dm: Change CMD_DM enabling
[oweals/u-boot.git] / arch / arm / mach-omap2 / emif-common.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * EMIF programming
4  *
5  * (C) Copyright 2010
6  * Texas Instruments, <www.ti.com>
7  *
8  * Aneesh V <aneesh@ti.com>
9  */
10
11 #include <common.h>
12 #include <asm/emif.h>
13 #include <asm/arch/clock.h>
14 #include <asm/arch/sys_proto.h>
15 #include <asm/omap_common.h>
16 #include <asm/omap_sec_common.h>
17 #include <asm/utils.h>
18 #include <linux/compiler.h>
19 #include <asm/ti-common/ti-edma3.h>
20
21 static int emif1_enabled = -1, emif2_enabled = -1;
22
23 void set_lpmode_selfrefresh(u32 base)
24 {
25         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
26         u32 reg;
27
28         reg = readl(&emif->emif_pwr_mgmt_ctrl);
29         reg &= ~EMIF_REG_LP_MODE_MASK;
30         reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
31         reg &= ~EMIF_REG_SR_TIM_MASK;
32         writel(reg, &emif->emif_pwr_mgmt_ctrl);
33
34         /* dummy read for the new SR_TIM to be loaded */
35         readl(&emif->emif_pwr_mgmt_ctrl);
36 }
37
38 void force_emif_self_refresh()
39 {
40         set_lpmode_selfrefresh(EMIF1_BASE);
41         if (!is_dra72x())
42                 set_lpmode_selfrefresh(EMIF2_BASE);
43 }
44
45 inline u32 emif_num(u32 base)
46 {
47         if (base == EMIF1_BASE)
48                 return 1;
49         else if (base == EMIF2_BASE)
50                 return 2;
51         else
52                 return 0;
53 }
54
55 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
56 {
57         u32 mr;
58         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
59
60         mr_addr |= cs << EMIF_REG_CS_SHIFT;
61         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
62         if (omap_revision() == OMAP4430_ES2_0)
63                 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
64         else
65                 mr = readl(&emif->emif_lpddr2_mode_reg_data);
66         debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
67               cs, mr_addr, mr);
68         if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
69             ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
70             ((mr & 0xff000000) >> 24) == (mr & 0xff))
71                 return mr & 0xff;
72         else
73                 return mr;
74 }
75
76 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
77 {
78         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
79
80         mr_addr |= cs << EMIF_REG_CS_SHIFT;
81         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
82         writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
83 }
84
85 void emif_reset_phy(u32 base)
86 {
87         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
88         u32 iodft;
89
90         iodft = readl(&emif->emif_iodft_tlgc);
91         iodft |= EMIF_REG_RESET_PHY_MASK;
92         writel(iodft, &emif->emif_iodft_tlgc);
93 }
94
95 static void do_lpddr2_init(u32 base, u32 cs)
96 {
97         u32 mr_addr;
98         const struct lpddr2_mr_regs *mr_regs;
99
100         get_lpddr2_mr_regs(&mr_regs);
101         /* Wait till device auto initialization is complete */
102         while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
103                 ;
104         set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
105         /*
106          * tZQINIT = 1 us
107          * Enough loops assuming a maximum of 2GHz
108          */
109
110         sdelay(2000);
111
112         set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
113         set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
114
115         /*
116          * Enable refresh along with writing MR2
117          * Encoding of RL in MR2 is (RL - 2)
118          */
119         mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
120         set_mr(base, cs, mr_addr, mr_regs->mr2);
121
122         if (mr_regs->mr3 > 0)
123                 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
124 }
125
126 static void lpddr2_init(u32 base, const struct emif_regs *regs)
127 {
128         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
129
130         /* Not NVM */
131         clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
132
133         /*
134          * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
135          * when EMIF_SDRAM_CONFIG register is written
136          */
137         setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
138
139         /*
140          * Set the SDRAM_CONFIG and PHY_CTRL for the
141          * un-locked frequency & default RL
142          */
143         writel(regs->sdram_config_init, &emif->emif_sdram_config);
144         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
145
146         do_ext_phy_settings(base, regs);
147
148         do_lpddr2_init(base, CS0);
149         if (regs->sdram_config & EMIF_REG_EBANK_MASK)
150                 do_lpddr2_init(base, CS1);
151
152         writel(regs->sdram_config, &emif->emif_sdram_config);
153         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
154
155         /* Enable refresh now */
156         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
157
158         }
159
160 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
161 {
162 }
163
164 void emif_update_timings(u32 base, const struct emif_regs *regs)
165 {
166         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
167
168         if (!is_dra7xx())
169                 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
170         else
171                 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
172
173         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
174         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
175         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
176         if (omap_revision() == OMAP4430_ES1_0) {
177                 /* ES1 bug EMIF should be in force idle during freq_update */
178                 writel(0, &emif->emif_pwr_mgmt_ctrl);
179         } else {
180                 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
181                 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
182         }
183         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
184         writel(regs->zq_config, &emif->emif_zq_config);
185         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
186         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
187
188         if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
189                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
190                         &emif->emif_l3_config);
191         } else if (omap_revision() >= OMAP4460_ES1_0) {
192                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
193                         &emif->emif_l3_config);
194         } else {
195                 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
196                         &emif->emif_l3_config);
197         }
198 }
199
200 #ifndef CONFIG_OMAP44XX
201 static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
202 {
203         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
204
205         /* keep sdram in self-refresh */
206         writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
207                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
208         __udelay(130);
209
210         /*
211          * Set invert_clkout (if activated)--DDR_PHYCTRL_1
212          * Invert clock adds an additional half cycle delay on the
213          * command interface.  The additional half cycle, is usually
214          * meant to enable leveling in the situation that DQS is later
215          * than CK on the board.It also helps provide some additional
216          * margin for leveling.
