SPDX: Convert all of our single license tags to Linux Kernel style
[oweals/u-boot.git] / arch / arm / mach-tegra / tegra20 / warmboot_avp.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2010 - 2011
4  * NVIDIA Corporation <www.nvidia.com>
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/clock.h>
10 #include <asm/arch/flow.h>
11 #include <asm/arch/pinmux.h>
12 #include <asm/arch/tegra.h>
13 #include <asm/arch-tegra/ap.h>
14 #include <asm/arch-tegra/apb_misc.h>
15 #include <asm/arch-tegra/clk_rst.h>
16 #include <asm/arch-tegra/pmc.h>
17 #include <asm/arch-tegra/warmboot.h>
18 #include "warmboot_avp.h"
19
20 #define DEBUG_RESET_CORESIGHT
21
22 void wb_start(void)
23 {
24         struct apb_misc_pp_ctlr *apb_misc =
25                                 (struct apb_misc_pp_ctlr *)NV_PA_APB_MISC_BASE;
26         struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
27         struct flow_ctlr *flow = (struct flow_ctlr *)NV_PA_FLOW_BASE;
28         struct clk_rst_ctlr *clkrst =
29                         (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
30         union osc_ctrl_reg osc_ctrl;
31         union pllx_base_reg pllx_base;
32         union pllx_misc_reg pllx_misc;
33         union scratch3_reg scratch3;
34         u32 reg;
35
36         /* enable JTAG & TBE */
37         writel(CONFIG_CTL_TBE | CONFIG_CTL_JTAG, &apb_misc->cfg_ctl);
38
39         /* Are we running where we're supposed to be? */
40         asm volatile (
41                 "adr    %0, wb_start;"  /* reg: wb_start address */
42                 : "=r"(reg)             /* output */
43                                         /* no input, no clobber list */
44         );
45
46         if (reg != NV_WB_RUN_ADDRESS)
47                 goto do_reset;
48
49         /* Are we running with AVP? */
50         if (readl(NV_PA_PG_UP_BASE + PG_UP_TAG_0) != PG_UP_TAG_AVP)
51                 goto do_reset;
52
53 #ifdef DEBUG_RESET_CORESIGHT
54         /* Assert CoreSight reset */
55         reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]);
56         reg |= SWR_CSITE_RST;
57         writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]);
58 #endif
59
60         /* TODO: Set the drive strength - maybe make this a board parameter? */
61         osc_ctrl.word = readl(&clkrst->crc_osc_ctrl);
62         osc_ctrl.xofs = 4;
63         osc_ctrl.xoe = 1;
64         writel(osc_ctrl.word, &clkrst->crc_osc_ctrl);
65
66         /* Power up the CPU complex if necessary */
67         if (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU)) {
68                 reg = PWRGATE_TOGGLE_PARTID_CPU | PWRGATE_TOGGLE_START;
69                 writel(reg, &pmc->pmc_pwrgate_toggle);
70                 while (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU))
71                         ;
72         }
73
74         /* Remove the I/O clamps from the CPU power partition. */
75         reg = readl(&pmc->pmc_remove_clamping);
76         reg |= CPU_CLMP;
77         writel(reg, &pmc->pmc_remove_clamping);
78
79         reg = EVENT_ZERO_VAL_20 | EVENT_MSEC | EVENT_MODE_STOP;
80         writel(reg, &flow->halt_cop_events);
81
82         /* Assert CPU complex reset */
83         reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]);
84         reg |= CPU_RST;
85         writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
86
87         /* Hold both CPUs in reset */
88         reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_CPURESET1 | CPU_CMPLX_DERESET0 |
89               CPU_CMPLX_DERESET1 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DBGRESET1;
90         writel(reg, &clkrst->crc_cpu_cmplx_set);
91
92         /* Halt CPU1 at the flow controller for uni-processor configurations */
93         writel(EVENT_MODE_STOP, &flow->halt_cpu1_events);
94
95         /*
96          * Set the CPU reset vector. SCRATCH41 contains the physical
97          * address of the CPU-side restoration code.
98          */
99         reg = readl(&pmc->pmc_scratch41);
100         writel(reg, EXCEP_VECTOR_CPU_RESET_VECTOR);
101
102         /* Select CPU complex clock source */
103         writel(CCLK_PLLP_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
104
105         /* Start the CPU0 clock and stop the CPU1 clock */
106         reg = CPU_CMPLX_CPU_BRIDGE_CLKDIV_4 | CPU_CMPLX_CPU0_CLK_STP_RUN |
107               CPU_CMPLX_CPU1_CLK_STP_STOP;
108         writel(reg, &clkrst->crc_clk_cpu_cmplx);
109
110         /* Enable the CPU complex clock */
111         reg = readl(&clkrst->crc_clk_out_enb[TEGRA_DEV_L]);
112         reg |= CLK_ENB_CPU;
113         writel(reg, &clkrst->crc_clk_out_enb[TEGRA_DEV_L]);
114
115         /* Make sure the resets were held for at least 2 microseconds */
116         reg = readl(TIMER_USEC_CNTR);
117         while (readl(TIMER_USEC_CNTR) <= (reg + 2))
118                 ;
119
120 #ifdef DEBUG_RESET_CORESIGHT
121         /*
122          * De-assert CoreSight reset.
