SPDX: Convert all of our single license tags to Linux Kernel style
[oweals/u-boot.git] / arch / arm / mach-uniphier / dram / umc-pxs2.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2015-2017 Socionext Inc.
4  *   Author: Masahiro Yamada <yamada.masahiro@socionext.com>
5  *
6  * based on commit 21b6e480f92ccc38fe0502e3116411d6509d3bf2 of Diag by:
7  * Copyright (C) 2015 Socionext Inc.
8  */
9
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/io.h>
13 #include <linux/printk.h>
14 #include <linux/sizes.h>
15 #include <asm/processor.h>
16 #include <time.h>
17
18 #include "../init.h"
19 #include "../soc-info.h"
20 #include "ddrmphy-regs.h"
21 #include "umc-regs.h"
22
23 #define DRAM_CH_NR      3
24
25 enum dram_freq {
26         DRAM_FREQ_1866M,
27         DRAM_FREQ_2133M,
28         DRAM_FREQ_NR,
29 };
30
31 enum dram_size {
32         DRAM_SZ_256M,
33         DRAM_SZ_512M,
34         DRAM_SZ_NR,
35 };
36
37 /* PHY */
38 static u32 ddrphy_pgcr2[DRAM_FREQ_NR] = {0x00FC7E5D, 0x00FC90AB};
39 static u32 ddrphy_ptr0[DRAM_FREQ_NR] = {0x0EA09205, 0x10C0A6C6};
40 static u32 ddrphy_ptr1[DRAM_FREQ_NR] = {0x0DAC041B, 0x0FA104B1};
41 static u32 ddrphy_ptr3[DRAM_FREQ_NR] = {0x15171e45, 0x18182357};
42 static u32 ddrphy_ptr4[DRAM_FREQ_NR] = {0x0e9ad8e9, 0x10b34157};
43 static u32 ddrphy_dtpr0[DRAM_FREQ_NR] = {0x35a00d88, 0x39e40e88};
44 static u32 ddrphy_dtpr1[DRAM_FREQ_NR] = {0x2288cc2c, 0x228a04d0};
45 static u32 ddrphy_dtpr2[DRAM_FREQ_NR] = {0x50005e00, 0x50006a00};
46 static u32 ddrphy_dtpr3[DRAM_FREQ_NR] = {0x0010cb49, 0x0010ec89};
47 static u32 ddrphy_mr0[DRAM_FREQ_NR] = {0x00000115, 0x00000125};
48 static u32 ddrphy_mr2[DRAM_FREQ_NR] = {0x000002a0, 0x000002a8};
49
50 /* dependent on package and board design */
51 static u32 ddrphy_acbdlr0[DRAM_CH_NR] = {0x0000000c, 0x0000000c, 0x00000009};
52
53 /* DDR multiPHY */
54 static inline int ddrphy_get_rank(int dx)
55 {
56         return dx / 2;
57 }
58
59 static void ddrphy_fifo_reset(void __iomem *phy_base)
60 {
61         u32 tmp;
62
63         tmp = readl(phy_base + MPHY_PGCR0);
64         tmp &= ~MPHY_PGCR0_PHYFRST;
65         writel(tmp, phy_base + MPHY_PGCR0);
66
67         udelay(1);
68
69         tmp |= MPHY_PGCR0_PHYFRST;
70         writel(tmp, phy_base + MPHY_PGCR0);
71
72         udelay(1);
73 }
74
75 static void ddrphy_vt_ctrl(void __iomem *phy_base, int enable)
76 {
77         u32 tmp;
78
79         tmp = readl(phy_base + MPHY_PGCR1);
80
81         if (enable)
82                 tmp &= ~MPHY_PGCR1_INHVT;
83         else
84                 tmp |= MPHY_PGCR1_INHVT;
85
86         writel(tmp, phy_base + MPHY_PGCR1);
87
88         if (!enable) {
89                 while (!(readl(phy_base + MPHY_PGSR1) & MPHY_PGSR1_VTSTOP))
90                         cpu_relax();
91         }
92 }
93
94 static void ddrphy_dqs_delay_fixup(void __iomem *phy_base, int nr_dx, int step)
95 {
96         int dx;
97         u32 lcdlr1, rdqsd;
98         void __iomem *dx_base = phy_base + MPHY_DX_BASE;
99
100         ddrphy_vt_ctrl(phy_base, 0);
101
102         for (dx = 0; dx < nr_dx; dx++) {
103                 lcdlr1 = readl(dx_base + MPHY_DX_LCDLR1);
104                 rdqsd = (lcdlr1 >> 8) & 0xff;
105                 rdqsd = clamp(rdqsd + step, 0U, 0xffU);
106                 lcdlr1 = (lcdlr1 & ~(0xff << 8)) | (rdqsd << 8);
107                 writel(lcdlr1, dx_base + MPHY_DX_LCDLR1);
108                 readl(dx_base + MPHY_DX_LCDLR1); /* relax */
109                 dx_base += MPHY_DX_STRIDE;
110         }
111
112         ddrphy_vt_ctrl(phy_base, 1);
113 }
114
115 static int ddrphy_get_system_latency(void __iomem *phy_base, int width)
116 {
117         void __iomem *dx_base = phy_base + MPHY_DX_BASE;