217          */
218         writel(regs->emif_ddr_phy_ctlr_1,
219                &emif->emif_ddr_phy_ctrl_1);
220
221         writel(regs->emif_ddr_phy_ctlr_1,
222                &emif->emif_ddr_phy_ctrl_1_shdw);
223         __udelay(130);
224
225         writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
226                & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
227
228         /* Launch Full leveling */
229         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
230
231         /* Wait till full leveling is complete */
232         readl(&emif->emif_rd_wr_lvl_ctl);
233               __udelay(130);
234
235         /* Read data eye leveling no of samples */
236         config_data_eye_leveling_samples(base);
237
238         /*
239          * Launch 8 incremental WR_LVL- to compensate for
240          * PHY limitation.
241          */
242         writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
243                &emif->emif_rd_wr_lvl_ctl);
244
245         __udelay(130);
246
247         /* Launch Incremental leveling */
248         writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
249                __udelay(130);
250 }
251
252 static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
253 {
254         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
255         u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
256         u32 reg, i, phy;
257
258         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[6];
259         phy = readl(&emif->emif_ddr_phy_ctrl_1);
260
261         /* Update PHY_REG_RDDQS_RATIO */
262         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
263         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
264                 for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
265                         reg = readl(emif_phy_status++);
266                         writel(reg, emif_ext_phy_ctrl_reg++);
267                         writel(reg, emif_ext_phy_ctrl_reg++);
268                 }
269
270         /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
271         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
272         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[11];
273         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
274                 for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
275                         reg = readl(emif_phy_status++);
276                         writel(reg, emif_ext_phy_ctrl_reg++);
277                         writel(reg, emif_ext_phy_ctrl_reg++);
278                 }
279
280         /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
281         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
282         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[16];
283         if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
284                 for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
285                         reg = readl(emif_phy_status++);
286                         writel(reg, emif_ext_phy_ctrl_reg++);
287                         writel(reg, emif_ext_phy_ctrl_reg++);
288                 }
289
290         /* Disable Leveling */
291         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
292         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
293         writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
294 }
295
296 static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
297 {
298         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
299
300         /* Clear Error Status */
301         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
302                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
303                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
304
305         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
306                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
307                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
308
309         /* Disable refreshed before leveling */
310         clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
311                         EMIF_REG_INITREF_DIS_MASK);
312
313         /* Start Full leveling */
314         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
315
316         __udelay(300);
317
318         /* Check for leveling timeout */
319         if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
320                 printf("Leveling timeout on EMIF%d\n", emif_num(base));
321                 return;
322         }
323
324         /* Enable refreshes after leveling */
325         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
326
327         debug("HW leveling success\n");
328         /*
329          * Update slave ratios in EXT_PHY_CTRLx registers
330          * as per HW leveling output
331          */
332         update_hwleveling_output(base, regs);
333 }
334
335 static void dra7_reset_ddr_data(u32 base, u32 size)
336 {
337 #if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA)
338         enable_edma3_clocks();
339
340         edma3_fill(EDMA3_BASE, 1, (void *)base, 0, size);
341
342         disable_edma3_clocks();
343 #else
344         memset((void *)base, 0, size);
345 #endif
346 }
347
348 static void dra7_enable_ecc(u32 base, const struct emif_regs *regs)
349 {
350         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
351         u32 rgn, size;
352
353         /* ECC available only on dra76x EMIF1 */
354         if ((base != EMIF1_BASE) || !is_dra76x())
355                 return;
356
357         if (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK) {
358                 writel(regs->emif_ecc_address_range_1,
359                        &emif->emif_ecc_address_range_1);
360                 writel(regs->emif_ecc_address_range_2,
361                        &emif->emif_ecc_address_range_2);
362                 writel(regs->emif_ecc_ctrl_reg, &emif->emif_ecc_ctrl_reg);
363
364                 /* Set region1 memory with 0 */
365                 rgn = ((regs->emif_ecc_address_range_1 &
366                         EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16) +
367                        CONFIG_SYS_SDRAM_BASE;
368                 size = (regs->emif_ecc_address_range_1 &
369                         EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000;
370
371                 if (regs->emif_ecc_ctrl_reg &
372                     EMIF_ECC_REG_ECC_ADDR_RGN_1_EN_MASK)
373                         dra7_reset_ddr_data(rgn, size);
374
375                 /* Set region2 memory with 0 */
376                 rgn = ((regs->emif_ecc_address_range_2 &
377                         EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16) +
378                        CONFIG_SYS_SDRAM_BASE;
379                 size = (regs->emif_ecc_address_range_2 &
380                         EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000;
381
382                 if (regs->emif_ecc_ctrl_reg &
383                     EMIF_ECC_REG_ECC_ADDR_RGN_2_EN_MASK)
384                         dra7_reset_ddr_data(rgn, size);
385
386 #ifdef CONFIG_DRA7XX
387                 /* Clear the status flags and other history */
388                 writel(readl(&emif->emif_1b_ecc_err_cnt),
389                        &emif->emif_1b_ecc_err_cnt);
390                 writel(0xffffffff, &emif->emif_1b_ecc_err_dist_1);
391                 writel(0x1, &emif->emif_2b_ecc_err_addr_log);
392                 writel(EMIF_INT_WR_ECC_ERR_SYS_MASK |
393                        EMIF_INT_TWOBIT_ECC_ERR_SYS_MASK |
394                        EMIF_INT_ONEBIT_ECC_ERR_SYS_MASK,
395                        &emif->emif_irqstatus_sys);
396 #endif
397         }
398 }
399
400 static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
401 {
402         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
403
404         if (warm_reset()) {
405                 emif_reset_phy(base);
406                 writel(0x0, &emif->emif_pwr_mgmt_ctrl);
407         }
408         do_ext_phy_settings(base, regs);
409
410         writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
411                &emif->emif_sdram_ref_ctrl);
412         /* Update timing registers */
413         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
414         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
415         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
416
417         writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
418         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
419         writel(regs->zq_config, &emif->emif_zq_config);
420         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
421         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
422         writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
423
424         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
425         writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
426
427         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
428
429         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
430         writel(regs->sdram_config_init, &emif->emif_sdram_config);
431
432         __udelay(1000);
433
434         writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
435
436         if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK) {
437                 /*
438                  * Perform Dummy ECC setup just to allow hardware
439                  * leveling of ECC memories
440                  */
441                 if (is_dra76x() && (base == EMIF1_BASE) &&
442                     (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK)) {
443                         writel(0, &emif->emif_ecc_address_range_1);
444                         writel(0, &emif->emif_ecc_address_range_2);
445                         writel(EMIF_ECC_CTRL_REG_ECC_EN_MASK |
446                                EMIF_ECC_CTRL_REG_ECC_ADDR_RGN_PROT_MASK,
447                                &emif->emif_ecc_ctrl_reg);
448                 }
449
450                 dra7_ddr3_leveling(base, regs);
451
452                 /* Disable ECC */
453                 if (is_dra76x())
454                         writel(0, &emif->emif_ecc_ctrl_reg);
455         }
456
457         /* Enable ECC as necessary */
458         dra7_enable_ecc(base, regs);
459 }
460
461 static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
462 {
463         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
464
465         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
466         writel(regs->sdram_config_init, &emif->emif_sdram_config);
467         /*
468          * Set SDRAM_CONFIG and PHY control registers to locked frequency
469          * and RL =7. As the default values of the Mode Registers are not
470          * defined, contents of mode Registers must be fully initialized.
