Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / arch / c6x / kernel / setup.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Port on Texas Instruments TMS320C6x architecture
4  *
5  *  Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
6  *  Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
7  */
8 #include <linux/dma-mapping.h>
9 #include <linux/memblock.h>
10 #include <linux/seq_file.h>
11 #include <linux/clkdev.h>
12 #include <linux/initrd.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/of_fdt.h>
16 #include <linux/string.h>
17 #include <linux/errno.h>
18 #include <linux/cache.h>
19 #include <linux/delay.h>
20 #include <linux/sched.h>
21 #include <linux/clk.h>
22 #include <linux/cpu.h>
23 #include <linux/fs.h>
24 #include <linux/of.h>
25 #include <linux/console.h>
26 #include <linux/screen_info.h>
27
28 #include <asm/sections.h>
29 #include <asm/div64.h>
30 #include <asm/setup.h>
31 #include <asm/dscr.h>
32 #include <asm/clock.h>
33 #include <asm/soc.h>
34 #include <asm/special_insns.h>
35
36 static const char *c6x_soc_name;
37
38 struct screen_info screen_info;
39
40 int c6x_num_cores;
41 EXPORT_SYMBOL_GPL(c6x_num_cores);
42
43 unsigned int c6x_silicon_rev;
44 EXPORT_SYMBOL_GPL(c6x_silicon_rev);
45
46 /*
47  * Device status register. This holds information
48  * about device configuration needed by some drivers.
49  */
50 unsigned int c6x_devstat;
51 EXPORT_SYMBOL_GPL(c6x_devstat);
52
53 /*
54  * Some SoCs have fuse registers holding a unique MAC
55  * address. This is parsed out of the device tree with
56  * the resulting MAC being held here.
57  */
58 unsigned char c6x_fuse_mac[6];
59
60 unsigned long memory_start;
61 unsigned long memory_end;
62 EXPORT_SYMBOL(memory_end);
63
64 unsigned long ram_start;
65 unsigned long ram_end;
66
67 /* Uncached memory for DMA consistent use (memdma=) */
68 static unsigned long dma_start __initdata;
69 static unsigned long dma_size __initdata;
70
71 struct cpuinfo_c6x {
72         const char *cpu_name;
73         const char *cpu_voltage;
74         const char *mmu;
75         const char *fpu;
76         char *cpu_rev;
77         unsigned int core_id;
78         char __cpu_rev[5];
79 };
80
81 static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
82
83 unsigned int ticks_per_ns_scaled;
84 EXPORT_SYMBOL(ticks_per_ns_scaled);
85
86 unsigned int c6x_core_freq;
87
88 static void __init get_cpuinfo(void)
89 {
90         unsigned cpu_id, rev_id, csr;
91         struct clk *coreclk = clk_get_sys(NULL, "core");
92         unsigned long core_khz;
93         u64 tmp;
94         struct cpuinfo_c6x *p;
95         struct device_node *node;
96
97         p = &per_cpu(cpu_data, smp_processor_id());
98
99         if (!IS_ERR(coreclk))
100                 c6x_core_freq = clk_get_rate(coreclk);
101         else {
102                 printk(KERN_WARNING
103                        "Cannot find core clock frequency. Using 700MHz\n");
104                 c6x_core_freq = 700000000;
105         }
106
107         core_khz = c6x_core_freq / 1000;
108
109         tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
110         do_div(tmp, 1000000);
111         ticks_per_ns_scaled = tmp;
112
113         csr = get_creg(CSR);
114         cpu_id = csr >> 24;
115         rev_id = (csr >> 16) & 0xff;
116
117         p->mmu = "none";
118         p->fpu = "none";
119         p->cpu_voltage = "unknown";
120
121         switch (cpu_id) {
122         case 0:
123                 p->cpu_name = "C67x";
124                 p->fpu = "yes";
125                 break;
126         case 2:
127                 p->cpu_name = "C62x";
128                 break;
129         case 8:
130                 p->cpu_name = "C64x";
131                 break;
132         case 12:
133                 p->cpu_name = "C64x";
134                 break;
135         case 16:
136                 p->cpu_name = "C64x+";
137                 p->cpu_voltage = "1.2";
138                 break;
139         case 21:
140                 p->cpu_name = "C66X";
141                 p->cpu_voltage = "1.2";
142                 break;
143         default:
144                 p->cpu_name = "unknown";
145                 break;
146         }
147
148         if (cpu_id < 16) {
149                 switch (rev_id) {
150                 case 0x1:
151                         if (cpu_id > 8) {
152                                 p->cpu_rev = "DM640/DM641/DM642/DM643";
153                                 p->cpu_voltage = "1.2 - 1.4";
154                         } else {
155                                 p->cpu_rev = "C6201";
156                                 p->cpu_voltage = "2.5";
157                         }
158                         break;
159                 case 0x2:
160                         p->cpu_rev = "C6201B/C6202/C6211";
161                         p->cpu_voltage = "1.8";
162                         break;
163                 case 0x3:
164                         p->cpu_rev = "C6202B/C6203/C6204/C6205";
165                         p->cpu_voltage = "1.5";
166                         break;
167                 case 0x201:
168                         p->cpu_rev = "C6701 revision 0 (early CPU)";