118         const int nr_dx = width / 8;
119         int dx, rank;
120         u32 gtr;
121         int dgsl, dgsl_min = INT_MAX, dgsl_max = 0;
122
123         for (dx = 0; dx < nr_dx; dx++) {
124                 gtr = readl(dx_base + MPHY_DX_GTR);
125                 for (rank = 0; rank < 4; rank++) {
126                         dgsl = gtr & 0x7;
127                         /* if dgsl is zero, this rank was not trained. skip. */
128                         if (dgsl) {
129                                 dgsl_min = min(dgsl_min, dgsl);
130                                 dgsl_max = max(dgsl_max, dgsl);
131                         }
132                         gtr >>= 3;
133                 }
134                 dx_base += MPHY_DX_STRIDE;
135         }
136
137         if (dgsl_min != dgsl_max)
138                 pr_warn("DQS Gateing System Latencies are not all leveled.\n");
139
140         return dgsl_max;
141 }
142
143 static void ddrphy_init(void __iomem *phy_base, enum dram_freq freq, int width,
144                         int ch)
145 {
146         u32 tmp;
147         void __iomem *zq_base, *dx_base;
148         int zq, dx;
149         int nr_dx;
150
151         nr_dx = width / 8;
152
153         writel(MPHY_PIR_ZCALBYP, phy_base + MPHY_PIR);
154         /*
155          * Disable RGLVT bit (Read DQS Gating LCDL Delay VT Compensation)
156          * to avoid read error issue.
157          */
158         writel(0x07d81e37, phy_base + MPHY_PGCR0);
159         writel(0x0200c4e0, phy_base + MPHY_PGCR1);
160
161         tmp = ddrphy_pgcr2[freq];
162         if (width >= 32)
163                 tmp |= MPHY_PGCR2_DUALCHN | MPHY_PGCR2_ACPDDC;
164         writel(tmp, phy_base + MPHY_PGCR2);
165
166         writel(ddrphy_ptr0[freq], phy_base + MPHY_PTR0);
167         writel(ddrphy_ptr1[freq], phy_base + MPHY_PTR1);
168         writel(0x00083def, phy_base + MPHY_PTR2);
169         writel(ddrphy_ptr3[freq], phy_base + MPHY_PTR3);
170         writel(ddrphy_ptr4[freq], phy_base + MPHY_PTR4);
171
172         writel(ddrphy_acbdlr0[ch], phy_base + MPHY_ACBDLR0);
173
174         writel(0x55555555, phy_base + MPHY_ACIOCR1);
175         writel(0x00000000, phy_base + MPHY_ACIOCR2);
176         writel(0x55555555, phy_base + MPHY_ACIOCR3);
177         writel(0x00000000, phy_base + MPHY_ACIOCR4);
178         writel(0x00000055, phy_base + MPHY_ACIOCR5);
179         writel(0x00181aa4, phy_base + MPHY_DXCCR);
180
181         writel(0x0024641e, phy_base + MPHY_DSGCR);
182         writel(0x0000040b, phy_base + MPHY_DCR);
183         writel(ddrphy_dtpr0[freq], phy_base + MPHY_DTPR0);
184         writel(ddrphy_dtpr1[freq], phy_base + MPHY_DTPR1);
185         writel(ddrphy_dtpr2[freq], phy_base + MPHY_DTPR2);
186         writel(ddrphy_dtpr3[freq], phy_base + MPHY_DTPR3);
187         writel(ddrphy_mr0[freq], phy_base + MPHY_MR0);
188         writel(0x00000006, phy_base + MPHY_MR1);
189         writel(ddrphy_mr2[freq], phy_base + MPHY_MR2);
190         writel(0x00000000, phy_base + MPHY_MR3);
191
192         tmp = 0;
193         for (dx = 0; dx < nr_dx; dx++)
194                 tmp |= BIT(MPHY_DTCR_RANKEN_SHIFT + ddrphy_get_rank(dx));
195         writel(0x90003087 | tmp, phy_base + MPHY_DTCR);
196
197         writel(0x00000000, phy_base + MPHY_DTAR0);
198         writel(0x00000008, phy_base + MPHY_DTAR1);
199         writel(0x00000010, phy_base + MPHY_DTAR2);
200         writel(0x00000018, phy_base + MPHY_DTAR3);
201         writel(0xdd22ee11, phy_base + MPHY_DTDR0);
202         writel(0x7788bb44, phy_base + MPHY_DTDR1);
203
204         /* impedance control settings */
205         writel(0x04048900, phy_base + MPHY_ZQCR);
206
207         zq_base = phy_base + MPHY_ZQ_BASE;