471          * H/W takes care of this initialization
472          */
473         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
474
475         /* Update timing registers */
476         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
477         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
478         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
479
480         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
481
482         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
483         writel(regs->sdram_config_init, &emif->emif_sdram_config);
484         do_ext_phy_settings(base, regs);
485
486         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
487         omap5_ddr3_leveling(base, regs);
488 }
489
490 static void ddr3_init(u32 base, const struct emif_regs *regs)
491 {
492         if (is_omap54xx())
493                 omap5_ddr3_init(base, regs);
494         else
495                 dra7_ddr3_init(base, regs);
496 }
497 #endif
498
499 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
500 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
501
502 /*
503  * Organization and refresh requirements for LPDDR2 devices of different
504  * types and densities. Derived from JESD209-2 section 2.4
505  */
506 const struct lpddr2_addressing addressing_table[] = {
507         /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
508         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
509         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
510         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
511         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
512         {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
513         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
514         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
515         {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
516         {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
517         {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
518 };
519
520 static const u32 lpddr2_density_2_size_in_mbytes[] = {
521         8,                      /* 64Mb */
522         16,                     /* 128Mb */
523         32,                     /* 256Mb */
524         64,                     /* 512Mb */
525         128,                    /* 1Gb   */
526         256,                    /* 2Gb   */
527         512,                    /* 4Gb   */
528         1024,                   /* 8Gb   */
529         2048,                   /* 16Gb  */
530         4096                    /* 32Gb  */
531 };
532
533 /*
534  * Calculate the period of DDR clock from frequency value and set the
535  * denominator and numerator in global variables for easy access later
536  */
537 static void set_ddr_clk_period(u32 freq)
538 {
539         /*
540          * period = 1/freq
541          * period_in_ns = 10^9/freq
542          */
543         *T_num = 1000000000;
544         *T_den = freq;
545         cancel_out(T_num, T_den, 200);
546
547 }
548
549 /*
550  * Convert time in nano seconds to number of cycles of DDR clock
551  */
552 static inline u32 ns_2_cycles(u32 ns)
553 {
554         return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
555 }
556
557 /*
558  * ns_2_cycles with the difference that the time passed is 2 times the actual
559  * value(to avoid fractions). The cycles returned is for the original value of
560  * the timing parameter
561  */
562 static inline u32 ns_x2_2_cycles(u32 ns)
563 {
564         return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
565 }
566
567 /*
568  * Find addressing table index based on the device's type(S2 or S4) and
569  * density
570  */
571 s8 addressing_table_index(u8 type, u8 density, u8 width)
572 {
573         u8 index;
574         if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
575                 return -1;
576
577         /*
578          * Look at the way ADDR_TABLE_INDEX* values have been defined
579          * in emif.h compared to LPDDR2_DENSITY_* values
580          * The table is layed out in the increasing order of density
581          * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
582          * at the end
583          */
584         if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
585                 index = ADDR_TABLE_INDEX1GS2;
586         else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
587                 index = ADDR_TABLE_INDEX2GS2;
588         else
589                 index = density;
590
591         debug("emif: addressing table index %d\n", index);
592
593         return index;
594 }
595
596 /*
597  * Find the the right timing table from the array of timing
598  * tables of the device using DDR clock frequency
599  */
600 static const struct lpddr2_ac_timings *get_timings_table(const struct
601                         lpddr2_ac_timings *const *device_timings,
602                         u32 freq)
603 {
604         u32 i, temp, freq_nearest;
605         const struct lpddr2_ac_timings *timings = 0;
606
607         emif_assert(freq <= MAX_LPDDR2_FREQ);
608         emif_assert(device_timings);
609
610         /*
611          * Start with the maximum allowed frequency - that is always safe
612          */
613         freq_nearest = MAX_LPDDR2_FREQ;
614         /*
615          * Find the timings table that has the max frequency value:
616          *   i.  Above or equal to the DDR frequency - safe
617          *   ii. The lowest that satisfies condition (i) - optimal
618          */
619         for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
620                 temp = device_timings[i]->max_freq;
621                 if ((temp >= freq) && (temp <= freq_nearest)) {
622                         freq_nearest = temp;
623                         timings = device_timings[i];
624                 }
625         }
626         debug("emif: timings table: %d\n", freq_nearest);
627         return timings;
628 }
629
630 /*
631  * Finds the value of emif_sdram_config_reg
632  * All parameters are programmed based on the device on CS0.
