stm32mp: stm32prog: add MMC device
[oweals/u-boot.git] / arch / arm / mach-stm32mp / cmd_stm32prog / stm32prog.c
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) 2020, STMicroelectronics - All Rights Reserved
4  */
5
6 #include <common.h>
7 #include <console.h>
8 #include <dfu.h>
9 #include <malloc.h>
10 #include <mmc.h>
11 #include <dm/uclass.h>
12 #include <linux/list.h>
13 #include <linux/list_sort.h>
14 #include <linux/sizes.h>
15
16 #include "stm32prog.h"
17
18 /* Primary GPT header size for 128 entries : 17kB = 34 LBA of 512B */
19 #define GPT_HEADER_SZ   34
20
21 #define OPT_SELECT      BIT(0)
22 #define OPT_EMPTY       BIT(1)
23
24 #define IS_SELECT(part) ((part)->option & OPT_SELECT)
25 #define IS_EMPTY(part)  ((part)->option & OPT_EMPTY)
26
27 #define ALT_BUF_LEN                     SZ_1K
28
29 #define ROOTFS_MMC0_UUID \
30         EFI_GUID(0xE91C4E10, 0x16E6, 0x4C0E, \
31                  0xBD, 0x0E, 0x77, 0xBE, 0xCF, 0x4A, 0x35, 0x82)
32
33 #define ROOTFS_MMC1_UUID \
34         EFI_GUID(0x491F6117, 0x415D, 0x4F53, \
35                  0x88, 0xC9, 0x6E, 0x0D, 0xE5, 0x4D, 0xEA, 0xC6)
36
37 #define ROOTFS_MMC2_UUID \
38         EFI_GUID(0xFD58F1C7, 0xBE0D, 0x4338, \
39                  0x88, 0xE9, 0xAD, 0x8F, 0x05, 0x0A, 0xEB, 0x18)
40
41 /* RAW parttion (binary / bootloader) used Linux - reserved UUID */
42 #define LINUX_RESERVED_UUID "8DA63339-0007-60C0-C436-083AC8230908"
43
44 /*
45  * unique partition guid (uuid) for partition named "rootfs"
46  * on each MMC instance = SD Card or eMMC
47  * allow fixed kernel bootcmd: "rootf=PARTUID=e91c4e10-..."
48  */
49 static const efi_guid_t uuid_mmc[3] = {
50         ROOTFS_MMC0_UUID,
51         ROOTFS_MMC1_UUID,
52         ROOTFS_MMC2_UUID
53 };
54
55 DECLARE_GLOBAL_DATA_PTR;
56
57 /* order of column in flash layout file */
58 enum stm32prog_col_t {
59         COL_OPTION,
60         COL_ID,
61         COL_NAME,
62         COL_TYPE,
63         COL_IP,
64         COL_OFFSET,
65         COL_NB_STM32
66 };
67
68 char *stm32prog_get_error(struct stm32prog_data *data)
69 {
70         static const char error_msg[] = "Unspecified";
71
72         if (strlen(data->error) == 0)
73                 strcpy(data->error, error_msg);
74
75         return data->error;
76 }
77
78 u8 stm32prog_header_check(struct raw_header_s *raw_header,
79                           struct image_header_s *header)
80 {
81         unsigned int i;
82
83         header->present = 0;
84         header->image_checksum = 0x0;
85         header->image_length = 0x0;
86
87         if (!raw_header || !header) {
88                 pr_debug("%s:no header data\n", __func__);
89                 return -1;
90         }
91         if (raw_header->magic_number !=
92                 (('S' << 0) | ('T' << 8) | ('M' << 16) | (0x32 << 24))) {
93                 pr_debug("%s:invalid magic number : 0x%x\n",
94                          __func__, raw_header->magic_number);
95                 return -2;
96         }
97         /* only header v1.0 supported */
98         if (raw_header->header_version != 0x00010000) {
99                 pr_debug("%s:invalid header version : 0x%x\n",
100                          __func__, raw_header->header_version);
101                 return -3;
102         }
103         if (raw_header->reserved1 != 0x0 || raw_header->reserved2) {
104                 pr_debug("%s:invalid reserved field\n", __func__);
105                 return -4;
106         }
107         for (i = 0; i < (sizeof(raw_header->padding) / 4); i++) {
108                 if (raw_header->padding[i] != 0) {
109                         pr_debug("%s:invalid padding field\n", __func__);
110                         return -5;
111                 }
112         }
113         header->present = 1;
114         header->image_checksum = le32_to_cpu(raw_header->image_checksum);
115         header->image_length = le32_to_cpu(raw_header->image_length);
116
117         return 0;
118 }
119
120 static u32 stm32prog_header_checksum(u32 addr, struct image_header_s *header)
121 {
122         u32 i, checksum;
123         u8 *payload;
124
125         /* compute checksum on payload */
126         payload = (u8 *)addr;
127         checksum = 0;
128         for (i = header->image_length; i > 0; i--)
129                 checksum += *(payload++);
130
131         return checksum;
132 }
133
134 /* FLASHLAYOUT PARSING *****************************************/
135 static int parse_option(struct stm32prog_data *data,
136                         int i, char *p, struct stm32prog_part_t *part)
137 {
138         int result = 0;
139         char *c = p;
140
141         part->option = 0;
142         if (!strcmp(p, "-"))
143                 return 0;
144
145         while (*c) {
146                 switch (*c) {
147                 case 'P':
148                         part->option |= OPT_SELECT;
149                         break;
150                 case 'E':
151                         part->option |= OPT_EMPTY;
152                         break;
153                 default:
