ARM: uniphier: rework struct uniphier_board_data
[oweals/u-boot.git] / arch / arm / mach-uniphier / dram / umc-proxstream2.c
1 /*
2  * Copyright (C) 2015 Masahiro Yamada <yamada.masahiro@socionext.com>
3  *
4  * based on commit 21b6e480f92ccc38fe0502e3116411d6509d3bf2 of Diag by:
5  * Copyright (C) 2015 Socionext Inc.
6  *
7  * SPDX-License-Identifier:     GPL-2.0+
8  */
9
10 #include <common.h>
11 #include <linux/err.h>
12 #include <linux/io.h>
13 #include <linux/sizes.h>
14 #include <asm/processor.h>
15
16 #include "../init.h"
17 #include "../soc-info.h"
18 #include "ddrmphy-regs.h"
19 #include "umc-regs.h"
20
21 #define CH_NR   3
22
23 enum dram_freq {
24         FREQ_1866M,
25         FREQ_2133M,
26         FREQ_NR,
27 };
28
29 enum dram_size {
30         SIZE_0,
31         SIZE_512M,
32         SIZE_1G,
33         SIZE_NR,
34 };
35
36 static u32 ddrphy_pgcr2[FREQ_NR] = {0x00FC7E5D, 0x00FC90AB};
37 static u32 ddrphy_ptr0[FREQ_NR] = {0x0EA09205, 0x10C0A6C6};
38 static u32 ddrphy_ptr1[FREQ_NR] = {0x0DAC041B, 0x0FA104B1};
39 static u32 ddrphy_ptr3[FREQ_NR] = {0x15171e45, 0x18182357};
40 static u32 ddrphy_ptr4[FREQ_NR] = {0x0e9ad8e9, 0x10b34157};
41 static u32 ddrphy_dtpr0[FREQ_NR] = {0x35a00d88, 0x39e40e88};
42 static u32 ddrphy_dtpr1[FREQ_NR] = {0x2288cc2c, 0x228a04d0};
43 static u32 ddrphy_dtpr2[FREQ_NR] = {0x50005e00, 0x50006a00};
44 static u32 ddrphy_dtpr3[FREQ_NR] = {0x0010cb49, 0x0010ec89};
45 static u32 ddrphy_mr0[FREQ_NR] = {0x00000115, 0x00000125};
46 static u32 ddrphy_mr2[FREQ_NR] = {0x000002a0, 0x000002a8};
47
48 /* dependent on package and board design */
49 static u32 ddrphy_acbdlr0[CH_NR] = {0x0000000c, 0x0000000c, 0x00000009};
50
51 static u32 umc_cmdctla[FREQ_NR] = {0x66DD131D, 0x77EE1722};
52 /*
53  * The ch2 is a different generation UMC core.
54  * The register spec is different, unfortunately.
55  */
56 static u32 umc_cmdctlb_ch01[FREQ_NR] = {0x13E87C44, 0x18F88C44};
57 static u32 umc_cmdctlb_ch2[FREQ_NR] = {0x19E8DC44, 0x1EF8EC44};
58 static u32 umc_spcctla[FREQ_NR][SIZE_NR] = {
59         {0x00000000, 0x004A071D, 0x0078071D},
60         {0x00000000, 0x0055081E, 0x0089081E},
61 };
62
63 static u32 umc_spcctlb[] = {0x00FF000A, 0x00FF000B};
64 /* The ch2 is different for some reason only hardware guys know... */
65 static u32 umc_flowctla_ch01[] = {0x0800001E, 0x08000022};
66 static u32 umc_flowctla_ch2[] = {0x0800001E, 0x0800001E};
67
68 /* DDR multiPHY */
69 static inline int ddrphy_get_rank(int dx)
70 {
71         return dx / 2;
72 }
73
74 static void ddrphy_fifo_reset(void __iomem *phy_base)
75 {
76         u32 tmp;
77
78         tmp = readl(phy_base + DMPHY_PGCR0);
79         tmp &= ~DMPHY_PGCR0_PHYFRST;
80         writel(tmp, phy_base + DMPHY_PGCR0);
81
82         udelay(1);
83
84         tmp |= DMPHY_PGCR0_PHYFRST;
85         writel(tmp, phy_base + DMPHY_PGCR0);
86
87         udelay(1);
