ARM: uniphier: drop PH1- prefix from CONFIG options and file names
[oweals/u-boot.git] / arch / arm / mach-uniphier / dram / umc-pxs2.c
1 /*
2  * Copyright (C) 2015 Masahiro Yamada <yamada.masahiro@socionext.com>
3  *
4  * based on commit 21b6e480f92ccc38fe0502e3116411d6509d3bf2 of Diag by:
5  * Copyright (C) 2015 Socionext Inc.
6  *
7  * SPDX-License-Identifier:     GPL-2.0+
8  */
9
10 #include <common.h>
11 #include <linux/err.h>
12 #include <linux/io.h>
13 #include <linux/sizes.h>
14 #include <asm/processor.h>
15
16 #include "../init.h"
17 #include "../soc-info.h"
18 #include "ddrmphy-regs.h"
19 #include "umc-regs.h"
20
21 #define DRAM_CH_NR      3
22
23 enum dram_freq {
24         DRAM_FREQ_1866M,
25         DRAM_FREQ_2133M,
26         DRAM_FREQ_NR,
27 };
28
29 enum dram_size {
30         DRAM_SZ_256M,
31         DRAM_SZ_512M,
32         DRAM_SZ_NR,
33 };
34
35 static u32 ddrphy_pgcr2[DRAM_FREQ_NR] = {0x00FC7E5D, 0x00FC90AB};
36 static u32 ddrphy_ptr0[DRAM_FREQ_NR] = {0x0EA09205, 0x10C0A6C6};
37 static u32 ddrphy_ptr1[DRAM_FREQ_NR] = {0x0DAC041B, 0x0FA104B1};
38 static u32 ddrphy_ptr3[DRAM_FREQ_NR] = {0x15171e45, 0x18182357};
39 static u32 ddrphy_ptr4[DRAM_FREQ_NR] = {0x0e9ad8e9, 0x10b34157};
40 static u32 ddrphy_dtpr0[DRAM_FREQ_NR] = {0x35a00d88, 0x39e40e88};
41 static u32 ddrphy_dtpr1[DRAM_FREQ_NR] = {0x2288cc2c, 0x228a04d0};
42 static u32 ddrphy_dtpr2[DRAM_FREQ_NR] = {0x50005e00, 0x50006a00};
43 static u32 ddrphy_dtpr3[DRAM_FREQ_NR] = {0x0010cb49, 0x0010ec89};
44 static u32 ddrphy_mr0[DRAM_FREQ_NR] = {0x00000115, 0x00000125};
45 static u32 ddrphy_mr2[DRAM_FREQ_NR] = {0x000002a0, 0x000002a8};
46
47 /* dependent on package and board design */
48 static u32 ddrphy_acbdlr0[DRAM_CH_NR] = {0x0000000c, 0x0000000c, 0x00000009};
49
50 static u32 umc_cmdctla[DRAM_FREQ_NR] = {0x66DD131D, 0x77EE1722};
51 /*
52  * The ch2 is a different generation UMC core.
53  * The register spec is different, unfortunately.
54  */
55 static u32 umc_cmdctlb_ch01[DRAM_FREQ_NR] = {0x13E87C44, 0x18F88C44};
56 static u32 umc_cmdctlb_ch2[DRAM_FREQ_NR] = {0x19E8DC44, 0x1EF8EC44};
57 static u32 umc_spcctla[DRAM_FREQ_NR][DRAM_SZ_NR] = {
58         {0x004A071D, 0x0078071D},
59         {0x0055081E, 0x0089081E},
60 };
61
62 static u32 umc_spcctlb[] = {0x00FF000A, 0x00FF000B};
63 /* The ch2 is different for some reason only hardware guys know... */
64 static u32 umc_flowctla_ch01[] = {0x0800001E, 0x08000022};
65 static u32 umc_flowctla_ch2[] = {0x0800001E, 0x0800001E};
66
67 /* DDR multiPHY */
68 static inline int ddrphy_get_rank(int dx)
69 {
70         return dx / 2;
71 }
72
73 static void ddrphy_fifo_reset(void __iomem *phy_base)
74 {
75         u32 tmp;
76
77         tmp = readl(phy_base + DMPHY_PGCR0);
78         tmp &= ~DMPHY_PGCR0_PHYFRST;
79         writel(tmp, phy_base + DMPHY_PGCR0);
80
81         udelay(1);
82
83         tmp |= DMPHY_PGCR0_PHYFRST;
84         writel(tmp, phy_base + DMPHY_PGCR0);