154                         result = -EINVAL;
155                         stm32prog_err("Layout line %d: invalid option '%c' in %s)",
156                                       i, *c, p);
157                         return -EINVAL;
158                 }
159                 c++;
160         }
161         if (!(part->option & OPT_SELECT)) {
162                 stm32prog_err("Layout line %d: missing 'P' in option %s", i, p);
163                 return -EINVAL;
164         }
165
166         return result;
167 }
168
169 static int parse_id(struct stm32prog_data *data,
170                     int i, char *p, struct stm32prog_part_t *part)
171 {
172         int result = 0;
173         unsigned long value;
174
175         result = strict_strtoul(p, 0, &value);
176         part->id = value;
177         if (result || value > PHASE_LAST_USER) {
178                 stm32prog_err("Layout line %d: invalid phase value = %s", i, p);
179                 result = -EINVAL;
180         }
181
182         return result;
183 }
184
185 static int parse_name(struct stm32prog_data *data,
186                       int i, char *p, struct stm32prog_part_t *part)
187 {
188         int result = 0;
189
190         if (strlen(p) < sizeof(part->name)) {
191                 strcpy(part->name, p);
192         } else {
193                 stm32prog_err("Layout line %d: partition name too long [%d]: %s",
194                               i, strlen(p), p);
195                 result = -EINVAL;
196         }
197
198         return result;
199 }
200
201 static int parse_type(struct stm32prog_data *data,
202                       int i, char *p, struct stm32prog_part_t *part)
203 {
204         int result = 0;
205
206         if (!strcmp(p, "Binary")) {
207                 part->part_type = PART_BINARY;
208         } else if (!strcmp(p, "System")) {
209                 part->part_type = PART_SYSTEM;
210         } else if (!strcmp(p, "FileSystem")) {
211                 part->part_type = PART_FILESYSTEM;
212         } else if (!strcmp(p, "RawImage")) {
213                 part->part_type = RAW_IMAGE;
214         } else {
215                 result = -EINVAL;
216         }
217         if (result)
218                 stm32prog_err("Layout line %d: type parsing error : '%s'",
219                               i, p);
220
221         return result;
222 }
223
224 static int parse_ip(struct stm32prog_data *data,
225                     int i, char *p, struct stm32prog_part_t *part)
226 {
227         int result = 0;
228         unsigned int len = 0;
229
230         part->dev_id = 0;
231         if (!strcmp(p, "none")) {
232                 part->target = STM32PROG_NONE;
233         } else if (!strncmp(p, "mmc", 3)) {
234                 part->target = STM32PROG_MMC;
235                 len = 3;
236         } else {
237                 result = -EINVAL;
238         }
239         if (len) {
240                 /* only one digit allowed for device id */
241                 if (strlen(p) != len + 1) {
242                         result = -EINVAL;
243                 } else {
244                         part->dev_id = p[len] - '0';
245                         if (part->dev_id > 9)
246                                 result = -EINVAL;
247                 }
248         }
249         if (result)
250                 stm32prog_err("Layout line %d: ip parsing error: '%s'", i, p);
251
252         return result;
253 }
254
255 static int parse_offset(struct stm32prog_data *data,
256                         int i, char *p, struct stm32prog_part_t *part)
257 {
258         int result = 0;
259         char *tail;
260
261         part->part_id = 0;
262         part->size = 0;
263         part->addr = simple_strtoull(p, &tail, 0);
264         if (tail == p || *tail != '\0') {
265                 stm32prog_err("Layout line %d: invalid offset '%s'",
266                               i, p);
267                 result = -EINVAL;
268         }
269
270         return result;
271 }
272
273 static
274 int (* const parse[COL_NB_STM32])(struct stm32prog_data *data, int i, char *p,
275                                   struct stm32prog_part_t *part) = {
276         [COL_OPTION] = parse_option,
277         [COL_ID] = parse_id,
278         [COL_NAME] =  parse_name,
279         [COL_TYPE] = parse_type,
280         [COL_IP] = parse_ip,
281         [COL_OFFSET] = parse_offset,
282 };
283
284 static int parse_flash_layout(struct stm32prog_data *data,
285                               ulong addr,
286                               ulong size)
287 {
288         int column = 0, part_nb = 0, ret;
289         bool end_of_line, eof;
290         char *p, *start, *last, *col;
291         struct stm32prog_part_t *part;
292         int part_list_size;
293         int i;
294
295         data->part_nb = 0;
296
297         /* check if STM32image is detected */
298         if (!stm32prog_header_check((struct raw_header_s *)addr,
299                                     &data->header)) {
300                 u32 checksum;
301
302                 addr = addr + BL_HEADER_SIZE;
