Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / arch / mips / kernel / pm-cps.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2014 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6
7 #include <linux/cpuhotplug.h>
8 #include <linux/init.h>
9 #include <linux/percpu.h>
10 #include <linux/slab.h>
11 #include <linux/suspend.h>
12
13 #include <asm/asm-offsets.h>
14 #include <asm/cacheflush.h>
15 #include <asm/cacheops.h>
16 #include <asm/idle.h>
17 #include <asm/mips-cps.h>
18 #include <asm/mipsmtregs.h>
19 #include <asm/pm.h>
20 #include <asm/pm-cps.h>
21 #include <asm/smp-cps.h>
22 #include <asm/uasm.h>
23
24 /*
25  * cps_nc_entry_fn - type of a generated non-coherent state entry function
26  * @online: the count of online coupled VPEs
27  * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
28  *
29  * The code entering & exiting non-coherent states is generated at runtime
30  * using uasm, in order to ensure that the compiler cannot insert a stray
31  * memory access at an unfortunate time and to allow the generation of optimal
32  * core-specific code particularly for cache routines. If coupled_coherence
33  * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
34  * returns the number of VPEs that were in the wait state at the point this
35  * VPE left it. Returns garbage if coupled_coherence is zero or this is not
36  * the entry function for CPS_PM_NC_WAIT.
37  */
38 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
39
40 /*
41  * The entry point of the generated non-coherent idle state entry/exit
42  * functions. Actually per-core rather than per-CPU.
43  */
44 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
45                                   nc_asm_enter);
46
47 /* Bitmap indicating which states are supported by the system */
48 static DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
49
50 /*
51  * Indicates the number of coupled VPEs ready to operate in a non-coherent
52  * state. Actually per-core rather than per-CPU.
53  */
54 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
55
56 /* Indicates online CPUs coupled with the current CPU */
57 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
58
59 /*
60  * Used to synchronize entry to deep idle states. Actually per-core rather
61  * than per-CPU.
62  */
63 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
64
65 /* Saved CPU state across the CPS_PM_POWER_GATED state */
66 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
67
68 /* A somewhat arbitrary number of labels & relocs for uasm */
69 static struct uasm_label labels[32];
70 static struct uasm_reloc relocs[32];
71
72 enum mips_reg {
73         zero, at, v0, v1, a0, a1, a2, a3,
74         t0, t1, t2, t3, t4, t5, t6, t7,
75         s0, s1, s2, s3, s4, s5, s6, s7,
76         t8, t9, k0, k1, gp, sp, fp, ra,
77 };
78
79 bool cps_pm_support_state(enum cps_pm_state state)
80 {
81         return test_bit(state, state_support);
82 }
83
84 static void coupled_barrier(atomic_t *a, unsigned online)
85 {
86         /*
87          * This function is effectively the same as
88          * cpuidle_coupled_parallel_barrier, which can't be used here since
89          * there's no cpuidle device.
90          */
91
92         if (!coupled_coherence)
93                 return;
94
95         smp_mb__before_atomic();
96         atomic_inc(a);
97
98         while (atomic_read(a) < online)
99                 cpu_relax();
100
101         if (atomic_inc_return(a) == online * 2) {
102                 atomic_set(a, 0);
103                 return;
104         }
105
106         while (atomic_read(a) > online)
107                 cpu_relax();
108 }
109
110 int cps_pm_enter_state(enum cps_pm_state state)
111 {
112         unsigned cpu = smp_processor_id();
113         unsigned core = cpu_core(&current_cpu_data);
114         unsigned online, left;
115         cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
116         u32 *core_ready_count, *nc_core_ready_count;
117         void *nc_addr;
118         cps_nc_entry_fn entry;
119         struct core_boot_config *core_cfg;
120         struct vpe_boot_config *vpe_cfg;
121
122         /* Check that there is an entry function for this state */
123         entry = per_cpu(nc_asm_enter, core)[state];
124         if (!entry)
125                 return -EINVAL;
126
127         /* Calculate which coupled CPUs (VPEs) are online */
128 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
129         if (cpu_online(cpu)) {
130                 cpumask_and(coupled_mask, cpu_online_mask,
131                             &cpu_sibling_map[cpu]);
132                 online = cpumask_weight(coupled_mask);
133                 cpumask_clear_cpu(cpu, coupled_mask);
134         } else
135 #endif
136         {
137                 cpumask_clear(coupled_mask);