88 }
89
90 static void ddrphy_vt_ctrl(void __iomem *phy_base, int enable)
91 {
92         u32 tmp;
93
94         tmp = readl(phy_base + DMPHY_PGCR1);
95
96         if (enable)
97                 tmp &= ~DMPHY_PGCR1_INHVT;
98         else
99                 tmp |= DMPHY_PGCR1_INHVT;
100
101         writel(tmp, phy_base + DMPHY_PGCR1);
102
103         if (!enable) {
104                 while (!(readl(phy_base + DMPHY_PGSR1) & DMPHY_PGSR1_VTSTOP))
105                         cpu_relax();
106         }
107 }
108
109 static void ddrphy_dqs_delay_fixup(void __iomem *phy_base, int nr_dx, int step)
110 {
111         int dx;
112         u32 lcdlr1, rdqsd;
113         void __iomem *dx_base = phy_base + DMPHY_DX_BASE;
114
115         ddrphy_vt_ctrl(phy_base, 0);
116
117         for (dx = 0; dx < nr_dx; dx++) {
118                 lcdlr1 = readl(dx_base + DMPHY_DX_LCDLR1);
119                 rdqsd = (lcdlr1 >> 8) & 0xff;
120                 rdqsd = clamp(rdqsd + step, 0U, 0xffU);
121                 lcdlr1 = (lcdlr1 & ~(0xff << 8)) | (rdqsd << 8);
122                 writel(lcdlr1, dx_base + DMPHY_DX_LCDLR1);
123                 readl(dx_base + DMPHY_DX_LCDLR1); /* relax */
124                 dx_base += DMPHY_DX_STRIDE;
125         }
126
127         ddrphy_vt_ctrl(phy_base, 1);
128 }
129
130 static int ddrphy_get_system_latency(void __iomem *phy_base, int width)
131 {
132         void __iomem *dx_base = phy_base + DMPHY_DX_BASE;
133         const int nr_dx = width / 8;
134         int dx, rank;
135         u32 gtr;
136         int dgsl, dgsl_min = INT_MAX, dgsl_max = 0;
137
138         for (dx = 0; dx < nr_dx; dx++) {
139                 gtr = readl(dx_base + DMPHY_DX_GTR);
140                 for (rank = 0; rank < 4; rank++) {
141                         dgsl = gtr & 0x7;
142                         /* if dgsl is zero, this rank was not trained. skip. */
143                         if (dgsl) {
144                                 dgsl_min = min(dgsl_min, dgsl);
145                                 dgsl_max = max(dgsl_max, dgsl);
146                         }
147                         gtr >>= 3;
148                 }
149                 dx_base += DMPHY_DX_STRIDE;
150         }
151
152         if (dgsl_min != dgsl_max)
153                 printf("DQS Gateing System Latencies are not all leveled.\n");
154
155         return dgsl_max;
156 }
157
158 static void ddrphy_init(void __iomem *phy_base, enum dram_freq freq, int width,
159                         int ch)
160 {
161         u32 tmp;
162         void __iomem *zq_base, *dx_base;
163         int zq, dx;
164         int nr_dx;
165
166         nr_dx = width / 8;
167
168         writel(DMPHY_PIR_ZCALBYP,        phy_base + DMPHY_PIR);
169         /*
170          * Disable RGLVT bit (Read DQS Gating LCDL Delay VT Compensation)
171          * to avoid read error issue.