208         for (zq = 0; zq < 4; zq++) {
209                 /*
210                  * board-dependent
211                  * PXS2: CH0ZQ0=0x5B, CH1ZQ0=0x5B, CH2ZQ0=0x59, others=0x5D
212                  */
213                 writel(0x0007BB5D, zq_base + MPHY_ZQ_PR);
214                 zq_base += MPHY_ZQ_STRIDE;
215         }
216
217         /* DATX8 settings */
218         dx_base = phy_base + MPHY_DX_BASE;
219         for (dx = 0; dx < 4; dx++) {
220                 tmp = readl(dx_base + MPHY_DX_GCR0);
221                 tmp &= ~MPHY_DX_GCR0_WLRKEN_MASK;
222                 tmp |= BIT(MPHY_DX_GCR0_WLRKEN_SHIFT + ddrphy_get_rank(dx)) &
223                                                 MPHY_DX_GCR0_WLRKEN_MASK;
224                 writel(tmp, dx_base + MPHY_DX_GCR0);
225
226                 writel(0x00000000, dx_base + MPHY_DX_GCR1);
227                 writel(0x00000000, dx_base + MPHY_DX_GCR2);
228                 writel(0x00000000, dx_base + MPHY_DX_GCR3);
229                 dx_base += MPHY_DX_STRIDE;
230         }
231
232         while (!(readl(phy_base + MPHY_PGSR0) & MPHY_PGSR0_IDONE))
233                 cpu_relax();
234
235         ddrphy_dqs_delay_fixup(phy_base, nr_dx, -4);
236 }
237
238 struct ddrphy_init_sequence {
239         char *description;
240         u32 init_flag;
241         u32 done_flag;
242         u32 err_flag;
243 };
244
245 static const struct ddrphy_init_sequence impedance_calibration_sequence[] = {
246         {
247                 "Impedance Calibration",
248                 MPHY_PIR_ZCAL,
249                 MPHY_PGSR0_ZCDONE,
250                 MPHY_PGSR0_ZCERR,
251         },
252         { /* sentinel */ }
253 };
254
255 static const struct ddrphy_init_sequence dram_init_sequence[] = {
256         {
257                 "DRAM Initialization",
258                 MPHY_PIR_DRAMRST | MPHY_PIR_DRAMINIT,
259                 MPHY_PGSR0_DIDONE,
260                 0,
261         },
262         { /* sentinel */ }
263 };
264
265 static const struct ddrphy_init_sequence training_sequence[] = {
266         {
267                 "Write Leveling",
268                 MPHY_PIR_WL,
269                 MPHY_PGSR0_WLDONE,
270                 MPHY_PGSR0_WLERR,
271         },
272         {
273                 "Read DQS Gate Training",
274                 MPHY_PIR_QSGATE,
275                 MPHY_PGSR0_QSGDONE,
276                 MPHY_PGSR0_QSGERR,
277         },
278         {
279                 "Write Leveling Adjustment",
280                 MPHY_PIR_WLADJ,
281                 MPHY_PGSR0_WLADONE,
282                 MPHY_PGSR0_WLAERR,
283         },
284         {
285                 "Read Bit Deskew",
286                 MPHY_PIR_RDDSKW,
287                 MPHY_PGSR0_RDDONE,
288                 MPHY_PGSR0_RDERR,
289         },
290         {
291                 "Write Bit Deskew",
292                 MPHY_PIR_WRDSKW,
293                 MPHY_PGSR0_WDDONE,
294                 MPHY_PGSR0_WDERR,
295         },
296         {
297                 "Read Eye Training",
298                 MPHY_PIR_RDEYE,
299                 MPHY_PGSR0_REDONE,
300                 MPHY_PGSR0_REERR,
301         },
302         {
303                 "Write Eye Training",
304                 MPHY_PIR_WREYE,
305                 MPHY_PGSR0_WEDONE,
306                 MPHY_PGSR0_WEERR,
307         },
308         { /* sentinel */ }
309 };
310
311 static int __ddrphy_training(void __iomem *phy_base,
312                              const struct ddrphy_init_sequence *seq)
313 {
314         const struct ddrphy_init_sequence *s;
315         u32 pgsr0;
316         u32 init_flag = MPHY_PIR_INIT;
317         u32 done_flag = MPHY_PGSR0_IDONE;