633  * If there is a device on CS1, it will be same as that on CS0 or
634  * it will be NVM. We don't support NVM yet.
635  * If cs1_device pointer is NULL it is assumed that there is no device
636  * on CS1
637  */
638 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
639                                 const struct lpddr2_device_details *cs1_device,
640                                 const struct lpddr2_addressing *addressing,
641                                 u8 RL)
642 {
643         u32 config_reg = 0;
644
645         config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
646         config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
647                         EMIF_REG_IBANK_POS_SHIFT;
648
649         config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
650
651         config_reg |= RL << EMIF_REG_CL_SHIFT;
652
653         config_reg |= addressing->row_sz[cs0_device->io_width] <<
654                         EMIF_REG_ROWSIZE_SHIFT;
655
656         config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
657
658         config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
659                         EMIF_REG_EBANK_SHIFT;
660
661         config_reg |= addressing->col_sz[cs0_device->io_width] <<
662                         EMIF_REG_PAGESIZE_SHIFT;
663
664         return config_reg;
665 }
666
667 static u32 get_sdram_ref_ctrl(u32 freq,
668                               const struct lpddr2_addressing *addressing)
669 {
670         u32 ref_ctrl = 0, val = 0, freq_khz;
671         freq_khz = freq / 1000;
672         /*
673          * refresh rate to be set is 'tREFI * freq in MHz
674          * division by 10000 to account for khz and x10 in t_REFI_us_x10
675          */
676         val = addressing->t_REFI_us_x10 * freq_khz / 10000;
677         ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
678
679         return ref_ctrl;
680 }
681
682 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
683                                const struct lpddr2_min_tck *min_tck,
684                                const struct lpddr2_addressing *addressing)
685 {
686         u32 tim1 = 0, val = 0;
687         val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
688         tim1 |= val << EMIF_REG_T_WTR_SHIFT;
689
690         if (addressing->num_banks == BANKS8)
691                 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
692                                                         (4 * (*T_num)) - 1;
693         else
694                 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
695
696         tim1 |= val << EMIF_REG_T_RRD_SHIFT;
697
698         val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
699         tim1 |= val << EMIF_REG_T_RC_SHIFT;
700
701         val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
702         tim1 |= val << EMIF_REG_T_RAS_SHIFT;
703
704         val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
705         tim1 |= val << EMIF_REG_T_WR_SHIFT;
706
707         val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
708         tim1 |= val << EMIF_REG_T_RCD_SHIFT;
709
710         val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
711         tim1 |= val << EMIF_REG_T_RP_SHIFT;
712
713         return tim1;
714 }
715
716 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
717                                const struct lpddr2_min_tck *min_tck)
718 {
719         u32 tim2 = 0, val = 0;
720         val = max(min_tck->tCKE, timings->tCKE) - 1;
721         tim2 |= val << EMIF_REG_T_CKE_SHIFT;
722
723         val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
724         tim2 |= val << EMIF_REG_T_RTP_SHIFT;
725
726         /*
727          * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
728          * same value
729          */
730         val = ns_2_cycles(timings->tXSR) - 1;
731         tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
732         tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
733
734         val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
735         tim2 |= val << EMIF_REG_T_XP_SHIFT;
736
737         return tim2;
738 }
739
740 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
741                                const struct lpddr2_min_tck *min_tck,
742                                const struct lpddr2_addressing *addressing)
743 {
744         u32 tim3 = 0, val = 0;
745         val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
746         tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
747
748         val = ns_2_cycles(timings->tRFCab) - 1;
749         tim3 |= val << EMIF_REG_T_RFC_SHIFT;
750
751         val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
752         tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
753
754         val = ns_2_cycles(timings->tZQCS) - 1;
755         tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
756
757         val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
758         tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
759
760         return tim3;
761 }
762
763 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
764                              const struct lpddr2_addressing *addressing,
765                              u8 volt_ramp)
766 {
767         u32 zq = 0, val = 0;
768         if (volt_ramp)
769                 val =
770                     EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
771                     addressing->t_REFI_us_x10;
772         else
773                 val =
774                     EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
775                     addressing->t_REFI_us_x10;
776         zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
777
778         zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
779
780         zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
781
782         zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
783
784         /*
785          * Assuming that two chipselects have a single calibration resistor
786          * If there are indeed two calibration resistors, then this flag should
787          * be enabled to take advantage of dual calibration feature.
788          * This data should ideally come from board files. But considering
789          * that none of the boards today have calibration resistors per CS,
790          * it would be an unnecessary overhead.
