addr;
545         struct uasm_label labels[2];
546         struct uasm_reloc relocs[2];
547         struct uasm_label *l = labels;
548         struct uasm_reloc *r = relocs;
549
550         memset(labels, 0, sizeof(labels));
551         memset(relocs, 0, sizeof(relocs));
552
553         /* Save guest k1 into scratch register */
554         UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
555
556         /* Get the VCPU pointer from the VCPU scratch register */
557         UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
558         UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
559
560         /* Save guest k0 into VCPU structure */
561         UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
562
563         /* Branch to the common handler */
564         uasm_il_b(&p, &r, label_exit_common);
565          uasm_i_nop(&p);
566
567         uasm_l_exit_common(&l, handler);
568         uasm_resolve_relocs(relocs, labels);
569
570         return p;
571 }
572
573 /**
574  * kvm_mips_build_exit() - Assemble common guest exit handler.
575  * @addr:       Address to start writing code.
576  *
577  * Assemble the generic guest exit handling code. This is called by the
578  * exception vectors (generated by kvm_mips_build_exception()), and calls
579  * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
580  * depending on the return value.
581  *
582  * Returns:     Next address after end of written function.
583  */
584 void *kvm_mips_build_exit(void *addr)
585 {
586         u32 *p = addr;
587         unsigned int i;
588         struct uasm_label labels[3];
589         struct uasm_reloc relocs[3];
590         struct uasm_label *l = labels;
591         struct uasm_reloc *r = relocs;
592
593         memset(labels, 0, sizeof(labels));
594         memset(relocs, 0, sizeof(relocs));
595
596         /*
597          * Generic Guest exception handler. We end up here when the guest
598          * does something that causes a trap to kernel mode.
599          *
600          * Both k0/k1 registers will have already been saved (k0 into the vcpu
601          * structure, and k1 into the scratch_tmp register).
602          *
603          * The k1 register will already contain the kvm_vcpu_arch pointer.
604          */
605
606         /* Start saving Guest context to VCPU */
607         for (i = 0; i < 32; ++i) {
608                 /* Guest k0/k1 saved later */
609                 if (i == K0 || i == K1)
610                         continue;
611                 UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
612         }
613
614 #ifndef CONFIG_CPU_MIPSR6
615         /* We need to save hi/lo and restore them on the way out */
616         uasm_i_mfhi(&p, T0);
617         UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
618
619         uasm_i_mflo(&p, T0);
620         UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
621 #endif
622
623         /* Finally save guest k1 to VCPU */
624         uasm_i_ehb(&p);
625         UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
626         UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
627
628         /* Now that context has been saved, we can use other registers */
629
630         /* Restore vcpu */
631         UASM_i_MFC0(&p, S1, scratch_vcpu[0], scratch_vcpu[1]);
632
633         /* Restore run (vcpu->run) */
634         UASM_i_LW(&p, S0, offsetof(struct kvm_vcpu, run), S1);
635
636         /*
637          * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
638          * the exception
639          */
640         UASM_i_MFC0(&p, K0, C0_EPC);
641         UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
642
643         UASM_i_MFC0(&p, K0, C0_BADVADDR);
644         UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
645                   K1);
646
647         uasm_i_mfc0(&p, K0, C0_CAUSE);
648         uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
649
650         if (cpu_has_badinstr) {
651                 uasm_i_mfc0(&p, K0, C0_BADINSTR);
652                 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
653                                            host_cp0_badinstr), K1);
654         }
655
656         if (cpu_has_badinstrp) {
657                 uasm_i_mfc0(&p, K0, C0_BADINSTRP);
658                 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
659                                            host_cp0_badinstrp), K1);
660         }
661
662         /* Now restore the host state just enough to run the handlers */
663
664         /* Switch EBASE to the one used by Linux */
665         /* load up the host EBASE */
666         uasm_i_mfc0(&p, V0, C0_STATUS);
667
668         uasm_i_lui(&p, AT, ST0_BEV >> 16);
669         uasm_i_or(&p, K0, V0, AT);
670
671         uasm_i_mtc0(&p, K0, C0_STATUS);
672         uasm_i_ehb(&p);
673
674         UASM_i_LA_mostly(&p, K0, (long)&ebase);
675         UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
676         build_set_exc_base(&p, K0);
677
678         if (raw_cpu_has_fpu) {
679                 /*
680                  * If FPU is enabled, save FCR31 and clear it so that later
681                  * ctc1's don't trigger FPE for pending exceptions.