303                 size = data->header.image_length;
304
305                 checksum = stm32prog_header_checksum(addr, &data->header);
306                 if (checksum != data->header.image_checksum) {
307                         stm32prog_err("Layout: invalid checksum : 0x%x expected 0x%x",
308                                       checksum, data->header.image_checksum);
309                         return -EIO;
310                 }
311         }
312         if (!size)
313                 return -EINVAL;
314
315         start = (char *)addr;
316         last = start + size;
317
318         *last = 0x0; /* force null terminated string */
319         pr_debug("flash layout =\n%s\n", start);
320
321         /* calculate expected number of partitions */
322         part_list_size = 1;
323         p = start;
324         while (*p && (p < last)) {
325                 if (*p++ == '\n') {
326                         part_list_size++;
327                         if (p < last && *p == '#')
328                                 part_list_size--;
329                 }
330         }
331         if (part_list_size > PHASE_LAST_USER) {
332                 stm32prog_err("Layout: too many partition (%d)",
333                               part_list_size);
334                 return -1;
335         }
336         part = calloc(sizeof(struct stm32prog_part_t), part_list_size);
337         if (!part) {
338                 stm32prog_err("Layout: alloc failed");
339                 return -ENOMEM;
340         }
341         data->part_array = part;
342
343         /* main parsing loop */
344         i = 1;
345         eof = false;
346         p = start;
347         col = start; /* 1st column */
348         end_of_line = false;
349         while (!eof) {
350                 switch (*p) {
351                 /* CR is ignored and replaced by NULL character */
352                 case '\r':
353                         *p = '\0';
354                         p++;
355                         continue;
356                 case '\0':
357                         end_of_line = true;
358                         eof = true;
359                         break;
360                 case '\n':
361                         end_of_line = true;
362                         break;
363                 case '\t':
364                         break;
365                 case '#':
366                         /* comment line is skipped */
367                         if (column == 0 && p == col) {
368                                 while ((p < last) && *p)
369                                         if (*p++ == '\n')
370                                                 break;
371                                 col = p;
372                                 i++;
373                                 if (p >= last || !*p) {
374                                         eof = true;
375                                         end_of_line = true;
376                                 }
377                                 continue;
378                         }
379                         /* fall through */
380                 /* by default continue with the next character */
381                 default:
382                         p++;
383                         continue;
384                 }
385
386                 /* replace by \0: allow string parsing for each column */
387                 *p = '\0';
388                 p++;
389                 if (p >= last) {
390                         eof = true;
391                         end_of_line = true;
392                 }
393
394                 /* skip empty line and multiple TAB in tsv file */
395                 if (strlen(col) == 0) {
396                         col = p;
397                         /* skip empty line */
398                         if (column == 0 && end_of_line) {
399                                 end_of_line = false;
400                                 i++;
401                         }
402                         continue;
403                 }
404
405                 if (column < COL_NB_STM32) {
406                         ret = parse[column](data, i, col, part);
407                         if (ret)
408                                 return ret;
409                 }
410
411                 /* save the beginning of the next column */
412                 column++;
413                 col = p;
414
415                 if (!end_of_line)
416                         continue;
417
418                 /* end of the line detected */
419                 end_of_line = false;
420
421                 if (column < COL_NB_STM32) {
422                         stm32prog_err("Layout line %d: no enought column", i);
423                         return -EINVAL;
424                 }
425                 column = 0;
426                 part_nb++;
427                 part++;
428                 i++;
429                 if (part_nb >= part_list_size) {
430                         part = NULL;
431                         if (!eof) {