172          */
173         writel(0x07d81e37,         phy_base + DMPHY_PGCR0);
174         writel(0x0200c4e0,         phy_base + DMPHY_PGCR1);
175
176         tmp = ddrphy_pgcr2[freq];
177         if (width >= 32)
178                 tmp |= DMPHY_PGCR2_DUALCHN | DMPHY_PGCR2_ACPDDC;
179         writel(tmp, phy_base + DMPHY_PGCR2);
180
181         writel(ddrphy_ptr0[freq],  phy_base + DMPHY_PTR0);
182         writel(ddrphy_ptr1[freq],  phy_base + DMPHY_PTR1);
183         writel(0x00083def,         phy_base + DMPHY_PTR2);
184         writel(ddrphy_ptr3[freq],  phy_base + DMPHY_PTR3);
185         writel(ddrphy_ptr4[freq],  phy_base + DMPHY_PTR4);
186
187         writel(ddrphy_acbdlr0[ch], phy_base + DMPHY_ACBDLR0);
188
189         writel(0x55555555, phy_base + DMPHY_ACIOCR1);
190         writel(0x00000000, phy_base + DMPHY_ACIOCR2);
191         writel(0x55555555, phy_base + DMPHY_ACIOCR3);
192         writel(0x00000000, phy_base + DMPHY_ACIOCR4);
193         writel(0x00000055, phy_base + DMPHY_ACIOCR5);
194         writel(0x00181aa4, phy_base + DMPHY_DXCCR);
195
196         writel(0x0024641e, phy_base + DMPHY_DSGCR);
197         writel(0x0000040b, phy_base + DMPHY_DCR);
198         writel(ddrphy_dtpr0[freq], phy_base + DMPHY_DTPR0);
199         writel(ddrphy_dtpr1[freq], phy_base + DMPHY_DTPR1);
200         writel(ddrphy_dtpr2[freq], phy_base + DMPHY_DTPR2);
201         writel(ddrphy_dtpr3[freq], phy_base + DMPHY_DTPR3);
202         writel(ddrphy_mr0[freq], phy_base + DMPHY_MR0);
203         writel(0x00000006,       phy_base + DMPHY_MR1);
204         writel(ddrphy_mr2[freq], phy_base + DMPHY_MR2);
205         writel(0x00000000,       phy_base + DMPHY_MR3);
206
207         tmp = 0;
208         for (dx = 0; dx < nr_dx; dx++)
209                 tmp |= BIT(DMPHY_DTCR_RANKEN_SHIFT + ddrphy_get_rank(dx));
210         writel(0x90003087 | tmp, phy_base + DMPHY_DTCR);
211
212         writel(0x00000000, phy_base + DMPHY_DTAR0);
213         writel(0x00000008, phy_base + DMPHY_DTAR1);
214         writel(0x00000010, phy_base + DMPHY_DTAR2);
215         writel(0x00000018, phy_base + DMPHY_DTAR3);
216         writel(0xdd22ee11, phy_base + DMPHY_DTDR0);
217         writel(0x7788bb44, phy_base + DMPHY_DTDR1);
218
219         /* impedance control settings */
220         writel(0x04048900, phy_base + DMPHY_ZQCR);
221
222         zq_base = phy_base + DMPHY_ZQ_BASE;
223         for (zq = 0; zq < 4; zq++) {
224                 /*
225                  * board-dependent
226                  * PXS2: CH0ZQ0=0x5B, CH1ZQ0=0x5B, CH2ZQ0=0x59, others=0x5D
227                  */
228                 writel(0x0007BB5D, zq_base + DMPHY_ZQ_PR);
229                 zq_base += DMPHY_ZQ_STRIDE;
230         }
231
232         /* DATX8 settings */
233         dx_base = phy_base + DMPHY_DX_BASE;
234         for (dx = 0; dx < 4; dx++) {
235                 tmp = readl(dx_base + DMPHY_DX_GCR0);
236                 tmp &= ~DMPHY_DX_GCR0_WLRKEN_MASK;
237                 tmp |= BIT(DMPHY_DX_GCR0_WLRKEN_SHIFT + ddrphy_get_rank(dx)) &
238                                                 DMPHY_DX_GCR0_WLRKEN_MASK;
239                 writel(tmp, dx_base + DMPHY_DX_GCR0);
240
241                 writel(0x00000000, dx_base + DMPHY_DX_GCR1);
242                 writel(0x00000000, dx_base + DMPHY_DX_GCR2);
243                 writel(0x00000000, dx_base + DMPHY_DX_GCR3);
244                 dx_base += DMPHY_DX_STRIDE;
245         }
246
247         while (!(readl(phy_base + DMPHY_PGSR0) & DMPHY_PGSR0_IDONE))
248                 cpu_relax();
249
250         ddrphy_dqs_delay_fixup(phy_base, nr_dx, -4);
251 }
252
253 struct ddrphy_init_sequence {
254         char *description;
255         u32 init_flag;
256         u32 done_flag;
257         u32 err_flag;
258 };
259
260 static const struct ddrphy_init_sequence impedance_calibration_sequence[] = {
261         {
262                 "Impedance Calibration",
263                 DMPHY_PIR_ZCAL,
264                 DMPHY_PGSR0_ZCDONE,
265                 DMPHY_PGSR0_ZCERR,
266         },
267         { /* sentinel */ }
268 };
269
270 static const struct ddrphy_init_sequence dram_init_sequence[] = {
271         {
272                 "DRAM Initialization",
273                 DMPHY_PIR_DRAMRST | DMPHY_PIR_DRAMINIT,
274                 DMPHY_PGSR0_DIDONE,
275                 0,
276         },
277         { /* sentinel */ }
278 };
279
280 static const struct ddrphy_init_sequence training_sequence[] = {
281         {
282                 "Write Leveling",
283                 DMPHY_PIR_WL,