318         int timeout = 50000; /* 50 msec is long enough */
319         unsigned long start = 0;
320
321 #ifdef DEBUG
322         start = get_timer(0);
323 #endif
324
325         for (s = seq; s->description; s++) {
326                 init_flag |= s->init_flag;
327                 done_flag |= s->done_flag;
328         }
329
330         writel(init_flag, phy_base + MPHY_PIR);
331
332         do {
333                 if (--timeout < 0) {
334                         pr_err("%s: error: timeout during DDR training\n",
335                                __func__);
336                         return -ETIMEDOUT;
337                 }
338                 udelay(1);
339                 pgsr0 = readl(phy_base + MPHY_PGSR0);
340         } while ((pgsr0 & done_flag) != done_flag);
341
342         for (s = seq; s->description; s++) {
343                 if (pgsr0 & s->err_flag) {
344                         pr_err("%s: error: %s failed\n", __func__,
345                                s->description);
346                         return -EIO;
347                 }
348         }
349
350         pr_debug("DDRPHY training: elapsed time %ld msec\n", get_timer(start));
351
352         return 0;
353 }
354
355 static int ddrphy_impedance_calibration(void __iomem *phy_base)
356 {
357         int ret;
358         u32 tmp;
359
360         ret = __ddrphy_training(phy_base, impedance_calibration_sequence);
361         if (ret)
362                 return ret;
363
364         /*
365          * Because of a hardware bug, IDONE flag is set when the first ZQ block
366          * is calibrated.  The flag does not guarantee the completion for all
367          * the ZQ blocks.  Wait a little more just in case.
368          */
369         udelay(1);
370
371         /* reflect ZQ settings and enable average algorithm*/
372         tmp = readl(phy_base + MPHY_ZQCR);
373         tmp |= MPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
374         writel(tmp, phy_base + MPHY_ZQCR);
375         tmp &= ~MPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
376         tmp |= MPHY_ZQCR_AVGEN;
377         writel(tmp, phy_base + MPHY_ZQCR);
378
379         return 0;
380 }
381
382 static int ddrphy_dram_init(void __iomem *phy_base)
383 {
384         return __ddrphy_training(phy_base, dram_init_sequence);
385 }
386
387 static int ddrphy_training(void __iomem *phy_base)
388 {
389         return __ddrphy_training(phy_base, training_sequence);
390 }
391
392 /* UMC */
393 static u32 umc_cmdctla[DRAM_FREQ_NR] = {0x66DD131D, 0x77EE1722};
394 /*
395  * The ch2 is a different generation UMC core.
396  * The register spec is different, unfortunately.
397  */
398 static u32 umc_cmdctlb_ch01[DRAM_FREQ_NR] = {0x13E87C44, 0x18F88C44};
399 static u32 umc_cmdctlb_ch2[DRAM_FREQ_NR] = {0x19E8DC44, 0x1EF8EC44};
400 static u32 umc_spcctla[DRAM_FREQ_NR][DRAM_SZ_NR] = {
401         {0x004A071D, 0x0078071D},
402         {0x0055081E, 0x0089081E},
403 };
404
405 static u32 umc_spcctlb[] = {0x00FF000A, 0x00FF000B};
406 /* The ch2 is different for some reason only hardware guys know... */
407 static u32 umc_flowctla_ch01[] = {0x0800001E, 0x08000022};
408 static u32 umc_flowctla_ch2[] = {0x0800001E, 0x0800001E};
409
410 static void umc_set_system_latency(void __iomem *dc_base, int phy_latency)
411 {
412         u32 val;
413         int latency;
414
415         val = readl(dc_base + UMC_RDATACTL_D0);
416         latency = (val & UMC_RDATACTL_RADLTY_MASK) >> UMC_RDATACTL_RADLTY_SHIFT;
417         latency += (val & UMC_RDATACTL_RAD2LTY_MASK) >>
418                                                 UMC_RDATACTL_RAD2LTY_SHIFT;
419         /*
420          * UMC works at the half clock rate of the PHY.