432                                 stm32prog_err("Layout: no enought memory for %d part",
433                                               part_nb);
434                                 return -EINVAL;
435                         }
436                 }
437         }
438         data->part_nb = part_nb;
439         if (data->part_nb == 0) {
440                 stm32prog_err("Layout: no partition found");
441                 return -ENODEV;
442         }
443
444         return 0;
445 }
446
447 static int __init part_cmp(void *priv, struct list_head *a, struct list_head *b)
448 {
449         struct stm32prog_part_t *parta, *partb;
450
451         parta = container_of(a, struct stm32prog_part_t, list);
452         partb = container_of(b, struct stm32prog_part_t, list);
453
454         return parta->addr > partb->addr ? 1 : -1;
455 }
456
457 static int init_device(struct stm32prog_data *data,
458                        struct stm32prog_dev_t *dev)
459 {
460         struct mmc *mmc = NULL;
461         struct blk_desc *block_dev = NULL;
462         int part_id;
463         u64 first_addr = 0, last_addr = 0;
464         struct stm32prog_part_t *part, *next_part;
465
466         switch (dev->target) {
467 #ifdef CONFIG_MMC
468         case STM32PROG_MMC:
469                 mmc = find_mmc_device(dev->dev_id);
470                 if (mmc_init(mmc)) {
471                         stm32prog_err("mmc device %d not found", dev->dev_id);
472                         return -ENODEV;
473                 }
474                 block_dev = mmc_get_blk_desc(mmc);
475                 if (!block_dev) {
476                         stm32prog_err("mmc device %d not probed", dev->dev_id);
477                         return -ENODEV;
478                 }
479                 dev->erase_size = mmc->erase_grp_size * block_dev->blksz;
480                 dev->mmc = mmc;
481
482                 /* reserve a full erase group for each GTP headers */
483                 if (mmc->erase_grp_size > GPT_HEADER_SZ) {
484                         first_addr = dev->erase_size;
485                         last_addr = (u64)(block_dev->lba -
486                                           mmc->erase_grp_size) *
487                                     block_dev->blksz;
488                 } else {
489                         first_addr = (u64)GPT_HEADER_SZ * block_dev->blksz;
490                         last_addr = (u64)(block_dev->lba - GPT_HEADER_SZ - 1) *
491                                     block_dev->blksz;
492                 }
493                 pr_debug("MMC %d: lba=%ld blksz=%ld\n", dev->dev_id,
494                          block_dev->lba, block_dev->blksz);
495                 pr_debug(" available address = 0x%llx..0x%llx\n",
496                          first_addr, last_addr);
497                 break;
498 #endif
499         default:
500                 stm32prog_err("unknown device type = %d", dev->target);
501                 return -ENODEV;
502         }
503         pr_debug(" erase size = 0x%x\n", dev->erase_size);
504
505         /* order partition list in offset order */
506         list_sort(NULL, &dev->part_list, &part_cmp);
507         part_id = 1;
508         pr_debug("id : Opt Phase     Name target.n dev.n addr     size     part_off part_size\n");
509         list_for_each_entry(part, &dev->part_list, list) {
510                 if (part->part_type == RAW_IMAGE) {
511                         part->part_id = 0x0;
512                         part->addr = 0x0;
513                         if (block_dev)
514                                 part->size = block_dev->lba * block_dev->blksz;
515                         else
516                                 part->size = last_addr;
517                         pr_debug("-- : %1d %02x %14s %02d %02d.%02d %08llx %08llx\n",
518                                  part->option, part->id, part->name,
519                                  part->part_type, part->target,
520                                  part->dev_id, part->addr, part->size);
521                         continue;
522                 }
523
524                 part->part_id = part_id++;
525
526                 /* last partition : size to the end of the device */
527                 if (part->list.next != &dev->part_list) {
528                         next_part =
529                                 container_of(part->list.next,
530                                              struct stm32prog_part_t,
531                                              list);
532                         if (part->addr < next_part->addr) {
533                                 part->size = next_part->addr -
534                                              part->addr;
535                         } else {
536                                 stm32prog_err("%s (0x%x): same address : 0x%llx == %s (0x%x): 0x%llx",
537                                               part->name, part->id,
538                                               part->addr,
539                                               next_part->name,