169                         p->cpu_voltage = "1.8";
170                         break;
171                 case 0x202:
172                         p->cpu_rev = "C6701/C6711/C6712";
173                         p->cpu_voltage = "1.8";
174                         break;
175                 case 0x801:
176                         p->cpu_rev = "C64x";
177                         p->cpu_voltage = "1.5";
178                         break;
179                 default:
180                         p->cpu_rev = "unknown";
181                 }
182         } else {
183                 p->cpu_rev = p->__cpu_rev;
184                 snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
185         }
186
187         p->core_id = get_coreid();
188
189         for_each_of_cpu_node(node)
190                 ++c6x_num_cores;
191
192         node = of_find_node_by_name(NULL, "soc");
193         if (node) {
194                 if (of_property_read_string(node, "model", &c6x_soc_name))
195                         c6x_soc_name = "unknown";
196                 of_node_put(node);
197         } else
198                 c6x_soc_name = "unknown";
199
200         printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
201                p->core_id, p->cpu_name, p->cpu_rev,
202                p->cpu_voltage, c6x_core_freq / 1000000);
203 }
204
205 /*
206  * Early parsing of the command line
207  */
208 static u32 mem_size __initdata;
209
210 /* "mem=" parsing. */
211 static int __init early_mem(char *p)
212 {
213         if (!p)
214                 return -EINVAL;
215
216         mem_size = memparse(p, &p);
217         /* don't remove all of memory when handling "mem={invalid}" */
218         if (mem_size == 0)
219                 return -EINVAL;
220
221         return 0;
222 }
223 early_param("mem", early_mem);
224
225 /* "memdma=<size>[@<address>]" parsing. */
226 static int __init early_memdma(char *p)
227 {
228         if (!p)
229                 return -EINVAL;
230
231         dma_size = memparse(p, &p);
232         if (*p == '@')
233                 dma_start = memparse(p, &p);
234
235         return 0;
236 }
237 early_param("memdma", early_memdma);
238
239 int __init c6x_add_memory(phys_addr_t start, unsigned long size)
240 {
241         static int ram_found __initdata;
242
243         /* We only handle one bank (the one with PAGE_OFFSET) for now */
244         if (ram_found)
245                 return -EINVAL;
246
247         if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
248                 return 0;
249
250         ram_start = start;
251         ram_end = start + size;
252
253         ram_found = 1;
254         return 0;
255 }
256
257 /*
258  * Do early machine setup and device tree parsing. This is called very
259  * early on the boot process.
260  */
261 notrace void __init machine_init(unsigned long dt_ptr)
262 {
263         void *dtb = __va(dt_ptr);
264         void *fdt = __dtb_start;
265
266         /* interrupts must be masked */
267         set_creg(IER, 2);
268
269         /*
270          * Set the Interrupt Service Table (IST) to the beginning of the
271          * vector table.
272          */
273         set_ist(_vectors_start);
274
275         /*
276          * dtb is passed in from bootloader.
277          * fdt is linked in blob.
278          */
279         if (dtb && dtb != fdt)
280                 fdt = dtb;
281
282         /* Do some early initialization based on the flat device tree */
283         early_init_dt_scan(fdt);
284
285         parse_early_param();
286 }
287
288 void __init setup_arch(char **cmdline_p)
289 {
290         struct memblock_region *reg;
291
292         printk(KERN_INFO "Initializing kernel\n");
293
294         /* Initialize command line */
295         *cmdline_p = boot_command_line;
296
297         memory_end = ram_end;
298         memory_end &= ~(PAGE_SIZE - 1);
299
300         if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
301                 memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
302
303         /* add block that this kernel can use */
304         memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
305
306         /* reserve kernel text/data/bss */
307         memblock_reserve(PAGE_OFFSET,
308                          PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
309
310         if (dma_size) {
311                 /* align to cacheability granularity */
312                 dma_size = CACHE_REGION_END(dma_size);
313
314                 if (!dma_start)
315                         dma_start = memory_end - dma_size;
316
317                 /* align to cacheability granularity */
318                 dma_start = CACHE_REGION_START(dma_start);
319
320                 /* reserve DMA memory taken from kernel memory */
321                 if (memblock_is_region_memory(dma_start, dma_size))
322                         memblock_reserve(dma_start, dma_size);
323         }
324
325         memory_start = PAGE_ALIGN((unsigned int) &_end);
326
327         printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
328                memory_start, memory_end);
329
330 #ifdef CONFIG_BLK_DEV_INITRD
331         /*
332          * Reserve initrd memory if in kernel memory.