138                 online = 1;
139         }
140
141         /* Setup the VPE to run mips_cps_pm_restore when started again */
142         if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
143                 /* Power gating relies upon CPS SMP */
144                 if (!mips_cps_smp_in_use())
145                         return -EINVAL;
146
147                 core_cfg = &mips_cps_core_bootcfg[core];
148                 vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
149                 vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
150                 vpe_cfg->gp = (unsigned long)current_thread_info();
151                 vpe_cfg->sp = 0;
152         }
153
154         /* Indicate that this CPU might not be coherent */
155         cpumask_clear_cpu(cpu, &cpu_coherent_mask);
156         smp_mb__after_atomic();
157
158         /* Create a non-coherent mapping of the core ready_count */
159         core_ready_count = per_cpu(ready_count, core);
160         nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
161                                    (unsigned long)core_ready_count);
162         nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
163         nc_core_ready_count = nc_addr;
164
165         /* Ensure ready_count is zero-initialised before the assembly runs */
166         WRITE_ONCE(*nc_core_ready_count, 0);
167         coupled_barrier(&per_cpu(pm_barrier, core), online);
168
169         /* Run the generated entry code */
170         left = entry(online, nc_core_ready_count);
171
172         /* Remove the non-coherent mapping of ready_count */
173         kunmap_noncoherent();
174
175         /* Indicate that this CPU is definitely coherent */
176         cpumask_set_cpu(cpu, &cpu_coherent_mask);
177
178         /*
179          * If this VPE is the first to leave the non-coherent wait state then
180          * it needs to wake up any coupled VPEs still running their wait
181          * instruction so that they return to cpuidle, which can then complete
182          * coordination between the coupled VPEs & provide the governor with
183          * a chance to reflect on the length of time the VPEs were in the
184          * idle state.
185          */
186         if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
187                 arch_send_call_function_ipi_mask(coupled_mask);
188
189         return 0;
190 }
191
192 static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
193                                   struct uasm_reloc **pr,
194                                   const struct cache_desc *cache,
195                                   unsigned op, int lbl)
196 {
197         unsigned cache_size = cache->ways << cache->waybit;
198         unsigned i;
199         const unsigned unroll_lines = 32;
200
201         /* If the cache isn't present this function has it easy */
202         if (cache->flags & MIPS_CACHE_NOT_PRESENT)
203                 return;
204
205         /* Load base address */
206         UASM_i_LA(pp, t0, (long)CKSEG0);
207
208         /* Calculate end address */
209         if (cache_size < 0x8000)
210                 uasm_i_addiu(pp, t1, t0, cache_size);
211         else
212                 UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
213
214         /* Start of cache op loop */
215         uasm_build_label(pl, *pp, lbl);
216
217         /* Generate the cache ops */
218         for (i = 0; i < unroll_lines; i++) {
219                 if (cpu_has_mips_r6) {
220                         uasm_i_cache(pp, op, 0, t0);
221                         uasm_i_addiu(pp, t0, t0, cache->linesz);
222                 } else {
223                         uasm_i_cache(pp, op, i * cache->linesz, t0);
224                 }
225         }
226
227         if (!cpu_has_mips_r6)
228                 /* Update the base address */
229                 uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
230
231         /* Loop if we haven't reached the end address yet */
232         uasm_il_bne(pp, pr, t0, t1, lbl);
233         uasm_i_nop(pp);
234 }
235
236 static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
237                              struct uasm_reloc **pr,
238                              const struct cpuinfo_mips *cpu_info,
239                              int lbl)
240 {
241         unsigned i, fsb_size = 8;
242         unsigned num_loads = (fsb_size * 3) / 2;
243         unsigned line_stride = 2;
244         unsigned line_size = cpu_info->dcache.linesz;
245         unsigned perf_counter, perf_event;
246         unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
247
248         /*
249          * Determine whether this CPU requires an FSB flush, and if so which
250          * performance counter/event reflect stalls due to a full FSB.