540                                               next_part->id,
541                                               next_part->addr);
542                                 return -EINVAL;
543                         }
544                 } else {
545                         if (part->addr <= last_addr) {
546                                 part->size = last_addr - part->addr;
547                         } else {
548                                 stm32prog_err("%s (0x%x): invalid address 0x%llx (max=0x%llx)",
549                                               part->name, part->id,
550                                               part->addr, last_addr);
551                                 return -EINVAL;
552                         }
553                 }
554                 if (part->addr < first_addr) {
555                         stm32prog_err("%s (0x%x): invalid address 0x%llx (min=0x%llx)",
556                                       part->name, part->id,
557                                       part->addr, first_addr);
558                         return -EINVAL;
559                 }
560
561                 if ((part->addr & ((u64)part->dev->erase_size - 1)) != 0) {
562                         stm32prog_err("%s (0x%x): not aligned address : 0x%llx on erase size 0x%x",
563                                       part->name, part->id, part->addr,
564                                       part->dev->erase_size);
565                         return -EINVAL;
566                 }
567                 pr_debug("%02d : %1d %02x %14s %02d %02d.%02d %08llx %08llx",
568                          part->part_id, part->option, part->id, part->name,
569                          part->part_type, part->target,
570                          part->dev_id, part->addr, part->size);
571         }
572         return 0;
573 }
574
575 static int treat_partition_list(struct stm32prog_data *data)
576 {
577         int i, j;
578         struct stm32prog_part_t *part;
579
580         for (j = 0; j < STM32PROG_MAX_DEV; j++) {
581                 data->dev[j].target = STM32PROG_NONE;
582                 INIT_LIST_HEAD(&data->dev[j].part_list);
583         }
584
585         for (i = 0; i < data->part_nb; i++) {
586                 part = &data->part_array[i];
587                 part->alt_id = -1;
588
589                 /* skip partition with IP="none" */
590                 if (part->target == STM32PROG_NONE) {
591                         if (IS_SELECT(part)) {
592                                 stm32prog_err("Layout: selected none phase = 0x%x",
593                                               part->id);
594                                 return -EINVAL;
595                         }
596                         continue;
597                 }
598
599                 if (part->id == PHASE_FLASHLAYOUT ||
600                     part->id > PHASE_LAST_USER) {
601                         stm32prog_err("Layout: invalid phase = 0x%x",
602                                       part->id);
603                         return -EINVAL;
604                 }
605                 for (j = i + 1; j < data->part_nb; j++) {
606                         if (part->id == data->part_array[j].id) {
607                                 stm32prog_err("Layout: duplicated phase 0x%x at line %d and %d",
608                                               part->id, i, j);
609                                 return -EINVAL;
610                         }
611                 }
612                 for (j = 0; j < STM32PROG_MAX_DEV; j++) {
613                         if (data->dev[j].target == STM32PROG_NONE) {
614                                 /* new device found */
615                                 data->dev[j].target = part->target;
616                                 data->dev[j].dev_id = part->dev_id;
617                                 data->dev_nb++;
618                                 break;
619                         } else if ((part->target == data->dev[j].target) &&
620                                    (part->dev_id == data->dev[j].dev_id)) {
621                                 break;
622                         }
623                 }
624                 if (j == STM32PROG_MAX_DEV) {
625                         stm32prog_err("Layout: too many device");
626                         return -EINVAL;
627                 }
628                 part->dev = &data->dev[j];
629                 list_add_tail(&part->list, &data->dev[j].part_list);
630         }
631
632         return 0;
633 }
634
635 static int create_partitions(struct stm32prog_data *data)
636 {
637 #ifdef CONFIG_MMC
638         int offset = 0;
639         const int buflen = SZ_8K;
640         char *buf;
641         char uuid[UUID_STR_LEN + 1];
642         unsigned char *uuid_bin;
643         unsigned int mmc_id;
644         int i;
645         bool rootfs_found;
646         struct stm32prog_part_t *part;
647
648         buf = malloc(buflen);
649         if (!buf)
650                 return -ENOMEM;
651