333          */
334         if (initrd_start < initrd_end)
335                 if (memblock_is_region_memory(initrd_start,
336                                               initrd_end - initrd_start))
337                         memblock_reserve(initrd_start,
338                                          initrd_end - initrd_start);
339 #endif
340
341         init_mm.start_code = (unsigned long) &_stext;
342         init_mm.end_code   = (unsigned long) &_etext;
343         init_mm.end_data   = memory_start;
344         init_mm.brk        = memory_start;
345
346         unflatten_and_copy_device_tree();
347
348         c6x_cache_init();
349
350         /* Set the whole external memory as non-cacheable */
351         disable_caching(ram_start, ram_end - 1);
352
353         /* Set caching of external RAM used by Linux */
354         for_each_memblock(memory, reg)
355                 enable_caching(CACHE_REGION_START(reg->base),
356                                CACHE_REGION_START(reg->base + reg->size - 1));
357
358 #ifdef CONFIG_BLK_DEV_INITRD
359         /*
360          * Enable caching for initrd which falls outside kernel memory.
361          */
362         if (initrd_start < initrd_end) {
363                 if (!memblock_is_region_memory(initrd_start,
364                                                initrd_end - initrd_start))
365                         enable_caching(CACHE_REGION_START(initrd_start),
366                                        CACHE_REGION_START(initrd_end - 1));
367         }
368 #endif
369
370         /*
371          * Disable caching for dma coherent memory taken from kernel memory.
372          */
373         if (dma_size && memblock_is_region_memory(dma_start, dma_size))
374                 disable_caching(dma_start,
375                                 CACHE_REGION_START(dma_start + dma_size - 1));
376
377         /* Initialize the coherent memory allocator */
378         coherent_mem_init(dma_start, dma_size);
379
380         max_low_pfn = PFN_DOWN(memory_end);
381         min_low_pfn = PFN_UP(memory_start);
382         max_pfn = max_low_pfn;
383         max_mapnr = max_low_pfn - min_low_pfn;
384
385         /* Get kmalloc into gear */
386         paging_init();
387
388         /*
389          * Probe for Device State Configuration Registers.
390          * We have to do this early in case timer needs to be enabled
391          * through DSCR.
392          */
393         dscr_probe();
394
395         /* We do this early for timer and core clock frequency */
396         c64x_setup_clocks();
397
398         /* Get CPU info */
399         get_cpuinfo();
400
401 #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
402         conswitchp = &dummy_con;
403 #endif
404 }
405
406 #define cpu_to_ptr(n) ((void *)((long)(n)+1))
407 #define ptr_to_cpu(p) ((long)(p) - 1)
408
409 static int show_cpuinfo(struct seq_file *m, void *v)
410 {
411         int n = ptr_to_cpu(v);
412         struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
413
414         if (n == 0) {
415                 seq_printf(m,
416                            "soc\t\t: %s\n"
417                            "soc revision\t: 0x%x\n"
418                            "soc cores\t: %d\n",
419                            c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
420         }
421
422         seq_printf(m,
423                    "\n"
424                    "processor\t: %d\n"
425                    "cpu\t\t: %s\n"
426                    "core revision\t: %s\n"
427                    "core voltage\t: %s\n"
428                    "core id\t\t: %d\n"
429                    "mmu\t\t: %s\n"
430                    "fpu\t\t: %s\n"
431                    "cpu MHz\t\t: %u\n"
432                    "bogomips\t: %lu.%02lu\n\n",
433                    n,
434                    p->cpu_name, p->cpu_rev, p->cpu_voltage,
435                    p->core_id, p->mmu, p->fpu,
436                    (c6x_core_freq + 500000) / 1000000,
437                    (loops_per_jiffy/(500000/HZ)),
438                    (loops_per_jiffy/(5000/HZ))%100);
439
440         return 0;
441 }
442
443 static void *c_start(struct seq_file *m, loff_t *pos)
444 {
445         return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
446 }
447 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
448 {
449         ++*pos;
450         return NULL;
451 }
452 static void c_stop(struct seq_file *m, void *v)
453 {
454 }
455
456 const struct seq_operations cpuinfo_op = {
457         c_start,
458         c_stop,
459         c_next,
460         show_cpuinfo
461 };
462
463 static struct cpu cpu_devices[NR_CPUS];
464
465 static int __init topology_init(void)
466 {
467         int i;
468
469         for_each_present_cpu(i)
470                 register_cpu(&cpu_devices[i], i);
471
472         return 0;
473 }
474
475 subsys_initcall(topology_init);