85
86         udelay(1);
87 }
88
89 static void ddrphy_vt_ctrl(void __iomem *phy_base, int enable)
90 {
91         u32 tmp;
92
93         tmp = readl(phy_base + DMPHY_PGCR1);
94
95         if (enable)
96                 tmp &= ~DMPHY_PGCR1_INHVT;
97         else
98                 tmp |= DMPHY_PGCR1_INHVT;
99
100         writel(tmp, phy_base + DMPHY_PGCR1);
101
102         if (!enable) {
103                 while (!(readl(phy_base + DMPHY_PGSR1) & DMPHY_PGSR1_VTSTOP))
104                         cpu_relax();
105         }
106 }
107
108 static void ddrphy_dqs_delay_fixup(void __iomem *phy_base, int nr_dx, int step)
109 {
110         int dx;
111         u32 lcdlr1, rdqsd;
112         void __iomem *dx_base = phy_base + DMPHY_DX_BASE;
113
114         ddrphy_vt_ctrl(phy_base, 0);
115
116         for (dx = 0; dx < nr_dx; dx++) {
117                 lcdlr1 = readl(dx_base + DMPHY_DX_LCDLR1);
118                 rdqsd = (lcdlr1 >> 8) & 0xff;
119                 rdqsd = clamp(rdqsd + step, 0U, 0xffU);
120                 lcdlr1 = (lcdlr1 & ~(0xff << 8)) | (rdqsd << 8);
121                 writel(lcdlr1, dx_base + DMPHY_DX_LCDLR1);
122                 readl(dx_base + DMPHY_DX_LCDLR1); /* relax */
123                 dx_base += DMPHY_DX_STRIDE;
124         }
125
126         ddrphy_vt_ctrl(phy_base, 1);
127 }
128
129 static int ddrphy_get_system_latency(void __iomem *phy_base, int width)
130 {
131         void __iomem *dx_base = phy_base + DMPHY_DX_BASE;
132         const int nr_dx = width / 8;
133         int dx, rank;
134         u32 gtr;
135         int dgsl, dgsl_min = INT_MAX, dgsl_max = 0;
136
137         for (dx = 0; dx < nr_dx; dx++) {
138                 gtr = readl(dx_base + DMPHY_DX_GTR);
139                 for (rank = 0; rank < 4; rank++) {
140                         dgsl = gtr & 0x7;
141                         /* if dgsl is zero, this rank was not trained. skip. */
142                         if (dgsl) {
143                                 dgsl_min = min(dgsl_min, dgsl);
144                                 dgsl_max = max(dgsl_max, dgsl);
145                         }
146                         gtr >>= 3;
147                 }
148                 dx_base += DMPHY_DX_STRIDE;
149         }
150
151         if (dgsl_min != dgsl_max)
152                 printf("DQS Gateing System Latencies are not all leveled.\n");
153
154         return dgsl_max;
155 }
156
157 static void ddrphy_init(void __iomem *phy_base, enum dram_freq freq, int width,
158                         int ch)
159 {
160         u32 tmp;
161         void __iomem *zq_base, *dx_base;
162         int zq, dx;
163         int nr_dx;
164
165         nr_dx = width / 8;
166
167         writel(DMPHY_PIR_ZCALBYP,        phy_base + DMPHY_PIR);
168         /*
169          * Disable RGLVT bit (Read DQS Gating LCDL Delay VT Compensation)
170          * to avoid read error issue.