652         puts("partitions : ");
653         /* initialize the selected device */
654         for (i = 0; i < data->dev_nb; i++) {
655                 offset = 0;
656                 rootfs_found = false;
657                 memset(buf, 0, buflen);
658
659                 list_for_each_entry(part, &data->dev[i].part_list, list) {
660                         /* skip Raw Image */
661                         if (part->part_type == RAW_IMAGE)
662                                 continue;
663
664                         if (offset + 100 > buflen) {
665                                 pr_debug("\n%s: buffer too small, %s skippped",
666                                          __func__, part->name);
667                                 continue;
668                         }
669
670                         if (!offset)
671                                 offset += sprintf(buf, "gpt write mmc %d \"",
672                                                   data->dev[i].dev_id);
673
674                         offset += snprintf(buf + offset, buflen - offset,
675                                            "name=%s,start=0x%llx,size=0x%llx",
676                                            part->name,
677                                            part->addr,
678                                            part->size);
679
680                         if (part->part_type == PART_BINARY)
681                                 offset += snprintf(buf + offset,
682                                                    buflen - offset,
683                                                    ",type="
684                                                    LINUX_RESERVED_UUID);
685                         else
686                                 offset += snprintf(buf + offset,
687                                                    buflen - offset,
688                                                    ",type=linux");
689
690                         if (part->part_type == PART_SYSTEM)
691                                 offset += snprintf(buf + offset,
692                                                    buflen - offset,
693                                                    ",bootable");
694
695                         if (!rootfs_found && !strcmp(part->name, "rootfs")) {
696                                 mmc_id = part->dev_id;
697                                 rootfs_found = true;
698                                 if (mmc_id < ARRAY_SIZE(uuid_mmc)) {
699                                         uuid_bin =
700                                           (unsigned char *)uuid_mmc[mmc_id].b;
701                                         uuid_bin_to_str(uuid_bin, uuid,
702                                                         UUID_STR_FORMAT_GUID);
703                                         offset += snprintf(buf + offset,
704                                                            buflen - offset,
705                                                            ",uuid=%s", uuid);
706                                 }
707                         }
708
709                         offset += snprintf(buf + offset, buflen - offset, ";");
710                 }
711
712                 if (offset) {
713                         offset += snprintf(buf + offset, buflen - offset, "\"");
714                         pr_debug("\ncmd: %s\n", buf);
715                         if (run_command(buf, 0)) {
716                                 stm32prog_err("GPT partitionning fail: %s",
717                                               buf);
718                                 free(buf);
719
720                                 return -1;
721                         }
722                 }
723
724                 if (data->dev[i].mmc)
725                         part_init(mmc_get_blk_desc(data->dev[i].mmc));
726
727 #ifdef DEBUG
728                 sprintf(buf, "gpt verify mmc %d", data->dev[i].dev_id);
729                 pr_debug("\ncmd: %s", buf);
730                 if (run_command(buf, 0))
731                         printf("fail !\n");
732                 else
733                         printf("OK\n");
734
735                 sprintf(buf, "part list mmc %d", data->dev[i].dev_id);
736                 run_command(buf, 0);
737 #endif
738         }
739         puts("done\n");
740
741         free(buf);
742 #endif
743
744         return 0;
745 }
746
747 static int stm32prog_alt_add(struct stm32prog_data *data,
748                              struct dfu_entity *dfu,
749                              struct stm32prog_part_t *part)
750 {
751         int ret = 0;
752         int offset = 0;
753         char devstr[10];
754         char dfustr[10];
755         char buf[ALT_BUF_LEN];
756         u32 size;
757         char multiplier,  type;
758
759         /* max 3 digit for sector size */
760         if (part->size > SZ_1M) {
761                 size = (u32)(part->size / SZ_1M);
762                 multiplier = 'M';
763         } else if (part->size > SZ_1K) {
764                 size = (u32)(part->size / SZ_1K);