284                 DMPHY_PGSR0_WLDONE,
285                 DMPHY_PGSR0_WLERR,
286         },
287         {
288                 "Read DQS Gate Training",
289                 DMPHY_PIR_QSGATE,
290                 DMPHY_PGSR0_QSGDONE,
291                 DMPHY_PGSR0_QSGERR,
292         },
293         {
294                 "Write Leveling Adjustment",
295                 DMPHY_PIR_WLADJ,
296                 DMPHY_PGSR0_WLADONE,
297                 DMPHY_PGSR0_WLAERR,
298         },
299         {
300                 "Read Bit Deskew",
301                 DMPHY_PIR_RDDSKW,
302                 DMPHY_PGSR0_RDDONE,
303                 DMPHY_PGSR0_RDERR,
304         },
305         {
306                 "Write Bit Deskew",
307                 DMPHY_PIR_WRDSKW,
308                 DMPHY_PGSR0_WDDONE,
309                 DMPHY_PGSR0_WDERR,
310         },
311         {
312                 "Read Eye Training",
313                 DMPHY_PIR_RDEYE,
314                 DMPHY_PGSR0_REDONE,
315                 DMPHY_PGSR0_REERR,
316         },
317         {
318                 "Write Eye Training",
319                 DMPHY_PIR_WREYE,
320                 DMPHY_PGSR0_WEDONE,
321                 DMPHY_PGSR0_WEERR,
322         },
323         { /* sentinel */ }
324 };
325
326 static int __ddrphy_training(void __iomem *phy_base,
327                              const struct ddrphy_init_sequence *seq)
328 {
329         const struct ddrphy_init_sequence *s;
330         u32 pgsr0;
331         u32 init_flag = DMPHY_PIR_INIT;
332         u32 done_flag = DMPHY_PGSR0_IDONE;
333         int timeout = 50000; /* 50 msec is long enough */
334 #ifdef DISPLAY_ELAPSED_TIME
335         ulong start = get_timer(0);
336 #endif
337
338         for (s = seq; s->description; s++) {
339                 init_flag |= s->init_flag;
340                 done_flag |= s->done_flag;
341         }
342
343         writel(init_flag, phy_base + DMPHY_PIR);
344
345         do {
346                 if (--timeout < 0) {
347                         printf("%s: error: timeout during DDR training\n",
348                                __func__);
349                         return -ETIMEDOUT;
350                 }
351                 udelay(1);
352                 pgsr0 = readl(phy_base + DMPHY_PGSR0);
353         } while ((pgsr0 & done_flag) != done_flag);
354
355         for (s = seq; s->description; s++) {
356                 if (pgsr0 & s->err_flag) {
357                         printf("%s: error: %s failed\n", __func__,
358                                s->description);
359                         return -EIO;
360                 }
361         }
362
363 #ifdef DISPLAY_ELAPSED_TIME
364         printf("%s: info: elapsed time %ld msec\n", get_timer(start));
365 #endif
366
367         return 0;
368 }
369
370 static int ddrphy_impedance_calibration(void __iomem *phy_base)
371 {
372         int ret;
373         u32 tmp;
374
375         ret = __ddrphy_training(phy_base, impedance_calibration_sequence);
376         if (ret)
377                 return ret;
378
379         /*
380          * Because of a hardware bug, IDONE flag is set when the first ZQ block
381          * is calibrated.  The flag does not guarantee the completion for all
382          * the ZQ blocks.  Wait a little more just in case.
383          */
384         udelay(1);
385
386         /* reflect ZQ settings and enable average algorithm*/
387         tmp = readl(phy_base + DMPHY_ZQCR);
388         tmp |= DMPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
389         writel(tmp, phy_base + DMPHY_ZQCR);
390         tmp &= ~DMPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
391         tmp |= DMPHY_ZQCR_AVGEN;
392         writel(tmp, phy_base + DMPHY_ZQCR);
393
394         return 0;
395 }
396
397 static int ddrphy_dram_init(void __iomem *phy_base)
398 {
399         return __ddrphy_training(phy_base, dram_init_sequence);
400 }
401
402 static int ddrphy_training(void __iomem *phy_base)
403 {
404         return __ddrphy_training(phy_base, training_sequence);
405 }
406
407 /* UMC */
408 static void umc_set_system_latency(void __iomem *umc_dc_base, int phy_latency)
409 {
410         u32 val;
411         int latency;
412
413         val = readl(umc_dc_base + UMC_RDATACTL_D0);
414         latency = (val & UMC_RDATACTL_RADLTY_MASK) >> UMC_RDATACTL_RADLTY_SHIFT;
415         latency += (val & UMC_RDATACTL_RAD2LTY_MASK) >>
416                                                 UMC_RDATACTL_RAD2LTY_SHIFT;
417         /*
418          * UMC works at the half clock rate of the PHY.