171          */
172         writel(0x07d81e37,         phy_base + DMPHY_PGCR0);
173         writel(0x0200c4e0,         phy_base + DMPHY_PGCR1);
174
175         tmp = ddrphy_pgcr2[freq];
176         if (width >= 32)
177                 tmp |= DMPHY_PGCR2_DUALCHN | DMPHY_PGCR2_ACPDDC;
178         writel(tmp, phy_base + DMPHY_PGCR2);
179
180         writel(ddrphy_ptr0[freq],  phy_base + DMPHY_PTR0);
181         writel(ddrphy_ptr1[freq],  phy_base + DMPHY_PTR1);
182         writel(0x00083def,         phy_base + DMPHY_PTR2);
183         writel(ddrphy_ptr3[freq],  phy_base + DMPHY_PTR3);
184         writel(ddrphy_ptr4[freq],  phy_base + DMPHY_PTR4);
185
186         writel(ddrphy_acbdlr0[ch], phy_base + DMPHY_ACBDLR0);
187
188         writel(0x55555555, phy_base + DMPHY_ACIOCR1);
189         writel(0x00000000, phy_base + DMPHY_ACIOCR2);
190         writel(0x55555555, phy_base + DMPHY_ACIOCR3);
191         writel(0x00000000, phy_base + DMPHY_ACIOCR4);
192         writel(0x00000055, phy_base + DMPHY_ACIOCR5);
193         writel(0x00181aa4, phy_base + DMPHY_DXCCR);
194
195         writel(0x0024641e, phy_base + DMPHY_DSGCR);
196         writel(0x0000040b, phy_base + DMPHY_DCR);
197         writel(ddrphy_dtpr0[freq], phy_base + DMPHY_DTPR0);
198         writel(ddrphy_dtpr1[freq], phy_base + DMPHY_DTPR1);
199         writel(ddrphy_dtpr2[freq], phy_base + DMPHY_DTPR2);
200         writel(ddrphy_dtpr3[freq], phy_base + DMPHY_DTPR3);
201         writel(ddrphy_mr0[freq], phy_base + DMPHY_MR0);
202         writel(0x00000006,       phy_base + DMPHY_MR1);
203         writel(ddrphy_mr2[freq], phy_base + DMPHY_MR2);
204         writel(0x00000000,       phy_base + DMPHY_MR3);
205
206         tmp = 0;
207         for (dx = 0; dx < nr_dx; dx++)
208                 tmp |= BIT(DMPHY_DTCR_RANKEN_SHIFT + ddrphy_get_rank(dx));
209         writel(0x90003087 | tmp, phy_base + DMPHY_DTCR);
210
211         writel(0x00000000, phy_base + DMPHY_DTAR0);
212         writel(0x00000008, phy_base + DMPHY_DTAR1);
213         writel(0x00000010, phy_base + DMPHY_DTAR2);
214         writel(0x00000018, phy_base + DMPHY_DTAR3);
215         writel(0xdd22ee11, phy_base + DMPHY_DTDR0);
216         writel(0x7788bb44, phy_base + DMPHY_DTDR1);
217
218         /* impedance control settings */
219         writel(0x04048900, phy_base + DMPHY_ZQCR);
220
221         zq_base = phy_base + DMPHY_ZQ_BASE;
222         for (zq = 0; zq < 4; zq++) {
223                 /*
224                  * board-dependent
225                  * PXS2: CH0ZQ0=0x5B, CH1ZQ0=0x5B, CH2ZQ0=0x59, others=0x5D
226                  */
227                 writel(0x0007BB5D, zq_base + DMPHY_ZQ_PR);
228                 zq_base += DMPHY_ZQ_STRIDE;
229         }
230
231         /* DATX8 settings */
232         dx_base = phy_base + DMPHY_DX_BASE;
233         for (dx = 0; dx < 4; dx++) {
234                 tmp = readl(dx_base + DMPHY_DX_GCR0);
235                 tmp &= ~DMPHY_DX_GCR0_WLRKEN_MASK;
236                 tmp |= BIT(DMPHY_DX_GCR0_WLRKEN_SHIFT + ddrphy_get_rank(dx)) &
237                                                 DMPHY_DX_GCR0_WLRKEN_MASK;
238                 writel(tmp, dx_base + DMPHY_DX_GCR0);
239
240                 writel(0x00000000, dx_base + DMPHY_DX_GCR1);
241                 writel(0x00000000, dx_base + DMPHY_DX_GCR2);
242                 writel(0x00000000, dx_base + DMPHY_DX_GCR3);
243                 dx_base += DMPHY_DX_STRIDE;
244         }
245
246         while (!(readl(phy_base + DMPHY_PGSR0) & DMPHY_PGSR0_IDONE))
247                 cpu_relax();
248
249         ddrphy_dqs_delay_fixup(phy_base, nr_dx, -4);
250 }
251
252 struct ddrphy_init_sequence {
253         char *description;
254         u32 init_flag;
255         u32 done_flag;
256         u32 err_flag;
257 };
258
259 static const struct ddrphy_init_sequence impedance_calibration_sequence[] = {
260         {
261                 "Impedance Calibration",