791          */
792         zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
793
794         zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
795
796         zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
797
798         return zq;
799 }
800
801 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
802                                  const struct lpddr2_addressing *addressing,
803                                  u8 is_derated)
804 {
805         u32 alert = 0, interval;
806         interval =
807             TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
808         if (is_derated)
809                 interval *= 4;
810         alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
811
812         alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
813
814         alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
815
816         alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
817
818         alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
819
820         alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
821
822         return alert;
823 }
824
825 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
826 {
827         u32 idle = 0, val = 0;
828         if (volt_ramp)
829                 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
830         else
831                 /*Maximum value in normal conditions - suggested by hw team */
832                 val = 0x1FF;
833         idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
834
835         idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
836
837         return idle;
838 }
839
840 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
841 {
842         u32 phy = 0, val = 0;
843
844         phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
845
846         if (freq <= 100000000)
847                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
848         else if (freq <= 200000000)
849                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
850         else
851                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
852         phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
853
854         /* Other fields are constant magic values. Hardcode them together */
855         phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
856                 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
857
858         return phy;
859 }
860
861 static u32 get_emif_mem_size(u32 base)
862 {
863         u32 size_mbytes = 0, temp;
864         struct emif_device_details dev_details;
865         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
866         u32 emif_nr = emif_num(base);
867
868         emif_reset_phy(base);
869         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
870                                                 &cs0_dev_details);
871         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
872                                                 &cs1_dev_details);
873         emif_reset_phy(base);
874
875         if (dev_details.cs0_device_details) {
876                 temp = dev_details.cs0_device_details->density;
877                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
878         }
879
880         if (dev_details.cs1_device_details) {
881                 temp = dev_details.cs1_device_details->density;
882                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
883         }
884         /* convert to bytes */
885         return size_mbytes << 20;
886 }
887
888 /* Gets the encoding corresponding to a given DMM section size */
889 u32 get_dmm_section_size_map(u32 section_size)
890 {
891         /*
892          * Section size mapping:
893          * 0x0: 16-MiB section
894          * 0x1: 32-MiB section
895          * 0x2: 64-MiB section
896          * 0x3: 128-MiB section
897          * 0x4: 256-MiB section
898          * 0x5: 512-MiB section
899          * 0x6: 1-GiB section
900          * 0x7: 2-GiB section
901          */
902         section_size >>= 24; /* divide by 16 MB */
903         return log_2_n_round_down(section_size);
904 }
905
906 static void emif_calculate_regs(
907                 const struct emif_device_details *emif_dev_details,
908                 u32 freq, struct emif_regs *regs)
909 {
910         u32 temp, sys_freq;
911         const struct lpddr2_addressing *addressing;
912         const struct lpddr2_ac_timings *timings;
913         const struct lpddr2_min_tck *min_tck;
914         const struct lpddr2_device_details *cs0_dev_details =
915                                         emif_dev_details->cs0_device_details;
916         const struct lpddr2_device_details *cs1_dev_details =
917                                         emif_dev_details->cs1_device_details;
918         const struct lpddr2_device_timings *cs0_dev_timings =
919                                         emif_dev_details->cs0_device_timings;
920
921         emif_assert(emif_dev_details);
922         emif_assert(regs);
923         /*
924          * You can not have a device on CS1 without one on CS0
925          * So configuring EMIF without a device on CS0 doesn't
926          * make sense
927          */
928         emif_assert(cs0_dev_details);
929         emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
930         /*
931          * If there is a device on CS1 it should be same type as CS0
932          * (or NVM. But NVM is not supported in this driver yet)
933          */
934         emif_assert((cs1_dev_details == NULL) ||
935                     (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
936                     (cs0_dev_details->type == cs1_dev_details->type));
937         emif_assert(freq <= MAX_LPDDR2_FREQ);
938
939         set_ddr_clk_period(freq);
940
941         /*
942          * The device on CS0 is used for all timing calculations
943          * There is only one set of registers for timings per EMIF. So, if the
944          * second CS(CS1) has a device, it should have the same timings as the
945          * device on CS0
946          */
947         timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
948         emif_assert(timings);
949         min_tck = cs0_dev_timings->min_tck;
950
951         temp = addressing_table_index(cs0_dev_details->type,
952                                       cs0_dev_details->density,
953                                       cs0_dev_details->io_width);
954
955         emif_assert((temp >= 0));
956         addressing = &(addressing_table[temp]);
957         emif_assert(addressing);
958
959         sys_freq = get_sys_clk_freq();
960
961         regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
962                                                         cs1_dev_details,
963                                                         addressing, RL_BOOT);
964
965         regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
966                                                 cs1_dev_details,
967                                                 addressing, RL_FINAL);
968
969         regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
970
971         regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
972
973         regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
974
975         regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
976
977         regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
978
979         regs->temp_alert_config =
980             get_temp_alert_config(cs1_dev_details, addressing, 0);
981
982         regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
983                                             LPDDR2_VOLTAGE_STABLE);
984
985         regs->emif_ddr_phy_ctlr_1_init =
986                         get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
987
988         regs->emif_ddr_phy_ctlr_1 =
989                         get_ddr_phy_ctrl_1(freq, RL_FINAL);
990
991         regs->freq = freq;
992
993         print_timing_reg(regs->sdram_config_init);
994         print_timing_reg(regs->sdram_config);
995         print_timing_reg(regs->ref_ctrl);
996         print_timing_reg(regs->sdram_tim1);
997         print_timing_reg(regs->sdram_tim2);
998         print_timing_reg(regs->sdram_tim3);
999         print_timing_reg(regs->read_idle_ctrl);
1000         print_timing_reg(regs->temp_alert_config);
1001         print_timing_reg(regs->zq_config);
1002         print_timing_reg(regs->emif_ddr_phy_ctlr_1);
1003         print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
1004 }
1005 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1006
1007 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
1008 const char *get_lpddr2_type(u8 type_id)
1009 {
1010         switch (type_id) {
1011         case LPDDR2_TYPE_S4:
1012                 return "LPDDR2-S4";
1013         case LPDDR2_TYPE_S2:
1014                 return "LPDDR2-S2";
1015         default:
1016                 return NULL;
1017         }
1018 }
1019