419          * The LSB of latency is ignored
420          */
421         latency += phy_latency & ~1;
422
423         val &= ~(UMC_RDATACTL_RADLTY_MASK | UMC_RDATACTL_RAD2LTY_MASK);
424         if (latency > 0xf) {
425                 val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
426                 val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
427         } else {
428                 val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
429         }
430
431         writel(val, umc_dc_base + UMC_RDATACTL_D0);
432         writel(val, umc_dc_base + UMC_RDATACTL_D1);
433
434         readl(umc_dc_base + UMC_RDATACTL_D1); /* relax */
435 }
436
437 /* enable/disable auto refresh */
438 void umc_refresh_ctrl(void __iomem *umc_dc_base, int enable)
439 {
440         u32 tmp;
441
442         tmp = readl(umc_dc_base + UMC_SPCSETB);
443         tmp &= ~UMC_SPCSETB_AREFMD_MASK;
444
445         if (enable)
446                 tmp |= UMC_SPCSETB_AREFMD_ARB;
447         else
448                 tmp |= UMC_SPCSETB_AREFMD_REG;
449
450         writel(tmp, umc_dc_base + UMC_SPCSETB);
451         udelay(1);
452 }
453
454 static void umc_ud_init(void __iomem *umc_base, int ch)
455 {
456         writel(0x00000003, umc_base + UMC_BITPERPIXELMODE_D0);
457
458         if (ch == 2)
459                 writel(0x00000033, umc_base + UMC_PAIR1DOFF_D0);
460 }
461
462 static void umc_dc_init(void __iomem *umc_dc_base, enum dram_freq freq,
463                         enum dram_size size, int ch, int width)
464 {
465         int latency;
466         u32 val;
467
468         writel(umc_cmdctla[freq], umc_dc_base + UMC_CMDCTLA);
469
470         writel(ch == 2 ? umc_cmdctlb_ch2[freq] : umc_cmdctlb_ch01[freq],
471                umc_dc_base + UMC_CMDCTLB);
472
473         writel(umc_spcctla[freq][size / (width / 16)],
474                umc_dc_base + UMC_SPCCTLA);
475         writel(umc_spcctlb[freq], umc_dc_base + UMC_SPCCTLB);
476
477         val = 0x000e000e;
478         latency = 12;
479         /* ES2 inserted one more FF to the logic. */
480         if (uniphier_get_soc_model() >= 2)
481                 latency += 2;
482
483         if (latency > 0xf) {
484                 val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
485                 val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
486         } else {
487                 val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
488         }
489
490         writel(val, umc_dc_base + UMC_RDATACTL_D0);
491         if (width >= 32)
492                 writel(val, umc_dc_base + UMC_RDATACTL_D1);
493
494         writel(0x04060A02, umc_dc_base + UMC_WDATACTL_D0);
495         if (width >= 32)
496                 writel(0x04060A02, umc_dc_base + UMC_WDATACTL_D1);
497         writel(0x04000000, umc_dc_base + UMC_DATASET);
498         writel(0x00400020, umc_dc_base + UMC_DCCGCTL);
499         writel(0x00000084, umc_dc_base + UMC_FLOWCTLG);
500         writel(0x00000000, umc_dc_base + UMC_ACSSETA);
501
502         writel(ch == 2 ? umc_flowctla_ch2[freq] : umc_flowctla_ch01[freq],
503                umc_dc_base + UMC_FLOWCTLA);
504
505         writel(0x00004400, umc_dc_base + UMC_FLOWCTLC);
506         writel(0x200A0A00, umc_dc_base + UMC_SPCSETB);
507         writel(0x00000520, umc_dc_base + UMC_DFICUPDCTLA);
508         writel(0x0000000D, umc_dc_base + UMC_RESPCTL);
509
510         if (ch != 2) {
511                 writel(0x00202000, umc_dc_base + UMC_FLOWCTLB);
512                 writel(0xFDBFFFFF, umc_dc_base + UMC_FLOWCTLOB0);
513                 writel(0xFFFFFFFF, umc_dc_base + UMC_FLOWCTLOB1);
514                 writel(0x00080700, umc_dc_base + UMC_BSICMAPSET);
515         } else {
516                 writel(0x00200000, umc_dc_base + UMC_FLOWCTLB);