765                 multiplier = 'K';
766         } else {
767                 size = (u32)part->size;
768                 multiplier = 'B';
769         }
770         if (IS_SELECT(part) && !IS_EMPTY(part))
771                 type = 'e'; /*Readable and Writeable*/
772         else
773                 type = 'a';/*Readable*/
774
775         memset(buf, 0, sizeof(buf));
776         offset = snprintf(buf, ALT_BUF_LEN - offset,
777                           "@%s/0x%02x/1*%d%c%c ",
778                           part->name, part->id,
779                           size, multiplier, type);
780
781         if (part->part_type == RAW_IMAGE) {
782                 u64 dfu_size;
783
784                 if (part->dev->target == STM32PROG_MMC)
785                         dfu_size = part->size / part->dev->mmc->read_bl_len;
786                 else
787                         dfu_size = part->size;
788                 offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
789                                    "raw 0x0 0x%llx", dfu_size);
790         } else {
791                 offset += snprintf(buf + offset,
792                                    ALT_BUF_LEN - offset,
793                                    "part");
794                 /* dev_id requested by DFU MMC */
795                 if (part->target == STM32PROG_MMC)
796                         offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
797                                            " %d", part->dev_id);
798                 offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
799                                    " %d;", part->part_id);
800         }
801         switch (part->target) {
802 #ifdef CONFIG_MMC
803         case STM32PROG_MMC:
804                 sprintf(dfustr, "mmc");
805                 sprintf(devstr, "%d", part->dev_id);
806                 break;
807 #endif
808         default:
809                 stm32prog_err("invalid target: %d", part->target);
810                 return -ENODEV;
811         }
812         pr_debug("dfu_alt_add(%s,%s,%s)\n", dfustr, devstr, buf);
813         ret = dfu_alt_add(dfu, dfustr, devstr, buf);
814         pr_debug("dfu_alt_add(%s,%s,%s) result %d\n",
815                  dfustr, devstr, buf, ret);
816
817         return ret;
818 }
819
820 static int stm32prog_alt_add_virt(struct dfu_entity *dfu,
821                                   char *name, int phase, int size)
822 {
823         int ret = 0;
824         char devstr[4];
825         char buf[ALT_BUF_LEN];
826
827         sprintf(devstr, "%d", phase);
828         sprintf(buf, "@%s/0x%02x/1*%dBe", name, phase, size);
829         ret = dfu_alt_add(dfu, "virt", devstr, buf);
830         pr_debug("dfu_alt_add(virt,%s,%s) result %d\n", devstr, buf, ret);
831
832         return ret;
833 }
834
835 static int dfu_init_entities(struct stm32prog_data *data)
836 {
837         int ret = 0;
838         int phase, i, alt_id;
839         struct stm32prog_part_t *part;
840         struct dfu_entity *dfu;
841         int alt_nb;
842
843         alt_nb = 1; /* number of virtual = CMD */
844         if (data->part_nb == 0)
845                 alt_nb++;  /* +1 for FlashLayout */
846         else
847                 for (i = 0; i < data->part_nb; i++) {
848                         if (data->part_array[i].target != STM32PROG_NONE)
849                                 alt_nb++;
850                 }
851
852         if (dfu_alt_init(alt_nb, &dfu))
853                 return -ENODEV;
854
855         puts("DFU alt info setting: ");
856         if (data->part_nb) {
857                 alt_id = 0;
858                 for (phase = 1;
859                      (phase <= PHASE_LAST_USER) &&
860                      (alt_id < alt_nb) && !ret;
861                      phase++) {
862                         /* ordering alt setting by phase id */
863                         part = NULL;
864                         for (i = 0; i < data->part_nb; i++) {
865                                 if (phase == data->part_array[i].id) {
866                                         part = &data->part_array[i];
867                                         break;
868                                 }
869                         }
870                         if (!part)
871                                 continue;
872                         if (part->target == STM32PROG_NONE)
873                                 continue;
874                         part->alt_id = alt_id;
875                         alt_id++;
876
877                         ret = stm32prog_alt_add(data, dfu, part);
878                 }
879         } else {
880                 char buf[ALT_BUF_LEN];
881
882                 sprintf(buf, "@FlashLayout/0x%02x/1*256Ke ram %x 40000",
883                         PHASE_FLASHLAYOUT, STM32_DDR_BASE);
884                 ret = dfu_alt_add(dfu, "ram", NULL, buf);
885                 pr_debug("dfu_alt_add(ram, NULL,%s) result %d\n", buf, ret);
886         }
887
888         if (!ret)
889                 ret = stm32prog_alt_add_virt(dfu, "virtual", PHASE_CMD, 512);