1020 const char *get_lpddr2_io_width(u8 width_id)
1021 {
1022         switch (width_id) {
1023         case LPDDR2_IO_WIDTH_8:
1024                 return "x8";
1025         case LPDDR2_IO_WIDTH_16:
1026                 return "x16";
1027         case LPDDR2_IO_WIDTH_32:
1028                 return "x32";
1029         default:
1030                 return NULL;
1031         }
1032 }
1033
1034 const char *get_lpddr2_manufacturer(u32 manufacturer)
1035 {
1036         switch (manufacturer) {
1037         case LPDDR2_MANUFACTURER_SAMSUNG:
1038                 return "Samsung";
1039         case LPDDR2_MANUFACTURER_QIMONDA:
1040                 return "Qimonda";
1041         case LPDDR2_MANUFACTURER_ELPIDA:
1042                 return "Elpida";
1043         case LPDDR2_MANUFACTURER_ETRON:
1044                 return "Etron";
1045         case LPDDR2_MANUFACTURER_NANYA:
1046                 return "Nanya";
1047         case LPDDR2_MANUFACTURER_HYNIX:
1048                 return "Hynix";
1049         case LPDDR2_MANUFACTURER_MOSEL:
1050                 return "Mosel";
1051         case LPDDR2_MANUFACTURER_WINBOND:
1052                 return "Winbond";
1053         case LPDDR2_MANUFACTURER_ESMT:
1054                 return "ESMT";
1055         case LPDDR2_MANUFACTURER_SPANSION:
1056                 return "Spansion";
1057         case LPDDR2_MANUFACTURER_SST:
1058                 return "SST";
1059         case LPDDR2_MANUFACTURER_ZMOS:
1060                 return "ZMOS";
1061         case LPDDR2_MANUFACTURER_INTEL:
1062                 return "Intel";
1063         case LPDDR2_MANUFACTURER_NUMONYX:
1064                 return "Numonyx";
1065         case LPDDR2_MANUFACTURER_MICRON:
1066                 return "Micron";
1067         default:
1068                 return NULL;
1069         }
1070 }
1071
1072 static void display_sdram_details(u32 emif_nr, u32 cs,
1073                                   struct lpddr2_device_details *device)
1074 {
1075         const char *mfg_str;
1076         const char *type_str;
1077         char density_str[10];
1078         u32 density;
1079
1080         debug("EMIF%d CS%d\t", emif_nr, cs);
1081
1082         if (!device) {
1083                 debug("None\n");
1084                 return;
1085         }
1086
1087         mfg_str = get_lpddr2_manufacturer(device->manufacturer);
1088         type_str = get_lpddr2_type(device->type);
1089
1090         density = lpddr2_density_2_size_in_mbytes[device->density];
1091         if ((density / 1024 * 1024) == density) {
1092                 density /= 1024;
1093                 sprintf(density_str, "%d GB", density);
1094         } else
1095                 sprintf(density_str, "%d MB", density);
1096         if (mfg_str && type_str)
1097                 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1098 }
1099
1100 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1101                                   struct lpddr2_device_details *lpddr2_device)
1102 {
1103         u32 mr = 0, temp;
1104
1105         mr = get_mr(base, cs, LPDDR2_MR0);
1106         if (mr > 0xFF) {
1107                 /* Mode register value bigger than 8 bit */
1108                 return 0;
1109         }
1110
1111         temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1112         if (temp) {
1113                 /* Not SDRAM */
1114                 return 0;
1115         }
1116         temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1117
1118         if (temp) {
1119                 /* DNV supported - But DNV is only supported for NVM */
1120                 return 0;
1121         }
1122
1123         mr = get_mr(base, cs, LPDDR2_MR4);
1124         if (mr > 0xFF) {
1125                 /* Mode register value bigger than 8 bit */
1126                 return 0;
1127         }
1128
1129         mr = get_mr(base, cs, LPDDR2_MR5);
1130         if (mr > 0xFF) {
1131                 /* Mode register value bigger than 8 bit */
1132                 return 0;
1133         }
1134
1135         if (!get_lpddr2_manufacturer(mr)) {
1136                 /* Manufacturer not identified */
1137                 return 0;
1138         }
1139         lpddr2_device->manufacturer = mr;
1140
1141         mr = get_mr(base, cs, LPDDR2_MR6);
1142         if (mr >= 0xFF) {
1143                 /* Mode register value bigger than 8 bit */
1144                 return 0;
1145         }
1146
1147         mr = get_mr(base, cs, LPDDR2_MR7);
1148         if (mr >= 0xFF) {
1149                 /* Mode register value bigger than 8 bit */
1150                 return 0;
1151         }
1152
1153         mr = get_mr(base, cs, LPDDR2_MR8);
1154         if (mr >= 0xFF) {
1155                 /* Mode register value bigger than 8 bit */
1156                 return 0;
1157         }
1158
1159         temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1160         if (!get_lpddr2_type(temp)) {
1161                 /* Not SDRAM */
1162                 return 0;
1163         }
1164         lpddr2_device->type = temp;
1165
1166         temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1167         if (temp > LPDDR2_DENSITY_32Gb) {
1168                 /* Density not supported */
1169                 return 0;
1170         }
1171         lpddr2_device->density = temp;
1172
1173         temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1174         if (!get_lpddr2_io_width(temp)) {
1175                 /* IO width unsupported value */
1176                 return 0;
1177         }
1178         lpddr2_device->io_width = temp;
1179
1180         /*
1181          * If all the above tests pass we should
1182          * have a device on this chip-select
1183          */
1184         return 1;
1185 }
1186
1187 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1188                         struct lpddr2_device_details *lpddr2_dev_details)
1189 {
1190         u32 phy;
1191         u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1192
1193         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1194
1195         if (!lpddr2_dev_details)
1196                 return NULL;
1197
1198         /* Do the minimum init for mode register accesses */
1199         if (!(running_from_sdram() || warm_reset())) {
1200                 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1201                 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1202         }
1203
1204         if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1205                 return NULL;
1206
1207         display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1208
1209         return lpddr2_dev_details;
1210 }
1211 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1212
1213 static void do_sdram_init(u32 base)
1214 {
1215         const struct emif_regs *regs;
1216         u32 in_sdram, emif_nr;
1217
1218         debug(">>do_sdram_init() %x\n", base);
1219
1220         in_sdram = running_from_sdram();
1221         emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1222
1223 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1224         emif_get_reg_dump(emif_nr, &regs);
1225         if (!regs) {
1226                 debug("EMIF: reg dump not provided\n");
1227                 return;
1228         }
1229 #else
1230         /*
1231          * The user has not provided the register values. We need to
1232          * calculate it based on the timings and the DDR frequency
1233          */
1234         struct emif_device_details dev_details;
1235         struct emif_regs calculated_regs;
1236
1237         /*
1238          * Get device details:
1239          * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1240          * - Obtained from user otherwise
1241          */
1242         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1243         emif_reset_phy(base);
1244         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1245                                                 &cs0_dev_details);
1246         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1247                                                 &cs1_dev_details);
1248         emif_reset_phy(base);
1249
1250         /* Return if no devices on this EMIF */
1251         if (!dev_details.cs0_device_details &&
1252             !dev_details.cs1_device_details) {
1253                 return;
1254         }
1255
1256         /*
1257          * Get device timings:
1258          * - Default timings specified by JESD209-2 if
1259          *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1260          * - Obtained from user otherwise
1261          */
1262         emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1263                                 &dev_details.cs1_device_timings);
1264
1265         /* Calculate the register values */
1266         emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1267         regs = &calculated_regs;
1268 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1269
1270         /*
1271          * Initializing the DDR device can not happen from SDRAM.