262                 DMPHY_PIR_ZCAL,
263                 DMPHY_PGSR0_ZCDONE,
264                 DMPHY_PGSR0_ZCERR,
265         },
266         { /* sentinel */ }
267 };
268
269 static const struct ddrphy_init_sequence dram_init_sequence[] = {
270         {
271                 "DRAM Initialization",
272                 DMPHY_PIR_DRAMRST | DMPHY_PIR_DRAMINIT,
273                 DMPHY_PGSR0_DIDONE,
274                 0,
275         },
276         { /* sentinel */ }
277 };
278
279 static const struct ddrphy_init_sequence training_sequence[] = {
280         {
281                 "Write Leveling",
282                 DMPHY_PIR_WL,
283                 DMPHY_PGSR0_WLDONE,
284                 DMPHY_PGSR0_WLERR,
285         },
286         {
287                 "Read DQS Gate Training",
288                 DMPHY_PIR_QSGATE,
289                 DMPHY_PGSR0_QSGDONE,
290                 DMPHY_PGSR0_QSGERR,
291         },
292         {
293                 "Write Leveling Adjustment",
294                 DMPHY_PIR_WLADJ,
295                 DMPHY_PGSR0_WLADONE,
296                 DMPHY_PGSR0_WLAERR,
297         },
298         {
299                 "Read Bit Deskew",
300                 DMPHY_PIR_RDDSKW,
301                 DMPHY_PGSR0_RDDONE,
302                 DMPHY_PGSR0_RDERR,
303         },
304         {
305                 "Write Bit Deskew",
306                 DMPHY_PIR_WRDSKW,
307                 DMPHY_PGSR0_WDDONE,
308                 DMPHY_PGSR0_WDERR,
309         },
310         {
311                 "Read Eye Training",
312                 DMPHY_PIR_RDEYE,
313                 DMPHY_PGSR0_REDONE,
314                 DMPHY_PGSR0_REERR,
315         },
316         {
317                 "Write Eye Training",
318                 DMPHY_PIR_WREYE,
319                 DMPHY_PGSR0_WEDONE,
320                 DMPHY_PGSR0_WEERR,
321         },
322         { /* sentinel */ }
323 };
324
325 static int __ddrphy_training(void __iomem *phy_base,
326                              const struct ddrphy_init_sequence *seq)
327 {
328         const struct ddrphy_init_sequence *s;
329         u32 pgsr0;
330         u32 init_flag = DMPHY_PIR_INIT;
331         u32 done_flag = DMPHY_PGSR0_IDONE;
332         int timeout = 50000; /* 50 msec is long enough */
333 #ifdef DISPLAY_ELAPSED_TIME
334         ulong start = get_timer(0);
335 #endif
336
337         for (s = seq; s->description; s++) {
338                 init_flag |= s->init_flag;
339                 done_flag |= s->done_flag;
340         }
341
342         writel(init_flag, phy_base + DMPHY_PIR);
343
344         do {
345                 if (--timeout < 0) {
346                         pr_err("%s: error: timeout during DDR training\n",
347                                __func__);
348                         return -ETIMEDOUT;
349                 }
350                 udelay(1);
351                 pgsr0 = readl(phy_base + DMPHY_PGSR0);
352         } while ((pgsr0 & done_flag) != done_flag);
353
354         for (s = seq; s->description; s++) {
355                 if (pgsr0 & s->err_flag) {
356                         pr_err("%s: error: %s failed\n", __func__,
357                                s->description);
358                         return -EIO;
359                 }
360         }
361
362 #ifdef DISPLAY_ELAPSED_TIME
363         printf("%s: info: elapsed time %ld msec\n", get_timer(start));
364 #endif
365
366         return 0;
367 }
368
369 static int ddrphy_impedance_calibration(void __iomem *phy_base)
370 {
371         int ret;
372         u32 tmp;
373
374         ret = __ddrphy_training(phy_base, impedance_calibration_sequence);
375         if (ret)
376                 return ret;
377
378         /*
379          * Because of a hardware bug, IDONE flag is set when the first ZQ block
380          * is calibrated.  The flag does not guarantee the completion for all
381          * the ZQ blocks.  Wait a little more just in case.