890
891         if (ret)
892                 stm32prog_err("dfu init failed: %d", ret);
893         puts("done\n");
894
895 #ifdef DEBUG
896         dfu_show_entities();
897 #endif
898         return ret;
899 }
900
901 static void stm32prog_end_phase(struct stm32prog_data *data)
902 {
903         if (data->phase == PHASE_FLASHLAYOUT) {
904                 if (parse_flash_layout(data, STM32_DDR_BASE, 0))
905                         stm32prog_err("Layout: invalid FlashLayout");
906                 return;
907         }
908
909         if (!data->cur_part)
910                 return;
911 }
912
913 void stm32prog_do_reset(struct stm32prog_data *data)
914 {
915         if (data->phase == PHASE_RESET) {
916                 data->phase = PHASE_DO_RESET;
917                 puts("Reset requested\n");
918         }
919 }
920
921 void stm32prog_next_phase(struct stm32prog_data *data)
922 {
923         int phase, i;
924         struct stm32prog_part_t *part;
925         bool found;
926
927         phase = data->phase;
928         switch (phase) {
929         case PHASE_RESET:
930         case PHASE_END:
931         case PHASE_DO_RESET:
932                 return;
933         }
934
935         /* found next selected partition */
936         data->cur_part = NULL;
937         data->phase = PHASE_END;
938         found = false;
939         do {
940                 phase++;
941                 if (phase > PHASE_LAST_USER)
942                         break;
943                 for (i = 0; i < data->part_nb; i++) {
944                         part = &data->part_array[i];
945                         if (part->id == phase) {
946                                 if (IS_SELECT(part) && !IS_EMPTY(part)) {
947                                         data->cur_part = part;
948                                         data->phase = phase;
949                                         found = true;
950                                 }
951                                 break;
952                         }
953                 }
954         } while (!found);
955
956         if (data->phase == PHASE_END)
957                 puts("Phase=END\n");
958 }
959
960 static void stm32prog_devices_init(struct stm32prog_data *data)
961 {
962         int i;
963         int ret;
964
965         ret = treat_partition_list(data);
966         if (ret)
967                 goto error;
968
969         /* initialize the selected device */
970         for (i = 0; i < data->dev_nb; i++) {
971                 ret = init_device(data, &data->dev[i]);
972                 if (ret)
973                         goto error;
974         }
975
976         ret = create_partitions(data);
977         if (ret)
978                 goto error;
979
980         return;
981
982 error:
983         data->part_nb = 0;
984 }
985
986 int stm32prog_dfu_init(struct stm32prog_data *data)
987 {
988         /* init device if no error */
989         if (data->part_nb)
990                 stm32prog_devices_init(data);
991
992         if (data->part_nb)
993                 stm32prog_next_phase(data);
994
995         /* prepare DFU for device read/write */
996         dfu_free_entities();
997         return dfu_init_entities(data);
998 }
999
1000 int stm32prog_init(struct stm32prog_data *data, ulong addr, ulong size)
1001 {
1002         memset(data, 0x0, sizeof(*data));
1003         data->phase = PHASE_FLASHLAYOUT;
1004
1005         return parse_flash_layout(data, addr, size);
1006 }
1007
1008 void stm32prog_clean(struct stm32prog_data *data)
1009 {
1010         /* clean */
1011         dfu_free_entities();
1012         free(data->part_array);
1013         free(data->header_data);
1014 }
1015
1016 /* DFU callback: used after serial and direct DFU USB access */
1017 void dfu_flush_callback(struct dfu_entity *dfu)
1018 {
1019         if (!stm32prog_data)
1020                 return;
1021
1022         if (dfu->dev_type == DFU_DEV_RAM) {
1023                 if (dfu->alt == 0 &&
1024                     stm32prog_data->phase == PHASE_FLASHLAYOUT) {
1025                         stm32prog_end_phase(stm32prog_data);
1026                         /* waiting DFU DETACH for reenumeration */
1027                 }
1028         }
1029
1030         if (!stm32prog_data->cur_part)
1031                 return;
1032
1033         if (dfu->alt == stm32prog_data->cur_part->alt_id) {
1034                 stm32prog_end_phase(stm32prog_data);
1035                 stm32prog_next_phase(stm32prog_data);
1036         }
1037 }
1038
1039 void dfu_initiated_callback(struct dfu_entity *dfu)
1040 {
1041         if (!stm32prog_data)
1042                 return;
1043
1044         if (!stm32prog_data->cur_part)
1045                 return;
1046
1047         /* force the saved offset for the current partition */
1048         if (dfu->alt == stm32prog_data->cur_part->alt_id) {
1049                 dfu->offset = stm32prog_data->offset;
1050                 pr_debug("dfu offset = 0x%llx\n", dfu->offset);
1051         }
1052 }