251          */
252         switch (__get_cpu_type(cpu_info->cputype)) {
253         case CPU_INTERAPTIV:
254                 perf_counter = 1;
255                 perf_event = 51;
256                 break;
257
258         case CPU_PROAPTIV:
259                 /* Newer proAptiv cores don't require this workaround */
260                 if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
261                         return 0;
262
263                 /* On older ones it's unavailable */
264                 return -1;
265
266         default:
267                 /* Assume that the CPU does not need this workaround */
268                 return 0;
269         }
270
271         /*
272          * Ensure that the fill/store buffer (FSB) is not holding the results
273          * of a prefetch, since if it is then the CPC sequencer may become
274          * stuck in the D3 (ClrBus) state whilst entering a low power state.
275          */
276
277         /* Preserve perf counter setup */
278         uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
279         uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
280
281         /* Setup perf counter to count FSB full pipeline stalls */
282         uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
283         uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
284         uasm_i_ehb(pp);
285         uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
286         uasm_i_ehb(pp);
287
288         /* Base address for loads */
289         UASM_i_LA(pp, t0, (long)CKSEG0);
290
291         /* Start of clear loop */
292         uasm_build_label(pl, *pp, lbl);
293
294         /* Perform some loads to fill the FSB */
295         for (i = 0; i < num_loads; i++)
296                 uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
297
298         /*
299          * Invalidate the new D-cache entries so that the cache will need
300          * refilling (via the FSB) if the loop is executed again.
301          */
302         for (i = 0; i < num_loads; i++) {
303                 uasm_i_cache(pp, Hit_Invalidate_D,
304                              i * line_size * line_stride, t0);
305                 uasm_i_cache(pp, Hit_Writeback_Inv_SD,
306                              i * line_size * line_stride, t0);
307         }
308
309         /* Barrier ensuring previous cache invalidates are complete */
310         uasm_i_sync(pp, STYPE_SYNC);
311         uasm_i_ehb(pp);
312
313         /* Check whether the pipeline stalled due to the FSB being full */
314         uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
315
316         /* Loop if it didn't */
317         uasm_il_beqz(pp, pr, t1, lbl);
318         uasm_i_nop(pp);
319
320         /* Restore perf counter 1. The count may well now be wrong... */
321         uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
322         uasm_i_ehb(pp);
323         uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
324         uasm_i_ehb(pp);
325
326         return 0;
327 }
328
329 static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
330                                 struct uasm_reloc **pr,
331                                 unsigned r_addr, int lbl)
332 {
333         uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
334         uasm_build_label(pl, *pp, lbl);
335         uasm_i_ll(pp, t1, 0, r_addr);
336         uasm_i_or(pp, t1, t1, t0);
337         uasm_i_sc(pp, t1, 0, r_addr);
338         uasm_il_beqz(pp, pr, t1, lbl);
339         uasm_i_nop(pp);
340 }
341
342 static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
343 {
344         struct uasm_label *l = labels;
345         struct uasm_reloc *r = relocs;
346         u32 *buf, *p;
347         const unsigned r_online = a0;
348         const unsigned r_nc_count = a1;
349         const unsigned r_pcohctl = t7;
350         const unsigned max_instrs = 256;
351         unsigned cpc_cmd;
352         int err;
353         enum {
354                 lbl_incready = 1,
355                 lbl_poll_cont,
356                 lbl_secondary_hang,
357                 lbl_disable_coherence,
358                 lbl_flush_fsb,
359                 lbl_invicache,
360                 lbl_flushdcache,
361                 lbl_hang,
362                 lbl_set_cont,
363                 lbl_secondary_cont,
364                 lbl_decready,
365         };
366
367         /* Allocate a buffer to hold the generated code */
368         p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
369         if (!buf)
370                 return NULL;
371
372         /* Clear labels & relocs ready for (re)use */
373         memset(labels, 0, sizeof(labels));
374         memset(relocs, 0, sizeof(relocs));
375
376         if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
377                 /* Power gating relies upon CPS SMP */
378                 if (!mips_cps_smp_in_use())
379                         goto out_err;
380
381                 /*
382                  * Save CPU state. Note the non-standard calling convention
383                  * with the return address placed in v0 to avoid clobbering
384                  * the ra register before it is saved.
385                  */
386                 UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
387                 uasm_i_jalr(&p, v0, t0);
388                 uasm_i_nop(&p);
389         }
390
391         /*
392          * Load addresses of required CM & CPC registers. This is done early
393          * because they're needed in both the enable & disable coherence steps
394          * but in the coupled case the enable step will only run on one VPE.