382          */
383         udelay(1);
384
385         /* reflect ZQ settings and enable average algorithm*/
386         tmp = readl(phy_base + DMPHY_ZQCR);
387         tmp |= DMPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
388         writel(tmp, phy_base + DMPHY_ZQCR);
389         tmp &= ~DMPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
390         tmp |= DMPHY_ZQCR_AVGEN;
391         writel(tmp, phy_base + DMPHY_ZQCR);
392
393         return 0;
394 }
395
396 static int ddrphy_dram_init(void __iomem *phy_base)
397 {
398         return __ddrphy_training(phy_base, dram_init_sequence);
399 }
400
401 static int ddrphy_training(void __iomem *phy_base)
402 {
403         return __ddrphy_training(phy_base, training_sequence);
404 }
405
406 /* UMC */
407 static void umc_set_system_latency(void __iomem *dc_base, int phy_latency)
408 {
409         u32 val;
410         int latency;
411
412         val = readl(dc_base + UMC_RDATACTL_D0);
413         latency = (val & UMC_RDATACTL_RADLTY_MASK) >> UMC_RDATACTL_RADLTY_SHIFT;
414         latency += (val & UMC_RDATACTL_RAD2LTY_MASK) >>
415                                                 UMC_RDATACTL_RAD2LTY_SHIFT;
416         /*
417          * UMC works at the half clock rate of the PHY.
418          * The LSB of latency is ignored
419          */
420         latency += phy_latency & ~1;
421
422         val &= ~(UMC_RDATACTL_RADLTY_MASK | UMC_RDATACTL_RAD2LTY_MASK);
423         if (latency > 0xf) {
424                 val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
425                 val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
426         } else {
427                 val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
428         }
429
430         writel(val, dc_base + UMC_RDATACTL_D0);
431         writel(val, dc_base + UMC_RDATACTL_D1);
432
433         readl(dc_base + UMC_RDATACTL_D1); /* relax */
434 }
435
436 /* enable/disable auto refresh */
437 void umc_refresh_ctrl(void __iomem *dc_base, int enable)
438 {
439         u32 tmp;
440
441         tmp = readl(dc_base + UMC_SPCSETB);
442         tmp &= ~UMC_SPCSETB_AREFMD_MASK;
443
444         if (enable)
445                 tmp |= UMC_SPCSETB_AREFMD_ARB;
446         else
447                 tmp |= UMC_SPCSETB_AREFMD_REG;
448
449         writel(tmp, dc_base + UMC_SPCSETB);
450         udelay(1);
451 }
452
453 static void umc_ud_init(void __iomem *umc_base, int ch)
454 {
455         writel(0x00000003, umc_base + UMC_BITPERPIXELMODE_D0);
456
457         if (ch == 2)
458                 writel(0x00000033, umc_base + UMC_PAIR1DOFF_D0);
459 }
460
461 static int umc_dc_init(void __iomem *dc_base, enum dram_freq freq,
462                        unsigned long size, int width, int ch)
463 {
464         enum dram_size size_e;
465         int latency;
466         u32 val;
467
468         switch (size) {
469         case 0:
470                 return 0;
471         case SZ_256M:
472                 size_e = DRAM_SZ_256M;
473                 break;
474         case SZ_512M:
475                 size_e = DRAM_SZ_512M;
476                 break;
477         default:
478                 pr_err("unsupported DRAM size 0x%08lx (per 16bit) for ch%d\n",
479                        size, ch);
480                 return -EINVAL;
481         }
482
483         writel(umc_cmdctla[freq], dc_base + UMC_CMDCTLA);
484
485         writel(ch == 2 ? umc_cmdctlb_ch2[freq] : umc_cmdctlb_ch01[freq],
486                dc_base + UMC_CMDCTLB);
487
488         writel(umc_spcctla[freq][size_e], dc_base + UMC_SPCCTLA);
489         writel(umc_spcctlb[freq], dc_base + UMC_SPCCTLB);
490
491         val = 0x000e000e;
492         latency = 12;
493         /* ES2 inserted one more FF to the logic. */
494         if (uniphier_get_soc_model() >= 2)
495                 latency += 2;
496
497         if (latency > 0xf) {
498                 val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
499                 val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
500         } else {
501                 val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
502         }
503
504         writel(val, dc_base + UMC_RDATACTL_D0);
505         if (width >= 32)
506                 writel(val, dc_base + UMC_RDATACTL_D1);
507
508         writel(0x04060A02, dc_base + UMC_WDATACTL_D0);
509         if (width >= 32)