123          * NOTE: We're leaving the CoreSight clock on the oscillator for
124          *      now. It will be restored to its original clock source
125          *      when the CPU-side restoration code runs.
126          */
127         reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]);
128         reg &= ~SWR_CSITE_RST;
129         writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]);
130 #endif
131
132         /* Unlock the CPU CoreSight interfaces */
133         reg = 0xC5ACCE55;
134         writel(reg, CSITE_CPU_DBG0_LAR);
135         writel(reg, CSITE_CPU_DBG1_LAR);
136
137         /*
138          * Sample the microsecond timestamp again. This is the time we must
139          * use when returning from LP0 for PLL stabilization delays.
140          */
141         reg = readl(TIMER_USEC_CNTR);
142         writel(reg, &pmc->pmc_scratch1);
143
144         pllx_base.word = 0;
145         pllx_misc.word = 0;
146         scratch3.word = readl(&pmc->pmc_scratch3);
147
148         /* Get the OSC. For 19.2 MHz, use 19 to make the calculations easier */
149         reg = (readl(TIMER_USEC_CFG) & USEC_CFG_DIVISOR_MASK) + 1;
150
151         /*
152          * According to the TRM, for 19.2MHz OSC, the USEC_DIVISOR is 0x5f, and
153          * USEC_DIVIDEND is 0x04. So, if USEC_DIVISOR > 26, OSC is 19.2 MHz.
154          *
155          * reg is used to calculate the pllx freq, which is used to determine if
156          * to set dccon or not.
157          */
158         if (reg > 26)
159                 reg = 19;
160
161         /* PLLX_BASE.PLLX_DIVM */
162         if (scratch3.pllx_base_divm == reg)
163                 reg = 0;
164         else
165                 reg = 1;
166
167         /* PLLX_BASE.PLLX_DIVN */
168         pllx_base.divn = scratch3.pllx_base_divn;
169         reg = scratch3.pllx_base_divn << reg;
170
171         /* PLLX_BASE.PLLX_DIVP */
172         pllx_base.divp = scratch3.pllx_base_divp;
173         reg = reg >> scratch3.pllx_base_divp;
174
175         pllx_base.bypass = 1;
176
177         /* PLLX_MISC_DCCON must be set for pllx frequency > 600 MHz. */
178         if (reg > 600)
179                 pllx_misc.dccon = 1;
180
181         /* PLLX_MISC_LFCON */
182         pllx_misc.lfcon = scratch3.pllx_misc_lfcon;
183
184         /* PLLX_MISC_CPCON */
185         pllx_misc.cpcon = scratch3.pllx_misc_cpcon;
186
187         writel(pllx_misc.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_misc);
188         writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
189
190         pllx_base.enable = 1;
191         writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
192         pllx_base.bypass = 0;
193         writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
194
195         writel(0, flow->halt_cpu_events);
196
197         reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DERESET0;
198         writel(reg, &clkrst->crc_cpu_cmplx_clr);
199
200         reg = PLLM_OUT1_RSTN_RESET_DISABLE | PLLM_OUT1_CLKEN_ENABLE |
201               PLLM_OUT1_RATIO_VAL_8;
202         writel(reg, &clkrst->crc_pll[CLOCK_ID_MEMORY].pll_out[0]);
203
204         reg = SCLK_SWAKE_FIQ_SRC_PLLM_OUT1 | SCLK_SWAKE_IRQ_SRC_PLLM_OUT1 |
205               SCLK_SWAKE_RUN_SRC_PLLM_OUT1 | SCLK_SWAKE_IDLE_SRC_PLLM_OUT1 |
206               SCLK_SYS_STATE_IDLE;
207         writel(reg, &clkrst->crc_sclk_brst_pol);
208
209         /* avp_resume: no return after the write */
210         reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]);
211         reg &= ~CPU_RST;
212         writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
213
214         /* avp_halt: */
215 avp_halt:
216         reg = EVENT_MODE_STOP | EVENT_JTAG;
217         writel(reg, flow->halt_cop_events);
218         goto avp_halt;
219
220 do_reset:
221         /*
222          * Execution comes here if something goes wrong. The chip is reset and
223          * a cold boot is performed.
224          */
225         writel(SWR_TRIG_SYS_RST, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
226         goto do_reset;
227 }
228
229 /*
230  * wb_end() is a dummy function, and must be directly following wb_start(),
231  * and is used to calculate the size of wb_start().
232  */
233 void wb_end(void)
234 {
235 }