395          */
396         UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
397
398         if (coupled_coherence) {
399                 /* Increment ready_count */
400                 uasm_i_sync(&p, STYPE_SYNC_MB);
401                 uasm_build_label(&l, p, lbl_incready);
402                 uasm_i_ll(&p, t1, 0, r_nc_count);
403                 uasm_i_addiu(&p, t2, t1, 1);
404                 uasm_i_sc(&p, t2, 0, r_nc_count);
405                 uasm_il_beqz(&p, &r, t2, lbl_incready);
406                 uasm_i_addiu(&p, t1, t1, 1);
407
408                 /* Barrier ensuring all CPUs see the updated r_nc_count value */
409                 uasm_i_sync(&p, STYPE_SYNC_MB);
410
411                 /*
412                  * If this is the last VPE to become ready for non-coherence
413                  * then it should branch below.
414                  */
415                 uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
416                 uasm_i_nop(&p);
417
418                 if (state < CPS_PM_POWER_GATED) {
419                         /*
420                          * Otherwise this is not the last VPE to become ready
421                          * for non-coherence. It needs to wait until coherence
422                          * has been disabled before proceeding, which it will do
423                          * by polling for the top bit of ready_count being set.
424                          */
425                         uasm_i_addiu(&p, t1, zero, -1);
426                         uasm_build_label(&l, p, lbl_poll_cont);
427                         uasm_i_lw(&p, t0, 0, r_nc_count);
428                         uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
429                         uasm_i_ehb(&p);
430                         if (cpu_has_mipsmt)
431                                 uasm_i_yield(&p, zero, t1);
432                         uasm_il_b(&p, &r, lbl_poll_cont);
433                         uasm_i_nop(&p);
434                 } else {
435                         /*
436                          * The core will lose power & this VPE will not continue
437                          * so it can simply halt here.
438                          */
439                         if (cpu_has_mipsmt) {
440                                 /* Halt the VPE via C0 tchalt register */
441                                 uasm_i_addiu(&p, t0, zero, TCHALT_H);
442                                 uasm_i_mtc0(&p, t0, 2, 4);
443                         } else if (cpu_has_vp) {
444                                 /* Halt the VP via the CPC VP_STOP register */
445                                 unsigned int vpe_id;
446
447                                 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
448                                 uasm_i_addiu(&p, t0, zero, 1 << vpe_id);
449                                 UASM_i_LA(&p, t1, (long)addr_cpc_cl_vp_stop());
450                                 uasm_i_sw(&p, t0, 0, t1);
451                         } else {
452                                 BUG();
453                         }
454                         uasm_build_label(&l, p, lbl_secondary_hang);
455                         uasm_il_b(&p, &r, lbl_secondary_hang);
456                         uasm_i_nop(&p);
457                 }
458         }
459
460         /*
461          * This is the point of no return - this VPE will now proceed to
462          * disable coherence. At this point we *must* be sure that no other
463          * VPE within the core will interfere with the L1 dcache.
464          */
465         uasm_build_label(&l, p, lbl_disable_coherence);
466
467         /* Invalidate the L1 icache */
468         cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
469                               Index_Invalidate_I, lbl_invicache);
470
471         /* Writeback & invalidate the L1 dcache */
472         cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
473                               Index_Writeback_Inv_D, lbl_flushdcache);
474
475         /* Barrier ensuring previous cache invalidates are complete */
476         uasm_i_sync(&p, STYPE_SYNC);
477         uasm_i_ehb(&p);
478
479         if (mips_cm_revision() < CM_REV_CM3) {
480                 /*
481                 * Disable all but self interventions. The load from COHCTL is
482                 * defined by the interAptiv & proAptiv SUMs as ensuring that the
483                 *  operation resulting from the preceding store is complete.
