Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / arch / mips / cavium-octeon / csrc-octeon.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2007 by Ralf Baechle
7  * Copyright (C) 2009, 2012 Cavium, Inc.
8  */
9 #include <linux/clocksource.h>
10 #include <linux/sched/clock.h>
11 #include <linux/export.h>
12 #include <linux/init.h>
13 #include <linux/smp.h>
14
15 #include <asm/cpu-info.h>
16 #include <asm/cpu-type.h>
17 #include <asm/time.h>
18
19 #include <asm/octeon/octeon.h>
20 #include <asm/octeon/cvmx-ipd-defs.h>
21 #include <asm/octeon/cvmx-mio-defs.h>
22 #include <asm/octeon/cvmx-rst-defs.h>
23 #include <asm/octeon/cvmx-fpa-defs.h>
24
25 static u64 f;
26 static u64 rdiv;
27 static u64 sdiv;
28 static u64 octeon_udelay_factor;
29 static u64 octeon_ndelay_factor;
30
31 void __init octeon_setup_delays(void)
32 {
33         octeon_udelay_factor = octeon_get_clock_rate() / 1000000;
34         /*
35          * For __ndelay we divide by 2^16, so the factor is multiplied
36          * by the same amount.
37          */
38         octeon_ndelay_factor = (octeon_udelay_factor * 0x10000ull) / 1000ull;
39
40         preset_lpj = octeon_get_clock_rate() / HZ;
41
42         if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
43                 union cvmx_mio_rst_boot rst_boot;
44
45                 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
46                 rdiv = rst_boot.s.c_mul;        /* CPU clock */
47                 sdiv = rst_boot.s.pnr_mul;      /* I/O clock */
48                 f = (0x8000000000000000ull / sdiv) * 2;
49         } else if (current_cpu_type() == CPU_CAVIUM_OCTEON3) {
50                 union cvmx_rst_boot rst_boot;
51
52                 rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
53                 rdiv = rst_boot.s.c_mul;        /* CPU clock */
54                 sdiv = rst_boot.s.pnr_mul;      /* I/O clock */
55                 f = (0x8000000000000000ull / sdiv) * 2;
56         }
57
58 }
59
60 /*
61  * Set the current core's cvmcount counter to the value of the
62  * IPD_CLK_COUNT.  We do this on all cores as they are brought
63  * on-line.  This allows for a read from a local cpu register to
64  * access a synchronized counter.
65  *
66  * On CPU_CAVIUM_OCTEON2 the IPD_CLK_COUNT is scaled by rdiv/sdiv.
67  */
68 void octeon_init_cvmcount(void)
69 {
70         u64 clk_reg;
71         unsigned long flags;
72         unsigned loops = 2;
73
74         clk_reg = octeon_has_feature(OCTEON_FEATURE_FPA3) ?
75                 CVMX_FPA_CLK_COUNT : CVMX_IPD_CLK_COUNT;
76
77         /* Clobber loops so GCC will not unroll the following while loop. */
78         asm("" : "+r" (loops));
79
80         local_irq_save(flags);
81         /*
82          * Loop several times so we are executing from the cache,
83          * which should give more deterministic timing.
84          */
85         while (loops--) {
86                 u64 clk_count = cvmx_read_csr(clk_reg);
87                 if (rdiv != 0) {
88                         clk_count *= rdiv;
89                         if (f != 0) {
90                                 asm("dmultu\t%[cnt],%[f]\n\t"
91                                     "mfhi\t%[cnt]"
92                                     : [cnt] "+r" (clk_count)
93                                     : [f] "r" (f)
94                                     : "hi", "lo");
95                         }
96                 }
97                 write_c0_cvmcount(clk_count);
98         }
99         local_irq_restore(flags);
100 }
101
102 static u64 octeon_cvmcount_read(struct clocksource *cs)
103 {
104         return read_c0_cvmcount();
105 }
106
107 static struct clocksource clocksource_mips = {
108         .name           = "OCTEON_CVMCOUNT",
109         .read           = octeon_cvmcount_read,
110         .mask           = CLOCKSOURCE_MASK(64),
111         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
112 };
113
114 unsigned long long notrace sched_clock(void)
115 {
116         /* 64-bit arithmatic can overflow, so use 128-bit.  */
117         u64 t1, t2, t3;
118         unsigned long long rv;
119         u64 mult = clocksource_mips.mult;
120         u64 shift = clocksource_mips.shift;
121         u64 cnt = read_c0_cvmcount();
122
123         asm (
124                 "dmultu\t%[cnt],%[mult]\n\t"
125                 "nor\t%[t1],$0,%[shift]\n\t"
126                 "mfhi\t%[t2]\n\t"
127                 "mflo\t%[t3]\n\t"
128                 "dsll\t%[t2],%[t2],1\n\t"
129                 "dsrlv\t%[rv],%[t3],%[shift]\n\t"
130                 "dsllv\t%[t1],%[t2],%[t1]\n\t"
131                 "or\t%[rv],%[t1],%[rv]\n\t"
132                 : [rv] "=&r" (rv), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3)
133                 : [cnt] "r" (cnt), [mult] "r" (mult), [shift] "r" (shift)
134                 : "hi", "lo");
135         return rv;
136 }
137
138 void __init plat_time_init(void)
139 {
140         clocksource_mips.rating = 300;
141         clocksource_register_hz(&clocksource_mips, octeon_get_clock_rate());
142 }
143
144 void __udelay(unsigned long us)
145 {
146         u64 cur, end, inc;
147
148         cur = read_c0_cvmcount();
149
150         inc = us * octeon_udelay_factor;
151         end = cur + inc;
152
153         while (end > cur)
154                 cur = read_c0_cvmcount();
155 }
156 EXPORT_SYMBOL(__udelay);
157
158 void __ndelay(unsigned long ns)
159 {
160         u64 cur, end, inc;
161
162         cur = read_c0_cvmcount();
163
164         inc = ((ns * octeon_ndelay_factor) >> 16);
165         end = cur + inc;
166
167         while (end > cur)
168                 cur = read_c0_cvmcount();
169 }
170 EXPORT_SYMBOL(__ndelay);
171
172 void __delay(unsigned long loops)
173 {
174         u64 cur, end;
175
176         cur = read_c0_cvmcount();
177         end = cur + loops;
178
179         while (end > cur)
180                 cur = read_c0_cvmcount();
181 }
182 EXPORT_SYMBOL(__delay);
183
184
185 /**
186  * octeon_io_clk_delay - wait for a given number of io clock cycles to pass.
187  *
188  * We scale the wait by the clock ratio, and then wait for the
189  * corresponding number of core clocks.
190  *
191  * @count: The number of clocks to wait.
192  */
193 void octeon_io_clk_delay(unsigned long count)
194 {
195         u64 cur, end;
196
197         cur = read_c0_cvmcount();
198         if (rdiv != 0) {
199                 end = count * rdiv;
200                 if (f != 0) {
201                         asm("dmultu\t%[cnt],%[f]\n\t"
202                                 "mfhi\t%[cnt]"
203                                 : [cnt] "+r" (end)
204                                 : [f] "r" (f)
205                                 : "hi", "lo");
206                 }
207                 end = cur + end;
208         } else {
209                 end = cur + count;
210         }
211         while (end > cur)
212                 cur = read_c0_cvmcount();
213 }
214 EXPORT_SYMBOL(octeon_io_clk_delay);