682                  */
683                 uasm_i_lui(&p, AT, ST0_CU1 >> 16);
684                 uasm_i_and(&p, V1, V0, AT);
685                 uasm_il_beqz(&p, &r, V1, label_fpu_1);
686                  uasm_i_nop(&p);
687                 uasm_i_cfc1(&p, T0, 31);
688                 uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
689                           K1);
690                 uasm_i_ctc1(&p, ZERO, 31);
691                 uasm_l_fpu_1(&l, p);
692         }
693
694         if (cpu_has_msa) {
695                 /*
696                  * If MSA is enabled, save MSACSR and clear it so that later
697                  * instructions don't trigger MSAFPE for pending exceptions.
698                  */
699                 uasm_i_mfc0(&p, T0, C0_CONFIG5);
700                 uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
701                 uasm_il_beqz(&p, &r, T0, label_msa_1);
702                  uasm_i_nop(&p);
703                 uasm_i_cfcmsa(&p, T0, MSA_CSR);
704                 uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
705                           K1);
706                 uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
707                 uasm_l_msa_1(&l, p);
708         }
709
710 #ifdef CONFIG_KVM_MIPS_VZ
711         /* Restore host ASID */
712         if (!cpu_has_guestid) {
713                 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
714                           K1);
715                 UASM_i_MTC0(&p, K0, C0_ENTRYHI);
716         }
717
718         /*
719          * Set up normal Linux process pgd.
720          * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
721          * - call tlbmiss_handler_setup_pgd(mm->pgd)
722          * - write mm->pgd into CP0_PWBase
723          */
724         UASM_i_LW(&p, A0,
725                   offsetof(struct kvm_vcpu_arch, host_pgd), K1);
726         UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
727         uasm_i_jalr(&p, RA, T9);
728         /* delay slot */
729         if (cpu_has_htw)
730                 UASM_i_MTC0(&p, A0, C0_PWBASE);
731         else
732                 uasm_i_nop(&p);
733
734         /* Clear GM bit so we don't enter guest mode when EXL is cleared */
735         uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
736         uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1);
737         uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
738
739         /* Save GuestCtl0 so we can access GExcCode after CPU migration */
740         uasm_i_sw(&p, K0,
741                   offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1);
742
743         if (cpu_has_guestid) {
744                 /*
745                  * Clear root mode GuestID, so that root TLB operations use the
746                  * root GuestID in the root TLB.
747                  */
748                 uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
749                 /* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
750                 uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT,
751                            MIPS_GCTL1_RID_WIDTH);
752                 uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
753         }
754 #endif
755
756         /* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
757         uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
758         uasm_i_and(&p, V0, V0, AT);
759         uasm_i_lui(&p, AT, ST0_CU0 >> 16);
760         uasm_i_or(&p, V0, V0, AT);
761 #ifdef CONFIG_64BIT
762         uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
763 #endif
764         uasm_i_mtc0(&p, V0, C0_STATUS);
765         uasm_i_ehb(&p);
766
767         /* Load up host GP */
768         UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
769
770         /* Need a stack before we can jump to "C" */
771         UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
772
773         /* Saved host state */
774         UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
775
776         /*
777          * XXXKYMA do we need to load the host ASID, maybe not because the
778          * kernel entries are marked GLOBAL, need to verify
779          */
780
781         /* Restore host scratch registers, as we'll have clobbered them */
782         kvm_mips_build_restore_scratch(&p, K0, SP);
783
784         /* Restore RDHWR access */
785         UASM_i_LA_mostly(&p, K0, (long)&hwrena);
786         uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
787         uasm_i_mtc0(&p, K0, C0_HWRENA);
788
789         /* Jump to handler */
790         /*
791          * XXXKYMA: not sure if this is safe, how large is the stack??
792          * Now jump to the kvm_mips_handle_exit() to see if we can deal
793          * with this in the kernel
794          */
795         uasm_i_move(&p, A0, S0);
796         uasm_i_move(&p, A1, S1);
797         UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
798         uasm_i_jalr(&p, RA, T9);
799          UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
800
801         uasm_resolve_relocs(relocs, labels);
802
803         p = kvm_mips_build_ret_from_exit(p);
804
805         return p;
806 }
807
808 /**
809  * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
810  * @addr:       Address to start writing code.