1272          * Changing the timing registers in EMIF can happen(going from one
1273          * OPP to another)
1274          */
1275         if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1276                 if (emif_sdram_type(regs->sdram_config) ==
1277                     EMIF_SDRAM_TYPE_LPDDR2)
1278                         lpddr2_init(base, regs);
1279 #ifndef CONFIG_OMAP44XX
1280                 else
1281                         ddr3_init(base, regs);
1282 #endif
1283         }
1284 #ifdef CONFIG_OMAP54XX
1285         if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1286             EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1287                 set_lpmode_selfrefresh(base);
1288                 emif_reset_phy(base);
1289                 omap5_ddr3_leveling(base, regs);
1290         }
1291 #endif
1292
1293         /* Write to the shadow registers */
1294         emif_update_timings(base, regs);
1295
1296         debug("<<do_sdram_init() %x\n", base);
1297 }
1298
1299 void emif_post_init_config(u32 base)
1300 {
1301         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1302         u32 omap_rev = omap_revision();
1303
1304         /* reset phy on ES2.0 */
1305         if (omap_rev == OMAP4430_ES2_0)
1306                 emif_reset_phy(base);
1307
1308         /* Put EMIF back in smart idle on ES1.0 */
1309         if (omap_rev == OMAP4430_ES1_0)
1310                 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1311 }
1312
1313 void dmm_init(u32 base)
1314 {
1315         const struct dmm_lisa_map_regs *lisa_map_regs;
1316         u32 i, section, valid;
1317
1318 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1319         emif_get_dmm_regs(&lisa_map_regs);
1320 #else
1321         u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1322         u32 section_cnt, sys_addr;
1323         struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1324
1325         mapped_size = 0;
1326         section_cnt = 3;
1327         sys_addr = CONFIG_SYS_SDRAM_BASE;
1328         emif1_size = get_emif_mem_size(EMIF1_BASE);
1329         emif2_size = get_emif_mem_size(EMIF2_BASE);
1330         debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1331
1332         if (!emif1_size && !emif2_size)
1333                 return;
1334
1335         /* symmetric interleaved section */
1336         if (emif1_size && emif2_size) {
1337                 mapped_size = min(emif1_size, emif2_size);
1338                 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1339                 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1340                 /* only MSB */
1341                 section_map |= (sys_addr >> 24) <<
1342                                 EMIF_SYS_ADDR_SHIFT;
1343                 section_map |= get_dmm_section_size_map(mapped_size * 2)
1344                                 << EMIF_SYS_SIZE_SHIFT;
1345                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1346                 emif1_size -= mapped_size;
1347                 emif2_size -= mapped_size;
1348                 sys_addr += (mapped_size * 2);
1349                 section_cnt--;
1350         }
1351
1352         /*
1353          * Single EMIF section(we can have a maximum of 1 single EMIF
1354          * section- either EMIF1 or EMIF2 or none, but not both)
1355          */
1356         if (emif1_size) {
1357                 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1358                 section_map |= get_dmm_section_size_map(emif1_size)
1359                                 << EMIF_SYS_SIZE_SHIFT;
1360                 /* only MSB */
1361                 section_map |= (mapped_size >> 24) <<
1362                                 EMIF_SDRC_ADDR_SHIFT;
1363                 /* only MSB */
1364                 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1365                 section_cnt--;
1366         }
1367         if (emif2_size) {
1368                 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1369                 section_map |= get_dmm_section_size_map(emif2_size) <<
1370                                 EMIF_SYS_SIZE_SHIFT;
1371                 /* only MSB */
1372                 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1373                 /* only MSB */
1374                 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1375                 section_cnt--;
1376         }
1377
1378         if (section_cnt == 2) {
1379                 /* Only 1 section - either symmetric or single EMIF */
1380                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1381                 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1382                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1383         } else {
1384                 /* 2 sections - 1 symmetric, 1 single EMIF */
1385                 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1386                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1387         }
1388
1389         /* TRAP for invalid TILER mappings in section 0 */
1390         lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1391
1392         if (omap_revision() >= OMAP4460_ES1_0)
1393                 lis_map_regs_calculated.is_ma_present = 1;
1394
1395         lisa_map_regs = &lis_map_regs_calculated;
1396 #endif
1397         struct dmm_lisa_map_regs *hw_lisa_map_regs =
1398             (struct dmm_lisa_map_regs *)base;
1399
1400         writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1401         writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1402         writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1403         writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1404
1405         writel(lisa_map_regs->dmm_lisa_map_3,
1406                 &hw_lisa_map_regs->dmm_lisa_map_3);
1407         writel(lisa_map_regs->dmm_lisa_map_2,
1408                 &hw_lisa_map_regs->dmm_lisa_map_2);
1409         writel(lisa_map_regs->dmm_lisa_map_1,
1410                 &hw_lisa_map_regs->dmm_lisa_map_1);
1411         writel(lisa_map_regs->dmm_lisa_map_0,
1412                 &hw_lisa_map_regs->dmm_lisa_map_0);
1413
1414         if (lisa_map_regs->is_ma_present) {
1415                 hw_lisa_map_regs =
1416                     (struct dmm_lisa_map_regs *)MA_BASE;
1417
1418                 writel(lisa_map_regs->dmm_lisa_map_3,
1419                         &hw_lisa_map_regs->dmm_lisa_map_3);
1420                 writel(lisa_map_regs->dmm_lisa_map_2,
1421                         &hw_lisa_map_regs->dmm_lisa_map_2);
1422                 writel(lisa_map_regs->dmm_lisa_map_1,
1423                         &hw_lisa_map_regs->dmm_lisa_map_1);
1424                 writel(lisa_map_regs->dmm_lisa_map_0,
1425                         &hw_lisa_map_regs->dmm_lisa_map_0);
1426
1427                 setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
1428         }
1429
1430         /*
1431          * EMIF should be configured only when
1432          * memory is mapped on it. Using emif1_enabled
1433          * and emif2_enabled variables for this.