484                 */
485                 uasm_i_addiu(&p, t0, zero, 1 << cpu_core(&cpu_data[cpu]));
486                 uasm_i_sw(&p, t0, 0, r_pcohctl);
487                 uasm_i_lw(&p, t0, 0, r_pcohctl);
488
489                 /* Barrier to ensure write to coherence control is complete */
490                 uasm_i_sync(&p, STYPE_SYNC);
491                 uasm_i_ehb(&p);
492         }
493
494         /* Disable coherence */
495         uasm_i_sw(&p, zero, 0, r_pcohctl);
496         uasm_i_lw(&p, t0, 0, r_pcohctl);
497
498         if (state >= CPS_PM_CLOCK_GATED) {
499                 err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
500                                         lbl_flush_fsb);
501                 if (err)
502                         goto out_err;
503
504                 /* Determine the CPC command to issue */
505                 switch (state) {
506                 case CPS_PM_CLOCK_GATED:
507                         cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
508                         break;
509                 case CPS_PM_POWER_GATED:
510                         cpc_cmd = CPC_Cx_CMD_PWRDOWN;
511                         break;
512                 default:
513                         BUG();
514                         goto out_err;
515                 }
516
517                 /* Issue the CPC command */
518                 UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
519                 uasm_i_addiu(&p, t1, zero, cpc_cmd);
520                 uasm_i_sw(&p, t1, 0, t0);
521
522                 if (state == CPS_PM_POWER_GATED) {
523                         /* If anything goes wrong just hang */
524                         uasm_build_label(&l, p, lbl_hang);
525                         uasm_il_b(&p, &r, lbl_hang);
526                         uasm_i_nop(&p);
527
528                         /*
529                          * There's no point generating more code, the core is
530                          * powered down & if powered back up will run from the
531                          * reset vector not from here.
532                          */
533                         goto gen_done;
534                 }
535
536                 /* Barrier to ensure write to CPC command is complete */
537                 uasm_i_sync(&p, STYPE_SYNC);
538                 uasm_i_ehb(&p);
539         }
540
541         if (state == CPS_PM_NC_WAIT) {
542                 /*
543                  * At this point it is safe for all VPEs to proceed with
544                  * execution. This VPE will set the top bit of ready_count
545                  * to indicate to the other VPEs that they may continue.
546                  */
547                 if (coupled_coherence)
548                         cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
549                                             lbl_set_cont);
550
551                 /*
552                  * VPEs which did not disable coherence will continue
553                  * executing, after coherence has been disabled, from this
554                  * point.
555                  */
556                 uasm_build_label(&l, p, lbl_secondary_cont);
557
558                 /* Now perform our wait */
559                 uasm_i_wait(&p, 0);
560         }
561
562         /*
563          * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
564          * will run this. The first will actually re-enable coherence & the
565          * rest will just be performing a rather unusual nop.
566          */
567         uasm_i_addiu(&p, t0, zero, mips_cm_revision() < CM_REV_CM3
568                                 ? CM_GCR_Cx_COHERENCE_COHDOMAINEN
569                                 : CM3_GCR_Cx_COHERENCE_COHEN);
570
571         uasm_i_sw(&p, t0, 0, r_pcohctl);
572         uasm_i_lw(&p, t0, 0, r_pcohctl);
573
574         /* Barrier to ensure write to coherence control is complete */
575         uasm_i_sync(&p, STYPE_SYNC);
576         uasm_i_ehb(&p);
577
578         if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
579                 /* Decrement ready_count */
580                 uasm_build_label(&l, p, lbl_decready);
581                 uasm_i_sync(&p, STYPE_SYNC_MB);
582                 uasm_i_ll(&p, t1, 0, r_nc_count);
583                 uasm_i_addiu(&p, t2, t1, -1);
584                 uasm_i_sc(&p, t2, 0, r_nc_count);
585                 uasm_il_beqz(&p, &r, t2, lbl_decready);
586                 uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
587
588                 /* Barrier ensuring all CPUs see the updated r_nc_count value */
589                 uasm_i_sync(&p, STYPE_SYNC_MB);
590         }
591
592         if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
593                 /*
594                  * At this point it is safe for all VPEs to proceed with
595                  * execution. This VPE will set the top bit of ready_count
596                  * to indicate to the other VPEs that they may continue.
597                  */
598                 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
599
600                 /*
601                  * This core will be reliant upon another core sending a
602                  * power-up command to the CPC in order to resume operation.
603                  * Thus an arbitrary VPE can't trigger the core leaving the
604                  * idle state and the one that disables coherence might as well
605                  * be the one to re-enable it. The rest will continue from here
606                  * after that has been done.