510                 writel(0x04060A02, dc_base + UMC_WDATACTL_D1);
511         writel(0x04000000, dc_base + UMC_DATASET);
512         writel(0x00400020, dc_base + UMC_DCCGCTL);
513         writel(0x00000084, dc_base + UMC_FLOWCTLG);
514         writel(0x00000000, dc_base + UMC_ACSSETA);
515
516         writel(ch == 2 ? umc_flowctla_ch2[freq] : umc_flowctla_ch01[freq],
517                dc_base + UMC_FLOWCTLA);
518
519         writel(0x00004400, dc_base + UMC_FLOWCTLC);
520         writel(0x200A0A00, dc_base + UMC_SPCSETB);
521         writel(0x00000520, dc_base + UMC_DFICUPDCTLA);
522         writel(0x0000000D, dc_base + UMC_RESPCTL);
523
524         if (ch != 2) {
525                 writel(0x00202000, dc_base + UMC_FLOWCTLB);
526                 writel(0xFDBFFFFF, dc_base + UMC_FLOWCTLOB0);
527                 writel(0xFFFFFFFF, dc_base + UMC_FLOWCTLOB1);
528                 writel(0x00080700, dc_base + UMC_BSICMAPSET);
529         } else {
530                 writel(0x00200000, dc_base + UMC_FLOWCTLB);
531                 writel(0x00000000, dc_base + UMC_BSICMAPSET);
532         }
533
534         writel(0x00000000, dc_base + UMC_ERRMASKA);
535         writel(0x00000000, dc_base + UMC_ERRMASKB);
536
537         return 0;
538 }
539
540 static int umc_ch_init(void __iomem *umc_ch_base, enum dram_freq freq,
541                        unsigned long size, unsigned int width, int ch)
542 {
543         void __iomem *dc_base = umc_ch_base + 0x00011000;
544         void __iomem *phy_base = umc_ch_base + 0x00030000;
545         int ret;
546
547         writel(0x00000002, dc_base + UMC_INITSET);
548         while (readl(dc_base + UMC_INITSTAT) & BIT(2))
549                 cpu_relax();
550
551         /* deassert PHY reset signals */
552         writel(UMC_DIOCTLA_CTL_NRST | UMC_DIOCTLA_CFG_NRST,
553                dc_base + UMC_DIOCTLA);
554
555         ddrphy_init(phy_base, freq, width, ch);
556
557         ret = ddrphy_impedance_calibration(phy_base);
558         if (ret)
559                 return ret;
560
561         ddrphy_dram_init(phy_base);
562         if (ret)
563                 return ret;
564
565         ret = umc_dc_init(dc_base, freq, size, width, ch);
566         if (ret)
567                 return ret;
568
569         umc_ud_init(umc_ch_base, ch);
570
571         ret = ddrphy_training(phy_base);
572         if (ret)
573                 return ret;
574
575         udelay(1);
576
577         /* match the system latency between UMC and PHY */
578         umc_set_system_latency(dc_base,
579                                ddrphy_get_system_latency(phy_base, width));
580
581         udelay(1);
582
583         /* stop auto refresh before clearing FIFO in PHY */
584         umc_refresh_ctrl(dc_base, 0);
585         ddrphy_fifo_reset(phy_base);
586         umc_refresh_ctrl(dc_base, 1);
587
588         udelay(10);
589
590         return 0;
591 }
592
593 static void um_init(void __iomem *um_base)
594 {
595         writel(0x000000ff, um_base + UMC_MBUS0);
596         writel(0x000000ff, um_base + UMC_MBUS1);
597         writel(0x000000ff, um_base + UMC_MBUS2);
598         writel(0x000000ff, um_base + UMC_MBUS3);
599 }
600
601 int proxstream2_umc_init(const struct uniphier_board_data *bd)
602 {
603         void __iomem *um_base = (void __iomem *)0x5b600000;
604         void __iomem *umc_ch_base = (void __iomem *)0x5b800000;
605         enum dram_freq freq;
606         int ch, ret;
607
608         switch (bd->dram_freq) {
609         case 1866:
610                 freq = DRAM_FREQ_1866M;
611                 break;
612         case 2133:
613                 freq = DRAM_FREQ_2133M;
614                 break;
615         default:
616                 pr_err("unsupported DRAM frequency %d MHz\n", bd->dram_freq);
617                 return -EINVAL;
618         }
619
620         for (ch = 0; ch < bd->dram_nr_ch; ch++) {
621                 unsigned long size = bd->dram_ch[ch].size;
622                 unsigned int width = bd->dram_ch[ch].width;
623
624                 ret = umc_ch_init(umc_ch_base, freq, size / (width / 16),
625                                   width, ch);
626                 if (ret) {
627                         pr_err("failed to initialize UMC ch%d\n", ch);
628                         return ret;
629                 }
630
631                 umc_ch_base += 0x00200000;
632         }
633
634         um_init(um_base);
635
636         return 0;
637 }