421          * The LSB of latency is ignored
422          */
423         latency += phy_latency & ~1;
424
425         val &= ~(UMC_RDATACTL_RADLTY_MASK | UMC_RDATACTL_RAD2LTY_MASK);
426         if (latency > 0xf) {
427                 val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
428                 val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
429         } else {
430                 val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
431         }
432
433         writel(val, dc_base + UMC_RDATACTL_D0);
434         writel(val, dc_base + UMC_RDATACTL_D1);
435
436         readl(dc_base + UMC_RDATACTL_D1); /* relax */
437 }
438
439 /* enable/disable auto refresh */
440 static void umc_refresh_ctrl(void __iomem *dc_base, int enable)
441 {
442         u32 tmp;
443
444         tmp = readl(dc_base + UMC_SPCSETB);
445         tmp &= ~UMC_SPCSETB_AREFMD_MASK;
446
447         if (enable)
448                 tmp |= UMC_SPCSETB_AREFMD_ARB;
449         else
450                 tmp |= UMC_SPCSETB_AREFMD_REG;
451
452         writel(tmp, dc_base + UMC_SPCSETB);
453         udelay(1);
454 }
455
456 static void umc_ud_init(void __iomem *umc_base, int ch)
457 {
458         writel(0x00000003, umc_base + UMC_BITPERPIXELMODE_D0);
459
460         if (ch == 2)
461                 writel(0x00000033, umc_base + UMC_PAIR1DOFF_D0);
462 }
463
464 static int umc_dc_init(void __iomem *dc_base, enum dram_freq freq,
465                        unsigned long size, int width, int ch)
466 {
467         enum dram_size size_e;
468         int latency;
469         u32 val;
470
471         switch (size) {
472         case 0:
473                 return 0;
474         case SZ_256M:
475                 size_e = DRAM_SZ_256M;
476                 break;
477         case SZ_512M:
478                 size_e = DRAM_SZ_512M;
479                 break;
480         default:
481                 pr_err("unsupported DRAM size 0x%08lx (per 16bit) for ch%d\n",
482                        size, ch);
483                 return -EINVAL;
484         }
485
486         writel(umc_cmdctla[freq], dc_base + UMC_CMDCTLA);
487
488         writel(ch == 2 ? umc_cmdctlb_ch2[freq] : umc_cmdctlb_ch01[freq],
489                dc_base + UMC_CMDCTLB);
490
491         writel(umc_spcctla[freq][size_e], dc_base + UMC_SPCCTLA);
492         writel(umc_spcctlb[freq], dc_base + UMC_SPCCTLB);
493
494         val = 0x000e000e;
495         latency = 12;
496         /* ES2 inserted one more FF to the logic. */
497         if (uniphier_get_soc_model() >= 2)
498                 latency += 2;
499
500         if (latency > 0xf) {
501                 val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
502                 val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
503         } else {
504                 val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
505         }
506
507         writel(val, dc_base + UMC_RDATACTL_D0);
508         if (width >= 32)
509                 writel(val, dc_base + UMC_RDATACTL_D1);
510
511         writel(0x04060A02, dc_base + UMC_WDATACTL_D0);
512         if (width >= 32)
513                 writel(0x04060A02, dc_base + UMC_WDATACTL_D1);
514         writel(0x04000000, dc_base + UMC_DATASET);
515         writel(0x00400020, dc_base + UMC_DCCGCTL);
516         writel(0x00000084, dc_base + UMC_FLOWCTLG);
517         writel(0x00000000, dc_base + UMC_ACSSETA);
518
519         writel(ch == 2 ? umc_flowctla_ch2[freq] : umc_flowctla_ch01[freq],
520                dc_base + UMC_FLOWCTLA);
521
522         writel(0x00004400, dc_base + UMC_FLOWCTLC);
523         writel(0x200A0A00, dc_base + UMC_SPCSETB);
524         writel(0x00000520, dc_base + UMC_DFICUPDCTLA);
525         writel(0x0000000D, dc_base + UMC_RESPCTL);
526
527         if (ch != 2) {
528                 writel(0x00202000, dc_base + UMC_FLOWCTLB);