517                 writel(0x00000000, umc_dc_base + UMC_BSICMAPSET);
518         }
519
520         writel(0x00000000, umc_dc_base + UMC_ERRMASKA);
521         writel(0x00000000, umc_dc_base + UMC_ERRMASKB);
522 }
523
524 static int umc_init(void __iomem *umc_base, enum dram_freq freq, int ch,
525                     enum dram_size size, int width)
526 {
527         void __iomem *umc_dc_base = umc_base + 0x00011000;
528         void __iomem *phy_base = umc_base + 0x00030000;
529         int ret;
530
531         writel(0x00000002, umc_dc_base + UMC_INITSET);
532         while (readl(umc_dc_base + UMC_INITSTAT) & BIT(2))
533                 cpu_relax();
534
535         /* deassert PHY reset signals */
536         writel(UMC_DIOCTLA_CTL_NRST | UMC_DIOCTLA_CFG_NRST,
537                umc_dc_base + UMC_DIOCTLA);
538
539         ddrphy_init(phy_base, freq, width, ch);
540
541         ret = ddrphy_impedance_calibration(phy_base);
542         if (ret)
543                 return ret;
544
545         ddrphy_dram_init(phy_base);
546         if (ret)
547                 return ret;
548
549         umc_dc_init(umc_dc_base, freq, size, ch, width);
550
551         umc_ud_init(umc_base, ch);
552
553         if (size) {
554                 ret = ddrphy_training(phy_base);
555                 if (ret)
556                         return ret;
557         }
558
559         udelay(1);
560
561         /* match the system latency between UMC and PHY */
562         umc_set_system_latency(umc_dc_base,
563                                ddrphy_get_system_latency(phy_base, width));
564
565         udelay(1);
566
567         /* stop auto refresh before clearing FIFO in PHY */
568         umc_refresh_ctrl(umc_dc_base, 0);
569         ddrphy_fifo_reset(phy_base);
570         umc_refresh_ctrl(umc_dc_base, 1);
571
572         udelay(10);
573
574         return 0;
575 }
576
577 static void um_init(void __iomem *um_base)
578 {
579         writel(0x000000ff, um_base + UMC_MBUS0);
580         writel(0x000000ff, um_base + UMC_MBUS1);
581         writel(0x000000ff, um_base + UMC_MBUS2);
582         writel(0x000000ff, um_base + UMC_MBUS3);
583 }
584
585 int proxstream2_umc_init(const struct uniphier_board_data *bd)
586 {
587         void __iomem *um_base = (void __iomem *)0x5b600000;
588         void __iomem *umc_ch0_base = (void __iomem *)0x5b800000;
589         void __iomem *umc_ch1_base = (void __iomem *)0x5ba00000;
590         void __iomem *umc_ch2_base = (void __iomem *)0x5bc00000;
591         enum dram_freq freq;
592         int ret;
593
594         switch (bd->dram_freq) {
595         case 1866:
596                 freq = FREQ_1866M;
597                 break;
598         case 2133:
599                 freq = FREQ_2133M;
600                 break;
601         default:
602                 printf("unsupported DRAM frequency %d MHz\n", bd->dram_freq);
603                 return -EINVAL;
604         }
605
606         ret = umc_init(umc_ch0_base, freq, 0, bd->dram_ch[0].size / SZ_256M,
607                        bd->dram_ch[0].width);
608         if (ret) {
609                 printf("failed to initialize UMC ch0\n");
610                 return ret;
611         }
612
613         ret = umc_init(umc_ch1_base, freq, 1, bd->dram_ch[1].size / SZ_256M,
614                        bd->dram_ch[1].width);
615         if (ret) {
616                 printf("failed to initialize UMC ch1\n");
617                 return ret;
618         }
619
620         ret = umc_init(umc_ch2_base, freq, 2, bd->dram_ch[2].size / SZ_256M,
621                        bd->dram_ch[2].width);
622         if (ret) {
623                 printf("failed to initialize UMC ch2\n");
624                 return ret;
625         }
626
627         um_init(um_base);
628
629         return 0;
630 }