1434          */
1435         emif1_enabled = 0;
1436         emif2_enabled = 0;
1437         for (i = 0; i < 4; i++) {
1438                 section = __raw_readl(DMM_BASE + i*4);
1439                 valid = (section & EMIF_SDRC_MAP_MASK) >>
1440                         (EMIF_SDRC_MAP_SHIFT);
1441                 if (valid == 3) {
1442                         emif1_enabled = 1;
1443                         emif2_enabled = 1;
1444                         break;
1445                 }
1446
1447                 if (valid == 1)
1448                         emif1_enabled = 1;
1449
1450                 if (valid == 2)
1451                         emif2_enabled = 1;
1452         }
1453 }
1454
1455 static void do_bug0039_workaround(u32 base)
1456 {
1457         u32 val, i, clkctrl;
1458         struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1459         const struct read_write_regs *bug_00339_regs;
1460         u32 iterations;
1461         u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1462         u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1463
1464         if (is_dra7xx())
1465                 phy_status_base++;
1466
1467         bug_00339_regs = get_bug_regs(&iterations);
1468
1469         /* Put EMIF in to idle */
1470         clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1471         __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1472
1473         /* Copy the phy status registers in to phy ctrl shadow registers */
1474         for (i = 0; i < iterations; i++) {
1475                 val = __raw_readl(phy_status_base +
1476                                   bug_00339_regs[i].read_reg - 1);
1477
1478                 __raw_writel(val, phy_ctrl_base +
1479                              ((bug_00339_regs[i].write_reg - 1) << 1));
1480
1481                 __raw_writel(val, phy_ctrl_base +
1482                              (bug_00339_regs[i].write_reg << 1) - 1);
1483         }
1484
1485         /* Disable leveling */
1486         writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1487
1488         __raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1489 }
1490
1491 /*
1492  * SDRAM initialization:
1493  * SDRAM initialization has two parts:
1494  * 1. Configuring the SDRAM device
1495  * 2. Update the AC timings related parameters in the EMIF module
1496  * (1) should be done only once and should not be done while we are
1497  * running from SDRAM.
1498  * (2) can and should be done more than once if OPP changes.
1499  * Particularly, this may be needed when we boot without SPL and
1500  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1501  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1502  * the frequency. So,
1503  * Doing (1) and (2) makes sense - first time initialization
1504  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1505  * Doing (1) and not (2) doen't make sense
1506  * See do_sdram_init() for the details
1507  */
1508 void sdram_init(void)
1509 {
1510         u32 in_sdram, size_prog, size_detect;
1511         struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1512         u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1513
1514         debug(">>sdram_init()\n");
1515
1516         if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1517                 return;
1518
1519         in_sdram = running_from_sdram();
1520         debug("in_sdram = %d\n", in_sdram);
1521
1522         if (!in_sdram) {
1523                 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1524                         bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1525                 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1526                         writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1527         }
1528
1529         if (!in_sdram)
1530                 dmm_init(DMM_BASE);
1531
1532         if (emif1_enabled)
1533                 do_sdram_init(EMIF1_BASE);
1534
1535         if (emif2_enabled)
1536                 do_sdram_init(EMIF2_BASE);
1537
1538         if (!(in_sdram || warm_reset())) {
1539                 if (emif1_enabled)
1540                         emif_post_init_config(EMIF1_BASE);
1541                 if (emif2_enabled)
1542                         emif_post_init_config(EMIF2_BASE);
1543         }
1544
1545         /* for the shadow registers to take effect */
1546         if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1547                 freq_update_core();
1548
1549         /* Do some testing after the init */
1550         if (!in_sdram) {
1551                 size_prog = omap_sdram_size();
1552                 size_prog = log_2_n_round_down(size_prog);
1553                 size_prog = (1 << size_prog);
1554
1555                 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1556                                                 size_prog);
1557                 /* Compare with the size programmed */
1558                 if (size_detect != size_prog) {
1559                         printf("SDRAM: identified size not same as expected"
1560                                 " size identified: %x expected: %x\n",
1561                                 size_detect,
1562                                 size_prog);
1563                 } else
1564                         debug("get_ram_size() successful");
1565         }
1566
1567 #if defined(CONFIG_TI_SECURE_DEVICE)
1568         /*
1569          * On HS devices, do static EMIF firewall configuration
1570          * but only do it if not already running in SDRAM
1571          */
1572         if (!in_sdram)
1573                 if (0 != secure_emif_reserve())
1574                         hang();
1575
1576         /* On HS devices, ensure static EMIF firewall APIs are locked */
1577         if (0 != secure_emif_firewall_lock())
1578                 hang();
1579 #endif
1580
1581         if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1582             (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1583                 if (emif1_enabled)
1584                         do_bug0039_workaround(EMIF1_BASE);
1585                 if (emif2_enabled)
1586                         do_bug0039_workaround(EMIF2_BASE);
1587         }
1588
1589         debug("<<sdram_init()\n");
1590 }