529                 writel(0xFDBFFFFF, dc_base + UMC_FLOWCTLOB0);
530                 writel(0xFFFFFFFF, dc_base + UMC_FLOWCTLOB1);
531                 writel(0x00080700, dc_base + UMC_BSICMAPSET);
532         } else {
533                 writel(0x00200000, dc_base + UMC_FLOWCTLB);
534                 writel(0x00000000, dc_base + UMC_BSICMAPSET);
535         }
536
537         writel(0x00000000, dc_base + UMC_ERRMASKA);
538         writel(0x00000000, dc_base + UMC_ERRMASKB);
539
540         return 0;
541 }
542
543 static int umc_ch_init(void __iomem *umc_ch_base, enum dram_freq freq,
544                        unsigned long size, unsigned int width, int ch)
545 {
546         void __iomem *dc_base = umc_ch_base + 0x00011000;
547         void __iomem *phy_base = umc_ch_base + 0x00030000;
548         int ret;
549
550         writel(0x00000002, dc_base + UMC_INITSET);
551         while (readl(dc_base + UMC_INITSTAT) & BIT(2))
552                 cpu_relax();
553
554         /* deassert PHY reset signals */
555         writel(UMC_DIOCTLA_CTL_NRST | UMC_DIOCTLA_CFG_NRST,
556                dc_base + UMC_DIOCTLA);
557
558         ddrphy_init(phy_base, freq, width, ch);
559
560         ret = ddrphy_impedance_calibration(phy_base);
561         if (ret)
562                 return ret;
563
564         ddrphy_dram_init(phy_base);
565         if (ret)
566                 return ret;
567
568         ret = umc_dc_init(dc_base, freq, size, width, ch);
569         if (ret)
570                 return ret;
571
572         umc_ud_init(umc_ch_base, ch);
573
574         ret = ddrphy_training(phy_base);
575         if (ret)
576                 return ret;
577
578         udelay(1);
579
580         /* match the system latency between UMC and PHY */
581         umc_set_system_latency(dc_base,
582                                ddrphy_get_system_latency(phy_base, width));
583
584         udelay(1);
585
586         /* stop auto refresh before clearing FIFO in PHY */
587         umc_refresh_ctrl(dc_base, 0);
588         ddrphy_fifo_reset(phy_base);
589         umc_refresh_ctrl(dc_base, 1);
590
591         udelay(10);
592
593         return 0;
594 }
595
596 static void um_init(void __iomem *um_base)
597 {
598         writel(0x000000ff, um_base + UMC_MBUS0);
599         writel(0x000000ff, um_base + UMC_MBUS1);
600         writel(0x000000ff, um_base + UMC_MBUS2);
601         writel(0x000000ff, um_base + UMC_MBUS3);
602 }
603
604 int uniphier_pxs2_umc_init(const struct uniphier_board_data *bd)
605 {
606         void __iomem *um_base = (void __iomem *)0x5b600000;
607         void __iomem *umc_ch_base = (void __iomem *)0x5b800000;
608         enum dram_freq freq;
609         int ch, ret;
610
611         switch (bd->dram_freq) {
612         case 1866:
613                 freq = DRAM_FREQ_1866M;
614                 break;
615         case 2133:
616                 freq = DRAM_FREQ_2133M;
617                 break;
618         default:
619                 pr_err("unsupported DRAM frequency %d MHz\n", bd->dram_freq);
620                 return -EINVAL;
621         }
622
623         for (ch = 0; ch < DRAM_CH_NR; ch++) {
624                 unsigned long size = bd->dram_ch[ch].size;
625                 unsigned int width = bd->dram_ch[ch].width;
626
627                 if (size) {
628                         ret = umc_ch_init(umc_ch_base, freq,
629                                           size / (width / 16), width, ch);
630                         if (ret) {
631                                 pr_err("failed to initialize UMC ch%d\n", ch);
632                                 return ret;
633                         }
634                 }
635
636                 umc_ch_base += 0x00200000;
637         }
638
639         um_init(um_base);
640
641         return 0;
642 }