607                  */
608                 uasm_build_label(&l, p, lbl_secondary_cont);
609
610                 /* Barrier ensuring all CPUs see the updated r_nc_count value */
611                 uasm_i_sync(&p, STYPE_SYNC_MB);
612         }
613
614         /* The core is coherent, time to return to C code */
615         uasm_i_jr(&p, ra);
616         uasm_i_nop(&p);
617
618 gen_done:
619         /* Ensure the code didn't exceed the resources allocated for it */
620         BUG_ON((p - buf) > max_instrs);
621         BUG_ON((l - labels) > ARRAY_SIZE(labels));
622         BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
623
624         /* Patch branch offsets */
625         uasm_resolve_relocs(relocs, labels);
626
627         /* Flush the icache */
628         local_flush_icache_range((unsigned long)buf, (unsigned long)p);
629
630         return buf;
631 out_err:
632         kfree(buf);
633         return NULL;
634 }
635
636 static int cps_pm_online_cpu(unsigned int cpu)
637 {
638         enum cps_pm_state state;
639         unsigned core = cpu_core(&cpu_data[cpu]);
640         void *entry_fn, *core_rc;
641
642         for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
643                 if (per_cpu(nc_asm_enter, core)[state])
644                         continue;
645                 if (!test_bit(state, state_support))
646                         continue;
647
648                 entry_fn = cps_gen_entry_code(cpu, state);
649                 if (!entry_fn) {
650                         pr_err("Failed to generate core %u state %u entry\n",
651                                core, state);
652                         clear_bit(state, state_support);
653                 }
654
655                 per_cpu(nc_asm_enter, core)[state] = entry_fn;
656         }
657
658         if (!per_cpu(ready_count, core)) {
659                 core_rc = kmalloc(sizeof(u32), GFP_KERNEL);
660                 if (!core_rc) {
661                         pr_err("Failed allocate core %u ready_count\n", core);
662                         return -ENOMEM;
663                 }
664                 per_cpu(ready_count, core) = core_rc;
665         }
666
667         return 0;
668 }
669
670 static int cps_pm_power_notifier(struct notifier_block *this,
671                                  unsigned long event, void *ptr)
672 {
673         unsigned int stat;
674
675         switch (event) {
676         case PM_SUSPEND_PREPARE:
677                 stat = read_cpc_cl_stat_conf();
678                 /*
679                  * If we're attempting to suspend the system and power down all
680                  * of the cores, the JTAG detect bit indicates that the CPC will
681                  * instead put the cores into clock-off state. In this state
682                  * a connected debugger can cause the CPU to attempt
683                  * interactions with the powered down system. At best this will
684                  * fail. At worst, it can hang the NoC, requiring a hard reset.
685                  * To avoid this, just block system suspend if a JTAG probe
686                  * is detected.
687                  */
688                 if (stat & CPC_Cx_STAT_CONF_EJTAG_PROBE) {
689                         pr_warn("JTAG probe is connected - abort suspend\n");
690                         return NOTIFY_BAD;
691                 }
692                 return NOTIFY_DONE;
693         default:
694                 return NOTIFY_DONE;
695         }
696 }
697
698 static int __init cps_pm_init(void)
699 {
700         /* A CM is required for all non-coherent states */
701         if (!mips_cm_present()) {
702                 pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
703                 return 0;
704         }
705
706         /*
707          * If interrupts were enabled whilst running a wait instruction on a
708          * non-coherent core then the VPE may end up processing interrupts
709          * whilst non-coherent. That would be bad.
710          */
711         if (cpu_wait == r4k_wait_irqoff)
712                 set_bit(CPS_PM_NC_WAIT, state_support);
713         else
714                 pr_warn("pm-cps: non-coherent wait unavailable\n");
715
716         /* Detect whether a CPC is present */
717         if (mips_cpc_present()) {
718                 /* Detect whether clock gating is implemented */
719                 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL)
720                         set_bit(CPS_PM_CLOCK_GATED, state_support);
721                 else
722                         pr_warn("pm-cps: CPC does not support clock gating\n");
723
724                 /* Power gating is available with CPS SMP & any CPC */
725                 if (mips_cps_smp_in_use())
726                         set_bit(CPS_PM_POWER_GATED, state_support);
727                 else
728                         pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
729         } else {
730                 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
731         }
732
733         pm_notifier(cps_pm_power_notifier, 0);
734
735         return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online",
736                                  cps_pm_online_cpu, NULL);
737 }
738 arch_initcall(cps_pm_init);