811  *
812  * Assemble the code to handle the return from kvm_mips_handle_exit(), either
813  * resuming the guest or returning to the host depending on the return value.
814  *
815  * Returns:     Next address after end of written function.
816  */
817 static void *kvm_mips_build_ret_from_exit(void *addr)
818 {
819         u32 *p = addr;
820         struct uasm_label labels[2];
821         struct uasm_reloc relocs[2];
822         struct uasm_label *l = labels;
823         struct uasm_reloc *r = relocs;
824
825         memset(labels, 0, sizeof(labels));
826         memset(relocs, 0, sizeof(relocs));
827
828         /* Return from handler Make sure interrupts are disabled */
829         uasm_i_di(&p, ZERO);
830         uasm_i_ehb(&p);
831
832         /*
833          * XXXKYMA: k0/k1 could have been blown away if we processed
834          * an exception while we were handling the exception from the
835          * guest, reload k1
836          */
837
838         uasm_i_move(&p, K1, S1);
839         UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
840
841         /*
842          * Check return value, should tell us if we are returning to the
843          * host (handle I/O etc)or resuming the guest
844          */
845         uasm_i_andi(&p, T0, V0, RESUME_HOST);
846         uasm_il_bnez(&p, &r, T0, label_return_to_host);
847          uasm_i_nop(&p);
848
849         p = kvm_mips_build_ret_to_guest(p);
850
851         uasm_l_return_to_host(&l, p);
852         p = kvm_mips_build_ret_to_host(p);
853
854         uasm_resolve_relocs(relocs, labels);
855
856         return p;
857 }
858
859 /**
860  * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
861  * @addr:       Address to start writing code.
862  *
863  * Assemble the code to handle return from the guest exit handler
864  * (kvm_mips_handle_exit()) back to the guest.
865  *
866  * Returns:     Next address after end of written function.
867  */
868 static void *kvm_mips_build_ret_to_guest(void *addr)
869 {
870         u32 *p = addr;
871
872         /* Put the saved pointer to vcpu (s1) back into the scratch register */
873         UASM_i_MTC0(&p, S1, scratch_vcpu[0], scratch_vcpu[1]);
874
875         /* Load up the Guest EBASE to minimize the window where BEV is set */
876         UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
877
878         /* Switch EBASE back to the one used by KVM */
879         uasm_i_mfc0(&p, V1, C0_STATUS);
880         uasm_i_lui(&p, AT, ST0_BEV >> 16);
881         uasm_i_or(&p, K0, V1, AT);
882         uasm_i_mtc0(&p, K0, C0_STATUS);
883         uasm_i_ehb(&p);
884         build_set_exc_base(&p, T0);
885
886         /* Setup status register for running guest in UM */
887         uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
888         UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
889         uasm_i_and(&p, V1, V1, AT);
890         uasm_i_mtc0(&p, V1, C0_STATUS);
891         uasm_i_ehb(&p);
892
893         p = kvm_mips_build_enter_guest(p);
894
895         return p;
896 }
897
898 /**
899  * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
900  * @addr:       Address to start writing code.
901  *
902  * Assemble the code to handle return from the guest exit handler
903  * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
904  * function generated by kvm_mips_build_vcpu_run().
905  *
906  * Returns:     Next address after end of written function.
907  */
908 static void *kvm_mips_build_ret_to_host(void *addr)
909 {
910         u32 *p = addr;
911         unsigned int i;
912
913         /* EBASE is already pointing to Linux */
914         UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
915         UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
916
917         /*
918          * r2/v0 is the return code, shift it down by 2 (arithmetic)
919          * to recover the err code
920          */
921         uasm_i_sra(&p, K0, V0, 2);
922         uasm_i_move(&p, V0, K0);
923
924         /* Load context saved on the host stack */
925         for (i = 16; i < 31; ++i) {
926                 if (i == 24)
927                         i = 28;
928                 UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
929         }
930
931         /* Restore RDHWR access */
932         UASM_i_LA_mostly(&p, K0, (long)&hwrena);
933         uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
934         uasm_i_mtc0(&p, K0, C0_HWRENA);
935
936         /* Restore RA, which is the address we will return to */
937         UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
938         uasm_i_jr(&p, RA);
939          uasm_i_nop(&p);
940
941         return p;
942 }
943